Course Code: MATH 2000
Course Name: Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

# Basic Notations/Definitions /Theorems
Let R be the set of all real numbers. Sometimes, we write R = (—0,0). Let a,b € R with a < b.
I is a non-empty interval in R if | is one of the following forms:

(a,b), (a,b], [a,b), [a, b], (=, b), (—0, b], (a, ), [a,®) and R.

Let R™ = {(x1, X5, """, Xp): Xq, X3, -+, X, € R}, that is, it is the set of all n — coordinate points.

Each n —tuple (x4, x5, ***, X,) can be considered as a position vector from the origin 0(0,0, --+,0) to the point P(xy, x5, ***

that is OP.
The norm/length/magnitude of the vector OP is || (xy, Xz, -+, %) || = VX2 4+ %52 + o+ x,2

-
Zero Vector is denoted as 0 (no directions and no magnitudes).

.. —_— —_— —_— . . N
The position vector PQ = 0Q — OP. Sometimes, we denotes it as ¥ or V.

Sometimes, we write the norm of ¥ as || ot ||9]|.

Notes:

Letay, ay,++,ay, by, by, -+, by, A ER.
1. (ai,a5,+,a,) = (by, by, ,by) & a; = b; foralli =1,2,---,n
2. (al' az, ""an) + (bpbz' ""bn) = (al + by, a; + by, a0, + bn)
3. (al' az, ""an) - (bpbz' ""bn) = (al - blraz - b2: o ap — bn)
4. Alay, ay, -, a,) = (Aay, Aay, -+, Aay,)

Unit vector is a vector with magnitude 1.
. . . 5.1 5
Unit vector in the direction of a non-zero vector U is Eu.

TetU = (Ug, Uy, -+, Uy) and T = (v, vy, -+, 1,).

We define the dot product/inner product Uu-v= I U
Let 6 be the angle between the vectors U and V.

We can show that U - ¥ = |u] - |¥] - cos.

Theorem:
Suppose U and ¥ are non-zero vectors.
U and ¥ are perpendicular to each other & U ¥ =0

For three-dimensional case:

We let 7 = (1,0,0), 7 = (0,1,0) and k = (0,0,1).

For any vector U = (Uy, Uy, U3), We can write U = UyL + UyJ + Us k.
Let d = (Uq, Uy, Uz) and T = (v, 5, V3).

We define the cross product

-
UX D = (Upvz — Uzl + (UgVy — Uy v3)] + (U, — UV kK.
T ] k

We can remember this as [u; u, usl|
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Theorems:
Suppose U and ¥ are non-zero vectors.
Let 0 be the angle between the vectors U and v.
@ The vectors U, ¥ and U X ¥ form a right-handed triple.

*axb

(i) [d x 8| = |d| - |¥] - sind
(iif) U and ¥ are parallel to each other & Uxv=0

# Function of Several Variables

Function of Two Variables:

Let D be a non-empty subset of R

f is called a real-valued function defined on D if for every (x,y) € D, we assign it to exactly one real number.
In this case, we write it as f(x, ¥). We call f: D — R a real-valued function and D the domain.

Example:
Let f: R? - R be defined by f(x,y) = x + y. f is a real-valued function on R2.

Function of Three Variables:

Let D be a non-empty subset of R3. f is called a real-valued function defined on D if for every (x,y,z) € D, we assign it to exactly
one real number. In this case, we write it as f (X, Y, Z).

We call f: D — R a real-valued function and D the domain.

Example:
Let f:R3® - R be defined by f(x,y,z) = x +y — z. f is a real-valued function on R3.

Function of n — Variables:

Let D be a non-empty subset of R™. f is called a real-valued function defined on D if for every (X1, X5, **, X,) € D, we assign it to
exactly one real number. In this case, we write it as f (X1, X, ***, Xp)-

We call f: D = R a real-valued function and D the domain.

Example:
Let f: R™ = R be defined by f(xq, Xy, *+, %) = X1 X5 == Xp. f is a real-valued function on R™.

# (Natural) Domain of Function of Several Variables
Example 1:

Find the (natural) domains of the functions:

@ flx,y) =25 —x2 —y2

(i1) x+y+z

9x,y,2) = ——=
JxZ+y? 422

Solutions
The (natural) domains are:
@) D ={(x,y) € R?>:x? + y? < 25}
(i) D = R*\{(0,0,0)}
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Example 2:
Find the (natural) domain of the function f(x,y) = \/%yz Find also the points (x,y) at which f(x,y) = 1.

Solutions

The domain is {(x,y) € R?:x — y? > 0}.

f,y) =+l _x{yz =tloy?=x-y? o x=2y?
(Note: We assumed x — y2 > 0)

The points (x,y) at which f(x,y) = %1 are given by

{(x,y) € RA\{(0,0)}: x = 2y?}.

# Graphs
Let D be a non-empty subset of R™.

f is a real-valued function defined on D.
We define the graph of f as the set

{(Xl'xz"",xn;y) € R™*1: (XIFXZFU"XTL) € D:y = f(xl'xz"";xn)}

Example 1:
Sketch the graph of the function f(x,y) = 2 — %x — %y.

Solutions
LetZ=f(x,y)=2—%x—§yf0rany(x,y)ER2. :
3x+2y+6z=12 ool z=2=i-1
It is the plane with normal vector (3,2,6) and passing through the point (0,6,0). ;

/
//
/
/
)
/(4.0,0)
Example 2:
The graph of the function f(x,y) = x% + y? is the familiar circular
paraboloid z = x? 4+ y? shown in the figure. ‘ /
,/ 4/"/
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Example 3:
Find the domain of the function g(x,y) = %w/ 4 — 4x? — y? and sketch its graph.

Solutions
The domain is The graph is the upper half of the ellipsoid.
{(x,y) € R%:4x? + y? < 4}

# Level Curves/Level Surfaces/Level Sets

Let D be a non-empty subset of R™. Let ¢ € R. f is a real-valued function defined on D.
We define the level set of f as the set L, = {(xq, X3, ***, %) € D: f(x1, %5, , %) = €}
(where the function has the same value ¢).

When n = 2, level set is commonly called level curve.
When n = 3, level set is commonly called level surface.

Example 1:

Let f: R? > R be defined by f(x,y) = 25 — x? — y?. Domain = R%. Let ¢ € R.
L. ={(x,y) € R%:25 —x? —y? = c}.

2 =,

;_ N -' ”

: 5 SN -
:

Note: L, = ¢ if ¢ > 25 and L,5 = {(0,0)}.

Example 2:
Let f:R? - R be defined by f(x,y) = y* — x%. Domain = R?. Let ¢ € R.

L. ={(x,y) € R:y? —x% = c}.

/]

B\ O 14/ /
\ ‘ \ 4\

Notes:
) If ¢ > 0, the level curve y? — x? = ¢ is a hyperbola opens along the y — axis.
(ii) If ¢ < 0, the level curve ¥? — x% = ¢ is a hyperbola opens along the x — axis.
(iiiy  If ¢ = 0, the level curve ¥? — x% = 0 consists of two straight lines given by y = x and y = —x.
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Example 3:

Let f: R® > R be defined by f(x,y,2z) = x? + y* — 22,
Domain = R3. Letc €R. L, = {(x,y,2z) € R®: x? + y? — 2% = c}.

Notes:
@@ If ¢ > 0, the level surface x% + y2 — z% = ¢ is a hyperboloid of one sheet.
(ii) If ¢ < 0, the level surface X% + y? — z% = ¢ is a hyperboloid of two sheets.

(i If ¢ = 0, the level surface x% + y? — z% = 0 is a cone lies between these two types of hyperboloids.

Example 4:
Let f:R? - R be defined by f(x,y) = (x? — yz)e_xz_yz. Domain = R?.

04
0.3

0.2

Remark: The patterns of nested level curves can indicate “pits” and “peaks” on the surface.

Example 5:
Let f: R? > R be defined by f(x,y) = siny/x2 + y2. Domain = R

P L
‘ LW .

z = sinr where r = {/x? + y?

Example 6:
Let f:R? > R be defined by f(x,y) = %yz + iy3 - 3i2y4 — x2. Domain = R?. Investigate the graph of f.
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Solutions
Note 1: If we sety = yg and let k = ZYOZ + iy(f - %yo“, then f(x,y) = k — x2.
z =k — x? is an equation of a parabola in the xz — plane.
1
Note 2: If we set x = 0, then f(0,y) =%y2 +iy3 —%y“.

3. 2,1 3 1 4. .
zZ=-y“+—y> ——vy%isacurve in the yZ — plane.
s 227 327 Y p

(4. 6.67)

P ) T S [P

(=3.3.09)

(S 0 U I 4 7, (5 L S
-3

L LR
P

=)

%

e
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# Open Sets and Closed Sets in R™

Definitions:

Let P(py, P2, -+, Pn) € R™ and.r € R with v > 0. The open ball centered at P with radius 7 is
{(x1, 22, %) € R™: || (x4, %2, , %) — (D1, P2, P) || < 7} It is usually denoted as B(P, r).

Thatis, B(P, 1) = {(ty, Xz, %) € R™: Gty = p)? + (3 = P22+ + (@ — P2 <7

Let ¢ # S € R™. For any P € S, we can find r € R with r > 0 such that B(P,r) C S.
S is called an open set in R™.

Letp # T < R™. T is called a closed set in R™ if R™\T is an open set in R™.

Examples of Open Sets in R?:
Sy ={(x,y) ER*:x >1},S5, = {(x,y) € R*:1 < x*+y® < 2},S; = R*\{(0,0)}

Examples of Closed Sets in R?:
T, ={(x,y) ER*:x <1}, T, = {(x,y) € R%:x? + y? < 13U{(x,y) € R%:x? + y? = 2}, T; = {(0,0)}

# Interior Points, Accumulation Points and Boundary Points
Definitions:

Tetp #S C R"and P € R™.
P is called an interior point of S if we can find r € R with v > 0 such that B(P,r) C S.

P is called an accumulation point of S if for any r € R with v > 0, we can find Q € R™ with Q # P and
Q eB(P,r)NS.

P is called a boundary point of S if for any € R with r > 0, we must have B(P,7) N S # ¢ and
B(P,r) n (R™\S) # ¢.

We define the boundary of Sis S = { all boundary points of S }.

Notes:
@) P is an interior point of S = P is an accumulation point of S
(ii) P is an accumulation point of S and is NOT an interior point of S
= P is a boundary point of S
(iif) P is an accumulation point of § <&
P is an interior point of S or P is a boundary point of S
Example:

Let S = {(x,y) € R%:x < 1}.
We can check that:

@) (0,0) is an interior point of S
(iD) (1,0) is an accumulation point of S and is not an interior point of S
(iif) (1,0) is a boundary point of S
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# Bounded Sets and Unbounded Sets in R"

Definitions:

Letp #SCcR"andp #T c R"

S is bounded if we can find r € R with 7 > 0 such that S € B(0, 1) where 0(0,0, ---,0) is the origin.

T is unbounded if for any r € R with r > 0, we have (Rn\B (o, T)) NT # ¢ where 0(0,0,:+,0) is the origin.

Example:
S ={(x,y) € R?:x? + y? < 1} is bounded.
T = {(x,y) € R?: x > 1} is unbounded.

Remarks:

Usually we consider:
@) Limit/Differentiability at accumulation points or on open sets
(i1) Continuity on open sets/closed sets
(iif) Maxima/Minima on closed and bounded sets

# Limits and Continuity

For One Dimensional Case:
Recall the definition for lim f(x) = L:
x—a

Let f: R = R be a function and a, L € R.
For any € > 0, we can find § > 0 (6 may depend on €) suchthat 0 < |[x —a| < § = |f(x) = L| < &.

For Two Dimensional Case:

Definition fc lim x,y) = L:
efinition for (x,y)—»(a,b)f( y)

Let f:R? - R be a function, (a,b) € R? and L € R.
For any € > 0, we can find § > 0 (6 may depend on €) such that 0 < ||(x,y) — (a,b)|[| < 6§ = |f(x,y) — L| < &.

In this case, we say f(x,y) = L as (x,y) = (a,b).
Remark: ||(x,y) — (a,b)|| = \/(x —a)?>+ (y — b)?

For n — Dimensional Case:

Definition for lim fxy, x5, ,x,) = Lt
(x1,%2,xn)~(a1,a2,+,an)

Let f: R™ = R be a function, (ay,az,**+,a,) € R™and L € R.

For any € > 0, we can find § > 0 (§ may depend on €) such that

0 < ”(x1’x2"“’xn) - (al! aZ"“’an)” < 6 = |f(x11x21“'lxn) - Ll <e.

In this case, we say f (X1, Xp, =", Xp) = L as (xq, X5, -, %) = (g, ay, -, ay).

Remark: |[(xq, X2, *+, x5) — (aq, @, -+, @) || = \/(x1 —a;)? + (x; —az)? + -+ (x, — a,)?

Uniqueness of Limit

Let f: R™ = R be a function, (a4,a,,***,a,) € R™ and L,, L, € R.

If lim fxy, %z, , %) = Ly and lim fQxq, x5, , %) = Ly, then L; = L.
(x1,%2,xn)~(a1,a2,+,an) (x1,%2,xn)=(a1,az,+,an)

Proof: Omitted (As Exetcise)
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Example 1:
Let f: R? - R be defined by f(x,y) = xy and (a, b) = (2,3). Show that X l)lng b)f(x, y) = 6.
xy)-(a,

Proof:

For any € > 0, choose5=min{1,;}>0

0</(x—2)+(y—-3)0 <i=0<|x-2|<de=2-8§<x<2+bandx # 2
0</(x—2)2+(y—3)2<§=0<|y-3|<de=3-5§<y<3+dfandy+#3

As0<d6<1,both2—8>0and3—-6>0.
So, 0<\/(x—2)2+(y—3)2<5=>(2—5)(3—5)<xy<(2+5)(3+5)

2-8)B-8)<xy<(2+6)B+8) < -56+82<xy—6<556+52
As0<6<1,0<6%2<6.S056+6°<66<785<eand—56+6%>—-56>—-76=>—¢.

combining all results,
0<\/(x—2)2+(y—3)2<6z—s<xy—6<s
thatis, 0 < /(x —=2)2+ (y —=3)2 <8 =|f(x,y) — 6| =|xy — 6| < ¢

Thus, lim  f(x,y) = 6.
U oy [ )

Example 2:

Determine whether each of the following limits exists and find the limit if it exists:
. x —
® im 4
(xy)-00x +y
(i) : x%y
lim ——
(x)~(0,0) x* + y2
(i) oy (e’ —y?)
lim ————
(x»)—=(0,0) x%+y2

Solution (i):

) x—y o x—0 X )

lim = lim =lim—=Iliml=1
xy)-00x+y x00x+0 x-0x x-0

y=0

. x=y . 0-y -y

im —=Ilim——=Ilim—=1lim—-1=-1
y)=»00x+y y-004+y y-0y  y-0

x=0
So, lim Y Joesn’t exist.
(x,y)—(0,0) x+y

Solution (ii):

2 4

I x%y " mx " m m
im ——= im ——— = im =
xy)-00)x* +y2  xy)-00x* +m2x*  @y)-001+m? 1+m?
y=mx?2 y=mx? y=mx?
. 2 1, -1 . x%y

lim XY 2= lim .
50 e 27 2 T ()

y:xz y:—xz

2

_yz doesn’t exist.

So, lim =
(x,y)-(0,0) x*+y
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Solution (iii):

Letx = rcosf and y = rsinf.

X2 +yr=12

xy(x? —y?) = r*sinfcosf(cos?0 — sin?8) = %r‘* - 25infcos6 - cos26

1. 1
= Er“ - sin20 - cos26 = Zr4szn49

1
v (x2 — 2 Zrtsindd 1
lim M = lim A — " limr%sin46 = 0
@y)-00) x2+y? root 12 4 r-o0%
Notes:
(1) (x,y)_)(ojo)@ /x2+y2_)0+<:r_)0+
(ii) As |sin48| < 1, |r?sind6| < r?
llmr =0= llmr sin40 = O
r-0+ r-0+
Exercise:

Show that lim Sm@+y®)
(,y)-(0,0) x%Z+y?

. . sinf _
[Hint: élir(l) > = 1]

=1.

Rules for Finding Limits:
TLet@ #S € R™" and S is an open set. Let f:S = R and g:S = R be functions. Let L, M,A € R and X,P € S.

Suppose }{l_r}l}’ f(X) =L and )l(l_rg gXxX)=M

Then,
@ }(ilr}l)(f(X) +g(X))=L+M
(1) }l{i_r}})(f(X) —g(X))=L-M

(i) lim (FC0-gX) =LM
@ L f0_L
X5p g (X) gXx) M
(Assumed M # 0 and we can find € R with r > 0 such that B(P,r) € S and g(X) # 0 for any X € B(P,r)\{P}.)

) lim A (X) = AL
Proof: Omitted (As Exercises)

Example 1 (re-visited)
Let f:R? - R be defined by f(x,y) = xy and (a, b) = (2,3). Show that X l)m(l b)f(x, y) = 6.
x,y)—(a,

Proof:
Let g R? > R be defined by g(x,y) = x and h: R> - R be defined by h(x,y) = y.

(xy)—»(z 3)g( xX,y) = . yl)lir(lz 3)x = llmx =2 (Note: (x,y) 2 (23) =>x > 2)

Similatly, « llrr(l 25 h(x,y) = l) m, 3)y = 3.

_lim li h =2x3=6.
(xyHab)f( x,y) = in (23)9( x,y) X o, (x,y) =
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Example 2:
Suppose f:R? = R is a polynomial in x and y, say f (x,¥) = X jyer agjx'y’
where ag; j) € R forall (i,j) €T, (i,j) € T=1,j € {0,1,2,--- } and T is a finite set.
We can show that  lim _f(x,y) = f(a, b).

(x,y)=(a,b)

Example 3:
Let f: R? > R be defined by f(x,y) = 2x*y? — 7xy + 4x?y® — 5. Find X )llrgl 1z)f(X, ).
xy)->(-1,
Solution
x,y) = 1,2) =8+14+32—-5=49

o lim fCoy)=f(=12)
# Continuity
Recall:
One Dimensional Case:
Let f be a function on x € R and let a € R.
Suppose:

@ (a —6,a+ ) c the domain of f for some § > 0

(thatis, f is defined at all the points in a neighborhood of a.) AND
(ii) lim f(x) exists as a real number AND

(i) lim £(x) = £(a).

Then, we say f is continuous at @. Otherwise, we say f is NOT continuous at a or f is discontinuous at a.

Two Dimensional Case:
Let f be a function on (x,y) € R? and let (a, b) € R?.

Suppose:
0] B((a, b), 5) C the domain of f for some § > 0
(that is, f is defined at all the points in a neighborhood of (a, b).) AND
(if) f(x,y) exists as a real number AND
(x, y)—>(a b)
G lm ) = f(@b)

Then, we say f is continuous at (@, b). Otherwise, we say f is NOT continuous at (@, b) or f is discontinuous at (a, b).

n — Dimensional Case:
Let f be a function on X € R™ and let P € R™.

Suppose:
) B(P, ) c the domain of f for some § > 0
(thatis, f is defined at all the points in a neighborhood of P.) AND
(ii) }l{i_r)r}l) f(X) exists as a real number AND

@ lim (0 = £P).

Then, we say f is continuous at P. Otherwise, we say f is NOT continuous at P or f is discontinuous at P.

One Dimensional Case:
Let¢p # S C R. Let f be a function on x € R and is defined on S.
We say f is continuous on S if f is continuous at x for any x € S.

Two Dimensional Case:
Let ¢ # S C R?. Let f be a function on (x,y) € R? and is defined on S.
We say f is continuous on S if f is continuous at (x,y) for any (x,y) € S.

n — Dimensional Case:

Let ¢ # S € R™ Let f be a function on X € R™ and is defined on S.
We say f is continuous on S if f is continuous at X for any X € S.
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Example 1:
Let f: D > R be defined by f(x,y) = 1 where D = {(x,y) € R*:x* + y? < 1}. Show that f is continuous on D.
Proof:
Forany (a,b) €D, lim f(x,y)=1=f(a,b).
(x,y)-(ab)

So, f is continuous at (a, b).
Thus, f is continuous on D.

Example 2:

Letg:Rz — R be defined by g(x'y) = {(1) l{);:éra/lieD’Where D = {(x, y) € RZ:xZ +y2 < 1}

Show that g is NOT continuous on RZ.

Proof:
Suffices to show that g is NOT continuous at (1,0).
g(1,0) =1.
lim X,y) = lim =
(x.y)=(1,0) 9&.) (x.y)~(1,0)
x<1and y=0 x<1and y=0
lim X,y) = lim =
(x,y)~(1,0) 906y) (x,y)~(1,0)
x>1 and y=0 x>1and y=0
Thus, (x,yl)ig%m) g(x,y) doesn’t exist. Hence, (x,yl)iE%Lo) g(x,y) doesn’t exist.
y=0

Rules for Continuous Functions:
Tet@ #S € R" and S is an open set. Let f:S = R and g: S = R be functions. Let A € R and P € S.
Suppose f and g ate continuous at P.

Then,
@) f + g is continuous at P
(i) f — g is continuous at P
(iii) f - g is continuous at P
(iv) g is continuous at P
(Assumed that we can find r € R with > 0 such that B(P,r) € S and g(X) # 0 for any X € B(P,1).)
) Af is continuous at P

Proof: Omitted (As Exercises)

Theorem (Composition of Continuous Functions)

Letp # S € R™ and S is an open set. Let ¢ # I € R and [ is an open interval.
Let f:S = R and g: I = R be functions. Let P € S and f(P) € I.

Suppose f is continuous at P and g is continuous at f (P).

Then, g°f is continuous at P.

Proof: Omitted (As Exercise)
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Example:
Show that z = sin(x? + y?) is continuous on R2.

Proof:
Let f:R% - R be defined by f(x,y) = x? + y? and g: R = R be defined by g(8) = sind.
As f is continuous on R? and g is continuous on R, z = sin(x? + y?) = g°f(x,y) is continuous on R?.

# Partial Differentiation (Two Dimensional Case):
Let ¢ # S € R? and S is an open set. Let f: S = R be a function on (x,y) and (a,b) € S.
We define:

N Y {2 %)Ly {05
0= 5k T hoo h
ii 0 a+h,b)—f(a,b
R . f@Ehb) — fab)
0x (xy)=(a,b) h-0 h
By fEY R fEy)
vV =5y TR k
(iv) of fla,b+k)—f(ab)
fy(a,b) = ay Ay k
Y@y =(ap) -0
Rules for finding partial derivative:
@) To find g—ﬁ, regard y as a constant and differentiate with respect to x
(if) To find a—f, regard X as a constant and differentiate with respect to y
ay &

Example 1:
Compute Z—i and g—f/ of the function f(x,y) = x% + 2xy? — y3.

Solutions

Z—i = 2x + 2y? andg—f, = 4xy — 3y
Example 2:

Compute Z—i and Z—JZ] if z= (x%+y%e™™.

Solutions
Z—i =2xe™ + (x2+yHe ™ - (—y) = 2x —x*y —y3)e™
g—i =2ye™ + (x* +yHe ™ - (—x) = 2y —xy* —x3)e™™.
Example 3:
The volume V (in cubic centimetres (or cm?)) of 1 mole (or mol.) of an ideal gas is given by V = %T, where p is the

pressure (in atmospheres (or atm)) and T is the absolute temperature (in Kelvins (or K)).

Find the rates of change of the volume of 1 mol. of an ideal gas with respect to pressure (assuming temperature is kept

constant) and with respect to temperature (assuming pressure is kept constant) when T = 300K and p = 5 atm.
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Solutions

82.06
V=——T

P

v _ 82.06 AV 82.06 .
W 2208 Y = 8206 _ 16.412 (in cm?/K)
oT p ’0TlT=300,p=5 5
v _ —82.06,, OV -82.06 .
—=——T, — = ——x 300 = —984.72 (in cm?/atm)
o p oplr=300,p=5 5

Negative sign means decreasing.
Positive sign means increasing,

Geometric Interpretation of Partial Derivatives
af .
The value f,.(a,b) = =— = lim
value fx(a,b) =5 @y)=(ab) h-0
through P on the surface z = f(x,y).
Note: ¢ = f(a,b).

h

" Planev=5b/ Tangent line

Surface Curve
= Y

flx, v — = A z=flx. b)

Qa. b, )

A vertical plane parallel to the A
xz — plane intersects the surface

] An x — curve and its tangent at P
z = f(x,y) inan x — curve.

of . flab+k)-f(ab) .
The value f,(a,b) = — = lim—————
Iy Wlixy)=(ap) k-0

¥y — curve through P on the surface z = f(x,y).

Note: ¢ = f(a, b).

Plane x =a

Curve
z=fla.y)

SN i X NN
I=f(x,y)

Qla. b, 0)

A vertical plane parallel to the .
. Ay — curve and its tangent at P
¥z — plane intersects the surface z =

f(x,y)inay — curve.
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is the slope of the tangent at the point P(a, b, ¢) to the x — curve

Tangent line

| | =[x, b)

(a. 0) v

Projection into the xz — plane of
the x — curve through P(a, b, ¢)
and its tangent line

is the slope of the tangent at the point P(a, b, ¢) to the

Tangent line

|
|
|
| z=fla, y)
|
|

1

—! (b, 0) ¥

Projection into the yz — plane of
the y — curve through P(a, b, ¢)
and its tangent line
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One Dimensional Case (The Line Tangent to a Curve)

Let¢ # S C R and S is an open interval. Let f:§ = R be a function on x and a € S. Lety = f(x).
Suppose f is differentiable on S.

An equation of the tangent to the curve y = f(x) is

X2 = f'(a).

Thatis,y = f(a) + f'(a)(x — a).

Two Dimensional Case (The Plane Tangent to a Surface)
Let ¢ # S € R? and S is an open set. Let f: S = R be a function on (x,y) and (a,b) € S.

Let z = f(x,y). Suppose we can find Z—{C and Z—Jf/ onS.

Let us define C;: (a — 8,a + 8) = R3 by C;(t) = (t, b, f(t, b))

C, is a curve passing through (a, b, f(a, b)) on the surface z = f(x,y).

i = C;'(a) is a vector on the tangent plane to the surface z = f(x,y) at (a, b, f(a, b))
i=C'(a) =(1,0 f(ab)).

Let us define C,: (b — 8,b + 8) > R3 by C,(t) = (a, t,f(a, t))

C, is a curve passing through (a, b, f(a, b)) on the surface z = f(x,y).

¥ = C,'(b) is a vector on the tangent plane to the surface z = f(x,y) at (a, b, f(a, b))
B =0C,'(b) = (0.1, £, (a,b))-

Let 1 = U X ¥. Then, 71 will be a normal vector of required tangent plane.

—

T 7k
i=ixv=[1 0 filab)|=—flab)i~f,(ab)+k=(~f(ab),~f(ab)1)
0 1 f,(ab)

An equation of the plane tangent to the surface z = f(x,y) at (a, b, ¢) is
((,y,2) = (a,b,0)) - (~fe(a,b), —f,(a,b),1) = 0

—fx(a,b)(x —a)—f,(a,b)(y —b) +z—c=0

z =c+ f(a,b)(x — a)+f,(a, b)(y — b)

Remark:

z=f(xy)

0z 0z
= = f,.(a,b) and — = f,(a,b
0xl(x,y)=(ab) fx(@,b) an 0¥l (x3)=(a,p) fy(a.b)

Summary:
An equation of the plane tangent to the surface z = f(x,y) at (a, b, f(a, b)) is

z = f(a,b) + f,(a,b)(x — a)+fy(a,b)(y — b)
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Exampile 1:
Write an equation of the plane tangent to the paraboloid

z =5 — 2x? — y?% at the point P(1,1,2).

Solutions

z=f(x,y) =5—2x%*—y?
0z 0z

2= 4y, =—4
0x 0%l (x,3)=(1,1)

%y vl y)=1,1)

A normal vector of required tangent plane is (—fx(l,l), —f,(1,1), 1) = (4,2,1).
An equation of required tangent is

((,y,2) - (1,1,2))- (421) =0

4x—-D+20-1D+z-2=0

z=—4x—-2y+8

Example 2:
Write an equation of the plane tangent to the paraboloid

z = x% — y? at the point P(2,1,3).

Solutions

z=f(x,y) =x*-y?

ax T oxl(xy)=(2,0)

a9z 9 0z

_ = — s = —3
oy Yo (x)=(2,1)

A normal vector of required tangent plane is (—fx(Z,l), —f,(2,1), 1) = (—4,3,1).
An equation of required tangent is

((,y,2—(21,3)) (-43,1) =0

—4(x—-2)+3(y—-1)+2z—-3=0

z=4x—-3y—2
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# Partial Differentiation (Three Dimensional Case):
Let ¢ # S < R and S is an open set.
Let f:S = R be a function on (x,y, 2) and (a, b,c) € S.

We define:
(1) f(x Z)_i_limf(x-l_h'yﬂz)_f(xlyﬂz)
OB = o T ko h
i 0 a+ hb,c)—f(ab,c
D b o 1 ) - f(a,b,c)
0x (xy.2)=(abc) 10 h
(iii) £ Z)_g_limf(x,y+k,z)—f(x.y,z)
y Y - ay - ko0 k
v 0 a,b+kc)—f(ab,c
® b= i )~ fa,b,c)
ay (x,y,z)=(a,b,c) k=0 k
(V) f(x Z)_g_limf(x'y’z-l-l)_f(x'y’Z)
25V B 0z - -0 l
vi d a,b,c+1)—f(a,b,c
D b i S )= f(ab,c)
0zl(xyz=(abe) 0 L
Rules for finding partial derivative:
@) To find g—ﬁ, regard ¥ and Z as constants and differentiate with respect to x
(if) To find Z_f/’ regard X and Z as constants and differentiate with respect to y
(i) To find Z—Z, regard x and y as constants and differentiate with respect to z
Example:
Compute o a1 and or of the function f(x,y,z) = x%y3z*
p ax’ dy 0z 'Y y ’
Solutions
of _ 3,400 _ .2 2 4 of _ 4.2.3.3
ax—ny z ,ay—3x vz andaz—4x y°z

# Partial Differentiation (n —Dimensional Case):

Letp # S € R™ and S is an open set.

Let f:S = R be a function on X = (xq, X5, *+,%,) and A = (aq,a,**,a,) € S.
X ifi#Ej

{xi+h if i=jd

;) = fo; Cery %2, %) = aan = lim [(Crceen) =S Cuxan)

We define e; =

j h—0 h
_( @ ifi#Fj
We define 0; = {ai +h if i :jand
= — 6_f —1; f(61,02,-,0n)—f(ay,az,-,an)
fX](A) - fx]-(alﬁ aZ' ;an) - an e = }ll_r;% " 3

Rule for finding partial derivative:

a i : . . .
To find a—;, regard x; (i # J) as constants and differentiate with respect to X;
j
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Example 1:
Find the four partial derivatives of the function g(x,y,u, v) = e**sinvy.

Solutions
gx = ue*sinvy, g, = xe**sinvy, g,, = ve**cosvy, g, = ye"*cosvy.

Example 2:
Find the four partial derivatives of the function g(x,y,u,v) = x%y> — u*v®.

Solutions
Ix = ny3, 9y = 3x2y2, Ju = _4u’3v53 v = —5utv*.

# Higher Order Partial Derivatives

\Ve define: ,
Z fox = (£ = %(%) - %f
for = 5y =535(55) = 3792
U e (E) -t
Y =), =5 (2) =5t

fxxy = (fxx)y = @ W = W

C(h) =L (2 o
fxyx = (foI)x ~ ox (6}/036) - 0x0yodx

(vil) ~ o [0\ o
Feyy = (fxy)y - @(63/63() ~ dy20x

) 0 (az f) 3f
(vi)

and others.

Example:
Show that the partial derivatives of third and fourth orders of the function z = f(x,y) = x% + 2xy? — y3 are constants.

Solutions

fe = 2x + 2y?; f, = 4xy — 3y%;

fox = 2;fxy = 4y;fyx = 4y§fyy = 4x — 6Y;

froxx = O;fxxy = O;fxyx = O;fxyy =4 fyxx = O;fyxy =4 fyyx =4 fyyy =—6
Partial derivatives of fourth orders are all zeros.

So, partial derivatives of third and fourth orders are constants.

Remark
In general, fy,, and f;,,, may not be the same.
We can show that if fy, and f,, are continuous on an open set, then fyy, = fy,.
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# Multivariable Optimization Problem
# Global Minima and Global Maxima

Let¢p #S € R™ Let f:S = R be a function on X = (x4, Xy, -+, X,) and is defined on S. Let m, M € R.
We say f attains the global minimum value (or the absolute minimum value) m on § if:
@ f(X) = mforany X € S AND
(if) we can find U € S such that f(U) =m
We say f attains the global maximum value (or the absolute maximum value) M on S if:
6) f(X) £ M forany X € S AND
(ii) we can find V € S such that f(V) = M
Remark: We say (U,f(U)) a global minima and (V, f(V)) a global maxima.

Theorem 1:

Let my,m, € R. Suppose f(X) = m, forany X € S AND f(X) = m, forany X € S.
Suppose we can find Uy, U, € S such that f(U;) = m; and f(U,) = m,.

Then, my = m,.

Proof:

m, = f(Uy) = m,. Also, my = f(U;) = m,. So, my = m,,.

Theorem 2:

Let My, M, € R. Suppose f(X) < M; forany X € S AND f(X) < M, forany X € S.
Suppose we can find V3, V, € S such that f(V;) = M; and f(V,) = M,.

Then, M; = M,.

Proof: Omitted (As Exercise)

Theorem:

Let ¢ # S © R™. Suppose S is closed and bounded.

Let f:S = R be a function on X = (xq, X5, ***, X) and is defined on S.

Suppose f is continuous on S.

Then, f must attain the global minimum value and the global maximum value on S.
Proof: Will be discussed on course “Real Analysis”

Definition
(W, f(W)) is called a global extrema if it is a global maxima or it is a global minima

# Local Minima and Local Maxima
Let ¢ #S € R™ Let f:S = R be a function on X = (x1, X, ***, X,) and is defined on S. Let U,V € S.

We say (U,f(U)) a local minima (or a relative minima) if we can find 7 € R with 7 > 0 such that B(U,r) € S and f(X) = f(U)

for any X € B(U,r). In this case, f (U) is called a local minimum value (or a telative minimum value).

We say (V,f(V)) a local maxima (or a relative maxima) if we can find 7 € R with 7 > 0 such that B(V,r) € S and f(X) < f(V)

for any X € B(V, 7). In this case, f(V) is called a local maximum value (or a relative maximum value).

Theorem 1:
Let U € § and U is an interior point of S.

(U, f(1)) is a global minima = (U, f(U)) is a local minima
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Theorem 2:
Let V € S and V is an interior point of S.

(V,f(V)) is a global maxima = (V,f(V)) is a local maxima

Remark: The converse of above theorems may not be true.

Diagram showing the relationship between global maxima and local maxima / between global minima and local minima (Note: the
choice of the region / boundary is important.)

Fx,y) = 3(x — 1)2e™¥*~0+D* L (—2x 4 10x3 + 10y5)e~*"¥* — %e‘("“)z_yz for
(x,y) €{(a,b) ER*:—3<a<3,-3<b<3}

A local maximum value MAY not be the global maximum value. AbolkiE i

A local minimum value MAY not be the global minimum value.

Definition

(W,f(W)) is called a local extrema if it is a local maxima or it is a local minima

Theorem 1 (Necessary Conditions for Local Minima)
Letp # S C R™ Let f:S = R be a function on X = (xq, X3, , X,) and is defined on S. Let U € Sandr € R

with 7 > 0.

Suppose B(U,r) € S and f(X) = f(U) for any X € B(U, 7).

That is, (U,f(U)) is a local minima.

Suppose we can find ij(X) forany X € B(U,r) and j = 1,2, ,n.
Then, fx].(U) =0forj=12,n

Theorem 2 (Necessary Conditions for Local Maxima)
Let¢p #S € R™ Let f:S = R be a function on X = (x4, Xy, **,X,) and is defined on S. LetV € Sand r € R

with r > 0.

Suppose B(V,r) € S and f(X) < f(V) forany X € B(V, 7).
Thatis, (V, f(V)) is a local minima.

Suppose we can find ij(X) forany X € B(V,r)andj = 1,2,---,n.
Then, fx].(V) =0forj=12,-,n

Example 1:
Let f: R? > R be defined by f(x,y) = x% + y2.
Show that (0,0) is a local minima and is the global minima on

D ={(x,y) ER*:x*> +y? < 1}.
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Proof:

£(0,0) =0 < x?+y? = f(x,y) forany (x,y) € B(0, 1), so it is a local minima.
£(0,0) =0 < x?+y? = f(x,y) forany (x,y) € D, so it is a global minima on D.
Asx?+y? =0 (x,¥) = (0,0), it is the global minima on D.

Exercise 1:
Let f: R? > R be defined by f(x,y) = 1 — x? — y2.
Show that (0,0) is a local maxima and is the global maxima on

D ={(x,y) € R?*:x?> +y? < 1}.

Proof: Omitted (As Exercise)

Exercise 2:
Let f: R? - R be defined by f(x,y) = y? — x2.
Show that (0,0) is neither a local maxima nor a local minima.
This point is called a saddle point.

Proof: Omitted (As Exercise)

Example 2:

. . 3 1 1 .
Find all points on the surface z = Zyz + Zy3 - §y4 — x2 at which the tangent mdige by Ly g

plane is horizontal. _won O4P

Solutions
Z, = —2x
Put z,, = 0, we have x = 0.

“lyaly 2Tl 12) = Ly - D +3)
zy=5y+gy —gy =5 y0 -y =g Y0 6

Put z, = 0, we have y = 0 or 4 or —3.
. . 20 99
Required points are (0,0,0), (0,4, ?) and (0, -3, 5)
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Strategy for finding global extrema:

Let¢p # S € R"
Usual Case: A continuous function f on closed and bounded region S in R™ AND ij (X) exists for all X € S\0S

@
(i)

(iii)

Find Mg = max{f (X): X € 05} and myg = min{f(X): X € 3S}
Consider T ={ X € S\0S: ij(X) =0forj=12,n }

and find Mg\ 55 = max{f (X): X € T} and mg\ 55 = min{f (X): X € T}
The global maximum value is max{Mas, MS\as}

The global minimum value is min{ma 5 Ms\a 5}

Example 1:

within the circle x + y% = 1 in the xy — plane. Find the global maximum
value and the global minimum value of f on R.

Let f(x,y) = 1/x2 + ¥? on the region R consisting of the points on and ‘:
|
|
|
|

Solutions

®

(i)

(iii)

When x2 +y2 =1, f(x,y) =Jx2+y2 =1.
So, Mg = max{f(X):X € 0R} = 1 and myg = min{f(X): X € R} =1

fl,y) =x*+y?

For x* + y* > 0,

1 x
, = 2 =
Fy) = S () = s
£, 0 y) = —2

fi(x,y) =0=x=0

) =0=y=0

But (0,0) doesn’t satisfy x + y2 > 0.

Thus,{ X €{(x,y) €ER*0<x?+y%?< i fy,(X) =0forj=12,,n }=¢

f(0,0)=y024+02=0
The global maximum value is max{1,0} = 1
The global minimum value is min{1,0} = 0
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Example 2:
Find the maximum and minimum values attained by the function :
f(x,y) = xy —x —y + 3 at points of the triangular region R in the G \
xy — plane with vertices at (0,0), (2,0) and (0,4). \ 4
| \
‘ & \.H 3
‘ a
|
Solutions

)  Whenx=0,f(0,y) =~y +3
max{f(X):X€0Rand x=0}=0+3=3
min{f(X):X€odRand x=0}=—-4+3=-1
Wheny =0, f(x,0) = —x + 3
max{f(X):X€O0Rand y=0}=0+3=3
min{f(X):X€oRand y=0}=-2+4+3=1
When 2x +y = 4,
f,y)=x(4—-2x)—x—(4—2x)+3

5
=—2x2+5x—1=—2(x2—§x)—1
_ 2( 5)2+17
e\ T

Whenx =0,y =4, f(0,4) =—1.
Whenx =2,y =0, f(2,0) =1.

17 17
max{f(X):X € 0R and 2x +y =4} = max {—1,1,;} = 5

17
min{f(X):X €0Rand 2x+y=4}= min{—l,l,g} =-1

So, My = max{f(X): X € 9R} = max {3,3,1—87} =3

and myg = min{f (X): X € R} = min{—-1,1,—-1} = -1
@  fly)=xy—-x—y+3

fx(x' J’) =y- 1

fy(x' y=x—-1

fix,y)=0=x=1

xy) =0=y=1

(1,1) € R\OR

fL)=1-1-1+3=2
(iii)  The global maximum value is max{3,2} = 3

The global minimum value is min{—1,2} = —1

Page 23



Course Code: MATH 2000
Course Name: Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 3:
Find the highest point on the surface

8
z=f(x,y) =§x3+4y3 —x*—y*

Solutions

fo(x,y) = 8x?% — 4x3 = 4x%(2 — x)
fi(x,y)=0=4x?22-x)=0=x=00r2
fGey) =12y —4y® = 4y*(3 - y)

f(x,y) =0=4y*B-y)=0=y=00r3

For f,,(x,¥) = 0 and f,,(x,¥) = 0, we have only 4 points (0,0), (0,3), (2,0) and (2,3) for consideration.

16 97
When x = +00, f(x,y) = —00 as it is dominated by —x*.
When x > —oo, f(x,y) = — as it is dominated by —x*.
When y — +00, f(x,y) = —0o0 as it is dominated by —y*.
4

When y = —oo, f(x,y) = —00 as it is dominated by —y*.
Thus, the highest point is (2,3, 93—7)
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Example 4:

Find the minimum cost of a rectangular box with volume 48 ft3 if the front
and back cost $1/ft2, the top and bottom cost $2/ft2, and the two ends
cost $3/ft2. This box is shown in the figure.

Solutions
Let the length be x ft., the width be y ft., the height be z ft. and the cost be $C(x, y).

Then, C(x,y) = 4xy + 9y—6 + ZXE (Assumed both x > 0 and y > 0).
Note:
The costis $2 - (2xy + xz + 3yz) = $(4xy + 2xz + 6yz) and xyz = 48.

Ce(x,y) = 4y — 288x 72

288
Cx(X,)/) =0 4'y -288x?=0 T = 4xy
Cy(-x; y) =4x — 96y_2

96
Cy(x;y) =0 4x — 96y_2 =0 7 = 4xy
For both C,(x,y) = 0 and C,(x,y) = 0,2% =4xy = %_
So,y=§x and x3 = 216. Thus x = 6 and y = 2 (so, z = 4)

96 288
Clx,y) = 4xy+7+7 = 12xy = 144

The minimum cost is $144 when the dimensions are 6 ft.X 2 ft.X 4 ft.
Note: We don’t need to consider the boundary.

Choose §,M € R with § > 0and M > 0.

LetT ={(x,y) ER:5 <x<Mand § <y < M}.

We can choose § and M so that on the boundaries,

9% . .
7 > 1000 on the side nearest to X — axis

288 . .
- > 1000 on the side nearest to Yy — axis

4xy > 1000 on the remaining two sides
So C(x,y) >10000on T
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Example 5:
Determine whether the function f(x,y,z) = xy + yz — xz has any local extrema.

Solutions

xy,z2)=y—z

fix,y,z2)=0=y—z=0y=z2

Gy, z2)=x+z

fy(x,y,z) =0e=ex+z=0=x=—-2

f(ey,z)=y—x

f;x,y,2) =0=y—x=0=x=y

Put fo(x,¥,2z) = 0 and f,,(x,¥,2) = 0 and f,(x,y,2) = 0, we have

x=yandx =—zandy = z.
Thus,x =y =2z=0.
£(0,0,0) =0

f(t,t,t) =t?=>0=£(0,0,0) forany t € R.
f(=t,t,—t) = =3t <0 = £(0,0,0) forany t € R.
So, (0,0,0) is neither a local maxima nor a local minima.
So, f has no local extrema on R3.

Note:

flt,t,t) =t?> > +ooast > +oo
f(t,t,t) =t2 > +oast » —©0
f(—t,t,—t) = —3t> > —c0ast > o
f(=t,t,—t) = —3t? > —o0ast - —o
So, f has no global extrema on R3.
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# Increments and Linear Approximation
Recall:

One Dimensional Case:

Let f: R = R be a function on X.

Suppose f is differentiable at a.

So, fla+h) — f(a) = f'(a) - h when h = 0.

Two Dimensional Case:
Let f: R? > R be a function on (x, y).
Suppose fi and fy, are continuous at points near to (a,b). Let z = f(x,y).

fl@a+hb+k)—flab+k)~ f(ab+k) hwhenh=0
f(a,b+k) = f(a,b) ~ f,(a,b) -k when k ~ 0

So, f(a+h,b+k)—f(a,b) = f,(a,b+k)-h+f,(ab) kwhenh=0andk =0
Assume f; is continuous near to (@, b). Then, f,.(a,b + k) = f,.(a,b) when k = 0.

Thus, when h = 0 and k = 0, we have f(a + h, b + k)
~ f(a,b) + fi(a,b) *h + f,(a,b) - k
= fa,b) + (ful@b), £y (a, b)) - (h o)

Note: Az = f(a+h,b+k)—f(a,b);dx =Ax =h;dy =Ay =k

We define dz = f,(a,b) - dx + f,(a,b) - dy.

Then, f(a+h,b+k) — f(a,b) = Az =dz= f,(a,b)-h+ f,(a,b) -k
For z = f(x,y), at general point (x,y), dz = f,(x,y) - dx + f,(x,y) - dy

Example 1:
Find the differential df of the function f(x,y) = x? + 3xy — 2y?. Then, compare df and the actual increment Af when

(x,y) changes from P(3,5) to Q(3.2,4.9).

Solutions
fe(x,y) = 2x + 3y; f,(x,y) = 3x — 4y
af = fi(x,y) ~dx + f,(x,y) - dy = 2x + 3y)dx + (3x — 4y)dy

£(3,5) = 4: f(3.2,4.9) = 9.26;

£:(35) = 21 £,35) = ~11;
dx=Ax=32-3=02dy=Ay=49—5=—0.1.
For (x,y) changes from P(3,5) to Q(3.2,4.9),

Af =926 -4 =5.26

df =21 %02+ (—11) x (=0.1) = 5.3

df = Af
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Example 2:
Use linear approximation to estimate \/2 - (2.02)3 + (2.97)2.

Solutions

Let f be a real valued function on (x,y) and is defined by f(x,y) = /2x3 + y2.
(Note: We may assume x = 0 so that it is well defined.)

Letz = f(x,y).
f(23)—\/2><8+9=5;

oy = 3% _12
fx(x J’) 2 2x3+y 6x _\/W’ fx(2'3) - 5

__y =3
fy(xd/) - Z\/T—+yz 23’ - \/W7 fy(2,3) 5
dx = Ax = 2.02 -2 =0.02;dy = Ay = 2.97 — 3 = —0.03
12 3
dz = = X002+ (—0.03) = 0.03
V2-(2.02)3 +(2.97)2 = 5+ 0.03 = 5.03

Note: \/2 - (2.02)3 + (2.97)? = 5.0305 (by calculator)

Example 3:
The volume V (in cubic centimetres (or cm?)) of 1 mole (or mol.) of an ideal gas is given by V = %T where p is the

pressure (in atmospheres (or atm)) and T is the absolute temperature (in Kelvins (or K)).
Approximate the change in V when p is increased from 5 atm to 5.2 atm and T is increased from 300K to 310K.

Solutions

V =227 When T = 300 and p = 5,V = 22 x 300 = 4923.6 (in cm?)
a_v 82 06 9V _ B2.06 3

— ot 200 . = 16.412 (in cm*/K)

oV -82.06 )4 —82.06

v _ 8206, OV X = —984.72 3

ap p? 4 6P|T=300,p:5 300 =98 (m o /atm)

dp=Ap=5.2—5=0.2;dT=AT=310—300=10
AV ~ dV = 16.412 x 10 + (—984.72) X 0.2 = —32.824 (in cm?)

Note: AV = 222 x 310 — 22 x 300 = —31.5615 (in cm?)
Example 4:
The point (1,2) lies on the curve with equation e
fl,y) = 2x3 +y* —5xy = 0. N A T~
it ;\\ / // 1: 6l / ‘
Approximate the y — coordinate of the nearby point (x,y) on YOI | / \
this curve for which x = 1.2. I\ | o BF
- | | i y=2.084
l -2 -l l\’ \\ 2 3 6f ‘
B \ |
4 =3 2 1 0 1 2 3 4
The graph of

g =y — 6y +3.456
(Put x = 1.2 into

2x% +y3 — 5xy)
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Solutions

Letz = f(x,y) = 2x3 +y3 — 5xy, £(1,2) = 0 and f(1.2,2 + Ay) = 0.
Az = 0.

fe(x,y) =6x2—5y; £,(1,2) = —4;dx =Ax=12—-1=10.2

fy(xJY) = 33’2 - 5X;fy(1,2) =7;dy = Ay
0=Az=~dz=(—-4)x0.2+7Ay

4-X70.2 ~ 0.114

Requited y — coordinate = 2 + 0.114 = 2.114 (may take the approximate value 2.1)

So, Ay =

Note: Required y — coordinate = 2.084 (by Newton’s Method)

Three Dimensional Case:
Let f: R3 - R be a function on (x, V,Z7).
Suppose fy, f, and f; are continuous at points near to (a, b, ¢).

f@+nb+kc+l)—flab+kc+)=f(a,b+kc+1)-hwhenh=0
fla,b+k,c+1)—f(ab,c+1)=f,(abc+1l) kwhenk=0
fla,b,c+1)—f(a,b,c) = f,(a,b,c) lwhenl=0

So,fla+h,b+k,c+1)—f(ab,c)
= fila,b+k,c+ 1) -h+f,(abc+1) k+f(abc) lwhenh=0andk = 0andl =0

Assume f, and fj, are continuous near to (a, b, ¢).

Then, fy(a,b +k,c+1) = fi(a,b,c) and f,(a,b,c + 1) = f,(a,b,c) whenk ~ 0 and [ = 0

Thus, when h = 0and k = 0 and [ = 0, we have f(a + h,b + k,c + 1)
~ f(a,b,c) + fy(a,b,c) - h + f,(a,b,c) “ k + f,(a,b,c) - |

= f(a,b,0) + (fu(a, b, 0), (@ b,¢), £,(a,b,0)) - (h,k, D)

We define
df =fx(x,y;z) .dx +fy(x'y,z) .dy+fz(x!ylz) 'dZ

Example:

We have constructed a metal cube that is supposed to have edge length 100 mm, but each of its three measured dimensions
x,y and Z may be in error by as much as a millimeter. Use differentials to estimate the maximum resulting error in its calculated
volume V = xyz.

Solutions

V(x,y,z) =xyz

VSc(x,y'Z) =Yz Vy(xﬂy'z) = Xz Vz(x:J’:Z) =Xy

av =Ve(x,y,2)dx + V,(x,y,2)dy + V,(x,y,2)dz = yzdx + xzdy + xydz
AV =~ dV =100 x 100 X +1 + 100 x 100 X +1 + 100 x 100 x +1
Note: 100 X 100 X 1+ 100 x 100 x 1 + 100 x 100 x 1 = 30000

the maximum resulting error in its calculated volume

~ £+30000 (in mm?)
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n — Dimensional Case:
Let f:R™ = R be a function and A, H € R™.
Suppose fy,, fx,» s fx, are continuous at points near to A.

We can show that f(A + H) = f(A) + (fu, (A), fu, (A), -, fr,, (A)) - H when [|H]| = 0.

We define the gradient of f at A as grad f(A) = Vf(A) = (fx1 (4), £y, (A), - ,fxn(A)).
Then, f(A+ H) = f(A) + Vf(A) - H when ||H|| = 0.

At general point X = (xq, X3, -+, X,), we define the gradient of f at X as

grad f(X) = VF(X) = (fu, (X, fi (), -+, £, CO)).
Then, f(X + H) = f(X) + Vf(X) - H when ||H|| = 0.

Linear Approximation
Let f:R™ = R be a function and 4, H € R™.

Suppose we can find:
) 8 € R with 6 > 0 AND
(i) Vf(4)
so that there exists a function & B(0,8) — R such that e(H) » 0 as ||H|| = 0
AND f(A+ H) = f(A) + Vf(A) - H + &(H) - ||H]l.
In this case, we say f(A) + Vf(A) * H is the linear approximation of f(A + H) when ||H|| = 0.

Concept of Differentiability

f(A+H)-f(A)-Vf(A)-H - eH) A - £(H) N 0 as ”H” N 0

E (el
. FA+H)-f(A)-VF(A)H _
i =0
||H||=0 [v:d]
Remark 1:
The property “the linear approximation” = ||Il~Ii|Tnof (A+H)_’;| (:IT_W @WH _
Remark 2:
Suppose lim fa+H)-r@-viH _ 0.
IH]-0 =]
We may define £: R™ = R by £(H) = f(A+H)_f”(:|T_vf(A).H.

Then, f(A + H) = f(A) + VF(A) - H + e(H) - | H|| and (H) - 0 as ||H|| > 0

f(A+H)—f(A)-Vf(A)H
[lH||-0 =l

= 0 = The property “the linear approximation”

Definition
Let f:R™ - R be a function and A € R™.
Suppose we can find:
@ 6 € R with § > 0 AND
(i) Vf(4)
so that there exists a function & B(0,6) — R such that e(H) - 0 as ||[H|| = 0
AND f(A+H)=f(A)+Vf(A)-H+&(H) " ||H|.
In this case, we say f is differentiable at A.

Remark: lim [AHT@O-VI@H _ o
IH]I=0 1Al
Definition

Let f: R™ = R be a function and A € R™. We say f is continuously differentiable at 4 if we can find r € R with
7 > 0 such that i, fy,, ", fx, are continuous on B(4,1).
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Theorem:
Let f:R™ = R be a function and A € R™.
f is continuously differentiable at A = f is differentiable at A

Remarks:
@ the converse in general is not true
(i) f is differentiable at A =
we can find Vf(A), but f; , fy,, ", fx, may not be continuous near A

Theorem:
Let f:R™ = R be a function and A € R™.
f is differentiable at A = f is continuous at A

Definition

Let f:R™ = R be a function.

Let p # S € R™ and S is an open set.

We say f is differentiable on S if f is differentiable at A for any A € S.

Example 1
Let f: R? - R be defined by f(x,y) = xy.
Show that f is differentiable at (1,2).

Proof

f(2) =2 f,(x,y) =y (1,2) = 2; ,(x,y) = x; f,(1,2) = 1;

VF(,2) - (hk)=(21) - (hk)=2h+k
fA+h2+k)=0A+hQR+k)=2+2h+k+hk=f(1,2)+Vf(1,2)-(h k) + hk

hk

. , _ (== if(hk) # (0,0)
Let £: R? = R be defined by &(h, k) = {V h2()+"2 if (h,k) = (0,0)

Note: [|(h, k)|l = VA% + k2.
Then, f(1+h,2+ k) =f(1,2) +Vf(1,2) - (h, k) + e(h, k)| (h, k)]l

hk 1
lim e(h,k)= lim ————= lim =rsin26 =0
ItrR) =0 (h, k) Ihi)ll-0h2 + 2 1-0*2
Reason:
Let h = rcos@, k = rsinf where r = 0.
2.
Then, hk  _ r“sinfcosf __ 1rsin29

Nrora r T2
Note: |sin26| < 1

Thus, f is differentiable at (1,2).
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Example 2

Let f:R? - R be defined by f(x,y) = /x% + y2.
Show that f is not differentiable at (0,0).

Proof:
Suffices to show f;(0,0) doesn’t exist.

f(0,0)=0.f(0+h,0)=f(h,0)=+vh2+0=|h|. f(0O+ h0)—f(0,0) = |h|

. f(O+h0)—-f00 | A

lim =lim—=1lim-=1m1=1

h—o0t h h—-0* h h—0* h h—o0t

. f(O+h0)—-f00 |  —h

lim = lim —= lim —= lim -1 =-1

h—-0" h h—-0" h h—-0" h—-0"
f(0+h,0)—f(0,0) . f(0+h,0)—£(0,0)

m =1+ —-1= lim

h—ot h h—0~ h

f(0+h,0)-f(0,0)
h

So, lim doesn’t exist.
h-0

Thus, f,,(0,0) doesn’ exist.

Rules for Differentiation

Theorem:

Let ¢ # S € R™ and S is an open set.

Let f:S = R and g: S = R be functions.
LetA€RandP ES.

Suppose both f and g are differentiable at P.

Then,
@ f + g is differentiable at P
(ii) f — g is differentiable at P
(iii) f - g is differentiable at P
(iv) § is differentiable at P
(Assumed that we can find 7 € R with 7 > 0 such that B(P,r) € S and g(X) # 0 forany X € B(P,1).)
) Af is differentiable at P

Proof: Omitted (As Exercises)

# Multivariable Chain Rule

Theorem 1:

Let x:1 — R and y:I — R are functions, where I is an open interval.
Suppose x and y are differentiable on [.

Let ¢ # S € R? and S is an open set.

Suppose {(x(t),y(t)): (S 1} cS.

Let f:S = R be a function.

Suppose all partial detivatives of f are continuous on S.

Then we can define a function z: [ = R by z(t) = f(x(t), y(t)) and it is differentiable on I.
dz Of dx Of dy

dt ox dt "oy dt

. . . .dw ow dx ow dy
Remark: Sometimes, if we write w = f(x, y), then we also write — = = =

at  ox at | 9y at
by considering w = w(t) = f(x(t),y(t)).
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Idea of the proof

of of
Az = dz = an +@Ay
Az 6f Ax Of Ay

JR— —_

+_._
At  0x At 0dy At
dz _9f dx , Oof dy

Taking the limit At — 0, we get % ox a oy ar

Example 1:
Suppose that w = e, x = t? and y = t3. Find ‘Z_‘;’.

Solutions
Method 1 Method 2 (By Chain Rule)
W:exy:e(tz't3):e(t5) a_wzy xy;d_xzzt;a_wzx xy;d_yzgtz
dw d ox dt oy dt
_— e(ts)-—ts = 5t4-e(ts) dW aW dx+aW dy
dt dt dt ox dt "oy dt
= ye* - 2t + xe™” - 3t?
=2t4-e(t%) 4 3¢4. (%)
= 5t4 . e(ts)
Example 2:

The figure shows a melting cylindrical block of ice.

Because of the sun’s heat beating down from above, its height h is decteasing mote rapidly than
its radius 7.

If its height is decreasing at 3 cm/h and its radius is decteasing at 1 cm/h whenr = 15 cm
and h = 40 cm, what is the rate of change of the volume V of the block at that instant?

Solutions

As V = tr?h, by Chain Rule — = 27TTh + r
When 7 = 15 and h = 40,—= —3,dl
W dt dt
i 2m-15-40-(—1) + w152 - (—3) = —1875m ~ —5890.49 (in cm3/h).
The volume of the block at that instant is decreasing at the rate of 5890 cm3/h.

2 dh
at’
= —1 (minus sign means decreasing).

Example 3:
Find(;—":if w=x?+ze¥+sinxz,x=t,y=t%z=t5
Solutions
Method 1 Method 2 (By Chain Rule)
w = x? + ze¥ + sinxz M _ 2x + zcosxz: E =1
=t2 + t3e(t*) + sin(th) 353 ),
dw o ze¥; == 2t
dt W _ ey 4 xcosxz; 2 = 3t2
=2t + 3t2e(t") + t3e(t) . 2t + cos(t*) - 4t3 & @
=2t + (3t2 + 2t)e(t?) + 4¢3cos(th) a

= (2x + zcosxz) - 1 + (ze¥) - 2t + (¥ + xcosxz) - 3t>
=2t + t3cos(t*) + 2t*e(t?) + 3¢2e(t) 4 3t3cos(t%)
=2t + (3t2 + 2t)e(®) + 4t3cos(th)
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Theorem 2:

Let x;: I = R is a function, for i = 1,2, -+, n, where [ is an open interval.

Suppose X; is differentiable on I, for i = 1,2, -+, n.

Let ¢ # S € R™ and S is an open set.

Suppose {(x1(£), %, (), -, x,(t)): t € I} € S.

Let f:S = R be a function.

Suppose all partial detivatives of f are continuous on S.

Then we can define a function z: [ = R by z(t) = f(x1 @®), x,(t), -, xp (t)) and it is differentiable on I.

dz_z" af dx;
dt  Lui-,0x; dt

Theorem 3 (General Chain Rule):
Letp # T < R™ and T is an open set.

Tetx;: T — R is a function, for i = 1,2,---,m.

Suppose all pattial derivatives of x; are continuous on T, for i = 1,2, -+, m.

Letp # S € R™ and § is an open set.

Suppose {(x1(A), x,(4), -+, %,,(A)): AET} C 8.

Let f:S = R be a function.

Suppose all partial detivatives of f are continuous on S.

Then we can define a function z: T = R by z(4) = f(x1 (A), x,(A), -, xm(A)) and all its partial derivatives are continuous on T.

0z _Zm Jaf 0x;
atk - i:laxi atk

Example 4:
Suppose z = f(u,v),u = 2x +y,v = 3x — 2y.

Given the values of g—i = 3 and % = —2 at the point (u,v) = (3,1).

Find the values of Z—i and Z—; at the corresponding point (x,y) = (1,1).

Solutions
At (x,y) = (1,1) and (u,v) = (3,1),
u_ 59 _ 3

ax ;6x

az_az au+6z 6v_3x2+ M x3 =0
dx odu 0x v Ox =2 x3=
ou_ v,

ay oy
62_62 6u+62 6v_3x1+( 2% (=2) = 7
dy ou dy odv dy h
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Example 5:

Letw = f(x,y) where x and y are given in polar coordinates by the equations X = rcos6@ and y = rsinf.
2

Calculate Z—‘:, 3—‘;/ and ZTVZV in terms of 7, 8 and the partial derivatives of w with respect to x and y.

Solutions

0x _ g 0% _ o0y o 0y _

5= cos0; 50 = rsing; Pl sing; 50 = rcosf

ow  ow 6x+6w dy 96W+ _Gaw

or 9x or 9y or €os d0x stn dy

ow  ow 6x+6w dy _06w+ 6’6w

960 ox 00 oy ag MWy TTCOG,

?’w 0 ( 96W+ . 96W)

arz ar\ % gy TS dy

_ 0 a (6W>+ - 0 (6W)
- o8 or \ox st or \dy

9(6 (aw> 6x+ d (6W> ay)+ ) 9(6 (6W) 6x+ d (BW) By)
cos dx\0x/) Or Ody\dx/) Or st dx\dy/ or dy\dy/) or

0w 1w ] 0%w 1w
cosf | — - cosO + - sinf | + sind - cos6 + — - sinf

0x? dyox dxdy dy?
ZW 2 62
= c0s?0 el + 2sinfcosO 3yox + sin?0 377
92w _ 92w
Note: 0yox - oxdy
Example 6:

Suppose that w = f(u, v, x,y) where u and v are functions of x and y.
Find aw d aw
ind 5-and 77

[Hint: x and y play dual roles as intermediate and independent variables.]

Solutions

ow _Of du of ov of

ox  ou £+av£ ox
Ow_af Ju Odf dv Of

@_Em @—I—av 6y+6y

Example 7:
Consider a parametric curve x = x(t), y = y(t), z = z(t) that lies on the surface z = f(x, y) in space.

Recall thatif T = (dx 2y E) and N = (—z —Z, —1), then T is tangent to the curve and N is normal to the surface.

dat’dt’ de ax’ ay

Show that T and N are everywhere perpradicular.

Proof:

R dx dy dz\ (0z 0z
T V= (Garm) (e )

de’dt’dt) \ox'ay’
0z dx 0z dy dz

Sox dt "oy At dt
_dz dz

So, T and N are everywhere perprandicular.
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Exercise
Suppose f(x,y) satisfy f(tx, ty) = t™f(x,y) for any (x,y) € R?, where m is a fixed positive integer.

of of _
Showthatxa+ya = mf.

[Hint: Consider % f(tx, ty)]

# Implicit Partial Differentiation

Theorem:

Suppose that the function F(xq, X,, **+, X, Z) is continuously differentiable near to the point (ay, @y, ***, @y, b) at which
F(ay, @z, @y b) = 0 and 5° # 0.

Then, there exists a continuously differentiable function z = g(xq, X, =+, X, ) such that b = g(aq, a,, -+, a,) and
F(xy, 22, %n, g (X1, X2, X)) = 0 for (xq, %5, X) near (ag, ay, -+, ap).

Exampile 1:
Consider the graph of the equation F(x,y) = x* + y3 —3xy = 0,

find Z—z if it is well defined.

Fla.y)=0

y
b i
ﬁ(u V2)
1
1 2 x

4

1
) =y

Solutions
Note: F(x,y) = x3 +y3 — 3xy
T WL L A E Y W S PO
T Y T oy dy dx X Y Y X dx
dy 3x2-3y x%-y
So, &= T aax s T yix (Assumed y2 — x # 0)

Consider y —x = 0 and x3 + ¥ — 3xy = 0, we have

Yo+y =3y =0=y5 -2y = 0=y -2) = 0=y =00r V2
Wheny = 0,x = 0.

When y = V2, x = V4.

Z—z is undefined at points (0,0) and (%/Z, V2 )

Example 2:
Suppose w = G(x,y), u = u(x,y) and v = v(x,y) be given.
Suppose we know that x and y can be solved in terms of u and v.

. aG aG . ow ow 0dx dx 0y ady
Find — and — in terms of —, —, —, —, —and —.
ax ay ou’ ov’ ou’ v’ du v

Solutions

ow 090G ax+ac dy
du  9x ou dy du
ow 0G 6x+6G dy
v dx ov dy dv
In Matrix Form

ow x Oy 9G’ 9G’ x 0oy ow ay ay ow
ou | _ [ ou ou ox ox | _ [ ou ou ou | _ 1 v ou ou
ow |~ \ax ay|loc 59 lac |~ |oax ay ow | ~ xdy oxdy| ox  ox ow
ov v ov ay ay v v v u dv v ou ov ou ov
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# Directional Detrivatives and Gradient Vector

Concept of partial derivative

Suppose n = 2,3, ---.

Let @ #S € R™ and S is an open set.

Let f:S = R be a function on X = (X, X5, "+, Xy).

0if i#j
Lif i=)

That is, only j — th cordinate is 1, other coordinates are zeros.

Let E; = (ejy, €2, , €) be defined by ej; = {

Note: EJ is an unit vector in the direction of the coordinate axis for Xj.
a . f(X+hEj)-f(X)
L~ lim J(x+hE)=r ) :

Concept of directional derivative

Suppose n = 2,3, ++-.

Let ¢ # S € R™ and S is an open set.

Let f: S = R be a function on X = (xq, X3, ", Xp).
Let u be any unit vector.

We define:

Duf Gey, 2y = lim LT,

Theorem:

D, f(X) =Vf(X)-u

Proof:

Dy f(X)

CFX R - FX)  VFOO ()  RVF(X)u
im = lim = lim

h—0 h h—0 h h—0 h

= lim Vf () - u = V() -

Example:
Suppose f(x,y) = ﬁ (7400 — 4x — 9y — 0.03xy) for any (x,y) € R2.

Find D, f((200,200)) where  is the unit vector in the direction of v = (3,4).

Solutions
fe(t,y) = o= (—4 = 0.03y), £(200,200) = —;
£, y) = — (=9 — 0.03x), £;,(200,200) = =
v£((200,200)) = (;—;;_21)
vl = 1G4l =32 +4 =5

1 1 3 4
u= v =564 = (55)

-1 -1 3 4 -1
D,f((200,200)) = V£((200,200)) - u = (1_8,5) : (g,g) -
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Application:

If f(x,y) denotes the temperature (in degrees Celsius) at the point (X, ) near an airport where distances X and y are
measured in kilometers, then D, f ((200,200)) will be the initial rate of change of temperature when the aircraft heads northeast in
the direction specified by the vector ¥ at the location (200,200).

Note:
Duf((ZOO,ZOO)) = —0.1 means “The instantaneous rate of change is decreasing at 0.1 oc/km”.

Significance of the Gradient Vector
Suppose 8 is the angle between Vf (X) and u.

D, f(X) =Vf(X)-u= VXl - llullcosd = ||Vf(X)|[cos6

Note:
The maximum value of Dy f(X) is [|[Vf(X)]|.
The maximum value is obtained when cos@ = 1, that is U is in the same direction as Vf (X).

V).

VGOl

In this case, U =

Geometric Meaning of the Gradient Vector
Suppose r(t) = (x(t), y(t), Z(t)) is a curve on the surface F(x,y,z) = 0 where F is continuously differentiable.

0= F(x(0),y(®),z(1))

. dO_dF( O (t))_aF dx OF dy OF dz
Tdr dr YRR =5y ar Tay e T 9z dt
OF OF OF\ (dx dy dz
=<_I_l_)'(_l_l_)=VF.r,
ax’ 9y’ az) \dt'dt’dt

VF is always perpendicular to the tangent vector of the curve on the surface.
So, VF is a normal vector of the tangent plane.

Application:
Suppose F(x,y,z) = z — f(x,y).
VF = (—fx(x, v,2),—f,(x,¥,2), 1) is a normal vector of the surface z = f(x, y).

Example:
Write an equation of the plane tangent to the ellipsoid 2x? + 4y? + z% = 45 at the point P(2,—3,—1).

Solutions

Let F(x,y,z) = 2x? + 4y? + z2 — 45 for any (x,y,2) € R3.

VF(x,y,z) = (4x,8y,22)

VF(2,—3,—1) = (8,—24,—2) is 2 normal vector of required tangent plane.
An equation of required tangent plane is

((x,y,2) — (2,-3,-1)) - (8,—24,-2) =0

8x —24y—2z—-(16+72+2)=0

8x —24y—-2z—-90=0

4x —12y —z—45=0

Theorem:

Suppose F and G are continuously differentiable. The intersection of F(x,y,z) = 0 and G(x,y,z) = 0 will be some sort of
curve in space.

If P(a,b,c) is a point of such cutrve such that VF (P) and VG (P) are not collinear, then VF(P) X VG (P) will be a vector
parallelt to the tangent vector of the curve (the intersection of the two surfaces) at P.

Page 38



Course Code: MATH 2000
Course Name: Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 1:
The point P(1, —1,2) lies on both paraboloids F(x,y,z) = x2+y?—z=0and
G(x,y,z) =2x*+3y? +2z2-9=0.

Write an equation of the plane through P and is normal to the curve of intersection of these two surfaces.

Solutions

F(x,y,2) =x*+y?—z

VF(x,y,2) = (2x,2y,—1); VF(P) = VF(1,-1,2) = (2, -2, —1)
G(x,vy,z) =2x*+3y?+2z2-9

VG (x,y,2) = (4x, 6y, 22); VG (P) = VG(1,—1,2) = (4, —6,4)
VF(P) x VG(P)

i 7 K .
=y o _q1|=-147-12] -4k = (—14,-12,-4)
4 —6 4

An equation of required tangent plane is
((6,y,2) —(1,-1,2)) - (—14,-12,—-4) = 0
—14x — 12y —4z—-(-14+12-8)=0
—14x — 12y —4z+10=0
7x+6y+2z—5=0

Example 2:
Write an equation of the line tangent at the point P(1,2) to the folium of Descartes

with equation F(x,y) = 2x3 + 2y3 — 9xy = 0.

Solutions

F(x,y) = 2x3 + 2y3 — 9xy

VF(x,y) = (6x? —9y,6y? — 9x); VF(P) = VF(1,2) = (—12,15)

A vector normal to required tangent line is (—12,15).

For any point (X, y) on required tangent line, (x,y) — (1,2) is a vector in the direction of the required tangent line.
An equation of required tangent line is ((x, y) — (1,2)) -(—12,15) = 0.

—12(x—1) +15(y = 2) = 0

—12x+12+15y—-30=0

—12x + 15y — 18 = 0

4x —5y+6=0
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# Lagrange Multiplers and Constrained Optimization
Theorem (Two Dimensional Case)

Let f(x,y) and g(x, y) be continuously differentiable functions.
If the maximum value (or minimum value) of f(x,y) subject to the constraint g(x,y) = 0 occur at a point P(xg, ¥o) where

Vg(P) # (0,0), then Vf(P) = AVg(P) for some constant A.

Proof for the case (maximum value at P(Xxy,¥g))
Suppose the maximum value of f(x,y) subject to the constraint g(x,y) = 0 occurs at a point P(xg, yy) where Vg(P) # (0,0).

We consider a curve on g(x,y) = 0 and passing through P, say r: (—1,1) = R?,
r(t) = (x(t),y(t)) and 7(0) = P(xo, o).
0= if(x(t),y(t))| (as P is a local maxima on g(x,y) = 0)

t=0

d
0=/ (0.y®) o VF(x(@©),y(@®) T (®)],_, = Vf(P) - '(0)

This is true for every curve on g(x,y) = 0 and passing through P.

So, V£ (P) is normal to any tangent vector of every curve thatis on g(x,y) = 0 and is passing through P.

Also, 0 = g(x(£), y(t)). We have 0 = < g(x(£), y(t)) = = g(x(t),y(t))L:o

= Vg(x(©,y®) 7' ®)|,_, = Vg(P) ' (®)

This is true for every curve on g(x,y) = 0 and passing through P.

So, Vg (P) is normal to any tangent vector of every curve that is on g(x,y) = 0 and is passing through P.
As Vg(P) # (0,0), Vf(P) and Vg(P) must be parallel to each other.

So, Vf(P) = AVg(P) for some constant A.

Remark: We may generalize to n —dimensional case.
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Example 1:
Find the points of the rectangular hyperbola xy = 1 that are closest to the origin (0,0).

Solutions

Let d(x,y) = /x% + y? forany (x,y) € R?.

Let f(x,y) = x? + y? forany (x,y) € R%

Let g(x,y) = xy — 1 forany (x,y) € R

d(xy, yo) is a solution for “Minimize d(x,y) subject to g(x,y) = 0” &
f(x0,¥0) is a solution for “Minimize f(x,y) subject to g(x,y) = 0”

Consider the problem “Minimize f (x,y) = x% + y? subject to g(x,y) = 07,
Vi y) = (2x,2y),Vg(x,y) = (v, %)
Put Vf(x,y) = AVg(x,y), we have (2x, 2y) = A(y, x)
2x = Ay
{Zy = Ax
S0, 4y =A(2x) = A(y) =12y =1 -2)A1+2)y=0=1=20r—20ty=0
y = 0 must be rejected as xy = 1
ForAl=2x=y,s0x?=1 (as xy = 1), x = 1 or —1. The two points are (1,1) and (=1, —1).
For A =—2,x = —y,s0 —y? = 1 (as xy = 1), y? = —1. No real solutions.

Thus, the two points are (1,1) and (-1, —1).
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Example 2:

What is the maximal cross-sectional area of a rectangular beam cut as indicated from
an elliptical log with semi-axes of lengths a = 2 ft.and b = 1 ft.?

—
N

Solutions
An equation of the given ellipse is ;C—z +y2=1.
Let A(x,y) = 4xy for any (x,y) € R?.
Let g(x,y) = %xz + y% — 1 for any (x,y) € R2.
We consider “Maximize A(x,y) subject to g(x,y) = 0.
VA(x,y) = (4y,4%), Vg(x,y) = (% x, Zy)
Put VA(x,y) = AVg(x,y), we have (4y,4x) = 1 G x, Zy)
4y = %lx
4x = 2y
8x = 2(4y) =2 (3x) =2 Rx = 16x = Px = (A - H@A+Dx=0=21=4or—4orx =0
But x = 0 must be rejected, otherwise x = 0 = y (But it doesn’t satisfy %xz +y2=1)
For A =44y =2x,x = Zy.Also,WGhaveixz +y2=1=y2+y?=1=22y?=1=y=

The four points on the ellipse for this case are (\/%,%), (\/%,%), (_Tz,%) and (%,%21)

Sl

For A = —4, 4y = —2x,x = —2y.
Also,wehaveixz+y2=1$yz+y2 =1=2y?=1=y=

Sl

The four points on the ellipse for this case are (\%, %), (\%, _F;)’ (__\/E’ %) and (_F;’_le)
. . . 2 1 .

The maximal cross-sectional area is 4 X XA 4 (in ft2.)

Remark:

Area of the ellipse is mab = 2m.

4
— X 100% =~ 63.66%
2n
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Example 3:
Find the maximum volume of a rectangular box inscribed in the ellipsoid
2 2 2
x—z + y_2 + Z—Z = 1 with its faces parallel to the coordinate planes.
a b c

(Assumeda > 0,b > 0and c > 0.)

Solutions
Let V(x,y,y) = 8xyz for any (x,y,z) € R3.
2 2 2
Let g(x,v,z) = z—z + Z—z + i—z — 1 forany (x,y,2) € R3.
We consider “Maximize V (x,y, z) subject to g(x,y,z) = 0”.

VV(x,y,z) = (8yz,8xz,8xy),Vg(x,y,z) = (i—;,i—i,i—j)

Put VV(x,y,z) = AVg(x,y, z), we have (8yz,8xz,8xy) = 1 (z_f'%i_i)
2Ax
8yz ="
22
8xz = b—zy
2Az
k8xy = C_2
2Ax? 21y?  21z? x? y? z?
@ T T @ IR G TR
XZ y2 ZZ XZ yZ ZZ 1
Also’a_2+ﬁ+c_2=LThuS’;:ﬁ:C_Z_;l ) )
Assume x > 0,y > 0 and z > 0, we have x =5%Y =\/—§b and z =5
The maximum volume is 8 X \/%a X %b X \/%C = ?abc.

Remark:

The volume of the ellipsoid is grtabc.

89£abc 2V3
5 X 100% = T X 100% =~ 36.76%
§7tabc n
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# With 2 Constraints
Theorem (Three Dimensional Case)
Let f(x,v,2), g(x,v,z) and h(x,y, z) be continuously differentiable functions.
If the maximum value (or minimum value) of f(x,y, z) subject to the constraints g(x,y,z) = 0 and h(x,y,z) = 0 occur at
a point P(xg, Yo, Zo) where Vg(P) # (0,0,0) and VR(P) # (0,0,0), then
Vf(P) = MVg(P) + A,Vh(P) for some constants A; and A,.

Proof for the case (maximum value at P(Xg, Vg, Zg))

Suppose the maximum value of f(x,y, z) subject to the constraints g(x,y,z) = 0 and h(x,y,z) = 0 occurs at a point
P (X0, Yo, Zo) where Vg(P) # (0,0,0) and VR(P) # (0,0,0).

We consider a curve that is on the intersection of g(x,y,z) = 0 and h(x,y,z) = 0 and is passing through P, say
ri(=1,1) - R r(t) = (x(t),y(t),z(t)) and r(0) = P(xq, Yo, Zo).

Similar to the proof for one constraint case, we have

VF(P)-r'(0)=0

Vg(P)-r'(0) =0

VhA(P)-r'(0) =0
As Vg(P) # (0,0,0) and VA(P) # (0,0,0), they are also non-parallel,
f(P) must lie on the plane spanned by Vg (P) and Vh(P).

So, Vf(P) = Vg (P) + A,Vh(P) for some constants A; and A;.

Remark: We may generalize to case with more constraints.
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Example 4:
The plane x + y 4+ z = 12 interesects the paraboloid z = x% + y? in an ellipse.

Find the highest and lowest points on this ellipse.

Solutions

Let f(x,y,2) = z for any (x,y,2) € R3.

Letg(x,y,z) =x+y+2z— 12 forany (x,y,2) € R3.

Let h(x,y,2z) = z — x% — y? for any (x,v,z) € R5.

We consider “Maximize f(x,y, z) subject to g(x,y,z) = 0 and h(x,y,z) = 0” AND
“Minimize f(x,y,z) subject to g(x,¥,z) = 0 and h(x,y,z) = 0.

Vf(x,vy,2z) = (0,0,1);Vg(x,v,2) = (1,1,1); Vh(x,y,2) = (—2x,—2y,1)
Vf(x,vy,2) =M Vg(x,y,z) + A,Vh(x,y,z)
0,0,1) = A, (1,1,1) + A, (—=2x, -2y, 1)

)\1 - 2)\2X =0
So, A1 — 20,y = 0.
)\1 +)\2 =1

From the first two equations, we have x = :le =y.
gx,y,2)=0=>x+y+z-12=0=>2z=12 - 2x

h(x,,2) =0=2z—x?> —y? = 0 = z = 2x?
Put2x’=12-2x=x>4+x—-6=0=>((x+3)(x—-2)=0=x = -3 or 2.
The points are (=3, —3,18) and (2,2,8).

The highest point is (—3, —3,18) and the lowest point is (2,2,8).
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Applications

Example 1 (Shell’s Law):
A traveller (initially started at a fixed point hy units above a line L) has to go through the line
to get to another fixed point h, units below the line L in minimum time. Suppose his speed
is constantly v, above the line and constantly v, below the line. Show that the condition for

.. . . v sina . . .
the minimum time path is v—l = g’ where a is the angle of incidence and f is the angle of
2
reflection.
Proof
h ha
cosa == d, = hyseca; cosff = = d, = h,secf
1 2

dz

d h h
Let T(a,p) = v—i += v—iseca +V—§secﬁ.

Note that: hitana + hytanf must be a constant (From a fixed point to another fixed point), say C.

Let g(a, B) = hytana + hytanf — C.
We consider “Minimize T (&, ) subject to g(a, ) = 0”.

VT (a,B) = (:—i tana - seca,Z—ztanﬁ : secﬁ); Vg(a,B) = (hysec’a, hysec?p)

h h
VT (a,B) = 2Vg(a,) = (v—l tana - seca,v—ztanﬁ : secﬁ) = A(hysec?a, hysec?f)
1 2

—tana - seca = Ah;sec*a
U1
h, )
—tanf - secf = Ah,sec*f
V2
So, A =
V1 V2
vy sina

Thus, = =

vy sinf

sina __ sinf
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Example 2 (Arithmetic-Geometric Mean Inequality):

@ Suppose that Xy, X5, **+, X, are positive. Show that the minimum value of

f(xy, %, , X)) = Xy + X, + -+ + X, subject to the constraint X; * X, * =+ X, = 1isn.
+h . .. a;i . . .
(ii) Given n positive numbers @y, @y, ***, Ay, let X; = : fori =1,2,--+,n and apply the result in part (i)

to deduce the arithmetic-geomettic mean inequality:
a1 +a2 +"'+an

n/al.az.....ans -

Proof of (ii)

ai

Asx; = arayanin fori =1,2,--,n,
H‘l’l al al .az . ....an 1
X X e X = — —
1 2 n i=1 ) ) ) 1 a, ay- - a,
(ay-ay - ay)n
n a; a t+a,+--+a,
X1+X2+“'+Xn= 1= 1
i=1 . Ceeas n . e n
(a; - a, a,)r  (a;-a, a,)n

aitaz+tay
1 2

By part(i),
aj+az+-+a
Thus, t/a, *a, -+ a, < %

Proof of (i)
Let f: R™ = R be defined by f(xq, X3, ", Xp) = X3 + x5 + --* + X, and let g: R™ = R be defined by

X .
GO, xg, %) = X1 "Xy xy — L Letq; = x—” fori =12, ,n.

1A
We consider “Minimize f(x1, Xy, **, X,) subject to g(xq, X3, -+, %,) = 07,

Vf(xpxz' ""xn) = (1'1' ""1): Vg(x1:x2: ""xn) = (ql' q2, 'qn)
Vf(xl'xz' '“'xn) = lvg(xlv X3, “',Xn)

= (1'1"1) = A(qI'QZ"“'Qn) =X =Xy ==Xy = A XXttt Xy
Also xq x5 * -+ x, —1 = 0, we have x;* = 1. Hence, x; = 1 (as x; > 0)
Thus, x; = x, =+ =x, = Land f(xy, X3, , Xp) = X1 + X + -+ X, = n.

The minimum value is n.
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# Critical Points of Functions of One Variable

# Second Derivative Test

Let f be a real-valued function on x and let ¢,§ € R with § > 0.
Suppose f'' is continuous on (¢ — §,¢ + §) AND f'(c) = 0.

We have:
@ If f"(c) > 0, then (C,f(c)) is a local minima.
(iD) If f"(c) < 0, then (C,f(c)) is a local maxima.
(i) If f"(c) = 0, then we have NO conclusions on the nature of (C, f(C))

# Critical Points of Functions of Two Variables

Definition

Letr € R with 7 > 0 and P(a, b) € R2.

Suppose f(x,y) is a continuously differentiable function defined on an open ball B(P, ).
Note: fxy(P) = fyx(P)-

We say P is a critical point of f if Vf(P) = (0,0).

Let A = fix (P), B = f4y(P) = f,x(P), C = f,,,(P).
A B

— _ _p2
Let A= |B 0| =4c -5
Theorem (Two Variables Second Derivative Tests)
@ If A> 0and A> 0, then (a, b, f(a, b)) is a local minima
(ii) If A <0and A> 0, then (a, b, f(a, b)) is a local maxima
(1) If A< 0, then (a, b, f(a, b)) is neither a local minima nor a local maxima.

It is called a saddle point.
Proof: Will be discussed later
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Example 1:
Locate and classify the critical points of f(x,y) = 3x — x3 — 3xy2.

Solution

As f is a polynomial in x and y, f is continuously differentiable on R?.
Vf(x,y) = 3 —3x% — 3y?, —6xy)
fi(x,y)=0=3-3x2-3y?=0=x%2+y%2=1

fyx,y) =0 —6xy=0=x=00ry=0

Vf(x,y) =(0,0) & (x,¥) = (0,1) or (0,—1) or (1,0) or (—1,0)
The critical points of f on R? are (0,1), (0, —1), (1,0) and (—1,0).
fax(x,¥) = —6x; fxy(x'}’) = fyx(x'y) = —6y; fyy(x'y) = —6x

_ /‘;cx(x' y) /‘;cy(xl )’) _ —6x —6y _ 2 2
B = e ) fyGoy| = |6y —6x| = 36%7 36

@ Consider the critical point (1,0)

fx(1,0) = —6 < 0, A(1,0) = 36 > 0, (1,0,2) is a local maxima
(i) Consider the ctitical point (—1,0)

fix(—1,0) = 6 > 0,A(—1,0) = 36 > 0, (—1,0, —2) is a local minima
(i) Consider the critical point (0,1)

fx(0,1) = 0,A(0,1) = —36 < 0, (0,1,0) is a saddle point
(iv) Consider the ctitical point (0, —1)

fxx(0,—1) = 0,A(0,—1) = =36 < 0, (0, —1,0) is a saddle point
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Example 2:
Locate and classify the critical points of f(x,y) = 6xy? — 2x3 — 3y*.

Solution

As f is a polynomial in x and y, f is continuously differentiable on R?.
VF(x,y) = (6y% — 6x2,12xy — 12y3)

fi(xy) =06y’ —6x’=0=x’=y?ox=yorx =—y
[xy)=0=12xy —12y° = 0= 12y(x —y*) =0 y = 0 or x = y?
For x = y? and x = y, we have (x,y) = (0,0) or (x,y) = (1,1)

For x = y? and x = —y, we have (x,y) = (0,0) or (x,y) = (1,-1)
Vf(x,y) = (0,0) & (x,y) = (0,0) or (1,1) or (1,—-1)

The critical points of f on R? are (0,0), (1,1) and (1, —1).

fax(x,y) = —12x; fxy(x:y) = fyx(x:y) =12y, fyy(x'y) = 12x — 36y?
fxx(x:)’) fxy(x'Y) _ —12x 12}’

Alx,y) = =

D=y fun| =12y 1203652
@) Consider the critical point (0,0,0)

fxx(0,0) = 0,A(0,0) =0

The test fails.

f(0,0)=0

f0,y) =-3y* <0Owheny # 0amdy = 0

f(x,00) =—-2x3>0whenx < O0andx = 0

(0,0,0) is neither a local maxima nor a local minima. It is a saddle point.
(ii) Consider the critical point (1,1)

f(11) =—-12<0, A(1,1) = |_1122 _1224| =144 > 0, (1,1,1) is a local maxima
(iif) Consider the ctitical point (1, —1)

=12 —12

fur(1,—1) = =12 < 0,A(1,—1) =144 >0, (1,—1,1) is a local maxima

=12 —24
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Example 3:
Locate and classify the critical points of f(x,y) = x? — y*.

Solution
As f is a polynomial in x and y, f is continuously differentiable on R?.
Vf(xv }’) = (zx' —4}’3)

Vf(xv }’) = (0'0) = (ZX, —4}’3) = (010) = (x, }’) = (010)

The critical point of f on R? is (0,0)

fex (6, y) = 2§fxy(x'y) = fyx(x::)’) = Onyy(x:y) = _12y2

fex (X, ) fxy (x,¥)

Ax,y) = - |2 0
' frx(,y)  fyGey)| 0 —12y2
f;cx(olo) = 0, A(O,O) = 0
The test fails.
f(0,00=0

f(0,y) =—y*<Owheny#0andy = 0
f(x,0) =x2>0whenx #0andx = 0
(0,0,0) is neither a local maxima nor a local minima. It is a saddle point.
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Example 4:

Locate and classify the critical points of f(x,y) = x% + y*.

Solution

As f is a polynomial in x and y, f is continuously differentiable on R?.

Vf(x,y) = (2%, 4y%)
Vf(xy) = (0,0) & (2x,4y*) = (0,0) & (x,y) = (0,0)
The critical point of f on R? is (0,0)

fex 6, Y) = 2; foy (0, 9) = fix(x,¥) = 0; 5, (x, ) = 12y
fex(£,¥)  fry(x,¥)

AGry) = s 1
' fyx(x:y) fyy(x;y) 0 12y2
fxx(0,0) = 0,A(0,0) =0
The test fails.
f(0,00=0

f(x,y) = x* +y* =0 for any (x,y) € R?

(0,0,0) is a local minima.

Exercise 5:

Locate and classify the critical points of f(x,y) = —x? — y*.

Answer
The critical point of f on R? is (0,0).
(0,0,0) is a local maxima.
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# Behaviour of Quadratic Form
Let Q(h, k) = Ah? + 2Bhk + Ck?2.
Suppose A # 0. Let A= AC — B?.

Then, Q(h, k) = % [(Ah + Bk)? + Ak?].

Theorems:

@

(if)

If A > 0 and A> 0, then (0,0,0) is a local minima.
Proof:

Q(h,k) =20=10Q(0,0)

If A < 0 and A> 0, then (0,0,0) is a local maxima.
Proof:

Q(h, k) <0=20(0,0)

If A< 0, then (0,0,0) is neither a local minima nor a local maxima.

Proof:

Case 1: A >0

We can choose k > 0 and k =~ 0 so that (Ah + Bk)? + Ak? > 0 and ||(h, k)|| is small.
We can choose h > 0 and h = 0 so that (Ah + Bk)? + Ak? < 0 and ||(h, k)|| is small.
Case 224 <0

Onmitted (As Exercise)
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# Taylor’s Formula for One Variable
Let ¢ # I € R and ] is an open interval. Let a,x € I.

Suppose f is a function defined on I.
Suppose f, f', f", f'", -+ are continuous on I.

Then, £(0) = £@ + |55 2@ (x — )] + Ry

i!

f(n+1)(C) nei
where Ry 41 = e (x —a)™* for some ¢ between a and x.

Roughly Speaking, f(x) = f(a) + f'(a)(x —a) + %f”(a) (x—a)>whenx—a =0

# Taylor’s Formula for Two Variables
Let f(t) = F(a+ th, b + tk).
@

Then, F(a + b, b+ k) = f(1) = f(0) + [ A ] + Ry,

f(0) = F(a,b)
f'(t) = F(a+thb+tk)-h+F/(a+thb+tk) k
f'(0) = E(a,b)-h+FE(ab) -k

o
() =%[Fx(a+th,b+tk)-h+Fy(a+th,b+tk)-k]

= F(a+thb+tk)-h*+ 2F,(a+th,b + tk) - hk + F,,(a + th, b + tk) - k?
f"(0) = E,(a,b) h? + 2F,,(a,b) - hk + F,(a,b) - k?

We can show that

N n n! a"F o
F(a+h,b+k)=F(a,b)+[Z Z , .2 | -h"‘1k1]+R
n=14jzoJt (M= E 0XI0Y N, o) "
Roughly Speaking,
F(a+hb+k)

~ F(a,b) + F,(a,b)-h+ F,(a,b) -k + % [Fex(a,b) - R? + 2F,,(a,b) - hk + F,,(a,b) - k2] when [|(h, k)|| = 0

Suppose VF(a, b) = (0,0).
Then, F(a + h,b + k) ~ F(a, b) +§[Fxx(a,b) -h? + 2F,,(a,b) - hk + F,,(a,b) - k?] when || (R, K)|| = 0

Let A = F,(a,b), B = Fy(a,b) = Fy(a,b) and C = F,,(a,b).
F(a+hb+k) —F(ab)~ %[Ahz + 2Bhk + Ck?] when ||(h, k)|l ~ 0

It behaves like a quadratic form. Thus,

o) If A > 0 and A> 0, then (a, b,F(a, b)) is a local minima.
(i) If A < 0and A> 0, then (a, b,F(a, b)) is a local maxima.
(i) If A< 0, then (a, b,F(a, b)) is neither a local minima nor a local maxima. It is called a saddle point.

Page 54



