
Rate Monotonic Scheduling Re-analysed

Qiwen Xu∗,a, Naijun Zhan∗∗,b

aFaculty of Science and Technology, University of Macau, Macau, P.R. China
bLab. of Computer Science, Institute of Software, Chinese Academy of Sciences &

State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University,
Beijing, P.R. China

Abstract

In this paper, we re-analyse the Rate Monotonic Scheduler. Traditionally, the schedulability condition was
obtained from the greatest lower bound of utilisation factors over all the task sets that (are schedulable and)
fully utilise the processor. We argue that full utilisation is not very appropriate for this purpose. We re-
establish Liu and Layland’s classic schedulability theorem by finding the greatest lower bound of utilisation
factors over all the unschedulable task sets instead. The merits of our approach include: Firstly, the fact
that the bound is both sound and tight for schedulability follows directly from definition; Secondly, our
proof is simpler technically.

Key words: Real Time Systems, Scheduling, Schedulability Conditions

1. Introduction

In their seminal paper [6], Liu and Layland stud-
ied two scheduling algorithms, one of them is the
Rate Monotonic Scheduler (RMS). For the RMS,
they established a schedulability condition based
on the utilisation factors represented by the follow-
ing classic theorem

Theorem 1 (Liu and Layland [6]). Given a set of
m tasks, if its utilisation factor is less than or equal
to m(2

1
m − 1), then the task set can be scheduled by

the RMS.

To prove this, they introduced the notion of full
utilisation. A set of tasks is said to fully utilise the
processor if the task set is schedulable and any in-
crease of the required execution time for any task
will cause the task set to be unschedulable.

Liu and Layland’s Claim: A set of m
tasks is schedulable if its utilisation fac-
tor is less than or equal to the minimum
of the utilisation factors over all sets of m
tasks that fully utilise the processor.

∗Qiwen Xu: Av. Padre Tomás Pereira, Taipa, Macau, P.R.
China
∗∗Naijun Zhan: No.4, South Fourth Str., Zhong Guan Cun,

Beijing, 100190, P.R. China
Email addresses: qwxu@umac.mo (Qiwen Xu),

znj@ios.ac.cn (Naijun Zhan)

Since then, full utilisation has been used as a stan-
dard method by various researchers (see e.g. the
recent book [1] and paper [2]) for proving the the-
orem. We shall argue that it is not very appropriate
for this purpose.

First, Liu and Layland just stated the claim with-
out proof or any further discussion. However, its
soundness is not trivial. As far as we know, it was
only proved recently by Devillers and Goossens [2]
and by us in a slightly different setting [3]. Both
proofs made use of the fact that the bound expres-
sion m(2

1
m − 1) monotonically decreases as m in-

creases (m is the number of tasks to be scheduled).
Moreover, Liu and Layland did not discuss whether
the bound is tight, that is, whether the bound can be
lower, although this is implied by the constructive
proof in their paper.

A set of m tasks is schedulable if its utilisation
factor is less than the utilisation factors of any un-
schedulable set of m tasks (otherwise, the utilisa-
tion factor of the task set has to be less than itself).
Since there are infinitely many sets of unschedula-
ble tasks, there may not be a minimum value of the
utilisation factors of them. Therefore, we shall use
the term greatest lower bound instead of minimum.
It simply follows from the definition that a set of
m tasks is schedulable if its utilisation factor is less
than the greatest lower bound of utilisation factors
over all the unschedulable sets of m tasks. More-

Preprint submitted to Elsevier December 22, 2009

over, for any value greater than that greatest lower
bound, it is also trivial to prove that there is an un-
schedulable set of m tasks whose utilisation factor
is less than that value.

Due to these observations, the greatest lower
bound of utilisation factors over all the unschedu-
lable task sets immediately provides a sound and
tight bound for schedulability test. Moreover, the
calculation of the bound for the RMS in this way is
simpler than using full utilisation, and this is per-
haps expected since the notion of full utilisation is
more complicated.

This paper is organized as follows. In Section
2, we show that the greatest lower bound of utili-
sation factors of all the unschedulable sets of tasks
provides the bound for schedulability test. A for-
mal characterisation for the static scheduler to be
schedulable (hence also unschedulable) is devel-
oped in Section 3. In Section 4, Liu and Layland’s
theorem for the RMS is proven. The paper ends
with a discussion in Section 5.

2. Utilisation Factor and Schedulability Condi-
tion

We first define the greatest lower bound and es-
tablish a property that is needed later.

Definition 1. Given a set S of elements, its great-
est lower bound glb(S) is defined to be the element
satisfying the following two properties

• glb(S) ≤ s for any s ∈ S .

• if r ≤ s for any s ∈ S , then r ≤ glb(S).

Note glb(S) does not necessarily belong to S .

Lemma 1. Given two sets R and S , if for any s ∈
S , there exists r ∈ R such that r ≤ s, then glb(R) ≤
glb(S).

Proof: For any s ∈ S , there exists r ∈ R such that
r ≤ s. It follows that glb(R) ≤ r ≤ s and therefore
glb(R) ≤ glb(S). 2

In this paper, we consider the same basic
scheduling problem as in Liu and Layland’s pa-
per [6]. Consider a set of m tasks Γ = {τ1, . . . , τm},
each independent of one another. Task τi has a pe-
riod Ti and requires Ci execution time in every pe-
riod. We assume Ti and Ci are rational numbers,
Ti > 0 and Ci ≥ 0 (for notational convenience we
allow Ci = 0 although this case is clearly not use-
ful in practice). The deadline is equal to the period.
All tasks begin their first requests at time 0. Such a
task set Γ will be denoted by {(Ci,Ti)|1 ≤ i ≤ m}.

There is one processor on which the tasks are exe-
cuted and tasks can be preempted. The time needed
for switching tasks is omitted. As an example, let
us consider two tasks τ1 and τ2. Task τ1 needs one
unit time and τ2 needs two unit time. If starting
from time 0, τ1 runs first and τ2 second, it is under-
stood that execution will complete by time point 3.
At time point 1, it is immaterial whether τ1 is exe-
cuting or τ2 is executing. Therefore, when we refer
to the execution of a task from time point a to time
point b, we shall use open interval (a, b).

For a set of tasks Γ = {(Ci,Ti) | 1 ≤ i ≤ m}, the
utilisation factor is defined to be u(Γ) =

∑m
i=1

Ci
Ti

.
Given a set of task sets S , we shall use u(S) to de-
note the set of all the utilisation factors of the task
sets in S , namely,

u(S) = { u(Γ) | Γ ∈ S }
A set of tasks is schedulable under a scheduling

policy if every instance of every task has enough
execution time before the corresponding deadline,
when the tasks are scheduled according to the pol-
icy. In other words, a set of tasks is unschedulable
if there is one instance of one task that misses the
deadline. In the following, we shall assume our dis-
cussion is with respect to a certain given scheduling
policy, that is, if we say a set of tasks is schedulable
or unschedulable, it is understood that this is with
respect to the given particular policy.

Let S 1 = { Γ | Γ is a set of m tasks that is un-
schedulable }.

Definition 2. v(m) = glb(u(S1)).

The following theorem is a variation of Liu and
Layland’s claim.

Theorem 2. A set of m tasks Γ is schedulable if
u(Γ) < v(m).

Proof: Given a set of m tasks Γ, if it is not schedula-
ble, namely Γ ∈ S 1, then by the definition of v(m),
v(m) ≤ u(Γ). This is the contraposition of the theo-
rem. 2

Theorem 3. For any x > v(m), there exists an un-
schedulable set of m tasks Γ such that u(Γ) < x.

Proof: If for any set of m unschedulable tasks Γ,
x ≤ u(Γ), then by the definition of v(m), x ≤ v(m).
This is the contraposition of the theorem. 2

The above two theorems do not cover the case
that the utilisation factor happens to be equal to
v(m). For the RMS, which is our major concern,
given our assumption that Ci and Ti are rational

2

numbers, there is obviously no utilisation factor
that can be equal to m(2

1
m − 1) , except when m = 1

(one task) and in this case, the task (set) is trivially
schedulable. For a scheduling algorithm in gen-
eral, we expect that v(m) is not an element of u(S1)
(in other words, u(S1) has no minimum element),
which means that a set of tasks whose utilisation
factor is equal to v(m) is schedulable. Suppose this
is not true and assume an unschedulable task set
Γ whose utilisation factor is v(m). We can reduce
the execution time of one task of Γ by a very small
amount, and the new task set is still unschedulable.
The utilisation factor of the new task set is less than
v(m), hence a contradiction. Note we do not con-
sider this argument as a proof, because it lacks the
rigor that is usually required in mathematics.

3. Static Scheduling

For static scheduling, the priorities of tasks are
fixed. Without loss of generality, we hereafter as-
sume priorities are in decreasing order, namely, for
a set of tasks τ1, τ2, · · · , τm, the priority order is
τ1 > τ2 > · · · > τm. In this section, we discuss
static scheduling and shall not state this all the time.

A set of tasks is schedulable if the timing re-
quirement of each instance of every task is satisfied
before the corresponding deadline. Let us take one
task, say τk, to consider. We first study the condi-
tion for its first request to be satisfied. Suppose the
timing requirement is satisfied at time t (t ≤ Tk).
Over the interval (0, t), the processor is occupied
by τ1, τ2, · · · , τk, i.e., one of them is running and
no tasks τk+1, τk+2, · · · , τm can be executed, since
τk’s request is outstanding until t. It follows that∑k

i=1d t
Ti
eCi ≤ t (where d t

Ti
e is the smallest integer

greater than or equal to t
Ti

), since tasks with higher
priorities need

∑k−1
i=1 d t

Ti
eCi executing time. On the

other hand, if there exists 0 < t ≤ Tk, such that∑k
i=1d t

Ti
eCi ≤ t, then obviously there is enough time

for task τk, along with the tasks with higher prior-
ities, to complete the execution time. We next in-
vestigate a condition for an arbitrary request of a
task.

Lemma 2. The j-th request of task τk is satisfied,
if for any b ≤ (j − 1)Tk, there exists t such that
(j − 1)Tk < t ≤ jTk,

∑k
i=1d t−b

Ti
eCi ≤ (t − b).

Proof: We search backwards from (j − 1)Tk for
the first time point b such that the processor is
not used by a task from τ1 to τk (either no task
is running or a task from τk+1 to τm is running)
over interval (b − ε, b) where ε is arbitrarily small.

If such a point cannot be found, then let b = 0.
It follows that the processor is totally occupied
by τ1, τ2, · · · , τk over (b, (j − 1)Tk) and there are
no outstanding requests of τ1, τ2, · · · , τk that start
before b. The total amount of requested execu-
tion time from τ1, τ2, · · · , τk during (b, t) is at most∑k

i=1d t−b
Ti
eCi. The processor will continue to be oc-

cupied by τ1, τ2, · · · , τk from (j − 1)Tk until their
requests are satisfied. Since (j − 1)Tk < t ≤ jTk

and
∑k

i=1d t−b
Ti
eCi ≤ (t − b), there is enough time for

τk to complete execution by t. 2

Liu and Layland [6] discovered a property,
which became well known afterwards, about the
static scheduling: the critical instant (the arriving
time of a task that needs the maximal time to com-
plete) of a task occurs when the task is requested
simultaneously with requests of all higher priority
tasks. Apart from its application in the schedula-
bility theorem, it also provides the basis for the re-
sponse time method studied by many researchers,
for example, Joseph and Pandya [5]. However, the
proof was informal in the form of illustrative dia-
grams and found to have flaws by Goossens [4].

In [3], we formally proved a similar result: under
the static scheduler, if the timing requirement of a
task’s first instance is satisfied, then all instances
of this task will be satisfied. The proof in [3] was
given in Duration Calculus [7], an interval tempo-
ral logic. For easy reference, we reformulate the
proof using traditional mathematics and now the
proof follows immediately from Lemma 2.

Theorem 4. For any task, the timing requirements
of all its instances are satisfied under the static
scheduler if and only if its first instance is satisfied.

Proof The only if part is by the definition. We
next show the if part. Consider any task τk. Its first
instance is satisfied, and therefore there exists time
0 < t ≤ Tk such that

k∑

i=1

d t
Ti
eCi ≤ t (1)

For any instance j > 0, it follows from 0 < t ≤ Tk

that for any b ≤ (j − 1)Tk there exists n > 0 such
that (j − 1)Tk < b + nt ≤ jTk. Thus,

∑k
i=1d (b+nt)−b

Ti
eCi ≤ ∑k

i=1 nd t
Ti
eCi

(by d nt
Ti
e ≤ nd t

Ti
e)

= n
∑k

i=1d t
Ti
eCi

≤ nt

Therefore, by Lemma 2, the j-th instance of τk is
satisfied. 2

3

This indicates that a set of tasks {(Ci,Ti) | 1 ≤ i ≤
m} is schedulable if and only if for any 1 ≤ k ≤ m
there exists 0 < t ≤ Tk such that (1) holds. In other
words, a set of tasks is unschedulable if and only if
there exists 1 ≤ k ≤ m such that for any 0 < t ≤ Tk,∑k

i=1d t
Ti
eCi > t.

4. Rate Monotonic Scheduler

The RMS is a static scheduler where tasks with
shorter periods have higher priorities. Recall we
have the convention that priorities are in decreasing
order, so for a set of tasks {(Ci,Ti) | 1 ≤ i ≤ m}
this implies T1 ≤ T2 ≤ · · · ≤ Tm. In this section,
we discuss the RMS and shall not mention this any
more.

We now come to establish the greatest lower
bound of utilisation factors of all unschedulable
task sets under the RMS.

Theorem 5. For the RMS, v(m) = m(21/m − 1).

Although our starting point, and subsequently
some proofs, are different from that of Liu and Lay-
land [6], we use many ideas from their proofs. In
particular, Liu and Layland suggested first consider
the case that one period is at least half of any other
period. We can express this formally by a predicate
H(T1, . . . , Tm) = ∀1 ≤ i, j ≤ m. 0 < Ti/T j < 2. In
the definitions below, assume Γ = {(Ci,Ti) | 1 ≤ i ≤
m}. Let

S 2 = { Γ | Unschedulable(Γ) ∧
H(T1, . . . , Tm) }

and we shall prove that the bound over it has the
same value as over the following set of tasks

S 3 = { Γ | (∧m−1
i=1 Ci = Ti+1 − Ti) ∧

Cm = 2T1 − Tm ∧ H(T1, . . . , Tm) }

To fit in our framework, we introduce another set
of tasks

S 4 = { Γ | (∧m−1
i=1 Ci = Ti+1 − Ti) ∧

Cm > 2T1 − Tm ∧ H(T1, . . . , Tm) }

and we shall prove

glb(u(S 1)) = glb(u(S 2)) = glb(u(S 4))
= glb(u(S 3)) = m(21/m − 1)

Lemma 3. glb(u(S 2)) ≤ glb(u(S 4))

Proof: We prove this by showing S 4 ⊆ S 2, namely,
any task set {(Ci,Ti) | 1 ≤ i ≤ m} ∈ S 4 is unschedu-
lable. We shall prove that the m-th task will miss
its deadline. Consider any 0 < t ≤ Tm. For no-
tational convenience, let T0 = 0, then there exists
0 ≤ k < m, Tk < t ≤ Tk+1. It follows that

m∑

i=1

d t
Ti
eCi

= 2C1 + · · · + 2Ck + Ck+1 + · · · +
Cm−1 + Cm

= 2(T2 − T1) + · · · + 2(Tk+1 − Tk) +

Tk+2 − Tk+1 + · · · + Tm − Tm−1 + Cm

= Tk+1 + Tm − 2T1 + Cm

> Tk+1

≥ t

This completes the proof of the lemma. 2

Lemma 4. glb(u(S 2)) ≥ glb(u(S 4))

Proof: For any task set {(Ci,Ti) | 1 ≤ i ≤ m} ∈ S 2,
we shall find another set of task {(C′i ,T ′i) | 1 ≤ i ≤
m} ∈ S 4,

∑m
i=1

C′i
T ′i
≤ ∑m

i=1
Ci
Ti

. Suppose the k-th task
misses its deadline. For t = T1, . . . , Tk, we have∑k

i=1dt/TieCi > t. Since Tk > Ti and Tk < 2Ti for
all 1 ≤ i < k, it follows immediately

C1 + C2+ · · · +Ck−1 + Ck > T1

2C1 + C2+ · · · +Ck−1 + Ck > T2

...

2C1 + 2C2+ · · · +2Ck−1 + Ck > Tk

if T1, . . . , Tk are mutually distinct. If the periods are
not mutually distinct, these still hold. For example,
if Ti = Ti+1 are the first two equal periods, then we
have

2C1 + · · · + 2Ci−1 + Ci + · · · + Ck > Ti

therefore

2C1 + · · · + 2Ci + Ci+1 · · · + Ck > Ti = Ti+1

It follows that there exist αi > 1, i = 1 . . . k such
that

C1 + C2+ · · · +Ck−1 + Ck = α1T1

2C1 + C2+ · · · +Ck−1 + Ck = α2T2

...

2C1 + 2C2+ · · · +2Ck−1 + Ck = αkTk

4

Thus,

C1 = α2T2 − α1T1

...

Ck−1 = αkTk − αk−1Tk−1

Ck = 2α1T1 − αkTk

Hence,

k∑

i=1

Ci

Ti
− ((

k−1∑

i=1

Ti+1 − Ti

Ti
) +

2T1 − Tk

Tk
)

=

k−1∑

i=1

[
(αi+1 − 1)Ti+1

Ti
− (αi − 1)]

+
(α1 − 1)2T1

Tk
− (αk − 1)

=

k−1∑

i=1

[
(αi+1 − 1)Ti+1

Ti
− (αi+1 − 1)]

+
(α1 − 1)2T1

Tk
− (α1 − 1)

= δ (denote by δ for latter reference)
> 0 (Ti < Ti+1, 2T1 > Tk)

We can choose the following task set

C′1 = 0
T ′1 = T1

...

C′m−k = 0
T ′m−k = T1

C′m−k+1 = T2 − T1

T ′m−k+1 = T1

C′m−k+2 = T3 − T2

T ′m−k+2 = T2

...

C′m−1 = Tk − Tk−1

T ′m−1 = Tk−1

C′m = 2T1 − Tk + ε

T ′m = Tk,

where 0 < ε/Tk < δ.
Obviously, the task set is an element of S 4.

Moreover,
m∑

i=1

C′i
T ′i
≤

k∑
i=1

Ci
Ti
≤

m∑
i=1

Ci
Ti

. 2

Lemma 5. glb(u(S 1)) = glb(u(S 2))

Proof: Since S 1 ⊇ S 2, glb(u(S 1)) ≤ glb(u(S 2))
follows immediately.

Therefore, we only need to prove glb(u(S 1)) ≥
glb(u(S 2)). For any task set {(Ci,Ti) | 1 ≤ i ≤ m} ∈
S 1, we shall find another set of tasks {(C′i ,T ′i) | 1 ≤
i ≤ m} ∈ S 2,

∑m
i=1

C′i
T ′i
≤ ∑m

i=1
Ci
Ti

. Assume the k-th
task misses it deadline. Therefore

∀0 < t ≤ Tk.

k∑

i=1

d t
Ti
eCi > t. (2)

Let Qi = b Tk
Ti
c and T ′i = QiTi for 1 ≤ i ≤ k. It is

easy to prove the following:

I. Qi ≥ 1 for any 1 ≤ i ≤ k;
II. T ′i ≤ Tk for any 1 ≤ i < k;

III. T ′k = Tk;
IV. d Tk

Ti
e ≤ Qi + 1 for any 1 ≤ i ≤ k;

V. 0 < T ′i
T ′j
< 2 for any 1 ≤ i, j ≤ k.

Let C′i = Ci for i = 1, . . . , k − 1 and C′k = Ck +∑k−1
i=1 (Qi−1)Ci. Let us sort T ′1,T

′
2, . . . , T

′
k in increas-

ing order, or in other words, decreasing order of
priorities. Suppose U1,U2, . . . ,Uk−1 is a permuta-
tion of {1, 2, . . . , k−1} and T ′U1

≤ T ′U2
≤ · · · ≤ T ′Uk−1

.
Since Tk = T ′k, we can let Uk = k. For convenience,
let T ′U0

= 0. We next show execution time require-
ment of task (C′Uk

,T ′Uk
) cannot be satisfied. For any

0 < t ≤ T ′Uk
, there exists 0 ≤ j < k such that

T ′U j
< t ≤ T ′U j+1

. It follows

QU j TU j < t ≤ QU j+1 TU j+1 ≤ QUi TUi , (3)
for i = j + 1, · · · , k − 1

Moreover, we have

k∑

i=1

d t
T ′Ui

eC′Ui

=

k∑

i=1

d
T ′U j+1

T ′Ui

eC′Ui

(by V)

=

j∑

i=1

2C′Ui
+

k∑

i= j+1

C′Ui

(by IV and
T ′U1
≤ · · · ≤ T ′U j

< T ′U j+1
≤ · · · ≤ T ′Uk

)

=

j∑

i=1

(QUi + 1)CUi +

k−1∑

i= j+1

QUiCUi + Ck

(by the definition)

≥
k−1∑

i=1

d t
TUi

eCUi + Ck

(by IV and (3))

5

=

k∑

i=1

d t
Ti
eCi

> t

(by (2))

Therefore {(C′i ,T ′i) | 1 ≤ i ≤ k} is unschedulable.
We can add m − k tasks with C′k+1 = C′k+2 = · · · =

C′m = 0 and T ′k+1 = T ′k+2 = · · · = T ′m = T ′k. The task
set {(C′i ,T ′i) | 1 ≤ i ≤ m} is still unschedulable and
together with 0 < T ′i /T

′
j < 2 for any 1 ≤ i, j ≤ k,

we now know {(C′i ,T ′i) | 1 ≤ i ≤ m} ∈ S 2. On the
other hand, it is easy to prove

m∑

i=1

C′i
T ′i

=

k∑

i=1

C′i
T ′i

=

k∑

i=1

Ci

Ti
+

k−1∑

i=1

Ci(Qi − 1)(
1
Tk
− 1

T ′i
)

≤
k∑

i=1

Ci

Ti

≤
m∑

i=1

Ci

Ti
2

Lemma 6. glb(u(S 3)) = glb(u(S 4))

Proof: It is obvious that glb(u(S 3)) ≤ glb(u(S 4)).
We next prove glb(u(S 3)) ≥ glb(u(S 4)) by contra-
diction. Suppose glb(u(S 3)) < glb(u(S 4)), then
there exists a task set {(Ci,Ti) | 1 ≤ i ≤ m} ∈ S 3
such that

∑m
i=1

Ci
Ti

< glb(u(S 4)). We can increase
Cm by a small amount ε > 0, such that the util-
isation factor of the new task set is still less than
glb(u(S 4)). However, the new task set belongs to
S 4, hence a contradiction. 2

Now we are ready to calculate the greatest lower
bound. The calculation in Liu and Layland’s pa-
per [6] is complicated and missing steps. In the
following, a straightforward proof using only ele-
mentary mathematics is given.

Lemma 7. glb(u(S 3)) = m(21/m − 1)

Proof: For i = 1 . . .m − 1, Ci
Ti

= Ti+1
Ti
− 1, and Cm

Tm
=

2T1
Tm
− 1. It follows that

m∑

i=1

Ci

Ti
= (

m−1∑

i=1

Ti+1

Ti
) +

2T1

Tm
− m.

The following is a simple property for positive re-
als, that is the arithmetic mean of n positive reals is
greater than or equal to their geometric mean,

x1 + x2 + · · · + xm

m
≥ (x1x2 · · · xm)

1
m

and the equality holds when x1 = x2 = · · · = xm.
Therefore, the greatest lower bound of

(
∑m−1

i=1
Ti+1
Ti

) + 2T1
Tm

m

is equal to

((
T2

T1
)(

T3

T2
) · · · (Tm

Tm−1
)(

2T1

Tm
))

1
m = 2

1
m .

Hence, the greatest lower bound of
∑m

i=1
Ci
Ti

is

m(2
1
m − 1). 2

Theorem 5 follows from Lemmas 2 to 6.

5. Discussions

It is actually not by chance that the bound cal-
culated from the sets of unschedulable tasks is the
same as that from using full utilisation. Given the
formal characterisation developed early for a set of
tasks to be unschedulable under the static sched-
uler, it is easy to see that a set of tasks {(Ci,Ti) | 1 ≤
i ≤ m} that is at or above the border line (that
is, any increase of the execution time for any task
will cause the new task set to be unschedulable
and these also include task sets that are already un-
schedulable) is characterised by the following con-
dition:

for any 0 < t ≤ Tm,
∑m

i=1d t
Ti
eCi ≥ t. (4)

Therefore formally, a set of tasks {(Ci,Ti) | 1 ≤
i ≤ m} fully utilises the processor if

1) the task set is schedulable, characterised by
condition (1) and

2) condition (4).
Let

S 0 = { Γ | Γ is a set of m tasks
that fully utilises the processor }.

S 5 = { Γ | Γ is a set of m tasks that
satisfies condition (4) }.

S 6 = { Γ | Γ is a set of m tasks
that is schedulable }.

Obviously, S 0 = S 5 ∩ S 6. Let l(m) = glb(u(S 0))
and w(m) = glb(u(S 5)). We can prove

l(m) = w(m) = v(m)

This shows Liu and Layland’s results are indeed
correct. However, as we observed, conceptually the
bound over the set of unschedulable tasks is more
appropriate and also technically simpler.

6

Another contribution of this paper is that our
proofs are rigorous by common standard in mathe-
matics. In particular, we have developed a formal
characterisation for a set of tasks to be schedulable,
hence also unschedulable, under the static sched-
uler, and along the way, a formal characterisation
for full utilisation. When we reason whether a set
of tasks is schedulable or unschedulable, we check
against the formal characterisation.

Acknowledgments We thank Dong Shuzhen for
her work in some proofs, Sun Haiwei for suggest-
ing the proof for Lemma 7 using elementary math-
ematics, and the anonymous referee for comments
that have led to improvement.

The second author is supported in part by
the projects NSFC-60721061, NSFC-60573007,
NSFC-90718041, NSFC-60736017, NSFC-
60970031, and RCS2008K001.

References

[1] G. B. Buttazzo. Hard Real Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, 1997.

[2] R. Devillers and J. Goossens. Liu and Layland’s schedu-
lability test revisited. Information Processing Letters,
73:157-161, 2000.

[3] S. Dong, Q. Xu and N. Zhan. A formal proof for the
Rate Monotonic Scheduler. In Proc. the Sixth Interna-
tional Conference on Real-Time Computing Systems and
Applications (RTCSA’99), Hong Kong, pp. 500-507, IEEE
Computer Society Press, 1999.

[4] J. Goossens. Scheduling of Hard Real-Time Periodic Sys-
tems with Various Kinds of Deadline and Offset Con-
straints. PhD thesis, Université Libre de Bruxelles, 1999.

[5] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal, 29(5):390-395,
1986.

[6] C.L. Liu and J.W. Layland. Scheduling algorithm for mul-
tiprogramming in a hard real-time environment. Journal
of the ACM, 20(1):46-61, 1973.

[7] C.C. Zhou, C.A.R. Hoare, and A.P. Ravn. A cal-
culus of durations. Information Processing Letters,
1991,40(5):269–276.

7

