
Expert Systems With Applications 175 (2021) 114782

Available online 4 March 2021
0957-4174/© 2021 Elsevier Ltd. All rights reserved.

Highly shared Convolutional Neural Networks

Yao Lu b,a,1, Guangming Lu a,*,2, Yicong Zhou b,3, Jinxing Li a,4, Yuanrong Xu c,5,
David Zhang c,d,6

a Harbin Institute of Technology, Shenzhen, China
b University of Macau, Macau, China
c The Chinese University of Hong Kong, Shenzhen, China
d Shenzhen Research Institute of Big Data, China

A R T I C L E I N F O

Keywords:
Deep learning
CNNs
Group convolutions
Highly shared convolutions
HSC-Nets

A B S T R A C T

In order to deploy deep Convolutional Neural Networks (CNNs) on the mobile devices, many mobile CNNs are
introduced. Currently, some online applications are usually re-trained because of the constantly-increasing data.
However, compared with the regular models, it is not very efficient to train the present mobile models.
Therefore, the purpose of this paper is to propose efficient mobile models both in the training and test processes
through exploring the main causes of the current mobile CNNs’ inefficiency and the parameters’ properties.
Finally, this paper introduces Highly Shared Convolutional Neural Networks (HSC-Nets). The HSC-Nets employ
two shared mechanisms to reuse the filters comprehensively. Experimental results showed that, compared with
the regular networks and the latest state-of-the-art group-conv mobile networks, the HSC-Nets can achieve
promising performances and effectively decrease the model size. Furthermore, it is also more efficient in both the
training and test processes.

1. Introduction and related work

Nowadays, many mobile Convolutional Neural Networks (CNNs) are
proposed to be deployed on mobile devices. The present popular mobile
networks can be classified into three categories.

(a) Automatic networks structure search methods, e.g., the well-
known NASNet family methods (Zoph, Vasudevan, Shlens, & Le, 2018;
Liu et al., 2018; Real, Aggarwal, Huang, & Le, 2018). Many optimal
mobile networks can be found by these searching methods. The final
obtained networks can perform outstandingly. However, since some
practical applications usually need re-training with the increasing of the
data information, compared with the regular models’ training cost, it is
more complex, memory cost and inflexible in the searching process.
Furthermore, as the illustrations in Ma, Zhang, Zheng, and Sun (2018),
the final searched mobile networks usually have many fragments, also
resulting in time consuming in the test process. Therefore, it is not very

efficient for the online applications.
(b) Pruning or dynamic pruning methods. The pruning methods,

such as Lauret, Fock, and Mara (2006), Wang, Xu, Yang, and Zurada
(2018), Lin, Rao, Lu, and Zhou (2017), Dong, Chen, and Pan (2017), He,
Zhang, and Sun (2017), Luo, Wu, and Lin (2017), Yang, Chen, and Sze
(2018) and Hu, Sun, Li, Wang, and Gu (2018), are abundant in different
pruning levels or strategies. Although the final pruned models are light-
weighted and efficient, they still can not be trained effectively. Because
in the training process, the pruning methods should be fine-tuned when
the new connections, neurons, filters or channels are dropped. Accord-
ingly, this kind of methods are also more complex, inflexible and time
consuming in the training process. Based on the pruning methods, dy-
namic pruning methods are introduced. One of the most popular
methods is CondenseNet (Huang, Liu, Maaten, & Weinberger, 2018),
which can dynamically remove the connections in the training process.
And, the obtained mobile networks can achieve better performances.

* Corresponding author.
E-mail addresses: yaolu@um.edu.mo (Y. Lu), luguangm@hit.edu.cn (G. Lu), yicongzhou@um.edu.mo (Y. Zhou), csdzhang@comp.polyu.edu.hk (D. Zhang).

1 ORCID ID: https://orcid.org/0000-0002-3147-2081
2 ORCID ID: https://orcid.org/0000-0003-1578-2634
3 ORCID ID: https://orcid.org/0000-0002-4487-6384
4 ORCID ID: https://orcid.org/0000-0001-5156-0305
5 ORCID ID: https://orcid.org/0000-0002-9457-7956
6 ORCID ID: https://orcid.org/0000-0002-5027-5286

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.114782
Received 24 June 2019; Received in revised form 13 January 2021; Accepted 22 February 2021

mailto:yaolu@um.edu.mo
mailto:luguangm@hit.edu.cn
mailto:yicongzhou@um.edu.mo
mailto:csdzhang@comp.polyu.edu.hk
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.114782
https://doi.org/10.1016/j.eswa.2021.114782
https://doi.org/10.1016/j.eswa.2021.114782
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.114782&domain=pdf

Expert Systems With Applications 175 (2021) 114782

2

However, as demonstrated in Ma et al. (2018), it can not be effectively
implemented currently. Therefore, these methods are still not practical
enough for the mobile devices.

(c) Group-conv mobile networks. Group convolutions are proposed
to remove the redundancy of the regular convolutional filters from the
channel extent. It initially divides the input channels and the convolu-
tional filters into a specific number of groups equally, and only performs
the corresponding convolutions in every group. Specially, when the
number of the groups is equal to one, it is the regular convolutions, and
when the groups are equal to the channels, it will become “depth-wise”
convolutions. In a regular convolutional kernel, the value of the spatial
size is always much smaller than that of the channels (e.g., a convolu-
tional kernel with size “3× 3× 128× 128”). Consequently, group
convolutions are utilized to reduce the channel extent’s redundancy.
The comparisons of regular and group convolutions are shown in the
Fig. 1(a) and (b). Group convolutions are widely employed in the
MobileNet family (Howard et al., 2017; Sandler, Howard, Zhu, Zhmo-
ginov, & Chen, 2018), IGCV family (Zhang, Qi, Xiao, & Wang, 2017; Xie
et al., 2018; Sun, Li, Liu, & Wang, 2018) and ShuffleNet family (Zhang,
Zhou, Lin, & Sun, 2018; Ma et al., 2018) networks. Additionally, the
work of ChannelNets (Gao, Wang, Cai, & Ji, 2020) proposes the concept
of “channel-wise” convolutions. The “channel-wise” convolutions use
shared 1-D (“1× 1”) convolutions at the channel extent to reduce the
parameters and computational complexity. ChannelNets further propose
group “channel-wise” convolutions and “depth-wise” separable channel-
wise convolutions to construct networks. The basic operations of these
two versions of “channel-wise” convolutions are also group convolution
and “depth-wise” convolution, respectively.

Compared with the first two kinds of methods, it is easier and more
flexible to train the group-conv mobile networks. Furthermore, the
training processes do not need very large computing resources.

Accordingly, this paper will follow the group-conv networks to design
more efficient models. In the following sections, the main causes of the
network’s inefficiency and the parameters’ properties in the network
will be explored. Based on these analysis, the principles and motivations
of designing mobile models will be illustrated. Finally, we will propose
our methods.

2. Further analysis and motivations

2.1. Effects of the group convolutions

As illustrated in Ma et al. (2018), the number of Flops can not
properly evaluate the models’ efficiency. The training and test runtime
can be affected by the implementations in practice. Since the “group
convolutions” can not be well supported by the deep-learning platforms
(Huang et al., 2018), although it can reduce the model size and Flops, it
is still very time consuming. This suggests that only increasing the
number of groups in group convolutions to reduce the flops may not
decrease the runtime in practice, especially for the “depth-wise”
convolutions.

From another aspect, in “group convolutions” (Fig. 1(b)), one filter
can only retrieve a small part of input channels, leading to poor gener-
alization and representations, especially for the “depth-wise” convolu-
tions. Therefore, much more epoches are required to ensure enough
information to be processed by the “group convolutions” to preserve the
parameters’ generalization. For instance, the MobileNet, IGCV and
ShuffleNet usually need much more epoches to train the networks
compared with the regular models (e.g., ResNet: 120 epoches (He,
Zhang, Ren, & Sun, 2016); IGCV: 480 epoches (Sun et al., 2018); Shuf-
fleNet: about 250 epoches (Ma et al., 2018) conducted on the ImageNet
datasets), because the “depth-wise” convolutions are largely used in

Fig. 1. Comparisons of the regular convolution,
group convolution and their various versions with
different shared mechanisms. “k ∗ k” indicates the
spatial size of filter. C and D represent the number of
input and output channels, respectively. G, R and T
respectively represent the number of groups, channel
repeated times and the arranged sharing times. In (a)
and (b), every black line indicates a plane kernel and
these kernels are all different. In (c) and (d), the lines
with same color and style are the shared plane filters.
The feature maps colored are obtained without
using any shared methods. The feature maps colored

are produced by channel repeated shared
method. And the feature maps use the ar-
ranged shared method. The feature maps apply
both the two sh.ared mechanisms.

Y. Lu et al.

Expert Systems With Applications 175 (2021) 114782

3

them. This will further bring much more training time costs. Accord-
ingly, the “depth-wise” convolutions can improve both the training time
and the test runtime in the group-conv models. This implies the current
group-conv mobile networks can further improve the efficiency by
avoiding employing the “depth-wise” convolutions.

2.2. Design principles of the mobile networks

Based on the previous analysis in Section 2.1, the principles of
designing mobile models can be formulated: (1) Declining the number of
groups moderately in group convolutions may achieve a better trade-off
between the Flops and practical runtime. (2) In order to improve the
generalization of the group convolutions, it is critical to force every filter
to retrieve more information in one training epoch, contributing to no
more training epoches added and decreasing the training time.

However, according to the first principle, if the “depth-wise” con-
volutions are not used in the models, the number of the parameters will
be increased, leading to the inefficiency resulting from the improvement
of memory access cost (MAC). Because as the demonstrations in the Ma
et al. (2018), the MAC contains the memory cost of the parameters and
the larger the model is, the larger the MAC is. This causes a contradiction
between the network’s efficiency and using the regular “group convo-
lution” to avoid the “depth-wise” convolutions. Furthermore, it also can
not satisfy to the second principle. Therefore, we will further explore the
parameters’ properties in the networks to propose novel convolutional
kernels meeting the requirements.

2.3. Parameters’ properties in the networks

Initially, Fig. 2 plots the distributions of the WideResNets’ weights to
study their efficiencies. The number of parameters of WideResNet (k =

8) is larger than that of WideResNet (k = 4). In Fig. 2, the weight dis-
tribution of WideResNet (k = 8) concentrates on zero area much more
heavily compared to WideResNet (k = 4). This suggests that the net-
works with large model size may possess more ineffective parameters
(zero parameters). Therefore, the ratio of effective parameters of net-
works is decreased with the increasing model size. However, in practice,
the networks are usually designed by increasing the model size to obtain
better performances. This is not an ideal approach to construct
networks.

To preserve the effectiveness of the parameters with meeting the
performance requirements of the networks, the filters’ properties are
further explored. Fig. 3 is the statistics of the top-25% maximum acti-
vation maps obtained from 64 filters in the first stage of the WideR-
esNets (k = 4). In this figure, it is apparent that, in all the 10 categories,
the filters with lager contributions almost concentrate on a few same
filters, which are marked by the red dotted lines. This implies these
filters most probably retrieve the common features of all the classes. For
the other filters with smaller contributions, they are also very few and

their distributions are more dispersed in all the classes, indicating that
these filters are utilized to produce the individualized information for
various classes. Finally, these phenomena reflect an assumption that the
filters may be classified into two categories: common filters and indi-
vidualized filters.

2.4. Motivations

According to the previous design principles and the study of the
parameters’ properties, since the numbers of common filters and indi-
vidualized filters are both very small, mobile networks can be directly
constructed with only a few filters to reduce the model size and force the
filters to learn and generalize, which is very different from the tradi-
tional design manner. However, as a common practice, only employing a
few filters can not preserve the width of the networks, resulting in the
less richness of the obtained features and low performances. Inspired
from the traditional regular convolutions, who share their filters in the
spatial extent, we want to share the filters more thoroughly to reduce the
model size without performance loss. Accordingly, for the common fil-
ters, in order to utilize their high contributions, this paper proposes two
shared mechanisms to reuse them comprehensively. For the individu-
alized filters, they can only apply the low-cost “point-wise” filters to
preserve the small model size. Furthermore, the individualized filters
can also utilize one shared mechanism to further decrease the model
size, which will be demonstrated in the following section. Based on these
designs, this paper proposes Highly Shared Convolutional Networks
(HSC-Nets).

Our contributions are listed as bellow:

(1) The main factors of the networks’ inefficiency both in the training
and test are first explored to determine the design principles of
the mobile models. Then, the parameters’ properties are studied.
Experiments implied the filters may be classified into common
filters and individualized filters.

(2) This paper proposes the HSC-Nets, which employ two shared
methods. The HSC-Nets can share the filters much more thor-
oughly than the traditional mobile networks, largely decrease the
model size and avoid utilizing the inefficient “depth-wise” con-
volutions, contributing to significantly reducing the MAC and test
runtime.

(3) By using the shared manners, every filter’s generalization is
improved through processing much more information, leading to
no more training epoches addition and more efficiency in training
than the other group-conv models.

(4) Experimental results showed that, compared with the other
group-conv mobile networks, the HSC-Nets are more efficient in
both the training and test processes.

Fig. 2. Distributions of the WideResNets’ weights.

Y. Lu et al.

Expert Systems With Applications 175 (2021) 114782

4

3. Highly Shared Convolutional Neural Networks

This section firstly illustrates two shared mechanisms. Then, the
detailed structure of the Highly Shared Convolutional Neural Networks
(HSC-Nets) is introduced.

3.1. Repeated shared mechanism

According to the motivations in Section 2.4, since the common fil-
ters’ activation contributions are much higher than the other filters,
these filters can be reused multiple times to preserve the retrieved fea-
tures’ richness with timely decreasing the model size. The common fil-
ters can be reused form two different levels: channel extent and layer
extent. The relevant filter can be called Channel Repeated Filter (CRF)
and Layer Repeated Filter (LRF), respectively.

Channel repeated filter. Suppose a 4-D regular kernel is 𝒲
(𝒲 ∈ Rk×k×C×D), where k,C and D represent the spatial size, number of
input and output channels, respectively. Thus, from Fig. 1(a) and (b), the
regular filter’s size is (k× k× C× D) and the group filter’s size is
decreased to (k×k×C×D)

G , where G is the number of the groups. The Channel
Repeated Filter (CRF) is proposed based on the group filter. If the
channel repeated times are R, CRF will only utilize 1R filters of the group
convolutions’ and reuse them R times along the channel extent, which is
shown in Fig. 1(c). Additionally, CRF can be seen as sharing the filters in
the channel extent with the stride C

G. Thus, the CRF kernel’s size is
(k×k×C×D)

G×R .
Layer Repeated Filter. The Block Term Decomposition (De Lath-

auwer, 2008) can elegantly illustrate the bottleneck structure with
different spatial convolutional layers from the mathematical view.
Suppose a basic module has L layers, they can be stacked together along
the layer extent and the final filters will be 𝒲 (𝒲 ∈ Rk×k×C×(D×L)). Based
on block term decomposition, they can be decomposed as following:

𝒲 =
∑G− 1

g=0
𝒮g•3𝒜

(3)
g •4𝒜

(4)
g ,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝒮g ∈ Rk×k×C*
G ×D*

G

𝒜
(3)
g ∈ R1×1×C×C*

G

𝒜
(4)
g ∈ R1×1×(D×L)×D*

G

(1)

In the Eq. (1), the convolutional filters from different layers are
decomposed from the input (the third) axis and the output (the fourth)

axis, where g indicates the gth group. •3 and •4 indicate the mode − 3 and
the mode − 4 product, respectively. C* and D* denote the low dimen-
sional space corresponding to C and D, respectively. 𝒮g is the gth

decomposed core term. And 𝒜(3)
g and 𝒜(4)

g represent the gth obtained
tensors from the mode − 3 and the mode − 4, respectively. From this
equation, 𝒜(3)

r and 𝒜(4)
r are both the “point-wise” convolutions, which

can illustrate the bottleneck structure. Furthermore, in all the L layers,
𝒜

(3)
r and 𝒮r are the same, and only the 𝒜(4)

r is different. Consequently, the
filters are further shared at different layers in this paper, which is called
Layer Repeated Filter (LRC). Further, if
𝒮i = 𝒮j(i ∕= j, i, j ∈ {0,1,2,…,G − 1}) in Eq. (1), it implies the filters can
be shared from both the channel and layer extents.

3.2. Arranged shared mechanism

Suppose a 3-D filter 𝒲 (𝒲 ∈ Rk×k×C,C and k denote the number of
input channels and spatial size, respectively) and the input feature maps
ℐ (ℐ ∈ Rs×s×C, s is the input spatial size), the output ℴ =

∑C− 1
i=0 𝒲 i ⊗ ℐ i,

where ⊗ indicates the convolutional operation. Therefore, the final
output is the summation of the multiplications between each plane filter
and the corresponding input feature map. In accordance with the dis-
covery in Section 2.3, the common filters possess much higher contri-
butions than the other filters. This suggests that, for a filter, its better
representations are not only obtained from the entire the filter but also
most probably from each plane filter. Based on this analysis, the plane
filters in one 3-D filter can be reused multiple times by re-arranging
them along the channel extents, leading to constructing new filters
without increasing the number of parameters. This filter (see Fig. 4) is
called Arranged Shared Filter (ASF) and denoted by 𝒲A

T , where T in-
dicates the shared times. Therefore, a 4-D 𝒲A

T can be obtained as below:

Fig. 3. Distribution of top-25% maximum activation maps obtained by 64 filters from the first stage of the WideResNets (k = 4). As the definitions in Zagoruyko and
Komodakis (2016), k indicates the expand factor of the basic width. The networks are performed on CIFAR-10 datasets. The final values are computed from the
CIFAR-10 test datasets with 1000 images i.n every classes.

Fig. 4. ASF filter. Different colored lines indicate various plane filters.

Y. Lu et al.

Expert Systems With Applications 175 (2021) 114782

5

𝒲A
T = ConcatT − 1

t=0 (Pt𝒲b), where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

𝒲b ∈ Rk×k×C×D
T

𝒲A
T ∈ Rk×k×C×D

(2)

where D is the output channels. Concat is the 0catenation operation of
the filters along the output extent. 𝒲b denotes the basic filter to be
shared, and Pt represents the tth permutation of the plane filters in each
3-D filter along the input axis. Therefore, according to the Eq. (2), the
filter size reduces T times. Finally, the arranged shared mechanism can
be also applied to the basis of the repeated shared manner. The filter’s
structure shared by the both two methods is shown in Fig. 1(d). From
this figure, apparently, the proposed shared methods can reuse the filters
from all the extents and more completely than the traditional regular
convolutions.

Algorithm 1. : The algorithm of basic module of HSC-Nets. The superscripts of L,C
and A denote the Layer, Channel and Arranged shared manners, respectively. k ×

k indicates the spatial size of filters. θ represents the parameters of the relevant
layers.

1: Initialize:
The transformation of the first layer from bottleneck fL,A

1×1(⋅; θ1);
The transformation of the last layer from bottleneck fA

1×1(⋅; θ2) and fA
1×1(⋅; θ3);

The transformation of the group spatial filter layer between the bottleneck
fC,L,A
k×k (⋅; θ4);

The transformation of layer shared group point-wise filter layer: fL
1×1(⋅; θ5);

The number of input and output channels of module: M;
The number of channels in bottleneck: K.
The repeated times of arranged shared filters fA : T;
The repeated times of channel shared filters fC at the channel extent: R.
The number of groups of group filters: G.

2: Repeat:
3: Module input: x
4: First stage: y = fL,A

1×1(x; θ1 ,K,T)
5: y1 = fC,L,A

k×k (y; θ4,K,G,R,T)
6: y2 = fL

1×1(y; θ5,K,G)
7: y = y1 + y2

8: y = fA
1×1(y; θ2,M,T)

9: Second stage: y = fL,A
1×1(y; θ1,K,T)

10: y1 = fC,L,A
k×k (y; θ4,K,G,R,T)

11: y2 = fL
1×1(y; θ5,K,G)

12: y = y1 + y2

13: y = fA
1×1(y; θ3,M,T)

14: Compute loss and update θ
15: Until convergence

3.3. The structure of the HSC-Nets

According to the analysis in Section 2.3 and Eq. (1), the Highly
Shared Convolutional Neural Networks (HSC-Nets) are proposed. Since
the structure of the WideResNet (Zagoruyko & Komodakis, 2016) is
simple and it can perform satisfactorily on many challenging datasets,
our HSC-Nets employ its global structure. The HSC-Net also contains
three big blocks (stages) with different output spatial sizes (e.g., “32×

32”, “16× 16” and “8× 8”) and every block has B basic modules. The
output channels of every stage will be double when stepping into the
next stage.

From the previous illustrations of the channel, layer and arranged
shared manners, apparently, they are orthogonal and can be combined
with each other in the HSC-Nets. The basic HSC-Net’s module is shown
in the Fig. 5. Similar to WideResNet, it also includes two general layers.
However, in the HSC module, these two general layers are decomposed
as the Eq. (1). The filters represented by the red and orange circles apply
at least two shared methods, which are designed inspired by the com-
mon filters. To keep the features’ richness, the common filters are sup-
plemented with the individualized filters, which are the “group point-
wise” convolutions marked by green circles. The filters colored blue are
the last bottleneck in each general layer, they can also use the arranged

shared method to further decrease the model size. Thus, the HSC-Nets
share the filters much more completely than the other models. The
detailed structure of basic HSC module is demonstrated in Algorithm 1.

4. Experimental results and analysis

The HSC filter and the entire structure of the HSC-Nets are proposed
and implemented based on the “group convolutions” and WideResNets,
respectively. Therefore, the HSC-Nets are mainly compared with the
group-conv mobile networks and WideResNets.

4.1. Datasets

Low resolution ImageNet datasets (Chrabaszcz, Loshchilov, &
Hutter, 2017) are the down-sampled variants of regular ImageNet
(Deng et al., 2009) and include the same number of classes and images of
the regular ImageNet. HSC-Nets are performed on the ImageNet-32×

32. The augmentations of the datasets are the same with (Chrabaszcz
et al., 2017). As demonstrated in Chrabaszcz et al. (2017), since the low
resolution ImageNet databases have much less spatial information,
leading to much more difficulty in these databases compared to the
original regular ImageNet datasets.

Tiny ImageNet7 is a subset of regular ImageNet (Deng et al., 2009).
It has 200 classes, which are sampled from 1000 categories in the regular
ImageNet. Every class contains 500 training images, 50 validation im-
ages and 50 testing images. All the spatial sizes of the images are resized
to “64× 64”.

CIFAR datasets (Krizhevsky & Hinton, 2009) include CIFAR-10 and
CIFAR-100 with 10 and 100 classes, respectively. They both have 60,
000 colored nature scene images in total and the images’ size is “32×

32”. These two datasets both contain 50,000 images for training and 10,
000 images for testing.

CINIC-10 dataset (Darlow, Crowley, Antoniou, & Storkey, 2018) is
an extension of CIFAR-10 via the addition of down-sampled ImageNet
images. It is composed of 270,000 colored images with spatial size “32×

32” in 10 classes. These images are split into three equal-sized train,
validation, and test subsets.

Following the common practices (He et al., 2016; Huang, Sun, Liu,
Sedra, & Weinberger, 2016), the same data augmentations are applied to
these databases and the same learning initializations on these datasets
are also utilized. The training epoches are set to 40 on the low resolution
ImageNet and 200 on the Tiny ImageNet, CINIC-10 and CIFAR data-
bases. The SGD method and Nesterov momentum (Sutskever, Martens,
Dahl, & Hinton, 2013) are employed to optimize. On the low resolution
ImageNet, the learning rate starts from 0.01 and is divided by 5 at the
10th, 20th and 30th epoch. On the tiny ImageNet and CINIC-10, the
learning rate starts from 0.1 and is divided by 10 at the 100th, 150th and

Fig. 5. The HSC-Net’s basic module. M, K indicate the input channels and the
bottleneck’s output channels, respectively. T is the repeated times of arranged
shared filters. The superscripts of L, C and A denote the Layer, Channel and
Arranged shared manners, respectively.

7 https://tiny-imagenet.herokuapp.com/.

Y. Lu et al.

https://tiny-imagenet.herokuapp.com/

Expert Systems With Applications 175 (2021) 114782

6

175th epoch. On the CIFAR, the learning rate starts from 0.1 and is
divided by 5 at the 60th, 120th and 160th epoch. The momentum is 0.9,
and the weight decay is set to 5e − 4 on low resolution ImageNet and
CIFAR-100, 1e − 4 on the tiny ImageNet and CINIC-10, and 2e − 4 on the
CIFAR-10. Finally, the mini-batch size is set to 128.

4.2. Initializations of the HSC-Nets

Different versions of the HSC-Nets and WideResNets are respectively
denoted by HSC-Net-M-G-R-B-α and WRN-B-k, where G and R indicate
the groups and repeated times at the channel extent, respectively. B is
the modules’ number in a big block. M denotes the width in the first
block. And α is the divided factor of the output channels in bottleneck.
Finally, k represents the expansion factor of every block’s width in WRN
(see Zagoruyko & Komodakis, 2016). These models’ sizes can be
changed by toggling M, G, R, α or k.

Since automatic parameter tuning system will need additional
modules and operations in CNNs, this will lead to more complex struc-
ture of networks and time-consuming training. Furthermore, it is also
impossible to search all possible cases of hyper-parameters due to the
tremendous amount of training time. Therefore, following the common
practices (MobileNet family Howard et al., 2017; Sandler et al., 2018,
IGCV family Zhang et al., 2017; Xie et al., 2018; Sun et al., 2018 and
ShuffleNet family Zhang et al., 2018; Ma et al., 2018 networks), we also
utilize the rough searches to determine the final hyper-parameters.
Furthermore, since the large number of the groups in convolutions
will increase the runtime, in order to preserve a better tradeoff between
the runtime and groups, G is set to 16 and 8, which is determined by our
large number of the evaluations in practice, togging G in HSC-Nets and
testing them. By the same way, the repeated times R can be set to 16, 8
and 4 to decrease the model size. Finally, for the arranged shared
method, in order to implement the arranged shared filters efficiently and
disrupt the original order of the plane filters as much as possible, the
“shuffle” operation is used to permute the plane filters in every 3-D filter.
This “shuffle” operation is similar to that in the ShuffleNet family net-
works (Zhang et al., 2018; Ma et al., 2018). Since the arranged shared
filters are largely employed in the individualized filters and these filters
should have distinguished representations with high-quality, the
repeated times T is only set to 2, which is enough to meet the re-
quirements of reducing model size and preserving the richness of
retrieved features.

4.3. Experiments on the low resolution ImageNet

Initially, since the entire structure of HSC-Nets are implemented
based on the WideResNet, the HSC-Nets are compared with the
WideResNets under approximately the same performance. Table 1 dis-
plays the model size, accuracy and reduction rate, respectively.
Evidently, the HSC-Nets can significantly reduce the model size and
even perform better than some WRNs. In particular, HSC-Net-
M224-G16-R8-α1.75 produces competitive Top-1 and Top-5 accuracies

with 5.3X fewer parameters. Moreover, it also achieves satisfactory Top-
5 accuracy compared with the Top-1 accuracy obtained by the state-of-
the-art models on regular ImageNet.

Additionally, since the HSC filters are proposed based on the “group
convolutions”, the HSC-Nets are compared with the other latest group-
conv mobile models. Because the number of Flops can not evaluate
the efficiency of the mobile networks properly in practice (see Section
2.1), the training time on GPU and test inference runtime on CPU are
evaluated and depicted in the Table 2. It is apparent that, compared with
the WRN (k = 3, B = 4) (see Table 1, params : 3.5M,

Top − 1 acc : 48.94%), MobileNetV2 and IGCV3 obtain only a little ac-
curacy improvement. Although the ShuffleNetV2 is the latest state-of-
the-art mobile networks, it achieves even worse accuracy than the reg-
ular network WRN (k = 3, B = 4). However, our HSC-Net-
M128-G16-R8-α2 can perform much better than those networks with
utilizing only 2.3M parameters. Furthermore, its training and inference
time is also effectively decreased among all the group-conv mobile
networks. Especially, under approximately the same accuracy, the
training cost, inference runtime and model size of the HSC-Net-
M96-G8-R4-α2 are all the least compared with the other models.
Therefore, this can prove our network is more efficient both in the
training and test processes.

4.4. Experiments on tiny ImageNet and CINIC

As illustrated in the literature (Darlow et al., 2018), since the low
resolution ImageNet is very difficult, CINIC-10 and tiny ImageNet
datasets are constructed. Especially, CINIC-10 possesses a fair assess-
ment of generalization performance. Table 3 proves that HSC-Net can
effectively improve the performance. On tiny ImageNet, the accuracy of
HSC-Nets is increased by 5.87% compared with the IGCV3. Also, on
CINIC-10, HSC-Nets perform the best among all the compared networks.
Therefore, the experiments verify the effectiveness of the HSC-Nets. It
also proves that the HSC-Net generalizes better than the other models,
because the shared mechanisms can improve the parameters’ general-
ization by processing much more information in a filter and obtaining
the gradients from different channels and layers.

4.5. Experiments on CIFAR

On CIFAR datasets, the HSC-Nets are also compared to other state-of-
the-art group-conv mobile models. In Table 4, it is evident that the HSC-
Nets achieve the best performances with much smaller model size.
Moreover, in the training process, our HSC-Nets are also the most effi-
cient with only 200 training epoches. However, the epoch numbers of
the MobileNetV2, IGCV family and ShuffleNetV2 should be very large
(with 400 training epoches) to force the “depth-wise” filters used in
these models to generalize well. Consequently, according to the evalu-
ations from all the aspects, the HSC-Net is much more efficient than the
other group-conv mobile models both in the training and test processes.

Table 1
Accuracy (%) comparisons between HSC-Nets and WRNs on ImageNet-32× 32.
In all the HSC-Nets, B = 4. The accuracies are the average results of 5 runs.

Method Params Top-1 Top-5 Reduction

WRN (k = 3) (our imple.) 3.5 M 48.94% 73.92% 2.5X
HSC-Net-M96-G8-R4-α2 1.4 M 49.32% 74.50%

WRN (k = 5) Chrabaszcz et al.
(2017)

9.5 M 54.54% 78.74% 2.7X

HSC-Net-M160-G8-R4-α2 3.5 M 55.76% 79.25%

WRN (k = 10) Chrabaszcz et al.
(2017)

37.1 M 59.04% 81.13% 5.3X

HSC-Net-M224-G16-R8-α1.75 7.0 M 58.98% 81.69%

Table 2
Comparisons of accuracy (%) on ImageNet-32× 32. CPUtest indicates the test
runtime on the Intel ® Xeon(R) CPU E5-2620 v4 processor. GPUtrain denotes the
runtime of training a model on 4 TITAN Xp GPUs. The accuracies and runtime
are the average results of 5 runs.

Method Params Top-1 acc. GPUtrain CPUtest

MobileNetV2 1.0× 3.5M 48.98% 142.2 h 151 ms
IGCV3-D 1.0× 3.5M 49.40% 257.5 h 295 ms

ShuffleNetV2 2.0× 7.5M 48.46% 124.7 h 135 ms
HSC-Net-M96-G8-R4-α2 1.4M 49.32% 79.4 h 82 ms

HSC-Net-M128-G16-R8-α2 2.3M 53.41% 96.7 h 99 ms

Y. Lu et al.

Expert Systems With Applications 175 (2021) 114782

7

4.6. Experiments on regular ImageNet

In the HSC-Nets, the filters are shared much more comprehensively
compared with the other networks, which results in the lack of richness
in the HSC filters. Accordingly, with the increasing of the information
richness on the regular resolution datasets, the HSC-Nets’ representa-
tional ability are not sufficient enough. However, HSC-Nets are still
evaluated and compared to other group-conv mobile networks on reg-
ular ImageNet. In Table 5, the HSC-Net is composed of 4 big blocks and
these blocks include 3,3, 2 and 2 basic modules, respectively. The output
channels in every stage are 160, 320, 480, and 1120. The experimental
results show that, compared to these mobile networks, our HSC-Net can
still produce a competitive performance. Moreover, the test runtime and
training epoches of the HSC-Nets are both the least (training epoches:
HSC-Net: 120 epoches, MobileNetV2 & IGCV3: 480 epoches, Shuf-
fleNetV2: 250 epoches). Consequently, HSC-Net is also a promising
network for the regular resolution datasets. In the future, it is a valuable
study issue to propose shared filters with more abundant patterns and
larger shared degrees to drive the shared networks to perform better.

4.7. Ablation study of the shared mechanisms

In order to explore the effectiveness of the shared mechanism, the l1
norms of weights from the HSC-Nets and the WideResNets are computed
respectively. The width and the number of modules of these two net-
works are the same. The final frequency distributions of the l1 norms are
shown in the Fig. 6. It is clear that, on both two CIFAR datasets, the l1
norms of the WideResNets mostly distribute near the zero. However, the
l1 norms of the HSC-Nets are more dispersed than that of the WideR-
esNets. Accordingly, compared with the unshared WideResNets, the
parameters’ efficiency and representational abilities of the shared HSC-
Nets have been effectively improved. This is because the shared mech-
anisms force every filter to process much more information, contributing
to improving the generalization and no more addition of the training
epoches. Therefore, the HSC-Nets can perform better and be trained
more efficiently than the other mobile group-conv models.

Following this study, the high contribution maps activated by over
90% and 80% sampled images in CIFAR-10 test datasets have been
counted in Fig. 7(a) and (b), respectively. The comparisons are also
between the HSC-Net-M128-G16-R8-α2 and the WideResNets (k = 8)
with the same width and number of modules. The accuracies achieved
by HSC-Nets and WideResNets are 95.92% and 95.80% with 1.8M and
23.4M parameters, respectively. Notably, the number of the high
contribution maps of the HSC-Nets is much larger than that of the
WideResNets. This further proves the high efficiency and effectiveness of
the proposed shared mechanisms. It also illustrates why the HSC-Nets
perform better with much smaller model size.

To further explore the properties of the shared mechanisms, we also
compute the HFS-Net’s top-48 maximum activation maps of every
classes. The samples are all the CIFAR-10 test databases. And, the acti-
vation maps are from the first stage’s outputs, which are obtained by 128
filters in HFS-Net-M128-G16-R8★. The final distributions are shown in
the Fig. 8. From this figure, although the arranged shared filters dis-
played at the right side of the orange line are generated based on the
filters from the left side, the high contribution filters (marked by red
dotted lines) distribute at the both sides of the orange line. This proves
that the arranged filters are also very effective in the HSC-Nets.

Finally, the top-3 maximum high contribution original and shared
filters are visualized by non-parameterization manner in the Fig. 9,
respectively. This experiment is to verify if these two kinds of filters are
different. Apparently, the patterns of the original filters (in the first row)
and shared filters (in the second row) can be easily distinguished.
Therefore, although the shared filters are obtained from the original
filters, they can also possess high contributions and retrieve different
geometric characteristics, contributing to preserving the richness of the
retrieved features.

Table 3
Comparisons of accuracy (%) with the latest state-of-the-art mobile models on
tiny ImageNet and CINIC-10. The accuracies are the average results of 5 runs.

Method Params tiny ImageNet
acc.

CINIC-10
acc.

ResNet-18 (pre-act) Darlow et al.
(2018)

11.2M – 87.16%

MobileNetV1 Darlow et al. (2018) 3.2M – 80.45%
MobileNetV2 (1.25×) 3.8M 59.55% 85.43%

IGCV3-D (1.25×) 3.7M 59.94% 85.35%
ShuffleNetV2 (2.0×) 5.5M 59.17% 83.94%

HSC-Net-M128-G16-R4-α2 1.8M 65.81% 87.99%

Table 4
Accuracy (%) comparisons to other state-of-the-art mobile architectures on
CIFAR. ★ denotes the arranged shared mechanism is also utilized at the last
“point-wise” layer in every module (see Fig. 5). The accuracies are the average
results of 5 runs.

Method Params CIFAR-10
acc.

CIFAR-100
acc.

MobileNetV2 (reported in Sun et al.,
2018)

2.3M 94.56% 77.09%

IGCV2 (reported in Sun et al., 2018) 2.3M 94.76% 77.45%
IGCV3-D 1.0× Sun et al. (2018) 2.4M 94.96% 77.95%
ShuffleNetV2 2.0× (our imple.) 5.5M 93.77% 75.17%

HSC-Net-M128-G16-R8-α2 1.8M 95.92% 78.28%
HSC-Net-M192-G16-R8-α2 ★ 3.2M 96.05% 80.01%

Table 5
Comparisons on regular ImageNet datasets. CPUtest indicates the test runtime on
the Intel ® Xeon(R) CPU E5-2620 v4 processor. Epochtrain denotes the number of
training epoches in different networks. The accuracies and runtime are the
average results of 5 runs.

Method Params Top-1
acc.

CPUtest Epochtrain

ResNet-101 (1× 64d) He et al.
(2016)

44.5 M 78.0% 400 ms 120

MobileNetV2 1.4× Sandler et al.
(2018)

6.9 M 74.7% 272 ms 480

IGCV3 1.4× Sun et al. (2018) 7.2 M 74.5% 505 ms 480
SE-ShuffleNetv2 2.0× Ma et al.

(2018)
8.8 M 75.4% 235 ms 250

HSC-Nets-M160 (ours) 7.2 M 74.2% 189 ms 120
Fig. 6. l1 norm distributions on CIFAR.

Y. Lu et al.

Expert Systems With Applications 175 (2021) 114782

8

5. Conclusions

To propose more efficient mobile networks both in the training and
test, this paper firstly found that the “depth-wise” convolution is the
main causes of the network’s inefficiency. Then, we discovered the fil-
ters with high contributions are very few and these filters can be

classified into common and individualized filters. Inspired from these
explorations and following the group-conv models, the HSC-Nets are
directly designed with very few filters through two shared manners.
Compared with the other mobile networks, the HSC-Nets can share the
filters more completely, leading to avoiding the “depth-wise” convolu-
tions. Also, the shared mechanisms can improve the filter’s

Fig. 7. Comparisons of the high contribution maps activated by over 90% and 80% sampled images in CIFAR-10.

Fig. 8. Distribution of top-48 maximum activation maps obtained by 128 filters from the first stage of the HFS-Net-M128-G16-R8★. The filters displayed at the right
of the are obtained by the arranged shared method.

Fig. 9. Visualizations of the top-3 maximum high contribution original and shared filters of the HSC-Net’s first stage. The model is trained on the CIFAR-10. The
filters in the second row utilize the arranged shared mechanism.

Y. Lu et al.

Expert Systems With Applications 175 (2021) 114782

9

generalization significantly, resulting in no more training epoches
addition. Experiments verified that, compared with the latest group-
conv mobile CNNs, HSC-Nets effectively decrease both the training
and test runtime.

CRediT authorship contribution statement

Yao Lu: Conceptualization, Methodology, Writing - original draft.
Guangming Lu: Writing - review & editing, Supervision, Project
administration, Funding acquisition. Yicong Zhou: Validation, Writing -
review & editing, Formal analysis. Jinxing Li: Validation, Writing -
review & editing, Formal analysis. Yuanrong Xu: Visualization, Re-
sources. David Zhang: Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported in part by the Open Project Fund
(AC01202005018, AC01202005017) from Shenzhen Institute of Artifi-
cial Intelligence and Robotics for Society, in part by National Key
Research and Development Program of China under Project Number
2018AAA0100102, in part by the Shenzhen Fundamental Research
Fund under Grant JCYJ20180306172023949, in part by the Guangdong
Basic and Applied Basic Research Foundation under Grant
2019B1515120055, in part by NSFC fund under Grant 61906162, in part
by the China Postdoctoral Science Foundation (2019TQ0316,
2019M662198), in part by the Medical Biometrics Perception and
Analysis Engineering Laboratory, Shenzhen, China, in part by the Sci-
ence and Technology Development Fund, Macau SAR (File no. 189/
2017/A3), and in part by University of Macau (File no. MYRG2018-
00136-FST).

References

Chrabaszcz, P., Loshchilov, I., & Hutter, F. (2017). A downsampled variant of imagenet
as an alternative to the CIFAR datasets. CoRR, abs/1707.08819. URL: http://arxiv.
org/abs/1707.08819. arXiv:1707.08819.

Darlow, L. N., Crowley, E. J., Antoniou, A., & Storkey, A. J. (2018). CINIC-10 is not
imagenet or CIFAR-10. CoRR, abs/1810.03505. URL: http://arxiv.org/abs/
1810.03505. arXiv:1810.03505.

De Lathauwer, L. (2008). Decompositions of a higher-order tensor in block terms-part ii:
Definitions and uniqueness. SIAM Journal on Matrix Analysis and Applications, 30,
1033–1066. https://doi.org/10.1137/060661685. URL: https://doi.org/10.1137/
070690729.

Deng, J., Dong, W., Socher, R., Li, L., Li, Kai, & Fei-Fei, Li (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition (pp. 248–255). https://doi.org/10.1109/CVPR.2009.5206848. URL:
https://doi.org/10.1109/CVPR.2009.5206848.

Dong, X., Chen, S., & Pan, S. (2017). Learning to prune deep neural networks via layer-
wise optimal brain surgeon. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information
processing systems 30 (pp. 4857–4867). Curran Associates, Inc. URL: http://papers.
nips.cc/paper/7071-learning-to-prune-deep-neural-networks-via-layer-wise-
optimal-brain-surgeon.pdf.

Gao, H., Wang, Z., Cai, L., & Ji, S. (2020). Channelnets: Compact and efficient
convolutional neural networks via channel-wise convolutions. In IEEE Transactions
on Pattern Analysis and Machine Intelligence (p. 1). https://doi.org/10.1109/
TPAMI.2020.2975796

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp.
770–778). https://doi.org/10.1109/CVPR.2016.90. URL: https://doi.org/10.1109%
2FCVPR.2016.90.

He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very deep neural
networks. In 2017 IEEE international conference on computer vision (ICCV) (pp.

1398–1406). https://doi.org/10.1109/ICCV.2017.155. URL: https://www.
computer.org/10.1109/ICCV.2017.155.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861. URL:http://arxiv.org/abs/
1704.04861. arXiv:1704.04861.

Huang, G., Liu, S., Maaten, L. v. d., & Weinberger, K. Q. (2018). Condensenet: An
efficient densenet using learned group convolutions. In 2018 IEEE/CVF conference on
computer vision and pattern recognition (pp. 2752–2761). doi: 10.1109/
CVPR.2018.00291.

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. (2016). Deep networks with
stochastic depth. In Computer vision – ECCV 2016 (Vol. 9908, pp. 646–661). Cham:
Springer International Publishing. https://doi.org/10.1007/978-3-319-46493-0_39

Hu, Y., Sun, S., Li, J., Wang, X., & Gu, Q. (2018). A novel channel pruning method for
deep neural network compression. CoRR, abs/1805.11394. URL:http://arxiv.org/
abs/1805.11394. arXiv:1805.11394.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny
images. Technical Report Citeseer. URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.222.9220&rep=rep1&type=pdf.

Lauret, P., Fock, E., & Mara, T. A. (2006). A node pruning algorithm based on a fourier
amplitude sensitivity test method. IEEE Transactions on Neural Networks, 17,
273–293. https://doi.org/10.1109/TNN.2006.871707. URL: https://doi.org/
10.1109/TNN.2006.871707.

Lin, J., Rao, Y., Lu, J., & Zhou, J. (2017). Runtime neural pruning. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett
(Eds.), Advances in neural information processing systems 30 (pp. 2181–2191). Curran
Associates, Inc. URL: http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A.,
Huang, J., & Murphy, K. (2018). Progressive neural architecture search. In V. Ferrari,
M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer vision – ECCV 2018 (Vol.
11205, pp. 19–35). Cham: Springer International Publishing. https://doi.org/
10.1007/978-3-030-01246-5_2.

Luo, J. H., Wu, J., & Lin, W. (2017). Thinet: A filter level pruning method for deep neural
network compression. In 2017 IEEE international conference on computer vision s
(ICCV) (pp. 5068–5076). volume 1. URL:https://www.computer.org/10.1109/
ICCV.2017.541. doi: 10.1109/ICCV.2017.541.

Ma, N., Zhang, X., Zheng, H.-T., & Sun, J. (2018). Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In V. Ferrari, M. Hebert, C. Sminchisescu, &
Y. Weiss (Eds.), Computer vision – ECCV 2018 (Vol. 11218, pp. 122–138). Cham:
Springer International Publishing. https://doi.org/10.1007/978-3-030-01264-9_8.

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2018). Regularized evolution for image
classifier architecture search. CoRR, abs/1802.01548. URL: http://arxiv.org/abs/
1802.01548. arXiv:1802.01548.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). Mobilenetv 2:
Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF conference on computer
vision and pattern recognition (pp. 4510–4520). https://doi.org/10.1109/
CVPR.2018.00474

Sun, K., Li, M., Liu, D., & Wang, J. (2018). Igcv 3: Interleaved low-rank group
convolutions for efficient deep neural networks. CoRR, abs/1806.00178. URL:
https://arxiv.org/abs/1806.00178. arXiv:1804.06202.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. In Proceedings of the 30th international
conference on machine learning – Vol. 28 ICML’13 (pp. III-1139–III-1147). JMLR.org.
URL: http://dl.acm.org/citation.cfm?id=3042817.3043064.

Wang, J., Xu, C., Yang, X., & Zurada, J. M. (2018). A novel pruning algorithm for
smoothing feedforward neural networks based on group lasso method. IEEE
Transactions on Neural Networks and Learning Systems, 29, 2012–2024. https://doi.
org/10.1109/TNNLS.2017.2748585. URL: http://ieeexplore.ieee.org/document/
8051266.

Xie, G., Wang, J., Zhang, T., Lai, J., Hong, R., & Qi, G. (2018). Interleaved structured
sparse convolutional neural networks. In 2018 IEEE/CVF conference on computer
vision and pattern recognition (pp. 8847–8856). https://doi.org/10.1109/
CVPR.2018.00922

Yang, T., Chen, Y., & Sze, V. (2018). Designing energy-efficient convolutional neural
networks using energy-aware pruning. In 2017 IEEE conference on computer vision and
pattern recognition (CVPR) (pp. 6071–6079). Vol. 00. URL: doi.ieeecomputersociety.
org/10.1109/CVPR.2017.643. doi: 10.1109/CVPR.2017.643.

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. In E. R. H. Richard C.
Wilson, & W. A. P. Smith (Eds.), Proceedings of the british machine vision conference
(BMVC) (pp. 87.1–87.12). BMVA Press. URL:https://dx.doi.org/10.5244/C.30.87.
doi: 10.5244/C.30.87.

Zhang, T., Qi, G., Xiao, B., & Wang, J. (2017). Interleaved group convolutions. In 2017
IEEE international conference on computer vision (ICCV) (pp. 4383–4392). https://doi.
org/10.1109/ICCV.2017.469

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In 2018 IEEE/CVF conference on
computer vision and pattern recognition (pp. 6848–6856). https://doi.org/10.1109/
CVPR.2018.00716

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable
architectures for scalable image recognition. In 2018 IEEE/CVF conference on
computer vision and pattern recognition (pp. 8697–8710). https://doi.org/10.1109/
CVPR.2018.00907

Y. Lu et al.

https://doi.org/10.1137/060661685
https://doi.org/10.1109/CVPR.2009.5206848
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0025
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0025
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0025
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0025
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0025
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0025
https://doi.org/10.1109/TPAMI.2020.2975796
https://doi.org/10.1109/TPAMI.2020.2975796
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1109/TNN.2006.871707
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0075
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0075
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0075
http://refhub.elsevier.com/S0957-4174(21)00223-2/h0075
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/TNNLS.2017.2748585
https://doi.org/10.1109/TNNLS.2017.2748585
https://doi.org/10.1109/CVPR.2018.00922
https://doi.org/10.1109/CVPR.2018.00922
https://doi.org/10.1109/ICCV.2017.469
https://doi.org/10.1109/ICCV.2017.469
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.1109/CVPR.2018.00907

	Highly shared Convolutional Neural Networks
	1 Introduction and related work
	2 Further analysis and motivations
	2.1 Effects of the group convolutions
	2.2 Design principles of the mobile networks
	2.3 Parameters’ properties in the networks
	2.4 Motivations

	3 Highly Shared Convolutional Neural Networks
	3.1 Repeated shared mechanism
	3.2 Arranged shared mechanism
	3.3 The structure of the HSC-Nets

	4 Experimental results and analysis
	4.1 Datasets
	4.2 Initializations of the HSC-Nets
	4.3 Experiments on the low resolution ImageNet
	4.4 Experiments on tiny ImageNet and CINIC
	4.5 Experiments on CIFAR
	4.6 Experiments on regular ImageNet
	4.7 Ablation study of the shared mechanisms

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

