
Adaptive Fourier Series - A Variation of

Greedy Algorithm ∗

Tao Qian† and Yan-Bo Wang‡

April 2, 2010

Abstract. We study decomposition of functions in the Hardy space H2(D)
into linear combinations of the basic functions (modified Blaschke products) in
the system

Bn(z) =

√
1− |an|2
1− anz

n−1∏

k=1

z − ak

1− akz
, n = 1, 2, ..., (1)

where the points an’s in the unit disc D are adaptively chosen in relation to the
function to be decomposed. The chosen points an’s do not necessarily satisfy
the usually assumed hyperbolic non-separability condition

∞∑

k=1

(1− |ak|) = ∞ (2)

in the traditional studies of the system. Under the proposed procedure functions
are decomposed into their intrinsic components of successively increasing non-
negative analytic instantaneous frequencies, whilst fast convergence is resumed.
The algorithm is considered as a variation and realization of greedy algorithm.
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1 Introduction

The rational orthonormal system (1) is often referred as Takenaka-Malmquist
(TM) system. It is a generalization of the Fourier system {zn−1}∞n=1. Besides
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the trigonometric basis for the Hardy H2(D) space, Laguerre basis and the “two-
parameter Kautz” basis are other examples of (1). TM systems have long been
interested, from early last century to present, with fruitful theoretical results
and ample applications in a number of areas of applied mathematics, includ-
ing control theory, signal processing and system identification ([9], [19], [1], [2],
[3], [11]). In the large quantity of the literature all the studies are based on
the condition (2). Under this condition a system (1) is dense in the Hardy
spaces Hp(D), 1 ≤ p < ∞, and in the disc algebra A(D). On the other hand,
if (1) is dense in any of the above mentioned Banach spaces, then (2) holds
and, therefore, it is dense in all the other mentioned Banach spaces. There is
also a counterpart theory together with a counterpart condition to (2) in the
upper-half-complex plane. The present study is different from all the previous
ones, for we do not assume the condition (2), and the system (1) is not expected
to be complete in any of the above mentioned Banach spaces. This different
setting is based on choosing the points an’s defining the system according to
the function f to be decomposed. The purpose is to decompose, perhaps, only
the given function f in an effective way into basic functions of which each pos-
sesses non-negative analytic instantaneous frequency. A system (1) constructed
in such a way is called an adaptive rational orthonormal system, where the con-
dition (2) does not necessarily hold, and hence the adaptive system may not be
complete in H2(D). From now on when we talk about the system (1) we do not
assume the condition (2). In an adaptive decomposition the modified Blaschke
products are regarded as the intrinsic components of the given function f for
three reasons, of which one is non-negativity of the instantaneous frequencies
(See the definitions given below for mono- and pre-mono-components), the sec-
ond is fast convergence, and the third is gaining successively higher and higher
frequencies. As in the adaptive wavelets case this type of decomposition has
useful applications in engineering practice, including in time-frequency analysis
and computation of Hilbert transforms.

This study is merged from our recent study on signal decomposition into
mono-components ([12], [13], [15], [18]). A real-valued signal is called a real
mono-component, if the phase function θ(t) obtained from the natural amplitude-
phase representation of its associated analytic signal, viz. s(t) + iHs(t) =
ρ(t)eiθ(t), satisfies the condition θ′(t) ≥ 0, a.e. In physics terminology a mono-
component is a signal that possesses a non-negative analytic instantaneous fre-
quency function. The associated analytic signal, in the case, is called a com-
plex mono-component. Without introducing confusion, both real and complex
mono-components are sometimes called briefly mono-components. It can be
easily verified that the boundary values of the modified Blaschke products Bn,
n = 1, 2, ..., are all mono-components if a1 = 0. In fact, in the case, they are
bounded analytic functions (as analytic signals) with the expressions

B1(z) = 1, Bn(z) =

√
1− |an|2z
1− anz

n−1∏

k=2

z − ak

1− akz
, n = 2, 3, ...,

where the Blaschke product parts are of positive phase derivatives on the bound-
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ary (as Möbius transforms are, see, for instance, [5]) and the fractional linear
function √

1− |an|2z
1− anz

is a starlike function, and in particular, a convex function, which is also of
positive phase derivative on the boundary ([12]). In general the members of
(1) belong to the category of pre-mono-components which, by definition, are
those becoming mono-components after being multiplied by eiMt, or, in other
words, becoming mono-components riding on a carrier frequency eiMt, for some
M > 0 . The members in (1) are also regarded as weighted (finite) Blaschke
products in relation to Bedrosian identity ([15], [16], [18],[21]) that is to find
weighted unimodular mono-components from unimodular mono-components.
This Bedrosian identity procedure, to the authors’ knowledge, starts from Y.S.
Xu. A large pool of mono-components have been found so far, including bound-
ary values of inner functions ([13]), weighted forms of some unimodular mono-
components ([15], [18]) and p-starlike functions ([12]). The study of this pa-
per belongs to the trend of finding adaptive decompositions of functions into
their intrinsic mono-components (or pre-mono-components) of various types.
Temptations of adaptive decomposition using mono-components are noted in
literature including [14] and [20].

To the authors, the motivation of the study is the engineering algorithm
called EMD (Empirical Mode Decomposition) and the related signal decom-
position. The algorithm produces certain basic signals called IMFs (Intrinsic
Mode Functions) that are experimentally dependent. EMD at each phase of
its multiple sifting processes for producing a single IMF throws away, under a
given threshold, part of the signal of unknown structure, and it is highly local.
It, however, unrealistically expects the resulted IMFs being of a highly global
property, viz. being mono-components. The proposed adaptive decomposition
is a certain replacement of EMD: We take what is desired as our starting point,
then the algorithm turns to be a completely different one.

The proposed algorithm may be treated as a variation of greedy algorithm
([4], [8]). In a greedy algorithm a dictionary, D, is given, that, by definition,
is a linearly dense subset consisting of certain unit elements of the underlying
Hilbert space H. Besides D and H, an element f ∈ H is given, and the purpose
is to select u1, ..., un, ... ∈ D so that

f =
∞∑

k=1

〈fk, uk〉uk

converges in a fast way. To guarantee the fast convergence, at every selection
step it requires, for a fixed α ∈ (0, 1],

|〈fk, uk〉| ≥ α sup{|〈fk, u〉| : u ∈ D}, (3)

where

fk = f −
k−1∑

l=1

〈fl, ul〉ul.
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In our algorithm, the Hilbert space is the complex Hardy space H2(D), the
dictionary,

D = {e{a} :=

√
1− |a|2
1− az

: a ∈ D},

consists of essentially the Cauchy kernels with poles outside the compact unit
disc, and we have the relations

f =
∞∑

k=1

〈gk, ek〉Bk =
∞∑

k=1

〈fk, Bk〉Bk =
∞∑

k=1

〈f,Bk〉Bk,

where ek’s are from the dictionary, Bk’s are from the adaptive rational orthonor-
mal system (1), fk’s are the usual remainders defined by

fk =: f −
k−1∑

l=1

〈gl, el〉Bl = f −
k−1∑

l=1

〈fl, Bl〉Bl,

and the functions gk’s satisfy 〈gk, ek〉 = 〈fk, Bk〉. The algorithm can not be
regarded as a typical greedy algorithm for the following two reasons. The first is
that the functions Bk’s to give rise to a linear expansion of f are not independent
to each other: the formers are constructive factors in a certain manner of the
latter ones. The second is that the function that at the k-th selection step
dealing with the dictionary is gk but not the usual remainder fk. Our algorithm,
however, can be regarded as a realizable variation of greedy algorithm in the
sense that we can prove the existence of ek ∈ D such that

|〈gk, ek〉| = sup{|〈gk, e〉| : e ∈ D}.

This is to be compared with the weaker principle given in (3).

2 The Adaptive Rational Orthonormal System

In this section we describe the adaptive program based on the maximal selection
principle given in Lemma 2.1, and prove the convergence. Throughout the paper
we assume that the given function f̃ ∈ L2(∂D) to be decomposed is real-valued.
It can be written into its Fourier series expansion

f̃(eit) =
∞∑

k=−∞
ckeikt,

where the limit takes the L2(∂D) sense and
∑∞

k=−∞ |ck|2 = ‖f̃‖2. The square-
norm is defined through the inner product

〈f, g〉 =
1
2π

∫ 2π

0

f(eit)g(eit)dt.
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Write

f+(eit) =
∞∑

k=0

ckeikt, f−(eit) =
−1∑

k=−∞
ckeikt,

which are non-tangential boundary values of, respectively,

f+(z) =
∞∑

k=0

ckzk and f−(z) =
−1∑

k=−∞
ckzk.

The last two functions are, respectively, in H2(D) and H2(C \ D). Since f̃ is
real-valued, we have c−k = ck, and hence

f̃(eit) = 2Ref+(eit)− c0.

The approximation of f̃ is thus reduced to approximation of f+.
The rest of this section will be devoted to approximation of f = f+ ∈

H2(D) by using a series (1) formulated through a sequence of points {ak} ⊂
D adaptively chosen according to f. The procedure is in the spirit of greedy
algorithm ([4], [8]). Below we also write Bn = B{a1,...,an}. For f ∈ H2(D), by
invoking the Cauchy Integral Formula, we have

〈f,B{a}〉 =

√
1− |a|2
2π

∫ 2π

0

f(eit)
1

1− aeit
dt

=
√

1− |a|2 1
2πi

∫

∂D
f(ζ)

1
ζ − a

dζ

=
√

1− |a|2f(a). (4)

To stress on the effect that the inner product 〈f,B{a}〉 is essentially the eval-
uation of f at the point a, we give the particular notation B{a} = e{a}. Note
that

{e{a} : a ∈ D}

is the dictionary introduced in the last section, where ea(z) =
√

1−|a|2
1−az is essen-

tially a shifted Cauchy kernel.
We use notations consistent with those used in the introduction section and

set f = f1 = g1. The first step of the decomposition is

f1(z) =
(
f1(z)− 〈f1, e{a1}〉e{a1}(z)

)
+ 〈g1, e{a1}〉e{a1}(z)

= f2(z) + 〈g1, e{a1}〉B{a1}(z) (5)

= g2(z)
z − a1

1− a1z
+ 〈g1, e{a1}〉B{a1}(z),

where

f2(z) = f1(z)− 〈f1, e{a1}〉e{a1}(z)

= g1(z)− (1− |a1|2) g1(a1)
1− a1z
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having zero at z = a1, and thus

g2(z) = f2(z)
1− a1z

z − a1

is, again, in H2(D). The above relations hold for any a1 ∈ D. Now in (5) we wish
to minimize the energy ‖f2‖2 of the remainder f2. Because of the orthogonality
between f − f2 and the orthogonal projection 〈g1, e{a1}〉B{a1} this is equivalent
to maximizing the quantity (see (4))

|〈g1, e{a1}〉|2 = (1− |a1|2)|g1(a1)|2.

We can show that at an interior point a1 of the disc D (a critical point of g1)
the maximum value is actually attainable, that is

(1− |a1|2)|g1(a1)|2 = sup{|〈g1, e{a}〉|2 : a ∈ D}. (6)

This fact is stated as

Lemma 2.1. (The maximal selection principle) For any function g ∈ H2(D)
there exists a ∈ D such that (6) holds.

Remark 2.1. The existence of such a1 turns to be crucial for the recursive steps
that leads to success of the algorithm. It, however, is similar to greedy algorithm
in the aspect that the critical points a1 ∈ D may not be unique. In §3 we will
provide some aspects on uniqueness and continuity of such a1.

Proof It suffices to show

lim
|a|→1−

‖g − 〈g, B{a}〉B{a}‖ = ‖g‖. (7)

Let Pr denote the Poisson kernel for the unit circle at the point r ∈ (0, 1).
For ε > 0, we can choose r sufficiently close to 1 so that owing to the L2

approximation property of the Poisson integral, there holds

‖g‖ ≥ ‖g − 〈g, B{a}〉B{a}‖
≥ ‖Pr ∗ (g − 〈g, B{a}〉B{a})‖
≥ ‖Pr ∗ g‖ − |〈g, B{a}〉|‖Pr ∗B{a}‖
≥ (1− ε)‖g‖ − ‖g‖‖Pr ∗B{a}‖. (8)

Now with the fixed r, since B{a} ∈ H∞(D), there holds (corollary 3.2,p58, [5]),
for z = reit,

Pr ∗B{a}(eit) = B{a}(z).
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Therefore, we have

‖Pr ∗B{a}‖2 =
1
2π

∫ 2π

0

1− |a|2
|1− areit|2 dt

=
1
2π

1− |a|2
1− r2|a|2

∫ 2π

0

1− r2|a|2
|1− |ra|eit|2 dt

=
1− |a|2

1− r2|a|2
∫ 2π

0

Pr|a|(eit)dt

=
1− |a|2

1− r2|a|2 .

When |a| is close to 1, the inequality (8) gives

‖g‖ ≥ ‖g − 〈g, B{a}〉B{a}‖ ≥ (1− 2ε)‖g‖.
This shows the desired limit (7). The proof is complete.
Remark 2.2. The proof of Lemma (2.1) is based on the density of the Poisson
integrals, and the availability of the desired relation for the Poisson integrals
(also see [17]). What is proved is actually a particular case of a known result:
For g ∈ Hp(D), 0 < p < ∞, there holds (page 123, [6])

g(z) = o

(
1

(1− |z|2)1/p

)
, |z| → 1. (9)

Similar estimates also hold for functions in Bergman spaces (page 54, [7]). These
more general results are proved by using the density of analytic polynomials
and the availability of the desired relations for those polynomials. In spite of
existence of the results, in order to make the article self-containing and easy
for the future referring especially in the contexts where analytic approximation
is not available (multiply-connected domains, several real variables etc.), we
choose to include the proof using Poisson kernel argument.

The adopted notation implies 〈f1, B{a1}〉 = 〈f,B{a1}〉 = 〈g1, e{a1}〉. Now to
g2 repeating the same procedure we have

f(z) = g2(z)
z − a1

1− a1z
+ 〈g1, e{a1}〉e{a1}(z)

=
(

g3(z)
z − a2

1− a2z
+ 〈g2, e{a2}〉e{a2}(z)

)
z − a1

1− a1z
+ 〈g1, e{a1}〉e{a1}(z)

= g3(z)
z − a2

1− a2z

z − a1

1− a1z
+ 〈g2, e{a2}〉B{a1,a2} + 〈g1, e{a1}〉B{a1}(z),

where a2 is chosen in D so that

|〈g2, e{a2}〉|2 = (1− |a2|2)|g2(a2)|2 = sup{|〈g2, e{a}〉|2 : a ∈ D}. (10)

According to Lemma 2.1 this is always possible. We also have

〈g2, e{a2}〉 = 〈f2, B{a1,a2}〉 = 〈f,B{a1,a2}〉.
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Repeating this process up to n-times, we obtain

f(z) = f1(z) = gn+1(z)
n∏

l=1

z − al

1− alz
+

n∑

l=1

〈gl, e{al}〉B{a1,...,al}(z)

= gn+1(z)
n∏

l=1

z − al

1− alz
+

n∑

l=1

〈f,B{a1,...,al}〉B{a1,...,al}(z),

where, for l = 2, ..., n + 1, as recursive formula,

gl(z) =
(
gl−1(z)− 〈gl−1, e{al−1}〉e{al−1}(z)

) 1− al−1z

z − al−1

=
(

gl−1(z)− (1− |al−1|2)gl−1(al−1)
1− al−1z

)
1− al−1z

z − al−1
, (11)

and

|〈gl, e{al}〉|2 = (1− |al|2)|gl(al)|2 = max{|〈gl, e{a}〉|2 : a ∈ D}, l = 1, ..., n. (12)

Denote by fl the usual remainder,

fl(z) = gl(z)
l−1∏

k=1

z − ak

1− akz
, (13)

we have the relations

〈gl, e{al}〉 = 〈fl, B{a1,...,al}〉 = 〈f,B{a1,...,al}〉. (14)

The inductive procedure results in an infinite sequence {ak} in D such that at
each step we have chosen ak that gives rise to the best approximation. Getting
the best at each step does not automatically guarantee the convergence. In our
case, however, we have

Theorem 2.2. For a given function f ∈ H2(D) under the maximal selection
principle in Lemma 2.1 starting from g1 = f, we have

f =
∞∑

k=1

< f, Bk > Bk, (15)

where Bk = B{a1,...,ak}.

Remark 2.3. We note that {Bk}∞k=1 may not form a basis for H2(D) (also see
§3). What we are interested is only a fast convergence in the energy sense to
the given function. This program results a decomposition of the given function
into its intrinsic components in the rational orthonormal system.

To prove the theorem we first prove a lemma.
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Lemma 2.3. Let 0 6= g ∈ H2(D). Denote by Zg the set of the complex numbers
a ∈ D such that

〈g, e{a}〉 = 0.

Then the accumulation points of Zg are contained in ∂D,

Proof Apart from a constant multiple, 〈g, e{a}〉 is the evaluation of g at the
point a. Then the theorem of isolated zeros of analytic function concludes the
lemma.
Proof of Theorem 2.2. We prove the assertion by introducing a contradiction.
If (15) does not hold, then

0 6= g = f −
∞∑

k=1

〈f,Bk〉Bk, (16)

and

0 < ‖g‖2 = ‖f‖2 −
∞∑

k=1

|〈f,Bk〉|2, (17)

and, owing to (14) and (17),

lim
k→∞

〈f,Bk〉 = lim
k→∞

〈fk, Bk〉 = lim
k→∞

〈gk, e{ak}〉 = 0, (18)

where gk and fk are defined through (11) and (13). They satisfy

fk = f −
k−1∑

l=1

〈f,Bl〉Bl.

By Lemma 2.3, there exists b ∈ D such that

|〈g, e{b}〉| = δ > 0.

We may, in particular, select b ∈ D that distinguishes from all the chosen ak in
the sequence. Set

hk = −
∞∑

l=k

〈f,Bl〉Bl.

Thus, g = fk + hk. Due to (17), when k is large,

|〈hk, e{b}〉| ≤ ‖hk‖‖e{b}‖ < δ/2,

and hence
|〈fk, e{b}〉|+ δ/2 > |〈fk, e{b}〉+ 〈hk, e{b}〉| = δ.

So,

|〈fk, e{b}〉| > δ/2. (19)
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This implies that for large k,

|
√

1− b2fk(b)| > δ/2. (20)

Since Blaschke products are dominated by the constant 1, the relation (13) gives

|gk(z)| ≥ |fk(z)|, (21)

and thus

|
√

1− b2gk(b)| > δ/2, (22)

or, equivalently,

|〈gk, e{b}〉| > δ/2. (23)

On the other hand, when k is large, (18) gives

|〈gk, e{ak}〉| < δ/2. (24)

If k if fixed large enough to satisfy both (23) and (24), then we arrive a contra-
diction. In fact, the maximal selection principle proved in Lemma 2.1 asserts
that we should not have chosen ak but b. This proves the theorem.

Remark 2.4. As already mentioned the obtained Bn’s, in general, may only be
pre-mono-components. If a1 = 0, and the other an’s are chosen according to
Lemma 2.1, then we obtain an adaptive system consisting of mono-components.
Apart from modifying the algorithm at the beginning step, one can first get
g(z) = 1

z (f(z)− f(0)) , and then to g(z) perform the algorithm defined by
Lemma 2.1 and Theorem 2.2. The adaptive mono-component decomposition of
f then will be obtained from the adaptive decomposition of g and the relation
f(z) = f(0) + zg(z).

Remark 2.5. As already mentioned, such chosen an’s (as in Theorem 2.2) may or
may not give rise to a complete system {Bn} depending on whether the condition
(2) is met. Some minor modifications may be made in order to make {Bk} to be
a complete system. The expense is to give up the total adaptivity. For instance,
if, besides the maximal selection principle, we add the constraint condition
|an| ≤ 1 − rn, where {rn} are any positive numbers satisfying

∑∞
r=1 rn = ∞.

Then the chosen an’s satisfy the condition (2) and thus gives rise to a complete
system. Also see Theorem 3.2 below.

3 More Aspects on Critical Points and Conver-
gence

In this section we will deal with two theoretical aspects in relation to the al-
gorithm. The first one concerns uniqueness and continuity of the maximizers
(critical points) of A2

G(z) defined by (25) for G ∈ H2(D).
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For G ∈ H2(D) define mG to be the maximal inner product modular

mG := max{AG(z) : z ∈ D},

where AG is

AG(z) := |〈G, e{z}〉| =
√

1− |z|2|G(z)|. (25)

Denote by

zG := {z ∈ D : AG(z) = mG}, (26)

the set of maximizers. For a given G ∈ H2(D) the set zG may contain more
than one points. We have

Theorem 3.1. Let F, G, Gn be functions in H2(D), and Gn → G in H2(D)
and ‖G‖H2(D) > 0. Let zn ∈ zGn

. Then
(i)

|mF −mG| ≤ ‖F −G‖H2(D).

(ii) There exist a subsequence znk
→ z∗ such that z∗ ∈ zG.

(iii) If zG contains only one element z∗, then zn → z∗.

Proof (i) Without loss of generality we may assume mF ≤ mG. In the case, by
the triangle inequality for complex numbers, for z ∈ zG,

mG −mF ≤ AG(z)−AF (z)

≤
√

1− |z|2|(G− F )(z)|
= |〈G− F, ez〉|
≤ ‖G− F‖H2(D).

(ii) Take ε ∈ (0, 1
4mG). Owing to Lemma 2.1, there exists δ > 0 such that

AG(z) < ε whenever |z| > 1− δ. (27)

Chose n large enough so that

|mGn
−mG| ≤ ‖Gn −G‖H2(D) < ε (28)

and, for any z ∈ D,

|AGn
(z)−AG(z)| ≤ ‖Gn −G‖H2(D) < ε (29)

simultaneously hold. There follows

|AGn
(zn)−mG| < ε <

1
4
mG,
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and thus

AGn(zn) >
1
2
mG and AG(zn) ≥ AGn(zn)− ε >

1
4
mG.

The last inequality shows that when n is large,

|zn| ≤ 1− δ.

Therefore there exists a subsequence znk
with

lim
k→∞

znk
= z∗ ∈ (1− δ)D and lim

k→∞
AG(znk

) = AG(z∗).

We show that AG(z∗) = mG. Due to the continuity of AG and the inequalities in
(28) and (29), for any ε1 > 0 and large enough k, the following three inequalities
simultaneously hold:

|AG(znk
)−AG(z∗)| < ε1,

|AG(znk
)−AGnk

(znk
)| < ε1,

|AGnk
(znk

)−mG| < ε1.

Therefore,
|AG(z∗)−mG| < 3ε1,

and thus AG(z∗) = mG.
(iii) In the proof of (ii) we show that for large enough n, there holds zn ∈
(1− δ)D. Therefore, if {zn} does not converge, then it has more than one accu-
mulation pints in D. The result proved in (ii) asserts that all the accumulation
points of {zn} are in zG, contrary to the assumption that zG only contains a
single point. The proof is complete.

In practice the convergence result proved in Theorem 2.2 is sufficient. In
fact, no application requires expansions of all functions in the space. In system
identification, for instance, only the system function of the rational function type
is to be sought. The following result is a refitment of Theorem 2.2 characterizing
the subspace in which the chosen system is complete. Before we state the
theorem we need to introduce some notation.

We say that bk has the multiplicity l in the n-tuple {b1, ..., bn}, n ≥ l, if
there totally exist l entries, bn1 , ..., bnl

, 1 ≤ n1 < · · · < nl = k, such that
bn1 = · · · = bnl

= bk. In other words, up to the entry bk the number bk altogether
appears l times.

We call
ẽ{b1}, ẽ{b2}, ..., ẽ{bn},

the n-system associated with the n-tuple {b1, ..., bn} if

ẽ{bk} =
1

(1− bkz)l
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when bk 6= 0 and has the multiplicity l; and

ẽ{bk} = zl−1

when bk = 0 and has the multiplicity l, 1 ≤ l ≤ n. The n-system associated with
an n-tuple is not orthogonal.

Both the definitions for the multiplicity of bk in an n-tuple and the associated
n-tuple functions ẽ{bk} may be extended to n = ∞.

We have

Theorem 3.2. For a sequence {bn} in D, if the condition (2) does not hold,
then

H2(D) = span{ẽ{b1}, ..., ẽ{bn}, ...} ⊕ φH2(D), (30)

where φ is the Blaschke product that has and only has the bn’s as its zeros
(including the multiplicity).

Proof It is obvious that both span{ẽ{b1}, ..., ẽ{bn}, ...} and φH2(D) are closed
subspace of H2(D). To show that they are orthogonal complements to each other
it suffices to show that they are orthogonal, and each function in H2(D) may
be decomposed in a unique way into a sum of two functions in the respective
two subspaces. To show the orthogonality it suffices to show each ẽ{bk} is
orthogonal with any function of the form φg, g ∈ H2(D). By computing the
corresponding inner product this turns to be a conclusion of Cauchy’s Theorem.
Bear in mind that the span of the n-tuple of the functions {ẽ{b1}, ..., ẽ{bn}} is
the same as the span of the n-system {B{b1}, ..., B{bn}}, and the same is for
the whole sequence {ẽ{b1}, ..., ẽ{bn}, ...} and the system {B{b1}, ..., B{bn}, ...}.
Now, for any function f ∈ H2(D), the remainder f −∑n

k=1〈f,Bk〉Bk, in view
of (13), has zeros b1, ...bn, including the multiplicities. For arbitrary n, f −∑∞

k=1〈f,Bk〉Bk = f−∑n
k=1〈f,Bk〉Bk−

∑∞
k=n+1〈f,Bk〉Bk, where every Bk, k ≥

n + 1, has zeros b1, b2, ..., bn with multiplicities. Therefore, f −∑∞
k=1〈f,Bk〉Bk

has zeros b1, ..., bn, ..., including the multiplicities. As a consequence,

f −
∞∑

k=1

〈f,Bk〉Bk = φg

for some g ∈ H2(D). The proof is complete.

Corollary 3.3. If the chosen {an} according to the given function f ∈ H2(D)
as in Theorem 2.2 does not satisfy the condition (2), then {Bn} is complete in
the closed subspace span{ẽ{a1}, ..., ẽ{an}, ...} that contains f .
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