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# Basic Notations/Definitions/Theorems 

Let 𝑅 be the set of  all real numbers. Sometimes, we write 𝑅 = (−∞,∞). Let 𝑎, 𝑏 ∈ 𝑅 with 𝑎 < 𝑏. 

𝐼 is a non-empty interval in 𝑹 if  𝐼 is one of  the following forms: 

(𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏), [𝑎, 𝑏], (−∞, 𝑏), (−∞, 𝑏], (𝑎,∞), [𝑎,∞) and 𝑅. 
 

Let 𝑅𝑛 = {(𝑥1, 𝑥2, ⋯ , 𝑥𝑛): 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 ∈ 𝑅}, that is, it is the set of  all 𝑛 − coordinate points. 
 

Each 𝑛 −tuple (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) can be considered as a position vector from the origin 𝑂(0,0,⋯ ,0) to the point 𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑛),  

that is 𝑂𝑃⃗⃗⃗⃗  ⃗.  

The norm/length/magnitude of  the vector 𝑂𝑃⃗⃗⃗⃗  ⃗ is ‖(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)‖ = √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2. 

 

Zero Vector is denoted as 0⃗  (no directions and no magnitudes). 
 

The position vector 𝑃𝑄⃗⃗⃗⃗  ⃗ = 𝑂𝑄⃗⃗⃗⃗⃗⃗ − 𝑂𝑃⃗⃗⃗⃗  ⃗. Sometimes, we denotes it as 𝑣  or 𝒗. 
 

Sometimes, we write the norm of  𝑣  as |𝑣 | or ‖𝑣 ‖. 
 
Notes: 

Let 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 , 𝑏1, 𝑏2, ⋯ , 𝑏𝑛 , 𝜆 ∈ 𝑅. 
1. (𝑎1, 𝑎2, ⋯ , 𝑎𝑛) = (𝑏1, 𝑏2, ⋯ , 𝑏𝑛) ⟺ 𝑎𝑖 = 𝑏𝑖 for all 𝑖 = 1,2,⋯ , 𝑛 
2. (𝑎1, 𝑎2, ⋯ , 𝑎𝑛) + (𝑏1, 𝑏2, ⋯ , 𝑏𝑛) = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, ⋯ , 𝑎𝑛 + 𝑏𝑛) 
3. (𝑎1, 𝑎2, ⋯ , 𝑎𝑛) − (𝑏1, 𝑏2, ⋯ , 𝑏𝑛) = (𝑎1 − 𝑏1, 𝑎2 − 𝑏2, ⋯ , 𝑎𝑛 − 𝑏𝑛) 
4. 𝜆(𝑎1, 𝑎2, ⋯ , 𝑎𝑛) = (𝜆𝑎1, 𝜆𝑎2, ⋯ , 𝜆𝑎𝑛) 

 
Unit vector is a vector with magnitude 1. 

Unit vector in the direction of  a non-zero vector 𝑢⃗  is 
1

|𝑢⃗⃗ |
𝑢⃗ . 

 

Let 𝑢⃗ = (𝑢1, 𝑢2, ⋯ , 𝑢𝑛) and 𝑣 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑛). 
We define the dot product/inner product 𝑢⃗ ∙ 𝑣 = ∑ 𝑢𝑖𝑣𝑖

𝑛
𝑖=1 . 

Let 𝜃 be the angle between the vectors 𝑢⃗  and 𝑣 . 
We can show that 𝑢⃗ ∙ 𝑣 = |𝑢⃗ | ∙ |𝑣 | ∙ 𝑐𝑜𝑠𝜃. 
 
Theorem: 

Suppose 𝑢⃗  and 𝑣  are non-zero vectors. 

𝑢⃗  and 𝑣  are perpendicular to each other ⟺ 𝑢⃗ ∙ 𝑣 = 0 
 
For three-dimensional case: 

We let 𝑖 = (1,0,0), 𝑗 = (0,1,0) and 𝑘⃗ = (0,0,1). 

For any vector 𝑢⃗ = (𝑢1, 𝑢2, 𝑢3), we can write 𝑢⃗ = 𝑢1𝑖 + 𝑢2𝑗 + 𝑢3𝑘⃗ . 
Let 𝑢⃗ = (𝑢1, 𝑢2, 𝑢3) and 𝑣 = (𝑣1, 𝑣2, 𝑣3). 
We define the cross product  

𝑢⃗ × 𝑣 = (𝑢2𝑣3 − 𝑢3𝑣2)𝑖 + (𝑢3𝑣1 − 𝑢1𝑣3)𝑗 + (𝑢1𝑣2 − 𝑢2𝑣1)𝑘⃗ . 

We can remember this as |
𝑖 𝑗 𝑘⃗ 

𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3

|. 
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Theorems: 

Suppose 𝑢⃗  and 𝑣  are non-zero vectors. 

Let 𝜃 be the angle between the vectors 𝑢⃗  and 𝑣 . 
(i) The vectors 𝑢⃗ , 𝑣  and 𝑢⃗ × 𝑣  form a right-handed triple. 

 
(ii) |𝑢⃗ × 𝑣 | = |𝑢⃗ | ∙ |𝑣 | ∙ 𝑠𝑖𝑛𝜃 
(iii) 𝑢⃗  and 𝑣  are parallel to each other ⟺ 𝑢⃗ × 𝑣 = 0⃗  

 
# Function of  Several Variables 
Function of  Two Variables: 

Let 𝐷 be a non-empty subset of  𝑅2.  

𝑓 is called a real-valued function defined on 𝐷 if  for every (𝑥, 𝑦) ∈ 𝐷, we assign it to exactly one real number.  

In this case, we write it as 𝑓(𝑥, 𝑦). We call 𝑓: 𝐷 → 𝑅 a real-valued function and 𝐷 the domain. 
 
Example: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦. 𝑓 is a real-valued function on 𝑅2. 
 
Function of  Three Variables: 

Let 𝐷 be a non-empty subset of  𝑅3. 𝑓 is called a real-valued function defined on 𝐷 if  for every (𝑥, 𝑦, 𝑧) ∈ 𝐷, we assign it to exactly 

one real number. In this case, we write it as 𝑓(𝑥, 𝑦, 𝑧).  
We call 𝑓: 𝐷 → 𝑅 a real-valued function and 𝐷 the domain. 
 
Example: 

Let 𝑓: 𝑅3 → 𝑅 be defined by 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 − 𝑧. 𝑓 is a real-valued function on 𝑅3. 
 

Function of  𝒏 − Variables: 

Let 𝐷 be a non-empty subset of  𝑅𝑛. 𝑓 is called a real-valued function defined on 𝐷 if  for every (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∈ 𝐷, we assign it to 

exactly one real number. In this case, we write it as 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛).  
We call 𝑓: 𝐷 → 𝑅 a real-valued function and 𝐷 the domain. 
 
Example: 

Let 𝑓: 𝑅𝑛 → 𝑅 be defined by 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝑥1𝑥2⋯𝑥𝑛. 𝑓 is a real-valued function on 𝑅𝑛. 
 
# (Natural) Domain of  Function of  Several Variables 
Example 1: 
 Find the (natural) domains of  the functions: 

(i) 𝑓(𝑥, 𝑦) = √25 − 𝑥2 − 𝑦2 
(ii) 

𝑔(𝑥, 𝑦, 𝑧) =
𝑥 + 𝑦 + 𝑧

√𝑥2 + 𝑦2 + 𝑧2
 

Solutions 
 The (natural) domains are: 

(i) 𝐷 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥2 + 𝑦2 ≤ 25} 
(ii) 𝐷 = 𝑅3\{(0,0,0)} 

 
  



 
Course Code: MATH 2000 
Course Name: Engineering Mathematics I 

 
Lecture Notes for Chapter 12: Differentiation of  Functions of  Several Variables 

 

Page 3 

 

Example 2: 

Find the (natural) domain of  the function 𝑓(𝑥, 𝑦) =
𝑦

√𝑥−𝑦2
. Find also the points (𝑥, 𝑦) at which 𝑓(𝑥, 𝑦) = ±1. 

 
Solutions 

The domain is {(𝑥, 𝑦) ∈ 𝑅2: 𝑥 − 𝑦2 > 0}. 

𝑓(𝑥, 𝑦) = ±1⟺
𝑦

√𝑥−𝑦2
= ±1⟺ 𝑦2 = 𝑥 − 𝑦2 ⟺ 𝑥 = 2𝑦2  

(Note: We assumed 𝑥 − 𝑦2 > 0) 

The points (𝑥, 𝑦) at which 𝑓(𝑥, 𝑦) = ±1 are given by  

{(𝑥, 𝑦) ∈ 𝑅2\{(0,0)}: 𝑥 = 2𝑦2}. 
 
# Graphs 

Let 𝐷 be a non-empty subset of  𝑅𝑛.  

𝑓 is a real-valued function defined on 𝐷. 

We define the graph of  𝑓 as the set  

{(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , 𝑦) ∈ 𝑅
𝑛+1: (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∈ 𝐷, 𝑦 = 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)} 

 
Example 1: 

 Sketch the graph of  the function 𝑓(𝑥, 𝑦) = 2 −
1

2
𝑥 −

1

3
𝑦. 

 
Solutions 

Let 𝑧 = 𝑓(𝑥, 𝑦) = 2 −
1

2
𝑥 −

1

3
𝑦 for any (𝑥, 𝑦) ∈ 𝑅2. 

3𝑥 + 2𝑦 + 6𝑧 = 12 

It is the plane with normal vector (3,2,6) and passing through the point (0,6,0). 

 
 
Example 2: 

The graph of  the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 is the familiar circular 

paraboloid 𝑧 = 𝑥2 + 𝑦2 shown in the figure. 
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Example 3: 

Find the domain of  the function 𝑔(𝑥, 𝑦) =
1

2
√4 − 4𝑥2 − 𝑦2 and sketch its graph. 

 
Solutions 

The domain is  

{(𝑥, 𝑦) ∈ 𝑅2: 4𝑥2 + 𝑦2 ≤ 4} 

 
 

The graph is the upper half  of  the ellipsoid. 

 

 
# Level Curves/Level Surfaces/Level Sets 

Let 𝐷 be a non-empty subset of  𝑅𝑛. Let 𝑐 ∈ 𝑅. 𝑓 is a real-valued function defined on 𝐷. 

We define the level set of  𝑓 as the set 𝐿𝑐 = {(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∈ 𝐷: 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝑐} 
(where the function has the same value 𝑐). 

When 𝑛 = 2, level set is commonly called level curve. 

When 𝑛 = 3, level set is commonly called level surface. 
 
Example 1: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 25 − 𝑥2 − 𝑦2. Domain = 𝑅2. Let 𝑐 ∈ 𝑅. 

𝐿𝑐 = {(𝑥, 𝑦) ∈ 𝑅2: 25 − 𝑥2 − 𝑦2 = 𝑐}. 

 
 

Note: 𝐿𝑐 = 𝜙 if  𝑐 > 25 and 𝐿25 = {(0,0)}. 
 
Example 2: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑦2 − 𝑥2. Domain = 𝑅2. Let 𝑐 ∈ 𝑅. 

𝐿𝑐 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑦2 − 𝑥2 = 𝑐}. 

 
 

Notes: 
(i) If  𝑐 > 0, the level curve 𝑦2 − 𝑥2 = 𝑐 is a hyperbola opens along the 𝑦 − axis. 
(ii) If  𝑐 < 0, the level curve 𝑦2 − 𝑥2 = 𝑐 is a hyperbola opens along the 𝑥 − axis. 
(iii) If  𝑐 = 0, the level curve 𝑦2 − 𝑥2 = 0 consists of  two straight lines given by 𝑦 = 𝑥 and 𝑦 = −𝑥. 
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Example 3: 

Let 𝑓: 𝑅3 → 𝑅 be defined by 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 𝑧2.  

Domain = 𝑅3. Let 𝑐 ∈ 𝑅. 𝐿𝑐 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅3: 𝑥2 + 𝑦2 − 𝑧2 = 𝑐}. 

 
Notes: 

(i) If  𝑐 > 0, the level surface 𝑥2 + 𝑦2 − 𝑧2 = 𝑐 is a hyperboloid of  one sheet. 
(ii) If  𝑐 < 0, the level surface 𝑥2 + 𝑦2 − 𝑧2 = 𝑐 is a hyperboloid of  two sheets. 
(iii) If  𝑐 = 0, the level surface 𝑥2 + 𝑦2 − 𝑧2 = 0 is a cone lies between these two types of  hyperboloids. 

 
Example 4: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = (𝑥2 − 𝑦2)𝑒−𝑥
2−𝑦2 . Domain = 𝑅2. 

 
 

Remark: The patterns of  nested level curves can indicate “pits” and “peaks” on the surface. 
 
Example 5: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑠𝑖𝑛√𝑥2 + 𝑦2. Domain = 𝑅2. 

 

 

𝑧 = 𝑠𝑖𝑛𝑟 where 𝑟 = √𝑥2 + 𝑦2 

 
 
Example 6: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) =
3

4
𝑦2 +

1

24
𝑦3 −

1

32
𝑦4 − 𝑥2. Domain = 𝑅2. Investigate the graph of  𝑓. 
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Solutions 
Note 1: If  we set 𝑦 = 𝑦0 and let 𝑘 =

3

4
𝑦0

2 +
1

24
𝑦0

3 −
1

32
𝑦0

4, then 𝑓(𝑥, 𝑦) = 𝑘 − 𝑥2.  

𝑧 = 𝑘 − 𝑥2 is an equation of  a parabola in the 𝑥𝑧 − plane. 

 
 
 
 
 

Note 2: If  we set 𝑥 = 0, then 𝑓(0, 𝑦) =
3

4
𝑦2 +

1

24
𝑦3 −

1

32
𝑦4.  

𝑧 =
3

4
𝑦2 +

1

24
𝑦3 −

1

32
𝑦4 is a curve in the 𝑦𝑧 − plane. 
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# Open Sets and Closed Sets in 𝑹𝒏 
Definitions: 

Let 𝑃(𝑝1, 𝑝2, ⋯ , 𝑝𝑛) ∈ 𝑅
𝑛 and 𝑟 ∈ 𝑅 with 𝑟 > 0. The open ball centered at 𝑃 with radius 𝑟 is  

{(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∈ 𝑅
𝑛: ‖(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) − (𝑝1, 𝑝2, ⋯ , 𝑝𝑛)‖ < 𝑟}. It is usually denoted as 𝐵(𝑃, 𝑟). 

That is, 𝐵(𝑃, 𝑟) = {(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) ∈ 𝑅
𝑛: √(𝑥1 − 𝑝1)

2 + (𝑥2 − 𝑝2)
2 +⋯+ (𝑥𝑛 − 𝑝𝑛)

2 < 𝑟} 

 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛. For any 𝑃 ∈ 𝑆, we can find 𝑟 ∈ 𝑅 with 𝑟 > 0 such that 𝐵(𝑃, 𝑟) ⊂ 𝑆. 

𝑆 is called an open set in 𝑹𝒏. 
 

Let 𝜙 ≠ 𝑇 ⊂ 𝑅𝑛. 𝑇 is called a closed set in  𝑹𝒏 if  𝑅𝑛\𝑇 is an open set in 𝑅𝑛. 
 

Examples of  Open Sets in 𝑹𝟐:  

𝑆1 = {(𝑥, 𝑦) ∈ 𝑅
2: 𝑥 > 1}, 𝑆2 = {(𝑥, 𝑦) ∈ 𝑅2: 1 < 𝑥2 + 𝑦2 < 2}, 𝑆3 = 𝑅2\{(0,0)} 

 

Examples of  Closed Sets in 𝑹𝟐:  

𝑇1 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥 ≤ 1}, 𝑇2 = {(𝑥, 𝑦) ∈ 𝑅
2: 𝑥2 + 𝑦2 ≤ 1}⋃{(𝑥, 𝑦) ∈ 𝑅2: 𝑥2 + 𝑦2 ≥ 2}, 𝑇3 = {(0,0)} 

 
# Interior Points, Accumulation Points and Boundary Points 
Definitions: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑃 ∈ 𝑅𝑛. 

𝑃 is called an interior point of  𝑆 if  we can find 𝑟 ∈ 𝑅 with 𝑟 > 0 such that 𝐵(𝑃, 𝑟) ⊂ 𝑆. 
 

𝑃 is called an accumulation point of  𝑆 if  for any 𝑟 ∈ 𝑅 with 𝑟 > 0, we can find 𝑄 ∈ 𝑅𝑛 with 𝑄 ≠ 𝑃 and 

𝑄 ∈ 𝐵(𝑃, 𝑟) ∩ 𝑆. 
 

𝑃 is called a boundary point of  𝑆 if  for any 𝑟 ∈ 𝑅 with 𝑟 > 0, we must have 𝐵(𝑃, 𝑟) ∩ 𝑆 ≠ 𝜙 and  

𝐵(𝑃, 𝑟) ∩ (𝑅𝑛\𝑆) ≠ 𝜙. 
 

We define the boundary of  𝑆 is 𝜕𝑆 = { all boundary points of  𝑆  }. 

Notes:  

(i) 𝑃 is an interior point of  𝑆 ⟹ 𝑃 is an accumulation point of  𝑆 

(ii) 𝑃 is an accumulation point of  𝑆 and is NOT an interior point of  𝑆  

⟹  𝑃 is a boundary point of  𝑆 

(iii) 𝑃 is an accumulation point of  𝑆 ⟺  

𝑃 is an interior point of  𝑆 or 𝑃 is a boundary point of  𝑆 

Example: 

Let 𝑆 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥 ≤ 1}. 
We can check that: 

(i) (0,0) is an interior point of  𝑆 
(ii) (1,0) is an accumulation point of  𝑆 and is not an interior point of  𝑆 
(iii) (1,0) is a boundary point of  𝑆 
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# Bounded Sets and Unbounded Sets in 𝑹𝒏 
Definitions: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝜙 ≠ 𝑇 ⊂ 𝑅𝑛 

𝑆 is bounded if  we can find 𝑟 ∈ 𝑅 with 𝑟 > 0 such that 𝑆 ⊂ 𝐵(𝑂, 𝑟) where 𝑂(0,0,⋯ ,0) is the origin. 

𝑇 is unbounded if  for any 𝑟 ∈ 𝑅 with 𝑟 > 0, we have (𝑅𝑛\𝐵(𝑂, 𝑟)) ∩ 𝑇 ≠ 𝜙 where 𝑂(0,0,⋯ ,0) is the origin. 

 
Example: 

𝑆 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥2 + 𝑦2 ≤ 1} is bounded. 

𝑇 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥 > 1} is unbounded. 
 
Remarks: 
Usually we consider: 

(i) Limit/Differentiability at accumulation points or on open sets 
(ii) Continuity on open sets/closed sets 
(iii) Maxima/Minima on closed and bounded sets 

  
# Limits and Continuity 
 
For One Dimensional Case: 

Recall the definition for lim
𝑥→𝑎

𝑓(𝑥) = 𝐿: 

Let 𝑓: 𝑅 → 𝑅 be a function and 𝑎, 𝐿 ∈ 𝑅. 

For any 𝜀 > 0, we can find 𝛿 > 0 (𝛿 may depend on 𝜀) such that 0 < |𝑥 − 𝑎| < 𝛿⟹ |𝑓(𝑥) − 𝐿| < 𝜀. 
 
For Two Dimensional Case: 

Definition for lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝐿: 

Let 𝑓: 𝑅2 → 𝑅 be a function, (𝑎, 𝑏) ∈ 𝑅2 and 𝐿 ∈ 𝑅. 

For any 𝜀 > 0, we can find 𝛿 > 0 (𝛿 may depend on 𝜀) such that 0 < ‖(𝑥, 𝑦) − (𝑎, 𝑏)‖ < 𝛿 ⟹ |𝑓(𝑥, 𝑦) − 𝐿| < 𝜀. 
 

In this case, we say 𝑓(𝑥, 𝑦) → 𝐿 as (𝑥, 𝑦) → (𝑎, 𝑏). 

Remark: ‖(𝑥, 𝑦) − (𝑎, 𝑏)‖ = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 

 

For 𝒏 − Dimensional Case: 

Definition for lim
(𝑥1,𝑥2,⋯,𝑥𝑛)→(𝑎1,𝑎2,⋯,𝑎𝑛)

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝐿: 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function, (𝑎1, 𝑎2, ⋯ , 𝑎𝑛) ∈ 𝑅
𝑛 and 𝐿 ∈ 𝑅. 

For any 𝜀 > 0, we can find 𝛿 > 0 (𝛿 may depend on 𝜀) such that  

0 < ‖(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) − (𝑎1, 𝑎2, ⋯ , 𝑎𝑛)‖ < 𝛿 ⟹ |𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) − 𝐿| < 𝜀. 
In this case, we say 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) → 𝐿 as (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) → (𝑎1, 𝑎2,⋯ , 𝑎𝑛). 

Remark: ‖(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) − (𝑎1, 𝑎2, ⋯ , 𝑎𝑛)‖ = √(𝑥1 − 𝑎1)
2 + (𝑥2 − 𝑎2)

2 +⋯+ (𝑥𝑛 − 𝑎𝑛)
2 

 
Uniqueness of  Limit 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function, (𝑎1, 𝑎2, ⋯ , 𝑎𝑛) ∈ 𝑅
𝑛 and 𝐿1, 𝐿2 ∈ 𝑅. 

If  lim
(𝑥1,𝑥2,⋯,𝑥𝑛)→(𝑎1,𝑎2,⋯,𝑎𝑛)

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝐿1 and lim
(𝑥1,𝑥2,⋯,𝑥𝑛)→(𝑎1,𝑎2,⋯,𝑎𝑛)

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝐿2, then 𝐿1 = 𝐿2. 

 
Proof: Omitted (As Exercise) 
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Example 1: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑥𝑦 and (𝑎, 𝑏) = (2,3). Show that lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 6. 

 
Proof: 

For any 𝜀 > 0, choose 𝛿 = 𝑚𝑖𝑛 {1,
𝜀

7
 } > 0 

0 < √(𝑥 − 2)2 + (𝑦 − 3)2 < 𝛿⟹ 0 < |𝑥 − 2| < 𝛿 ⟺ 2− 𝛿 < 𝑥 < 2 + 𝛿 and 𝑥 ≠ 2 

0 < √(𝑥 − 2)2 + (𝑦 − 3)2 < 𝛿⟹ 0 < |𝑦 − 3| < 𝛿 ⟺ 3− 𝛿 < 𝑦 < 3 + 𝛿 and 𝑦 ≠ 3 

 

As 0 < 𝛿 ≤ 1, both 2 − 𝛿 > 0 and 3 − 𝛿 > 0.  

So,  0 < √(𝑥 − 2)2 + (𝑦 − 3)2 < 𝛿⟹ (2 − 𝛿)(3 − 𝛿) < 𝑥𝑦 < (2 + 𝛿)(3 + 𝛿)  
 

(2 − 𝛿)(3 − 𝛿) < 𝑥𝑦 < (2 + 𝛿)(3 + 𝛿) ⟺ −5𝛿 + 𝛿2 < 𝑥𝑦 − 6 < 5𝛿 + 𝛿2 
 

As 0 < 𝛿 ≤ 1, 0 < 𝛿2 ≤ 𝛿. So 5𝛿 + 𝛿2 ≤ 6𝛿 < 7𝛿 ≤ 𝜀 and −5𝛿 + 𝛿2 > −5𝛿 > −7𝛿 ≥ −𝜀. 
 
combining all results, 

0 < √(𝑥 − 2)2 + (𝑦 − 3)2 < 𝛿⟹−𝜀 < 𝑥𝑦 − 6 < 𝜀  

that is, 0 < √(𝑥 − 2)2 + (𝑦 − 3)2 < 𝛿⟹ |𝑓(𝑥, 𝑦) − 6| = |𝑥𝑦 − 6| < 𝜀 

 

Thus, lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 6. 

 
Example 2: 
Determine whether each of  the following limits exists and find the limit if  it exists: 

(i) 
lim

(𝑥,𝑦)→(0,0)

𝑥 − 𝑦

𝑥 + 𝑦
 

(ii) 
lim

(𝑥,𝑦)→(0,0)

𝑥2𝑦

𝑥4 + 𝑦2
 

(iii) 
lim

(𝑥,𝑦)→(0,0)

𝑥𝑦(𝑥2 − 𝑦2)

𝑥2 + 𝑦2
 

 
Solution (i): 

lim
(𝑥,𝑦)→(0,0)

𝑦=0

𝑥 − 𝑦

𝑥 + 𝑦
= lim

𝑥→0

𝑥 − 0

𝑥 + 0
= lim

𝑥→0

𝑥

𝑥
= lim

𝑥→0
1 = 1 

lim
(𝑥,𝑦)→(0,0)

𝑥=0

𝑥 − 𝑦

𝑥 + 𝑦
= lim

𝑦→0

0 − 𝑦

0 + 𝑦
= lim

𝑦→0

−𝑦

𝑦
= lim

𝑦→0
−1 = −1 

So, lim
(𝑥,𝑦)→(0,0)

𝑥−𝑦

𝑥+𝑦
 doesn’t exist. 

 
Solution (ii): 

lim
(𝑥,𝑦)→(0,0)

𝑦=𝑚𝑥2

𝑥2𝑦

𝑥4 + 𝑦2
= lim

(𝑥,𝑦)→(0,0)

𝑦=𝑚𝑥2

𝑚𝑥4

𝑥4 +𝑚2𝑥4
= lim

(𝑥,𝑦)→(0,0)

𝑦=𝑚𝑥2

𝑚

1 +𝑚2
=

𝑚

1 +𝑚2
 

So, lim
(𝑥,𝑦)→(0,0)

𝑦=𝑥2

𝑥2𝑦

𝑥4+𝑦2
=

1

2
≠

−1

2
= lim

(𝑥,𝑦)→(0,0)

𝑦=−𝑥2

𝑥2𝑦

𝑥4+𝑦2
. 

So, lim
(𝑥,𝑦)→(0,0)

𝑥2𝑦

𝑥4+𝑦2
 doesn’t exist. 
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Solution (iii): 

Let 𝑥 = 𝑟𝑐𝑜𝑠𝜃 and 𝑦 = 𝑟𝑠𝑖𝑛𝜃. 

𝑥2 + 𝑦2 = 𝑟2,  

𝑥𝑦(𝑥2 − 𝑦2) = 𝑟4𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃(𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) =
1

2
𝑟4 ∙ 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 ∙ 𝑐𝑜𝑠2𝜃  

=
1

2
𝑟4 ∙ 𝑠𝑖𝑛2𝜃 ∙ 𝑐𝑜𝑠2𝜃 =

1

4
𝑟4𝑠𝑖𝑛4𝜃 

lim
(𝑥,𝑦)→(0,0)

𝑥𝑦(𝑥2 − 𝑦2)

𝑥2 + 𝑦2
= lim

𝑟→0+

1
4
𝑟4𝑠𝑖𝑛4𝜃

𝑟2
=
1

4
lim
𝑟→0+

𝑟2𝑠𝑖𝑛4𝜃 = 0 

Notes: 
(i) (𝑥, 𝑦) → (0,0)⟺√𝑥2 + 𝑦2 → 0+⟺𝑟 → 0+ 
(ii) As  |𝑠𝑖𝑛4𝜃| ≤ 1, |𝑟2𝑠𝑖𝑛4𝜃| ≤ 𝑟2. 

lim
𝑟→0+

𝑟2 = 0⟹ lim
𝑟→0+

𝑟2𝑠𝑖𝑛4𝜃 = 0 

 
Exercise: 

Show that lim
(𝑥,𝑦)→(0,0)

𝑠𝑖𝑛(𝑥2+𝑦2)

𝑥2+𝑦2
= 1. 

[Hint: lim
𝜃→0

𝑠𝑖𝑛𝜃

𝜃
= 1] 

 
Rules for Finding Limits: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. Let 𝑓: 𝑆 → 𝑅 and 𝑔: 𝑆 → 𝑅 be functions. Let 𝐿,𝑀, 𝜆 ∈ 𝑅 and 𝑋, 𝑃 ∈ 𝑆. 

Suppose lim
𝑋→𝑃

𝑓(𝑋) = 𝐿 and lim
𝑋→𝑃

𝑔(𝑋) = 𝑀. 

Then, 
(i) lim

𝑋→𝑃
(𝑓(𝑋) + 𝑔(𝑋)) = 𝐿 + 𝑀 

(ii) lim
𝑋→𝑃

(𝑓(𝑋) − 𝑔(𝑋)) = 𝐿 − 𝑀 

(iii) lim
𝑋→𝑃

(𝑓(𝑋) ∙ 𝑔(𝑋)) = 𝐿𝑀 

(iv) 
lim
𝑋→𝑃

𝑓(𝑋)

𝑔(𝑋)
=
𝐿

𝑀
 

(Assumed 𝑀 ≠ 0 and we can find 𝑟 ∈ 𝑅 with 𝑟 > 0 such that 𝐵(𝑃, 𝑟) ⊂ 𝑆 and 𝑔(𝑋) ≠ 0 for any 𝑋 ∈ 𝐵(𝑃, 𝑟)\{𝑃}.) 

(v) lim
𝑋→𝑃

𝜆𝑓(𝑋) = 𝜆𝐿 

Proof: Omitted (As Exercises) 
 
Example 1 (re-visited) 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑥𝑦 and (𝑎, 𝑏) = (2,3). Show that lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 6. 

Proof: 

Let 𝑔: 𝑅2 → 𝑅 be defined by 𝑔(𝑥, 𝑦) = 𝑥 and ℎ: 𝑅2 → 𝑅 be defined by ℎ(𝑥, 𝑦) = 𝑦. 

lim
(𝑥,𝑦)→(2,3)

𝑔(𝑥, 𝑦) = lim
(𝑥,𝑦)→(2,3)

𝑥 = lim
𝑥→2

𝑥 = 2 (Note: (𝑥, 𝑦) → (2,3)⟹ 𝑥 → 2) 

Similarly, lim
(𝑥,𝑦)→(2,3)

ℎ(𝑥, 𝑦) = lim
(𝑥,𝑦)→(2,3)

𝑦 = 3. 

lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = lim
(𝑥,𝑦)→(2,3)

𝑔(𝑥, 𝑦) × lim
(𝑥,𝑦)→(2,3)

ℎ(𝑥, 𝑦) = 2 × 3 = 6. 
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Example 2: 

Suppose 𝑓: 𝑅2 → 𝑅 is a polynomial in 𝑥 and 𝑦, say 𝑓(𝑥, 𝑦) = ∑ 𝑎(𝑖,𝑗)𝑥
𝑖𝑦𝑗(𝑖,𝑗)∈𝑇   

where 𝑎(𝑖,𝑗) ∈ 𝑅 for all (𝑖, 𝑗) ∈ 𝑇, (𝑖, 𝑗) ∈ 𝑇⟹ 𝑖, 𝑗 ∈ {0,1,2,⋯ } and 𝑇 is a finite set.  

We can show that lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏). 

 
Example 3: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 2𝑥4𝑦2 − 7𝑥𝑦 + 4𝑥2𝑦3 − 5. Find lim
(𝑥,𝑦)→(−1,2)

𝑓(𝑥, 𝑦). 

 
Solution 

lim
(𝑥,𝑦)→(−1,2)

𝑓(𝑥, 𝑦) = 𝑓(−1,2) = 8 + 14 + 32 − 5 = 49 

 
# Continuity 
Recall: 
One Dimensional Case: 

Let 𝑓 be a function on 𝑥 ∈ 𝑅 and let 𝑎 ∈ 𝑅. 
Suppose: 

(i) (𝑎 − 𝛿, 𝑎 + 𝛿) ⊂ the domain of  𝑓 for some 𝛿 > 0 

(that is,  𝑓 is defined at all the points in a neighborhood of  𝑎.) AND 
(ii) lim

𝑥→𝑎
𝑓(𝑥) exists as a real number AND 

(iii) lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎). 

Then, we say 𝒇 is continuous at 𝒂. Otherwise, we say 𝑓 is NOT continuous at 𝑎 or 𝑓 is discontinuous at 𝑎. 
 
Two Dimensional Case: 

Let 𝑓 be a function on (𝑥, 𝑦) ∈ 𝑅2 and let (𝑎, 𝑏) ∈ 𝑅2. 
Suppose: 

(i) 𝐵((𝑎, 𝑏), 𝛿) ⊂ the domain of  𝑓 for some 𝛿 > 0 

(that is,  𝑓 is defined at all the points in a neighborhood of  (𝑎, 𝑏).) AND 
(ii) lim

(𝑥,𝑦)→(𝑎,𝑏)
𝑓(𝑥, 𝑦) exists as a real number AND 

(iii) lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏). 

Then, we say 𝒇 is continuous at (𝒂, 𝒃). Otherwise, we say 𝑓 is NOT continuous at (𝑎, 𝑏) or 𝑓 is discontinuous at (𝑎, 𝑏). 
 

𝒏 − Dimensional Case: 

Let 𝑓 be a function on 𝑋 ∈ 𝑅𝑛 and let 𝑃 ∈ 𝑅𝑛. 
Suppose: 

(i) 𝐵(𝑃, 𝛿) ⊂ the domain of  𝑓 for some 𝛿 > 0 

(that is,  𝑓 is defined at all the points in a neighborhood of  𝑃.) AND 
(ii) lim

𝑋→𝑃
𝑓(𝑋) exists as a real number AND 

(iii) lim
𝑋→𝑃

𝑓(𝑋) = 𝑓(𝑃). 

Then, we say 𝒇 is continuous at 𝑷. Otherwise, we say 𝑓 is NOT continuous at 𝑃 or 𝑓 is discontinuous at 𝑃. 
 
One Dimensional Case: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅. Let 𝑓 be a function on 𝑥 ∈ 𝑅 and is defined on 𝑆.  

We say 𝑓 is continuous on 𝑆 if  𝑓 is continuous at 𝑥 for any 𝑥 ∈ 𝑆. 
 
Two Dimensional Case: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅2. Let 𝑓 be a function on (𝑥, 𝑦) ∈ 𝑅2 and is defined on 𝑆.  

We say 𝑓 is continuous on 𝑆 if  𝑓 is continuous at (𝑥, 𝑦) for any (𝑥, 𝑦) ∈ 𝑆. 
 

𝒏 − Dimensional Case: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛. Let 𝑓 be a function on 𝑋 ∈ 𝑅𝑛 and is defined on 𝑆.  

We say 𝑓 is continuous on 𝑆 if  𝑓 is continuous at 𝑋 for any 𝑋 ∈ 𝑆. 
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Example 1: 

Let 𝑓: 𝐷 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 1 where 𝐷 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥2 + 𝑦2 ≤ 1}. Show that 𝑓 is continuous on 𝐷. 
 
Proof: 

For any (𝑎, 𝑏) ∈ 𝐷, lim
(𝑥,𝑦)→(𝑎,𝑏)

𝑓(𝑥, 𝑦) = 1 = 𝑓(𝑎, 𝑏). 

So, 𝑓 is continuous at (𝑎, 𝑏). 
Thus, 𝑓 is continuous on 𝐷. 
 
Example 2: 

Let 𝑔: 𝑅2 → 𝑅 be defined by 𝑔(𝑥, 𝑦) = {
1
0
  
𝑖𝑓 (𝑥, 𝑦) ∈ 𝐷
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, where 𝐷 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥2 + 𝑦2 ≤ 1}. 

Show that 𝑔 is NOT continuous on 𝑅2. 
 
Proof: 

Suffices to show that 𝑔 is NOT continuous at (1,0). 
𝑔(1,0) = 1. 

lim
(𝑥,𝑦)→(1,0)
𝑥<1 𝑎𝑛𝑑 𝑦=0

𝑔(𝑥, 𝑦) = lim
(𝑥,𝑦)→(1,0)
𝑥<1 𝑎𝑛𝑑 𝑦=0

1 = 1 

lim
(𝑥,𝑦)→(1,0)
𝑥>1 𝑎𝑛𝑑 𝑦=0

𝑔(𝑥, 𝑦) = lim
(𝑥,𝑦)→(1,0)
𝑥>1 𝑎𝑛𝑑 𝑦=0

0 = 0 

Thus, lim
(𝑥,𝑦)→(1,0)

𝑦=0

𝑔(𝑥, 𝑦) doesn’t exist. Hence, lim
(𝑥,𝑦)→(1,0)

𝑔(𝑥, 𝑦) doesn’t exist. 

 
Rules for Continuous Functions: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. Let 𝑓: 𝑆 → 𝑅 and 𝑔: 𝑆 → 𝑅 be functions. Let 𝜆 ∈ 𝑅 and 𝑃 ∈ 𝑆. 

Suppose 𝑓 and 𝑔 are continuous at 𝑃.  
Then, 

(i) 𝑓 + 𝑔 is continuous at 𝑃 
(ii) 𝑓 − 𝑔 is continuous at 𝑃 
(iii) 𝑓 ∙ 𝑔 is continuous at 𝑃 
(iv) 𝑓

𝑔
 is continuous at 𝑃 

(Assumed that we can find 𝑟 ∈ 𝑅 with 𝑟 > 0 such that 𝐵(𝑃, 𝑟) ⊂ 𝑆 and 𝑔(𝑋) ≠ 0 for any 𝑋 ∈ 𝐵(𝑃, 𝑟).) 
(v) 𝜆𝑓 is continuous at 𝑃 

Proof: Omitted (As Exercises) 
 
Theorem (Composition of  Continuous Functions) 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. Let 𝜙 ≠ 𝐼 ⊂ 𝑅 and 𝐼 is an open interval.  

Let 𝑓: 𝑆 → 𝑅 and 𝑔: 𝐼 → 𝑅 be functions. Let 𝑃 ∈ 𝑆 and 𝑓(𝑃) ∈ 𝐼. 
Suppose 𝑓 is continuous at 𝑃 and 𝑔 is continuous at 𝑓(𝑃). 
Then, 𝑔°𝑓 is continuous at 𝑃. 
Proof: Omitted (As Exercise) 
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Example: 

 Show that 𝑧 = 𝑠𝑖𝑛(𝑥2 + 𝑦2) is continuous on 𝑅2. 
 
Proof: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 and 𝑔: 𝑅 → 𝑅 be defined by 𝑔(𝜃) = 𝑠𝑖𝑛𝜃. 

As 𝑓 is continuous on 𝑅2 and 𝑔 is continuous on 𝑅, 𝑧 = 𝑠𝑖𝑛(𝑥2 + 𝑦2) = 𝑔°𝑓(𝑥, 𝑦) is continuous on 𝑅2. 
 
# Partial Differentiation (Two Dimensional Case): 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅2 and 𝑆 is an open set. Let 𝑓: 𝑆 → 𝑅 be a function on (𝑥, 𝑦) and (𝑎, 𝑏) ∈ 𝑆. 
We define: 

(i) 
𝑓𝑥(𝑥, 𝑦) =

𝜕𝑓

𝜕𝑥
= lim

ℎ→0

𝑓(𝑥 + ℎ, 𝑦) − 𝑓(𝑥, 𝑦)

ℎ
 

(ii) 
𝑓𝑥(𝑎, 𝑏) =

𝜕𝑓

𝜕𝑥
|
(𝑥,𝑦)=(𝑎,𝑏)

= lim
ℎ→0

𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏)

ℎ
 

(iii) 
𝑓𝑦(𝑥, 𝑦) =

𝜕𝑓

𝜕𝑦
= lim

𝑘→0

𝑓(𝑥, 𝑦 + 𝑘) − 𝑓(𝑥, 𝑦)

𝑘
 

(iv) 
𝑓𝑦(𝑎, 𝑏) =

𝜕𝑓

𝜕𝑦
|
(𝑥,𝑦)=(𝑎,𝑏)

= lim
𝑘→0

𝑓(𝑎, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏)

𝑘
 

Rules for finding partial derivative: 
(i) To find 

𝜕𝑓

𝜕𝑥
, regard 𝑦 as a constant and differentiate with respect to 𝑥 

(ii) To find 
𝜕𝑓

𝜕𝑦
, regard 𝑥 as a constant and differentiate with respect to 𝑦 

 
Example 1: 

 Compute 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 of  the function 𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦2 − 𝑦3. 

 
Solutions 

𝜕𝑓

𝜕𝑥
= 2𝑥 + 2𝑦2 and 

𝜕𝑓

𝜕𝑦
= 4𝑥𝑦 − 3𝑦2. 

 
Example 2: 

 Compute 
𝜕𝑧

𝜕𝑥
 and 

𝜕𝑧

𝜕𝑦
 if  𝑧 = (𝑥2 + 𝑦2)𝑒−𝑥𝑦. 

 
Solutions 
𝜕𝑧

𝜕𝑥
= 2𝑥𝑒−𝑥𝑦 + (𝑥2 + 𝑦2)𝑒−𝑥𝑦 ∙ (−𝑦) = (2𝑥 − 𝑥2𝑦 − 𝑦3)𝑒−𝑥𝑦    

𝜕𝑧

𝜕𝑦
= 2𝑦𝑒−𝑥𝑦 + (𝑥2 + 𝑦2)𝑒−𝑥𝑦 ∙ (−𝑥) = (2𝑦 − 𝑥𝑦2 − 𝑥3)𝑒−𝑥𝑦. 

 
Example 3: 

 The volume 𝑉 (in cubic centimetres (or 𝑐𝑚3)) of  1 mole (or 𝑚𝑜𝑙.) of  an ideal gas is given by 𝑉 =
82.06

𝑝
𝑇, where 𝑝 is the 

pressure (in atmospheres (or 𝑎𝑡𝑚)) and 𝑇 is the absolute temperature (in Kelvins (or 𝐾)).  

Find the rates of  change of  the volume of  1 𝑚𝑜𝑙. of  an ideal gas with respect to pressure (assuming temperature is kept 

constant) and with respect to temperature (assuming pressure is kept constant) when 𝑇 = 300𝐾 and 𝑝 = 5 𝑎𝑡𝑚. 
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Solutions 

𝑉 =
82.06

𝑝
𝑇  

𝜕𝑉

𝜕𝑇
=

82.06

𝑝
, 
𝜕𝑉

𝜕𝑇
|
𝑇=300,𝑝=5

=
82.06

5
= 16.412 (in 𝑐𝑚3/𝐾) 

𝜕𝑉

𝜕𝑝
=

−82.06

𝑝2
𝑇,  

𝜕𝑉

𝜕𝑝
|
𝑇=300,𝑝=5

=
−82.06

52
× 300 = −984.72 (in 𝑐𝑚3/𝑎𝑡𝑚) 

Negative sign means decreasing. 
Positive sign means increasing. 
 
Geometric Interpretation of  Partial Derivatives 

The value 𝑓𝑥(𝑎, 𝑏) =
𝜕𝑓

𝜕𝑥
|
(𝑥,𝑦)=(𝑎,𝑏)

= lim
ℎ→0

𝑓(𝑎+ℎ,𝑏)−𝑓(𝑎,𝑏)

ℎ
 is the slope of  the tangent at the point 𝑃(𝑎, 𝑏, 𝑐) to the 𝑥 − curve 

through 𝑃 on the surface 𝑧 = 𝑓(𝑥, 𝑦).  
Note: 𝑐 = 𝑓(𝑎, 𝑏). 

 
A vertical plane parallel to the  

𝑥𝑧 − plane intersects the surface  

𝑧 = 𝑓(𝑥, 𝑦) in an 𝑥 − curve. 

 
An 𝑥 − curve and its tangent at 𝑃 

 
Projection into the 𝑥𝑧 − plane of  

the 𝑥 − curve through 𝑃(𝑎, 𝑏, 𝑐) 
and its tangent line 

 
 

The value 𝑓𝑦(𝑎, 𝑏) =
𝜕𝑓

𝜕𝑦
|
(𝑥,𝑦)=(𝑎,𝑏)

= lim
𝑘→0

𝑓(𝑎,𝑏+𝑘)−𝑓(𝑎,𝑏)

𝑘
 is the slope of  the tangent at the point 𝑃(𝑎, 𝑏, 𝑐) to the  

𝑦 − curve through 𝑃 on the surface 𝑧 = 𝑓(𝑥, 𝑦).  
 

Note: 𝑐 = 𝑓(𝑎, 𝑏). 
 

 
A vertical plane parallel to the  

𝑦𝑧 − plane intersects the surface 𝑧 =
𝑓(𝑥, 𝑦) in a 𝑦 − curve. 

 
A 𝑦 − curve and its tangent at 𝑃 

 
Projection into the 𝑦𝑧 − plane of  

the 𝑦 − curve through 𝑃(𝑎, 𝑏, 𝑐) 
and its tangent line 

 
  



 
Course Code: MATH 2000 
Course Name: Engineering Mathematics I 

 
Lecture Notes for Chapter 12: Differentiation of  Functions of  Several Variables 

 

Page 15 

 

One Dimensional Case (The Line Tangent to a Curve) 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅 and 𝑆 is an open interval. Let 𝑓: 𝑆 → 𝑅 be a function on 𝑥 and 𝑎 ∈ 𝑆. Let 𝑦 = 𝑓(𝑥). 
Suppose 𝑓 is differentiable on 𝑆. 

An equation of  the tangent to the curve 𝑦 = 𝑓(𝑥) is 
𝑦−𝑓(𝑎)

𝑥−𝑎
= 𝑓′(𝑎). 

That is, 𝑦 = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎). 
 
Two Dimensional Case (The Plane Tangent to a Surface) 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅2 and 𝑆 is an open set. Let 𝑓: 𝑆 → 𝑅 be a function on (𝑥, 𝑦) and (𝑎, 𝑏) ∈ 𝑆. 

Let 𝑧 = 𝑓(𝑥, 𝑦). Suppose we can find 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 on 𝑆. 

Let us define 𝐶1: (𝑎 − 𝛿, 𝑎 + 𝛿) → 𝑅3 by 𝐶1(𝑡) = (𝑡, 𝑏, 𝑓(𝑡, 𝑏)). 

𝐶1 is a curve passing through (𝑎, 𝑏, 𝑓(𝑎, 𝑏)) on the surface 𝑧 = 𝑓(𝑥, 𝑦). 

𝑢⃗ = 𝐶1
′(𝑎) is a vector on the tangent plane to the surface 𝑧 = 𝑓(𝑥, 𝑦) at (𝑎, 𝑏, 𝑓(𝑎, 𝑏)). 

𝑢⃗ = 𝐶1
′(𝑎) = (1,0, 𝑓𝑥(𝑎, 𝑏)). 

Let us define 𝐶2: (𝑏 − 𝛿, 𝑏 + 𝛿) → 𝑅3 by 𝐶2(𝑡) = (𝑎, 𝑡, 𝑓(𝑎, 𝑡)). 

𝐶2 is a curve passing through (𝑎, 𝑏, 𝑓(𝑎, 𝑏)) on the surface 𝑧 = 𝑓(𝑥, 𝑦). 

𝑣 = 𝐶2
′(𝑏) is a vector on the tangent plane to the surface 𝑧 = 𝑓(𝑥, 𝑦) at (𝑎, 𝑏, 𝑓(𝑎, 𝑏)). 

𝑣 = 𝐶2
′(𝑏) = (0,1, 𝑓𝑦(𝑎, 𝑏)). 

Let 𝑛⃗ = 𝑢⃗ × 𝑣 . Then, 𝑛⃗  will be a normal vector of  required tangent plane. 

𝑛⃗ = 𝑢⃗ × 𝑣 =  |
𝑖 𝑗 𝑘⃗ 

1 0 𝑓𝑥(𝑎, 𝑏)

0 1 𝑓𝑦(𝑎, 𝑏)

| = −𝑓𝑥(𝑎, 𝑏)𝑖 −𝑓𝑦(𝑎, 𝑏)𝑗 + 𝑘⃗ = (−𝑓𝑥(𝑎, 𝑏), −𝑓𝑦(𝑎, 𝑏), 1) 

An equation of  the plane tangent to the surface 𝑧 = 𝑓(𝑥, 𝑦) at (𝑎, 𝑏, 𝑐) is 

((𝑥, 𝑦, 𝑧) − (𝑎, 𝑏, 𝑐)) ∙ (−𝑓𝑥(𝑎, 𝑏), −𝑓𝑦(𝑎, 𝑏), 1) = 0 

−𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎)−𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏) + 𝑧 − 𝑐 = 0 

𝑧 = 𝑐 + 𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎)+𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏) 
 
Remark: 

𝑧 = 𝑓(𝑥, 𝑦) 
𝜕𝑧

𝜕𝑥
|
(𝑥,𝑦)=(𝑎,𝑏)

= 𝑓𝑥(𝑎, 𝑏) and 
𝜕𝑧

𝜕𝑦
|
(𝑥,𝑦)=(𝑎,𝑏)

= 𝑓𝑦(𝑎, 𝑏) 

 

 
 
Summary: 

An equation of  the plane tangent to the surface 𝒛 = 𝒇(𝒙, 𝒚) at (𝒂, 𝒃, 𝒇(𝒂, 𝒃)) is 

𝒛 = 𝒇(𝒂, 𝒃) + 𝒇𝒙(𝒂, 𝒃)(𝒙 − 𝒂)+𝒇𝒚(𝒂, 𝒃)(𝒚 − 𝒃) 
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Example 1: 
Write an equation of  the plane tangent to the paraboloid  

𝑧 = 5 − 2𝑥2 − 𝑦2 at the point 𝑃(1,1,2). 

 
Solutions 

𝑧 = 𝑓(𝑥, 𝑦) = 5 − 2𝑥2 − 𝑦2 
𝜕𝑧

𝜕𝑥
= −4𝑥, 

𝜕𝑧

𝜕𝑥
|
(𝑥,𝑦)=(1,1)

= −4 

𝜕𝑧

𝜕𝑦
= −2𝑦, 

𝜕𝑧

𝜕𝑦
|
(𝑥,𝑦)=(1,1)

= −2 

A normal vector of  required tangent plane is (−𝑓𝑥(1,1), −𝑓𝑦(1,1), 1) = (4,2,1). 
An equation of  required tangent is 

((𝑥, 𝑦, 𝑧) − (1,1,2)) ∙ (4,2,1) = 0 

4(𝑥 − 1) + 2(𝑦 − 1) + 𝑧 − 2 = 0 

𝑧 = −4𝑥 − 2𝑦 + 8 
 
Example 2: 

Write an equation of  the plane tangent to the paraboloid  

𝑧 = 𝑥2 − 𝑦3 at the point 𝑃(2,1,3). 

 
Solutions 

𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦3 
𝜕𝑧

𝜕𝑥
= 2𝑥, 

𝜕𝑧

𝜕𝑥
|
(𝑥,𝑦)=(2,1)

= 4 

𝜕𝑧

𝜕𝑦
= −3𝑦2, 

𝜕𝑧

𝜕𝑦
|
(𝑥,𝑦)=(2,1)

= −3 

A normal vector of  required tangent plane is (−𝑓𝑥(2,1), −𝑓𝑦(2,1), 1) = (−4,3,1). 
An equation of  required tangent is 

((𝑥, 𝑦, 𝑧) − (2,1,3)) ∙ (−4,3,1) = 0 

−4(𝑥 − 2) + 3(𝑦 − 1) + 𝑧 − 3 = 0 

𝑧 = 4𝑥 − 3𝑦 − 2 
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# Partial Differentiation (Three Dimensional Case): 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅3 and 𝑆 is an open set. 

Let 𝑓: 𝑆 → 𝑅 be a function on (𝑥, 𝑦, 𝑧) and (𝑎, 𝑏, 𝑐) ∈ 𝑆. 
We define: 

(i) 
𝑓𝑥(𝑥, 𝑦, 𝑧) =

𝜕𝑓

𝜕𝑥
= lim

ℎ→0

𝑓(𝑥 + ℎ, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

ℎ
 

(ii) 
𝑓𝑥(𝑎, 𝑏, 𝑐) =

𝜕𝑓

𝜕𝑥
|
(𝑥,𝑦,𝑧)=(𝑎,𝑏,𝑐)

= lim
ℎ→0

𝑓(𝑎 + ℎ, 𝑏, 𝑐) − 𝑓(𝑎, 𝑏, 𝑐)

ℎ
 

(iii) 
𝑓𝑦(𝑥, 𝑦, 𝑧) =

𝜕𝑓

𝜕𝑦
= lim

𝑘→0

𝑓(𝑥, 𝑦 + 𝑘, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)

𝑘
 

(iv) 
𝑓𝑦(𝑎, 𝑏, 𝑐) =

𝜕𝑓

𝜕𝑦
|
(𝑥,𝑦,𝑧)=(𝑎,𝑏,𝑐)

= lim
𝑘→0

𝑓(𝑎, 𝑏 + 𝑘, 𝑐) − 𝑓(𝑎, 𝑏, 𝑐)

𝑘
 

(v) 
𝑓𝑧(𝑥, 𝑦, 𝑧) =

𝜕𝑓

𝜕𝑧
= lim

𝑙→0

𝑓(𝑥, 𝑦, 𝑧 + 𝑙) − 𝑓(𝑥, 𝑦, 𝑧)

𝑙
 

(vi) 
𝑓𝑧(𝑎, 𝑏, 𝑐) =

𝜕𝑓

𝜕𝑧
|
(𝑥,𝑦,𝑧)=(𝑎,𝑏,𝑐)

= lim
𝑙→0

𝑓(𝑎, 𝑏, 𝑐 + 𝑙) − 𝑓(𝑎, 𝑏, 𝑐)

𝑙
 

 
Rules for finding partial derivative: 

(i) To find 
𝜕𝑓

𝜕𝑥
, regard 𝑦 and 𝑧 as constants and differentiate with respect to 𝑥 

(ii) To find 
𝜕𝑓

𝜕𝑦
, regard 𝑥 and 𝑧 as constants and differentiate with respect to 𝑦 

(iii) To find 
𝜕𝑓

𝜕𝑧
, regard 𝑥 and 𝑦 as constants and differentiate with respect to 𝑧 

 
Example: 

Compute 
𝜕𝑓

𝜕𝑥
, 
𝜕𝑓

𝜕𝑦
 and 

𝜕𝑓

𝜕𝑧
 of  the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2𝑦3𝑧4. 

 
Solutions 

𝜕𝑓

𝜕𝑥
= 2𝑥𝑦3𝑧4, 

𝜕𝑓

𝜕𝑦
= 3𝑥2𝑦2𝑧4 and 

𝜕𝑓

𝜕𝑧
= 4𝑥2𝑦3𝑧3 

 
 

# Partial Differentiation (𝒏 −Dimensional Case): 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. 

Let 𝑓: 𝑆 → 𝑅 be a function on 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and 𝐴 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑛) ∈ 𝑆. 

We define 𝑒𝑖 = {
𝑥𝑖

𝑥𝑖 + ℎ
  
𝑖𝑓
𝑖𝑓
  
𝑖 ≠ 𝑗
𝑖 = 𝑗

 and  

𝑓𝑥𝑗(𝑋) = 𝑓𝑥𝑗(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =
𝜕𝑓

𝜕𝑥𝑗
= lim

ℎ→0

𝑓(𝑒1,𝑒2,⋯,𝑒𝑛)−𝑓(𝑥1,𝑥2,⋯,𝑥𝑛)

ℎ
.  

We define 𝜃𝑖 = {
𝑎𝑖

𝑎𝑖 + ℎ
  
𝑖𝑓
𝑖𝑓
  
𝑖 ≠ 𝑗
𝑖 = 𝑗

 and  

𝑓𝑥𝑗(𝐴) = 𝑓𝑥𝑗(𝑎1, 𝑎2, ⋯ , 𝑎𝑛) =
𝜕𝑓

𝜕𝑥𝑗
|
𝑋=𝐴

= lim
ℎ→0

𝑓(𝜃1,𝜃2,⋯,𝜃𝑛)−𝑓(𝑎1,𝑎2,⋯,𝑎𝑛)

ℎ
. 

 
Rule for finding partial derivative: 

To find 
𝜕𝑓

𝜕𝑥𝑗
, regard 𝑥𝑖 (𝑖 ≠ 𝑗) as constants and differentiate with respect to 𝑥𝑗 

 
  



 
Course Code: MATH 2000 
Course Name: Engineering Mathematics I 

 
Lecture Notes for Chapter 12: Differentiation of  Functions of  Several Variables 

 

Page 18 

 

Example 1: 

 Find the four partial derivatives of  the function 𝑔(𝑥, 𝑦, 𝑢, 𝑣) = 𝑒𝑢𝑥𝑠𝑖𝑛𝑣𝑦. 
 
Solutions 

 𝑔𝑥 = 𝑢𝑒
𝑢𝑥𝑠𝑖𝑛𝑣𝑦, 𝑔𝑢 = 𝑥𝑒

𝑢𝑥𝑠𝑖𝑛𝑣𝑦, 𝑔𝑦 = 𝑣𝑒
𝑢𝑥𝑐𝑜𝑠𝑣𝑦, 𝑔𝑣 = 𝑦𝑒

𝑢𝑥𝑐𝑜𝑠𝑣𝑦. 

 
Example 2: 

Find the four partial derivatives of  the function 𝑔(𝑥, 𝑦, 𝑢, 𝑣) = 𝑥2𝑦3 − 𝑢4𝑣5. 
 
Solutions 

 𝑔𝑥 = 2𝑥𝑦
3, 𝑔𝑦 = 3𝑥2𝑦2, 𝑔𝑢 = −4𝑢

3𝑣5, 𝑔𝑣 = −5𝑢4𝑣4. 

 
# Higher Order Partial Derivatives 
We define: 

(i) 
𝑓𝑥𝑥 = (𝑓𝑥)𝑥 =

𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑥2
 

(ii) 
𝑓𝑥𝑦 = (𝑓𝑥)𝑦 =

𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑦𝜕𝑥
 

(iii) 
𝑓𝑦𝑥 = (𝑓𝑦)𝑥 =

𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑥𝜕𝑦
 

(iv) 
𝑓𝑦𝑦 = (𝑓𝑦)𝑦 =

𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑦2
 

(v) 
𝑓𝑥𝑥𝑦 = (𝑓𝑥𝑥)𝑦 =

𝜕

𝜕𝑦
(
𝜕2𝑓

𝜕𝑥2
) =

𝜕3𝑓

𝜕𝑦𝜕𝑥2
 

(vi) 
𝑓𝑥𝑦𝑥 = (𝑓𝑥𝑦)𝑥 =

𝜕

𝜕𝑥
(
𝜕2𝑓

𝜕𝑦𝜕𝑥
) =

𝜕3𝑓

𝜕𝑥𝜕𝑦𝜕𝑥
 

(vii) 
𝑓𝑥𝑦𝑦 = (𝑓𝑥𝑦)𝑦 =

𝜕

𝜕𝑦
(
𝜕2𝑓

𝜕𝑦𝜕𝑥
) =

𝜕3𝑓

𝜕𝑦2𝜕𝑥
 

and others. 
  
Example: 

 Show that the partial derivatives of  third and fourth orders of  the function 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 2𝑥𝑦2 − 𝑦3 are constants. 
 
Solutions 

𝑓𝑥 = 2𝑥 + 2𝑦2; 𝑓𝑦 = 4𝑥𝑦 − 3𝑦
2; 

𝑓𝑥𝑥 = 2; 𝑓𝑥𝑦 = 4𝑦; 𝑓𝑦𝑥 = 4𝑦; 𝑓𝑦𝑦 = 4𝑥 − 6𝑦; 

𝑓𝑥𝑥𝑥 = 0; 𝑓𝑥𝑥𝑦 = 0; 𝑓𝑥𝑦𝑥 = 0; 𝑓𝑥𝑦𝑦 = 4; 𝑓𝑦𝑥𝑥 = 0; 𝑓𝑦𝑥𝑦 = 4; 𝑓𝑦𝑦𝑥 = 4; 𝑓𝑦𝑦𝑦 = −6 

Partial derivatives of  fourth orders are all zeros. 
So, partial derivatives of  third and fourth orders are constants. 
 
Remark 

In general, 𝑓𝑥𝑦 and 𝑓𝑦𝑥 may not be the same. 

We can show that if  𝑓𝑥𝑦 and 𝑓𝑦𝑥 are continuous on an open set, then 𝑓𝑥𝑦 = 𝑓𝑦𝑥. 

 
 
 
  



 
Course Code: MATH 2000 
Course Name: Engineering Mathematics I 

 
Lecture Notes for Chapter 12: Differentiation of  Functions of  Several Variables 

 

Page 19 

 

# Multivariable Optimization Problem 
# Global Minima and Global Maxima 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛. Let 𝑓: 𝑆 → 𝑅 be a function on 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and is defined on 𝑆. Let 𝑚,𝑀 ∈ 𝑅. 

We say 𝑓 attains the global minimum value (or the absolute minimum value) 𝑚 on 𝑆 if: 
(i) 𝑓(𝑋) ≥ 𝑚 for any 𝑋 ∈ 𝑆 AND 
(ii) we can find  𝑈 ∈ 𝑆 such that 𝑓(𝑈) = 𝑚 

We say 𝑓 attains the global maximum value (or the absolute maximum value) 𝑀 on 𝑆 if: 
(i) 𝑓(𝑋) ≤ 𝑀 for any 𝑋 ∈ 𝑆 AND 
(ii) we can find  𝑉 ∈ 𝑆 such that 𝑓(𝑉) = 𝑀 

Remark: We say (𝑈, 𝑓(𝑈)) a global minima and (𝑉, 𝑓(𝑉)) a global maxima. 

 
Theorem 1: 

Let 𝑚1, 𝑚2 ∈ 𝑅. Suppose 𝑓(𝑋) ≥ 𝑚1 for any 𝑋 ∈ 𝑆 AND 𝑓(𝑋) ≥ 𝑚2 for any 𝑋 ∈ 𝑆. 

Suppose we can find  𝑈1, 𝑈2 ∈ 𝑆 such that 𝑓(𝑈1) = 𝑚1 and 𝑓(𝑈2) = 𝑚2. 

Then, 𝑚1 = 𝑚2. 
Proof:  

𝑚2 = 𝑓(𝑈2) ≥ 𝑚1. Also, 𝑚1 = 𝑓(𝑈1) ≥ 𝑚2. So, 𝑚1 = 𝑚2. 
 
Theorem 2: 

Let 𝑀1, 𝑀2 ∈ 𝑅. Suppose 𝑓(𝑋) ≤ 𝑀1 for any 𝑋 ∈ 𝑆 AND 𝑓(𝑋) ≤ 𝑀2 for any 𝑋 ∈ 𝑆. 

Suppose we can find  𝑉1, 𝑉2 ∈ 𝑆 such that 𝑓(𝑉1) = 𝑀1 and 𝑓(𝑉2) = 𝑀2. 

Then, 𝑀1 = 𝑀2. 
Proof: Omitted (As Exercise) 
 
Theorem: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛. Suppose 𝑆 is closed and bounded. 

Let 𝑓: 𝑆 → 𝑅 be a function on 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and is defined on 𝑆. 

Suppose 𝑓 is continuous on 𝑺. 

Then, 𝑓 must attain the global minimum value and the global maximum value on 𝑆. 
Proof: Will be discussed on course “Real Analysis” 
 
Definition 

(𝑊, 𝑓(𝑊)) is called a global extrema if  it is a global maxima or it is a global minima 

 
# Local Minima and Local Maxima 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛. Let 𝑓: 𝑆 → 𝑅 be a function on 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and is defined on 𝑆. Let 𝑈, 𝑉 ∈ 𝑆. 
 

We say (𝑈, 𝑓(𝑈)) a local minima (or a relative minima) if  we can find 𝑟 ∈ 𝑅 with 𝑟 > 0 such that 𝐵(𝑈, 𝑟) ⊂ 𝑆 and 𝑓(𝑋) ≥ 𝑓(𝑈) 

for any 𝑋 ∈ 𝐵(𝑈, 𝑟). In this case, 𝑓(𝑈) is called a local minimum value (or a relative minimum value). 
 

We say (𝑉, 𝑓(𝑉)) a local maxima (or a relative maxima) if  we can find 𝑟 ∈ 𝑅 with 𝑟 > 0 such that 𝐵(𝑉, 𝑟) ⊂ 𝑆 and 𝑓(𝑋) ≤ 𝑓(𝑉) 

for any 𝑋 ∈ 𝐵(𝑉, 𝑟). In this case, 𝑓(𝑉) is called a local maximum value (or a relative maximum value). 
 
Theorem 1: 

Let 𝑈 ∈ 𝑆 and 𝑈 is an interior point of  𝑆. 

(𝑈, 𝑓(𝑈)) is a global mínima ⇒ (𝑈, 𝑓(𝑈)) is a local minima 

 
  



 
Course Code: MATH 2000 
Course Name: Engineering Mathematics I 

 
Lecture Notes for Chapter 12: Differentiation of  Functions of  Several Variables 

 

Page 20 

 

Theorem 2: 

Let 𝑉 ∈ 𝑆 and 𝑉 is an interior point of  𝑆. 

(𝑉, 𝑓(𝑉)) is a global maxima ⟹ (𝑉, 𝑓(𝑉)) is a local maxima 

 
Remark: The converse of  above theorems may not be true. 
 
Diagram showing the relationship between global maxima and local maxima / between global minima and local minima (Note: the 
choice of  the region / boundary is important.)  

 𝑓(𝑥, 𝑦) = 3(𝑥 − 1)2𝑒−𝑥
2−(𝑦+1)2 + (−2𝑥 + 10𝑥3 + 10𝑦5)𝑒−𝑥

2−𝑦2 −
1

3
𝑒−(𝑥+1)

2−𝑦2  for  

(𝑥, 𝑦) ∈ {(𝑎, 𝑏) ∈ 𝑅2: −3 ≤ 𝑎 ≤ 3,−3 ≤ 𝑏 ≤ 3}. 
 

A local maximum value MAY not be the global maximum value. 
 
A local minimum value MAY not be the global minimum value. 

 
 
Definition 

(𝑊, 𝑓(𝑊)) is called a local extrema if  it is a local maxima or it is a local minima 

 
Theorem 1 (Necessary Conditions for Local Minima) 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛. Let 𝑓: 𝑆 → 𝑅 be a function on 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and is defined on 𝑆. Let 𝑈 ∈ 𝑆 and 𝑟 ∈ 𝑅  

with 𝑟 > 0. 

Suppose 𝐵(𝑈, 𝑟) ⊂ 𝑆 and 𝑓(𝑋) ≥ 𝑓(𝑈) for any 𝑋 ∈ 𝐵(𝑈, 𝑟). 

That is, (𝑈, 𝑓(𝑈)) is a local minima. 

Suppose we can find 𝑓𝑥𝑗(𝑋) for any 𝑋 ∈ 𝐵(𝑈, 𝑟) and 𝑗 = 1,2,⋯ , 𝑛. 

Then, 𝑓𝑥𝑗(𝑈) = 0 for 𝑗 = 1,2,⋯ , 𝑛 

 
Theorem 2 (Necessary Conditions for Local Maxima) 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛. Let 𝑓: 𝑆 → 𝑅 be a function on 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and is defined on 𝑆. Let 𝑉 ∈ 𝑆 and 𝑟 ∈ 𝑅  

with 𝑟 > 0. 

Suppose 𝐵(𝑉, 𝑟) ⊂ 𝑆 and 𝑓(𝑋) ≤ 𝑓(𝑉) for any 𝑋 ∈ 𝐵(𝑉, 𝑟). 

That is, (𝑉, 𝑓(𝑉)) is a local minima. 

Suppose we can find 𝑓𝑥𝑗(𝑋) for any 𝑋 ∈ 𝐵(𝑉, 𝑟) and 𝑗 = 1,2,⋯ , 𝑛. 

Then, 𝑓𝑥𝑗(𝑉) = 0 for 𝑗 = 1,2,⋯ , 𝑛 

 
Example 1: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. 

Show that (0,0) is a local minima and is the global minima on  

𝐷 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥2 + 𝑦2 ≤ 1}. 
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Proof: 

𝑓(0,0) = 0 ≤ 𝑥2 + 𝑦2 = 𝑓(𝑥, 𝑦) for any (𝑥, 𝑦) ∈ 𝐵(𝑂, 1), so it is a local minima. 

𝑓(0,0) = 0 ≤ 𝑥2 + 𝑦2 = 𝑓(𝑥, 𝑦) for any (𝑥, 𝑦) ∈ 𝐷, so it is a global minima on 𝐷. 

As 𝑥2 + 𝑦2 = 0⟺ (𝑥, 𝑦) = (0,0), it is the global minima on 𝐷. 
 
Exercise 1: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 1 − 𝑥2 − 𝑦2. 

Show that (0,0) is a local maxima and is the global maxima on  

𝐷 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥2 + 𝑦2 ≤ 1}. 

 
Proof: Omitted (As Exercise) 
 
Exercise 2: 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑦2 − 𝑥2. 

Show that (0,0) is neither a local maxima nor a local minima. 
This point is called a saddle point. 

 
Proof: Omitted (As Exercise) 
 
Example 2: 

Find all points on the surface 𝑧 =
3

4
𝑦2 +

1

24
𝑦3 −

1

32
𝑦4 − 𝑥2 at which the tangent 

plane is horizontal. 

 
Solutions 

𝑧𝑥 = −2𝑥 

Put 𝑧𝑥 = 0, we have 𝑥 = 0. 

𝑧𝑦 =
3

2
𝑦 +

1

8
𝑦2 −

1

8
𝑦3 =

−1

8
𝑦(𝑦2 − 𝑦 − 12) =

−1

8
𝑦(𝑦 − 4)(𝑦 + 3) 

Put 𝑧𝑦 = 0, we have 𝑦 = 0 or 4 or −3. 

Required points are (0,0,0), (0,4,
20

3
) and (0, −3,

99

32
) 
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Strategy for finding global extrema: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 

Usual Case: A continuous function 𝑓 on closed and bounded region 𝑆 in 𝑅𝑛 AND 𝑓𝑥𝑗(𝑋) exists for all 𝑋 ∈ 𝑆\𝜕𝑆 

(i) Find 𝑀𝜕𝑆 = 𝑚𝑎𝑥{𝑓(𝑋): 𝑋 ∈ 𝜕𝑆} and 𝑚𝜕𝑆 = 𝑚𝑖𝑛{𝑓(𝑋): 𝑋 ∈ 𝜕𝑆} 
(ii) Consider 𝑇 = {  𝑋 ∈ 𝑆\𝜕𝑆: 𝑓𝑥𝑗(𝑋) = 0 for 𝑗 = 1,2,⋯ , 𝑛 } 

and find 𝑀𝑆\𝜕𝑆 = 𝑚𝑎𝑥{𝑓(𝑋): 𝑋 ∈ 𝑇} and 𝑚𝑆\𝜕𝑆 = 𝑚𝑖𝑛{𝑓(𝑋): 𝑋 ∈ 𝑇} 
(iii) The global maximum value is 𝑚𝑎𝑥{𝑀𝜕𝑆, 𝑀𝑆\𝜕𝑆} 

The global minimum value is 𝑚𝑖𝑛{𝑚𝜕𝑆, 𝑚𝑆\𝜕𝑆} 
 
Example 1: 

Let 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2 on the region 𝑅 consisting of  the points on and 

within the circle 𝑥2 + 𝑦2 = 1 in the 𝑥𝑦 − plane. Find the global maximum 

value and the global minimum value of  𝑓 on 𝑅. 

 
Solutions 

(i) When 𝑥2 + 𝑦2 = 1, 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2 = 1. 

So, 𝑀𝜕𝑅 = 𝑚𝑎𝑥{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅} = 1 and 𝑚𝜕𝑅 = 𝑚𝑖𝑛{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅} = 1 
(ii) 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2 

For 𝑥2 + 𝑦2 > 0, 

𝑓𝑥(𝑥, 𝑦) =
1

2√𝑥2 + 𝑦2
∙ (2𝑥) =

𝑥

√𝑥2 + 𝑦2
 

𝑓𝑦(𝑥, 𝑦) =
𝑦

√𝑥2 + 𝑦2
 

𝑓𝑥(𝑥, 𝑦) = 0⟺ 𝑥 = 0 

𝑓𝑦(𝑥, 𝑦) = 0⟺ 𝑦 = 0 

But (0,0) doesn’t satisfy 𝑥2 + 𝑦2 > 0. 

Thus, {  𝑋 ∈ {(𝑥, 𝑦) ∈ 𝑅2: 0 < 𝑥2 + 𝑦2 < 1}: 𝑓𝑥𝑗(𝑋) = 0 for 𝑗 = 1,2,⋯ , 𝑛 } = 𝜙 

𝑓(0,0) = √02 + 02 = 0 
(iii) The global maximum value is 𝑚𝑎𝑥{1,0} = 1 

The global minimum value is 𝑚𝑖𝑛{1,0} = 0 
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Example 2: 
Find the maximum and minimum values attained by the function  

𝑓(𝑥, 𝑦) = 𝑥𝑦 − 𝑥 − 𝑦 + 3 at points of  the triangular region 𝑅 in the  

𝑥𝑦 − plane with vertices at (0,0), (2,0) and (0,4). 

 
 
Solutions 

(i) When 𝑥 = 0, 𝑓(0, 𝑦) = −𝑦 + 3 

𝑚𝑎𝑥{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅 𝑎𝑛𝑑  𝑥 = 0 } = 0 + 3 = 3 

𝑚𝑖𝑛{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅 𝑎𝑛𝑑  𝑥 = 0 } = −4 + 3 = −1 

When 𝑦 = 0, 𝑓(𝑥, 0) = −𝑥 + 3 

𝑚𝑎𝑥{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅 𝑎𝑛𝑑  𝑦 = 0 } = 0 + 3 = 3 

𝑚𝑖𝑛{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅 𝑎𝑛𝑑  𝑦 = 0 } = −2 + 3 = 1 

When 2𝑥 + 𝑦 = 4,  

𝑓(𝑥, 𝑦) = 𝑥(4 − 2𝑥) − 𝑥 − (4 − 2𝑥) + 3 

= −2𝑥2 + 5𝑥 − 1 = −2 (𝑥2 −
5

2
𝑥) − 1 

= −2(𝑥 −
5

4
)
2

+
17

8
 

When 𝑥 = 0, 𝑦 = 4,  𝑓(0,4) = −1. 

When 𝑥 = 2, 𝑦 = 0,  𝑓(2,0) = 1. 

𝑚𝑎𝑥{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅 𝑎𝑛𝑑  2𝑥 + 𝑦 = 4 } = 𝑚𝑎𝑥 {−1,1,
17

8
} =

17

8
 

𝑚𝑖𝑛{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅 𝑎𝑛𝑑  2𝑥 + 𝑦 = 4 } = 𝑚𝑖𝑛 {−1,1,
17

8
} = −1 

So, 𝑀𝜕𝑅 = 𝑚𝑎𝑥{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅} = 𝑚𝑎𝑥 {3,3,
17

8
} = 3  

and 𝑚𝜕𝑅 = 𝑚𝑖𝑛{𝑓(𝑋): 𝑋 ∈ 𝜕𝑅} = 𝑚𝑖𝑛{−1,1, −1} = −1 
(ii) 𝑓(𝑥, 𝑦) = 𝑥𝑦 − 𝑥 − 𝑦 + 3 

𝑓𝑥(𝑥, 𝑦) = 𝑦 − 1 

𝑓𝑦(𝑥, 𝑦) = 𝑥 − 1 

𝑓𝑥(𝑥, 𝑦) = 0⟺ 𝑥 = 1 

𝑓𝑦(𝑥, 𝑦) = 0⟺ 𝑦 = 1 

(1,1) ∈ 𝑅\𝜕𝑅 

𝑓(1,1) = 1 − 1 − 1 + 3 = 2 
(iii) The global maximum value is 𝑚𝑎𝑥{3,2} = 3 

The global minimum value is 𝑚𝑖𝑛{−1,2} = −1 
 
  



 
Course Code: MATH 2000 
Course Name: Engineering Mathematics I 

 
Lecture Notes for Chapter 12: Differentiation of  Functions of  Several Variables 

 

Page 24 

 

Example 3: 
Find the highest point on the surface  

𝑧 = 𝑓(𝑥, 𝑦) =
8

3
𝑥3 + 4𝑦3 − 𝑥4 − 𝑦4. 

  

 
Solutions 

𝑓𝑥(𝑥, 𝑦) = 8𝑥2 − 4𝑥3 = 4𝑥2(2 − 𝑥) 
𝑓𝑥(𝑥, 𝑦) = 0⟺ 4𝑥2(2 − 𝑥) = 0 ⟺ 𝑥 = 0 or 2 

𝑓𝑦(𝑥, 𝑦) = 12𝑦
2 − 4𝑦3 = 4𝑦2(3 − 𝑦) 

𝑓𝑦(𝑥, 𝑦) = 0⟺ 4𝑦2(3 − 𝑦) = 0 ⟺ 𝑦 = 0 or 3 

For 𝑓𝑥(𝑥, 𝑦) = 0 and 𝑓𝑦(𝑥, 𝑦) = 0, we have only 4 points (0,0), (0,3), (2,0) and (2,3) for consideration. 

𝑓(0,0) = 0, 𝑓(0,3) = 27, 𝑓(2,0) =
16

3
, 𝑓(2,3) =

97

3
 

When 𝑥 → +∞, 𝑓(𝑥, 𝑦) → −∞ as it is dominated by −𝑥4. 

When 𝑥 → −∞, 𝑓(𝑥, 𝑦) → −∞ as it is dominated by −𝑥4. 

When 𝑦 → +∞, 𝑓(𝑥, 𝑦) → −∞ as it is dominated by −𝑦4. 

When 𝑦 → −∞, 𝑓(𝑥, 𝑦) → −∞ as it is dominated by −𝑦4. 

Thus, the highest point is (2,3,
97

3
). 
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Example 4: 

Find the minimum cost of  a rectangular box with volume 48 𝑓𝑡3 if  the front 

and back cost $1/𝑓𝑡2, the top and bottom cost $2/𝑓𝑡2, and the two ends 

cost $3/𝑓𝑡2. This box is shown in the figure. 

 
Solutions 

Let the length be 𝑥 ft., the width be 𝑦 ft., the height be 𝑧 ft. and the cost be $𝐶(𝑥, 𝑦). 

Then, 𝐶(𝑥, 𝑦) = 4𝑥𝑦 +
96

𝑦
+

288

𝑥
 (Assumed both 𝑥 > 0 and 𝑦 > 0). 

Note: 

The cost is  $2 ∙ (2𝑥𝑦 + 𝑥𝑧 + 3𝑦𝑧) = $(4𝑥𝑦 + 2𝑥𝑧 + 6𝑦𝑧) and 𝑥𝑦𝑧 = 48. 
 

𝐶𝑥(𝑥, 𝑦) = 4𝑦 − 288𝑥
−2 

𝐶𝑥(𝑥, 𝑦) = 0⟺ 4𝑦 − 288𝑥−2 = 0 ⟺
288

𝑥
= 4𝑥𝑦 

𝐶𝑦(𝑥, 𝑦) = 4𝑥 − 96𝑦
−2 

𝐶𝑦(𝑥, 𝑦) = 0⟺ 4𝑥 − 96𝑦−2 = 0 ⟺
96

𝑦
= 4𝑥𝑦 

For both 𝐶𝑥(𝑥, 𝑦) = 0 and 𝐶𝑥(𝑥, 𝑦) = 0, 
288

𝑥
= 4𝑥𝑦 =

96

𝑦
. 

So, 𝑦 =
1

3
𝑥 and 𝑥3 = 216. Thus 𝑥 = 6 and 𝑦 = 2 (so, 𝑧 = 4) 

𝐶(𝑥, 𝑦) = 4𝑥𝑦 +
96

𝑦
+
288

𝑥
= 12𝑥𝑦 = 144 

The minimum cost is $144 when the dimensions are 6 𝑓𝑡.× 2 𝑓𝑡.× 4 𝑓𝑡. 
Note: We don’t need to consider the boundary. 

Choose 𝛿,𝑀 ∈ 𝑅 with 𝛿 > 0 and 𝑀 > 0.  

Let 𝑇 = {(𝑥, 𝑦) ∈ 𝑅2: 𝛿 < 𝑥 < 𝑀 𝑎𝑛𝑑 𝛿 < 𝑦 < 𝑀}. 
We can choose 𝛿 and 𝑀 so that on the boundaries,  
96

𝑦
> 1000 on the side nearest to 𝑥 − axis 

288

𝑥
> 1000 on the side nearest to 𝑦 − axis 

4𝑥𝑦 > 1000 on the remaining two sides 

So 𝐶(𝑥, 𝑦) > 1000 on 𝑇 
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Example 5: 

 Determine whether the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑦𝑧 − 𝑥𝑧 has any local extrema. 
 
Solutions 

𝑓𝑥(𝑥, 𝑦, 𝑧) = 𝑦 − 𝑧 

𝑓𝑥(𝑥, 𝑦, 𝑧) = 0⟺ 𝑦 − 𝑧 = 0⟺ 𝑦 = 𝑧 

𝑓𝑦(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑧 

𝑓𝑦(𝑥, 𝑦, 𝑧) = 0⟺ 𝑥 + 𝑧 = 0⟺ 𝑥 = −𝑧 

𝑓𝑧(𝑥, 𝑦, 𝑧) = 𝑦 − 𝑥 

𝑓𝑧(𝑥, 𝑦, 𝑧) = 0⟺ 𝑦 − 𝑥 = 0⟺ 𝑥 = 𝑦 

Put 𝑓𝑥(𝑥, 𝑦, 𝑧) = 0 and 𝑓𝑦(𝑥, 𝑦, 𝑧) = 0 and 𝑓𝑧(𝑥, 𝑦, 𝑧) = 0, we have  

𝑥 = 𝑦 and 𝑥 = −𝑧 and 𝑦 = 𝑧. 

Thus, 𝑥 = 𝑦 = 𝑧 = 0. 

𝑓(0,0,0) = 0 

𝑓(𝑡, 𝑡, 𝑡) = 𝑡2 ≥ 0 = 𝑓(0,0,0) for any 𝑡 ∈ 𝑅. 

𝑓(−𝑡, 𝑡, −𝑡) = −3𝑡2 ≤ 0 = 𝑓(0,0,0) for any 𝑡 ∈ 𝑅. 

So, (0,0,0) is neither a local maxima nor a local minima. 

So, 𝑓 has no local extrema on 𝑅3. 
 
Note: 

𝑓(𝑡, 𝑡, 𝑡) = 𝑡2 → +∞ as 𝑡 → +∞ 

𝑓(𝑡, 𝑡, 𝑡) = 𝑡2 → +∞ as 𝑡 → −∞ 

𝑓(−𝑡, 𝑡, −𝑡) = −3𝑡2 → −∞ as 𝑡 → +∞ 

𝑓(−𝑡, 𝑡, −𝑡) = −3𝑡2 → −∞ as 𝑡 → −∞ 

So, 𝑓 has no global extrema on 𝑅3. 
 
 
 
 
 
 
  



 
Course Code: MATH 2000 
Course Name: Engineering Mathematics I 

 
Lecture Notes for Chapter 12: Differentiation of  Functions of  Several Variables 

 

Page 27 

 

# Increments and Linear Approximation 
Recall: 
One Dimensional Case: 

Let 𝑓: 𝑅 → 𝑅 be a function on 𝑥.  

Suppose 𝑓 is differentiable at 𝑎. 

So, 𝑓(𝑎 + ℎ) − 𝑓(𝑎) ≈ 𝑓′(𝑎) ∙ ℎ when ℎ ≈ 0. 
 
Two Dimensional Case: 

Let 𝑓: 𝑅2 → 𝑅 be a function on (𝑥, 𝑦).  
Suppose 𝑓𝑥 and 𝑓𝑦 are continuous at points near to (𝑎, 𝑏). Let 𝑧 = 𝑓(𝑥, 𝑦). 
 

𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏 + 𝑘) ≈ 𝑓𝑥(𝑎, 𝑏 + 𝑘) ∙ ℎ when ℎ ≈ 0 

𝑓(𝑎, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏) ≈ 𝑓𝑦(𝑎, 𝑏) ∙ 𝑘 when 𝑘 ≈ 0 

 

So, 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏) ≈ 𝑓𝑥(𝑎, 𝑏 + 𝑘) ∙ ℎ + 𝑓𝑦(𝑎, 𝑏) ∙ 𝑘 when ℎ ≈ 0 and 𝑘 ≈ 0 

 

Assume 𝑓𝑥 is continuous near to (𝑎, 𝑏). Then, 𝑓𝑥(𝑎, 𝑏 + 𝑘) ≈ 𝑓𝑥(𝑎, 𝑏) when 𝑘 ≈ 0. 
 

Thus, when ℎ ≈ 0 and 𝑘 ≈ 0, we have 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) 
≈ 𝑓(𝑎, 𝑏) + 𝑓𝑥(𝑎, 𝑏) ∙ ℎ + 𝑓𝑦(𝑎, 𝑏) ∙ 𝑘 

= 𝑓(𝑎, 𝑏) + (𝑓𝑥(𝑎, 𝑏), 𝑓𝑦(𝑎, 𝑏)) ∙ (ℎ, 𝑘) 

 

Note: ∆𝑧 = 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏); 𝑑𝑥 = ∆𝑥 = ℎ; 𝑑𝑦 = ∆𝑦 = 𝑘 
 

We define 𝑑𝑧 = 𝑓𝑥(𝑎, 𝑏) ∙ 𝑑𝑥 + 𝑓𝑦(𝑎, 𝑏) ∙ 𝑑𝑦. 

 

Then, 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏) = ∆𝑧 ≈ 𝑑𝑧 = 𝑓𝑥(𝑎, 𝑏) ∙ ℎ + 𝑓𝑦(𝑎, 𝑏) ∙ 𝑘 

 

For 𝑧 = 𝑓(𝑥, 𝑦), at general point (𝑥, 𝑦), 𝑑𝑧 = 𝑓𝑥(𝑥, 𝑦) ∙ 𝑑𝑥 + 𝑓𝑦(𝑥, 𝑦) ∙ 𝑑𝑦  

 
Example 1: 

 Find the differential 𝑑𝑓 of  the function 𝑓(𝑥, 𝑦) = 𝑥2 + 3𝑥𝑦 − 2𝑦2. Then, compare 𝑑𝑓 and the actual increment ∆𝑓 when 

(𝑥, 𝑦) changes from 𝑃(3,5) to 𝑄(3.2,4.9). 
 
Solutions 

𝑓𝑥(𝑥, 𝑦) = 2𝑥 + 3𝑦; 𝑓𝑦(𝑥, 𝑦) = 3𝑥 − 4𝑦 

𝑑𝑓 = 𝑓𝑥(𝑥, 𝑦) ∙ 𝑑𝑥 + 𝑓𝑦(𝑥, 𝑦) ∙ 𝑑𝑦 = (2𝑥 + 3𝑦)𝑑𝑥 + (3𝑥 − 4𝑦)𝑑𝑦 

 

𝑓(3,5) = 4; 𝑓(3.2,4.9) = 9.26; 

𝑓𝑥(3,5) = 21; 𝑓𝑦(3,5) = −11;  

𝑑𝑥 = ∆𝑥 = 3.2 − 3 = 0.2; 𝑑𝑦 = ∆𝑦 = 4.9 − 5 = −0.1. 

For (𝑥, 𝑦) changes from 𝑃(3,5) to 𝑄(3.2,4.9),  
∆𝑓 = 9.26 − 4 = 5.26 

𝑑𝑓 = 21 × 0.2 + (−11) × (−0.1) = 5.3 

𝑑𝑓 ≈ ∆𝑓 
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Example 2: 

 Use linear approximation to estimate √2 ∙ (2.02)3 + (2.97)2. 
 
Solutions 

Let 𝑓 be a real valued function on (𝑥, 𝑦) and is defined by 𝑓(𝑥, 𝑦) = √2𝑥3 + 𝑦2. 

(Note: We may assume 𝑥 ≥ 0 so that it is well defined.) 

Let 𝑧 = 𝑓(𝑥, 𝑦). 

𝑓(2,3) = √2 × 8 + 9 = 5; 

𝑓𝑥(𝑥, 𝑦) =
1

2√2𝑥3+𝑦2
∙ 6𝑥2 =

3𝑥2

√2𝑥3+𝑦2
; 𝑓𝑥(2,3) =

12

5
 

𝑓𝑦(𝑥, 𝑦) =
1

2√2𝑥3+𝑦2
∙ 2𝑦 =

𝑦

√2𝑥3+𝑦2
; 𝑓𝑦(2,3) =

3

5
 

𝑑𝑥 = ∆𝑥 = 2.02 − 2 = 0.02; 𝑑𝑦 = ∆𝑦 = 2.97 − 3 = −0.03 

𝑑𝑧 =
12

5
× 0.02 +

3

5
× (−0.03) = 0.03 

√2 ∙ (2.02)3 + (2.97)2 ≈ 5 + 0.03 = 5.03 
 

Note: √2 ∙ (2.02)3 + (2.97)2 ≈ 5.0305 (by calculator) 
 
Example 3: 

 The volume 𝑉 (in cubic centimetres (or 𝑐𝑚3)) of  1 mole (or 𝑚𝑜𝑙.) of  an ideal gas is given by 𝑉 =
82.06

𝑝
𝑇, where 𝑝 is the 

pressure (in atmospheres (or 𝑎𝑡𝑚)) and 𝑇 is the absolute temperature (in Kelvins (or 𝐾)).  

Approximate the change in 𝑉 when 𝑝 is increased from 5 𝑎𝑡𝑚 to 5.2 𝑎𝑡𝑚 and 𝑇 is increased from 300𝐾 to 310𝐾. 
 
Solutions 

𝑉 =
82.06

𝑝
𝑇; When 𝑇 = 300 and 𝑝 = 5, 𝑉 =

82.06

5
× 300 = 4923.6 (in 𝑐𝑚3) 

𝜕𝑉

𝜕𝑇
=

82.06

𝑝
, 
𝜕𝑉

𝜕𝑇
|
𝑇=300,𝑝=5

=
82.06

5
= 16.412 (in 𝑐𝑚3/𝐾) 

𝜕𝑉

𝜕𝑝
=

−82.06

𝑝2
𝑇,  

𝜕𝑉

𝜕𝑝
|
𝑇=300,𝑝=5

=
−82.06

52
× 300 = −984.72 (in 𝑐𝑚3/𝑎𝑡𝑚) 

𝑑𝑝 = ∆𝑝 = 5.2 − 5 = 0.2; 𝑑𝑇 = ∆𝑇 = 310 − 300 = 10 

∆𝑉 ≈ 𝑑𝑉 = 16.412 × 10 + (−984.72) × 0.2 = −32.824 (in 𝑐𝑚3) 
 

Note: ∆𝑉 =
82.06

5.2
× 310 −

82.06

5
× 300 = −31.5615 (in 𝑐𝑚3) 

 
Example 4: 

The point (1,2) lies on the curve with equation  

𝑓(𝑥, 𝑦) = 2𝑥3 + 𝑦3 − 5𝑥𝑦 = 0. 
 

Approximate the 𝑦 − coordinate of  the nearby point (𝑥, 𝑦) on 

this curve for which 𝑥 = 1.2. 

 

 
The graph of   

𝑔(𝑦) = 𝑦3 − 6𝑦 + 3.456   

(Put 𝑥 = 1.2 into  

2𝑥3 + 𝑦3 − 5𝑥𝑦) 
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Solutions 

Let 𝑧 = 𝑓(𝑥, 𝑦) = 2𝑥3 + 𝑦3 − 5𝑥𝑦, 𝑓(1,2) = 0 and 𝑓(1.2,2 + ∆𝑦) = 0. 

∆𝑧 = 0. 

𝑓𝑥(𝑥, 𝑦) = 6𝑥2 − 5𝑦; 𝑓𝑥(1,2) = −4; 𝑑𝑥 = ∆𝑥 = 1.2 − 1 = 0.2 

𝑓𝑦(𝑥, 𝑦) = 3𝑦
2 − 5𝑥; 𝑓𝑦(1,2) = 7; 𝑑𝑦 = ∆𝑦 

0 = ∆𝑧 ≈ 𝑑𝑧 = (−4) × 0.2 + 7∆𝑦 

So, ∆𝑦 ≈
4×0.2

7
≈ 0.114 

Required 𝑦 − coordinate ≈ 2 + 0.114 = 2.114 (may take the approximate value 2.1) 
 

Note: Required 𝑦 − coordinate ≈ 2.084 (by Newton’s Method) 
 
 
Three Dimensional Case: 

Let 𝑓: 𝑅3 → 𝑅 be a function on (𝑥, 𝑦, 𝑧).  
Suppose 𝑓𝑥, 𝑓𝑦 and 𝑓𝑧 are continuous at points near to (𝑎, 𝑏, 𝑐). 
 

𝑓(𝑎 + ℎ, 𝑏 + 𝑘, 𝑐 + 𝑙) − 𝑓(𝑎, 𝑏 + 𝑘, 𝑐 + 𝑙) ≈ 𝑓𝑥(𝑎, 𝑏 + 𝑘, 𝑐 + 𝑙) ∙ ℎ when ℎ ≈ 0 

𝑓(𝑎, 𝑏 + 𝑘, 𝑐 + 𝑙) − 𝑓(𝑎, 𝑏, 𝑐 + 𝑙) ≈ 𝑓𝑦(𝑎, 𝑏, 𝑐 + 𝑙) ∙ 𝑘 when 𝑘 ≈ 0 

𝑓(𝑎, 𝑏, 𝑐 + 𝑙) − 𝑓(𝑎, 𝑏, 𝑐) ≈ 𝑓𝑧(𝑎, 𝑏, 𝑐) ∙ 𝑙 when 𝑙 ≈ 0 
 

So, 𝑓(𝑎 + ℎ, 𝑏 + 𝑘, 𝑐 + 𝑙) − 𝑓(𝑎, 𝑏, 𝑐) 
≈ 𝑓𝑥(𝑎, 𝑏 + 𝑘, 𝑐 + 𝑙) ∙ ℎ + 𝑓𝑦(𝑎, 𝑏, 𝑐 + 𝑙) ∙ 𝑘 + 𝑓𝑧(𝑎, 𝑏, 𝑐) ∙ 𝑙 when ℎ ≈ 0 and 𝑘 ≈ 0 and 𝑙 ≈ 0 

 

Assume 𝑓𝑥 and 𝑓𝑦 are continuous near to (𝑎, 𝑏, 𝑐).  

Then, 𝑓𝑥(𝑎, 𝑏 + 𝑘, 𝑐 + 𝑙) ≈ 𝑓𝑥(𝑎, 𝑏, 𝑐) and 𝑓𝑦(𝑎, 𝑏, 𝑐 + 𝑙) ≈ 𝑓𝑦(𝑎, 𝑏, 𝑐) when 𝑘 ≈ 0 and 𝑙 ≈ 0 

 

Thus, when ℎ ≈ 0 and 𝑘 ≈ 0 and 𝑙 ≈ 0, we have 𝑓(𝑎 + ℎ, 𝑏 + 𝑘, 𝑐 + 𝑙) 
≈ 𝑓(𝑎, 𝑏, 𝑐) + 𝑓𝑥(𝑎, 𝑏, 𝑐) ∙ ℎ + 𝑓𝑦(𝑎, 𝑏, 𝑐) ∙ 𝑘 + 𝑓𝑧(𝑎, 𝑏, 𝑐) ∙ 𝑙 

= 𝑓(𝑎, 𝑏, 𝑐) + (𝑓𝑥(𝑎, 𝑏, 𝑐), 𝑓𝑦(𝑎, 𝑏, 𝑐), 𝑓𝑧(𝑎, 𝑏, 𝑐)) ∙ (ℎ, 𝑘, 𝑙) 

 
We define 

𝑑𝑓 = 𝑓𝑥(𝑥, 𝑦, 𝑧) ∙ 𝑑𝑥 + 𝑓𝑦(𝑥, 𝑦, 𝑧) ∙ 𝑑𝑦 + 𝑓𝑧(𝑥, 𝑦, 𝑧) ∙ 𝑑𝑧 

 
Example: 

 We have constructed a metal cube that is supposed to have edge length 100 𝑚𝑚, but each of  its three measured dimensions 

𝑥, 𝑦 and 𝑧 may be in error by as much as a millimeter. Use differentials to estimate the maximum resulting error in its calculated 

volume 𝑉 = 𝑥𝑦𝑧. 
 
Solutions 

𝑉(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 

𝑉𝑥(𝑥, 𝑦, 𝑧) = 𝑦𝑧; 𝑉𝑦(𝑥, 𝑦, 𝑧) = 𝑥𝑧; 𝑉𝑧(𝑥, 𝑦, 𝑧) = 𝑥𝑦 

𝑑𝑉 = 𝑉𝑥(𝑥, 𝑦, 𝑧)𝑑𝑥 + 𝑉𝑦(𝑥, 𝑦, 𝑧)𝑑𝑦 + 𝑉𝑧(𝑥, 𝑦, 𝑧)𝑑𝑧 = 𝑦𝑧𝑑𝑥 + 𝑥𝑧𝑑𝑦 + 𝑥𝑦𝑑𝑧 

∆𝑉 ≈ 𝑑𝑉 = 100 × 100 × ±1 + 100 × 100 × ±1 + 100 × 100 × ±1 

Note: 100 × 100 × 1 + 100 × 100 × 1 + 100 × 100 × 1 = 30000 
the maximum resulting error in its calculated volume 

≈ ±30000 (in 𝑚𝑚3) 
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𝒏 − Dimensional Case: 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function and 𝐴,𝐻 ∈ 𝑅𝑛. 

Suppose 𝑓𝑥1 , 𝑓𝑥2 , ⋯ , 𝑓𝑥𝑛 are continuous at points near to 𝐴. 

We can show that 𝑓(𝐴 + 𝐻) ≈ 𝑓(𝐴) + (𝑓𝑥1(𝐴), 𝑓𝑥2(𝐴),⋯ , 𝑓𝑥𝑛(𝐴)) ∙ 𝐻 when ‖𝐻‖ ≈ 0. 

We define the gradient of  𝑓 at 𝐴 as 𝑔𝑟𝑎𝑑 𝑓(𝐴) = ∇𝑓(𝐴) = (𝑓𝑥1(𝐴), 𝑓𝑥2(𝐴),⋯ , 𝑓𝑥𝑛(𝐴)). 

Then, 𝑓(𝐴 + 𝐻) ≈ 𝑓(𝐴) + ∇𝑓(𝐴) ∙ 𝐻 when ‖𝐻‖ ≈ 0. 
 

At general point 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), we define the gradient of  𝑓 at 𝑋 as  

𝑔𝑟𝑎𝑑 𝑓(𝑋) = ∇𝑓(𝑋) = (𝑓𝑥1(𝑋), 𝑓𝑥2(𝑋),⋯ , 𝑓𝑥𝑛(𝑋)). 

 

Then, 𝑓(𝑋 + 𝐻) ≈ 𝑓(𝑋) + ∇𝑓(𝑋) ∙ 𝐻 when ‖𝐻‖ ≈ 0. 
 
Linear Approximation 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function and 𝐴,𝐻 ∈ 𝑅𝑛. 
Suppose we can find: 

(i) 𝛿 ∈ 𝑅 with 𝛿 > 0 AND 
(ii) ∇𝑓(𝐴) 

so that there exists a function 𝜺: 𝐵(𝑂, 𝛿) → 𝑅 such that 𝜺(𝐻) → 0 as ‖𝐻‖ → 0  

AND 𝑓(𝐴 + 𝐻) = 𝑓(𝐴) + ∇𝑓(𝐴) ∙ 𝐻 + 𝜺(𝐻) ∙ ‖𝐻‖. 

In this case, we say 𝑓(𝐴) + ∇𝑓(𝐴) ∙ 𝐻 is the linear approximation of  𝑓(𝐴 + 𝐻) when ‖𝐻‖ ≈ 0. 
 
Concept of  Differentiability 
𝑓(𝐴+𝐻)−𝑓(𝐴)−∇𝑓(𝐴)∙𝐻

‖𝐻‖
=

𝜺(𝐻)∙‖𝐻‖

‖𝐻‖
= 𝜺(𝐻) → 0 as ‖𝐻‖ → 0 

So, lim
‖𝐻‖→0

𝑓(𝐴+𝐻)−𝑓(𝐴)−∇𝑓(𝐴)∙𝐻

‖𝐻‖
= 0 

 
Remark 1:  

The property “the linear approximation” ⟹  lim
‖𝐻‖→0

𝑓(𝐴+𝐻)−𝑓(𝐴)−∇𝑓(𝐴)∙𝐻

‖𝐻‖
= 0 

 
Remark 2:  

Suppose lim
‖𝐻‖→0

𝑓(𝐴+𝐻)−𝑓(𝐴)−∇𝑓(𝐴)∙𝐻

‖𝐻‖
= 0.  

We may define 𝜺: 𝑅𝑛 → 𝑅 by 𝜺(𝐻) =
𝑓(𝐴+𝐻)−𝑓(𝐴)−∇𝑓(𝐴)∙𝐻

‖𝐻‖
.  

Then, 𝑓(𝐴 + 𝐻) = 𝑓(𝐴) + ∇𝑓(𝐴) ∙ 𝐻 + 𝜺(𝐻) ∙ ‖𝐻‖ and 𝜺(𝐻) → 0 as ‖𝐻‖ → 0 
 

lim
‖𝐻‖→0

𝑓(𝐴+𝐻)−𝑓(𝐴)−∇𝑓(𝐴)∙𝐻

‖𝐻‖
= 0 ⟹  The property “the linear approximation” 

 

Definition 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function and 𝐴 ∈ 𝑅𝑛. 
Suppose we can find: 

(i) 𝛿 ∈ 𝑅 with 𝛿 > 0 AND 
(ii) ∇𝑓(𝐴) 

so that there exists a function 𝜺: 𝐵(𝑂, 𝛿) → 𝑅 such that 𝜺(𝐻) → 0 as ‖𝐻‖ → 0  

AND 𝑓(𝐴 + 𝐻) = 𝑓(𝐴) + ∇𝑓(𝐴) ∙ 𝐻 + 𝜺(𝐻) ∙ ‖𝐻‖. 

In this case, we say 𝒇 is differentiable at 𝑨. 
 

Remark: lim
‖𝐻‖→0

𝑓(𝐴+𝐻)−𝑓(𝐴)−∇𝑓(𝐴)∙𝐻

‖𝐻‖
= 0. 

Definition 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function and 𝐴 ∈ 𝑅𝑛. We say 𝑓 is continuously differentiable at 𝑨 if  we can find 𝑟 ∈ 𝑅 with  

𝑟 > 0 such that 𝑓𝑥1 , 𝑓𝑥2 , ⋯ , 𝑓𝑥𝑛 are continuous on 𝐵(𝐴, 𝑟). 
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Theorem: 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function and 𝐴 ∈ 𝑅𝑛. 

𝑓 is continuously differentiable at 𝑨 ⟹ 𝒇 is differentiable at 𝑨 
 
Remarks:  

(i) the converse in general is not true 
(ii) 𝒇 is differentiable at 𝑨 ⟹ 

we can find ∇𝑓(𝐴), but 𝑓𝑥1 , 𝑓𝑥2 , ⋯ , 𝑓𝑥𝑛  may not be continuous near 𝐴 

 
Theorem: 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function and 𝐴 ∈ 𝑅𝑛. 

𝑓 is differentiable at 𝑨 ⟹ 𝒇 is continuous at 𝑨 
 
Definition 

Let 𝑓: 𝑅𝑛 → 𝑅 be a function.  

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. 

We say 𝑓 is differentiable on 𝑺 if 𝑓 is differentiable at 𝐴 for any 𝐴 ∈ 𝑆. 
 
Example 1 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = 𝑥𝑦. 

Show that 𝑓 is differentiable at (1,2). 
 
Proof 

𝑓(1,2) = 2; 𝑓𝑥(𝑥, 𝑦) = 𝑦; 𝑓𝑥(1,2) = 2; 𝑓𝑦(𝑥, 𝑦) = 𝑥; 𝑓𝑦(1,2) = 1; 

∇𝑓(1,2) ∙ (ℎ, 𝑘) = (2,1) ∙ (ℎ, 𝑘) = 2ℎ + 𝑘 

𝑓(1 + ℎ, 2 + 𝑘) = (1 + ℎ)(2 + 𝑘) = 2 + 2ℎ + 𝑘 + ℎ𝑘 = 𝑓(1,2) + ∇𝑓(1,2) ∙ (ℎ, 𝑘) + ℎ𝑘 
 

Let 𝜀: 𝑅2 → 𝑅 be defined by 𝜀(ℎ, 𝑘) = {
ℎ𝑘

√ℎ2+𝑘2

0
  
𝑖𝑓
𝑖𝑓
(ℎ, 𝑘) ≠ (0,0)

(ℎ, 𝑘) = (0,0)
. 

Note: ‖(ℎ, 𝑘)‖ = √ℎ2 + 𝑘2. 

Then, 𝑓(1 + ℎ, 2 + 𝑘) = 𝑓(1,2) + ∇𝑓(1,2) ∙ (ℎ, 𝑘) + 𝜀(ℎ, 𝑘)‖(ℎ, 𝑘)‖. 
 

lim
‖(ℎ,𝑘)‖→0

𝜀(ℎ, 𝑘) = lim
‖(ℎ,𝑘)‖→0

ℎ𝑘

√ℎ2 + 𝑘2
= lim

𝑟→0+

1

2
𝑟𝑠𝑖𝑛2𝜃 = 0 

 
Reason: 

Let ℎ = 𝑟𝑐𝑜𝑠𝜃, 𝑘 = 𝑟𝑠𝑖𝑛𝜃 where 𝑟 ≥ 0.  

Then, 
ℎ𝑘

√ℎ2+𝑘2
=

𝑟2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝑟
=

1

2
𝑟𝑠𝑖𝑛2𝜃 

Note: |𝑠𝑖𝑛2𝜃| ≤ 1 
 

Thus, 𝑓 is differentiable at (1,2). 
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Example 2 

Let 𝑓: 𝑅2 → 𝑅 be defined by 𝑓(𝑥, 𝑦) = √𝑥2 + 𝑦2. 

Show that 𝑓 is not differentiable at (0,0). 
 
Proof: 

Suffices to show 𝑓𝑥(0,0) doesn’t exist.  

𝑓(0,0) = 0. 𝑓(0 + ℎ, 0) = 𝑓(ℎ, 0) = √ℎ2 + 0 = |ℎ|. 𝑓(0 + ℎ, 0) − 𝑓(0,0) = |ℎ|. 

lim
ℎ→0+

𝑓(0 + ℎ, 0) − 𝑓(0,0)

ℎ
= lim

ℎ→0+

|ℎ|

ℎ
= lim

ℎ→0+

ℎ

ℎ
= lim

ℎ→0+
1 = 1 

lim
ℎ→0−

𝑓(0 + ℎ, 0) − 𝑓(0,0)

ℎ
= lim

ℎ→0−

|ℎ|

ℎ
= lim

ℎ→0−

−ℎ

ℎ
= lim

ℎ→0−
−1 = −1 

lim
ℎ→0+

𝑓(0 + ℎ, 0) − 𝑓(0,0)

ℎ
= 1 ≠ −1 = lim

ℎ→0−

𝑓(0 + ℎ, 0) − 𝑓(0,0)

ℎ
 

So, lim
ℎ→0

𝑓(0+ℎ,0)−𝑓(0,0)

ℎ
 doesn’t exist. 

Thus, 𝑓𝑥(0,0) doesn’t exist. 
 
Rules for Differentiation 
Theorem: 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. 

Let 𝑓: 𝑆 → 𝑅 and 𝑔: 𝑆 → 𝑅 be functions. 

Let 𝜆 ∈ 𝑅 and 𝑃 ∈ 𝑆. 

Suppose both 𝑓 and 𝑔 are differentiable at 𝑃. 
Then, 

(i) 𝑓 + 𝑔 is differentiable at 𝑃 
(ii) 𝑓 − 𝑔 is differentiable at 𝑃 
(iii) 𝑓 ∙ 𝑔 is differentiable at 𝑃 
(iv) 𝑓

𝑔
 is differentiable at 𝑃 

(Assumed that we can find 𝑟 ∈ 𝑅 with 𝑟 > 0 such that 𝐵(𝑃, 𝑟) ⊂ 𝑆 and 𝑔(𝑋) ≠ 0 for any 𝑋 ∈ 𝐵(𝑃, 𝑟).) 
(v) 𝜆𝑓 is differentiable at 𝑃 

Proof: Omitted (As Exercises) 
 
# Multivariable Chain Rule 
Theorem 1: 

Let 𝑥: 𝐼 → 𝑅 and 𝑦: 𝐼 → 𝑅 are functions, where 𝐼 is an open interval. 

Suppose 𝑥 and 𝑦 are differentiable on 𝐼. 
Let 𝜙 ≠ 𝑆 ⊂ 𝑅2 and 𝑆 is an open set. 

Suppose {(𝑥(𝑡), 𝑦(𝑡)): 𝑡 ∈ 𝐼} ⊂ 𝑆. 

Let 𝑓: 𝑆 → 𝑅 be a function. 

Suppose all partial derivatives of  𝑓 are continuous on 𝑆. 

Then we can define a function 𝑧: 𝐼 → 𝑅 by 𝑧(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡)) and it is differentiable on 𝐼. 
𝑑𝑧

𝑑𝑡
=
𝜕𝑓

𝜕𝑥
∙
𝑑𝑥

𝑑𝑡
+
𝜕𝑓

𝜕𝑦
∙
𝑑𝑦

𝑑𝑡
 

 

Remark: Sometimes, if  we write 𝑤 = 𝑓(𝑥, 𝑦), then we also write 
𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥
∙
𝑑𝑥

𝑑𝑡
+

𝜕𝑤

𝜕𝑦
∙
𝑑𝑦

𝑑𝑡
 

by considering  𝑤 = 𝑤(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡)). 
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Idea of  the proof 

∆𝑧 ≈ 𝑑𝑧 =
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑓

𝜕𝑦
∆𝑦 

∆𝑧

∆𝑡
≈
𝜕𝑓

𝜕𝑥
∙
∆𝑥

∆𝑡
+
𝜕𝑓

𝜕𝑦
∙
∆𝑦

∆𝑡
 

Taking the limit ∆𝑡 → 0, we get 
𝑑𝑧

𝑑𝑡
=

𝜕𝑓

𝜕𝑥
∙
𝑑𝑥

𝑑𝑡
+

𝜕𝑓

𝜕𝑦
∙
𝑑𝑦

𝑑𝑡
. 

 
Example 1: 

Suppose that 𝑤 = 𝑒𝑥𝑦, 𝑥 = 𝑡2 and 𝑦 = 𝑡3. Find 
𝑑𝑤

𝑑𝑡
. 

 
Solutions 

Method 1 

𝑤 = 𝑒𝑥𝑦 = 𝑒(𝑡
2∙𝑡3) = 𝑒(𝑡

5) 
𝑑𝑤

𝑑𝑡
= 𝑒(𝑡

5) ∙
𝑑

𝑑𝑡
𝑡5 = 5𝑡4 ∙ 𝑒(𝑡

5) 

Method 2 (By Chain Rule) 
𝜕𝑤

𝜕𝑥
= 𝑦𝑒𝑥𝑦; 

𝑑𝑥

𝑑𝑡
= 2𝑡; 

𝜕𝑤

𝜕𝑦
= 𝑥𝑒𝑥𝑦; 

𝑑𝑦

𝑑𝑡
= 3𝑡2 

𝑑𝑤

𝑑𝑡
=
𝜕𝑤

𝜕𝑥
∙
𝑑𝑥

𝑑𝑡
+
𝜕𝑤

𝜕𝑦
∙
𝑑𝑦

𝑑𝑡
 

= 𝑦𝑒𝑥𝑦 ∙ 2𝑡 + 𝑥𝑒𝑥𝑦 ∙ 3𝑡2 

= 2𝑡4 ∙ 𝑒(𝑡
5) + 3𝑡4 ∙ 𝑒(𝑡

5) 

= 5𝑡4 ∙ 𝑒(𝑡
5) 

 
Example 2: 

The figure shows a melting cylindrical block of  ice.  

Because of  the sun’s heat beating down from above, its height ℎ is decreasing more rapidly than 

its radius 𝑟.  

If  its height is decreasing at 3 𝑐𝑚/ℎ and its radius is decreasing at 1 𝑐𝑚/ℎ when 𝑟 = 15 𝑐𝑚 

and ℎ = 40 𝑐𝑚, what is the rate of  change of  the volume 𝑉 of  the block at that instant? 

 
Solutions 

As 𝑉 = 𝜋𝑟2ℎ, by Chain Rule, 
𝑑𝑉

𝑑𝑡
= 2𝜋𝑟ℎ

𝑑𝑟

𝑑𝑡
+ 𝜋𝑟2

𝑑ℎ

𝑑𝑡
. 

When 𝑟 = 15 and ℎ = 40, 
𝑑ℎ

𝑑𝑡
= −3, 

𝑑𝑟

𝑑𝑡
= −1 (minus sign means decreasing). 

𝑑𝑉

𝑑𝑡
= 2𝜋 ∙ 15 ∙ 40 ∙ (−1) + 𝜋 ∙ 152 ∙ (−3) = −1875𝜋 ≈ −5890.49 (in 𝑐𝑚3/ℎ). 

The volume of  the block at that instant is decreasing at the rate of  5890 𝑐𝑚3/ℎ. 
 
Example 3: 

Find 
𝑑𝑤

𝑑𝑡
 if  𝑤 = 𝑥2 + 𝑧𝑒𝑦 + 𝑠𝑖𝑛𝑥𝑧, 𝑥 = 𝑡, 𝑦 = 𝑡2, 𝑧 = 𝑡3. 

Solutions 
Method 1 

𝑤 = 𝑥2 + 𝑧𝑒𝑦 + 𝑠𝑖𝑛𝑥𝑧 

= 𝑡2 + 𝑡3𝑒(𝑡
2) + 𝑠𝑖𝑛(𝑡4) 

𝑑𝑤

𝑑𝑡
 

= 2𝑡 + 3𝑡2𝑒(𝑡
2) + 𝑡3𝑒(𝑡

2) ∙ 2𝑡 + 𝑐𝑜𝑠(𝑡4) ∙ 4𝑡3 

= 2𝑡 + (3𝑡2 + 2𝑡4)𝑒(𝑡
2) + 4𝑡3𝑐𝑜𝑠(𝑡4) 

Method 2 (By Chain Rule) 
𝜕𝑤

𝜕𝑥
= 2𝑥 + 𝑧𝑐𝑜𝑠𝑥𝑧; 

𝑑𝑥

𝑑𝑡
= 1 

𝜕𝑤

𝜕𝑦
= 𝑧𝑒𝑦; 

𝑑𝑦

𝑑𝑡
= 2𝑡 

𝜕𝑤

𝜕𝑧
= 𝑒𝑦 + 𝑥𝑐𝑜𝑠𝑥𝑧; 

𝑑𝑧

𝑑𝑡
= 3𝑡2 

𝑑𝑤

𝑑𝑡
 

= (2𝑥 + 𝑧𝑐𝑜𝑠𝑥𝑧) ∙ 1 + (𝑧𝑒𝑦) ∙ 2𝑡 + (𝑒𝑦 + 𝑥𝑐𝑜𝑠𝑥𝑧) ∙ 3𝑡2 

= 2𝑡 + 𝑡3𝑐𝑜𝑠(𝑡4) + 2𝑡4𝑒(𝑡
2) + 3𝑡2𝑒(𝑡

2) + 3𝑡3𝑐𝑜𝑠(𝑡4) 

= 2𝑡 + (3𝑡2 + 2𝑡4)𝑒(𝑡
2) + 4𝑡3𝑐𝑜𝑠(𝑡4) 
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Theorem 2: 

Let 𝑥𝑖: 𝐼 → 𝑅 is a function, for 𝑖 = 1,2,⋯ , 𝑛, where 𝐼 is an open interval. 

Suppose 𝑥𝑖 is differentiable on 𝐼, for 𝑖 = 1,2,⋯ , 𝑛. 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. 

Suppose {(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)): 𝑡 ∈ 𝐼} ⊂ 𝑆. 

Let 𝑓: 𝑆 → 𝑅 be a function. 

Suppose all partial derivatives of  𝑓 are continuous on 𝑆. 

Then we can define a function 𝑧: 𝐼 → 𝑅 by 𝑧(𝑡) = 𝑓(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)) and it is differentiable on 𝐼. 
𝑑𝑧

𝑑𝑡
= ∑

𝜕𝑓

𝜕𝑥𝑖
∙
𝑑𝑥𝑖
𝑑𝑡

𝑛

𝑖=1
 

 
Theorem 3 (General Chain Rule): 

Let 𝜙 ≠ 𝑇 ⊂ 𝑅𝑛 and 𝑇 is an open set. 

Let 𝑥𝑖: 𝑇 → 𝑅 is a function, for 𝑖 = 1,2,⋯ ,𝑚. 

Suppose all partial derivatives of  𝑥𝑖 are continuous on 𝑇, for 𝑖 = 1,2,⋯ ,𝑚. 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑚 and 𝑆 is an open set. 

Suppose {(𝑥1(𝐴), 𝑥2(𝐴),⋯ , 𝑥𝑚(𝐴)): 𝐴 ∈ 𝑇} ⊂ 𝑆. 

Let 𝑓: 𝑆 → 𝑅 be a function. 

Suppose all partial derivatives of  𝑓 are continuous on 𝑆. 

Then we can define a function 𝑧: 𝑇 → 𝑅 by 𝑧(𝐴) = 𝑓(𝑥1(𝐴), 𝑥2(𝐴),⋯ , 𝑥𝑚(𝐴)) and all its partial derivatives are continuous on 𝑇. 

𝜕𝑧

𝜕𝑡𝑘
=∑

𝜕𝑓

𝜕𝑥𝑖
∙
𝜕𝑥𝑖
𝜕𝑡𝑘

𝑚

𝑖=1
 

 
Example 4: 

Suppose 𝑧 = 𝑓(𝑢, 𝑣), 𝑢 = 2𝑥 + 𝑦, 𝑣 = 3𝑥 − 2𝑦.  

Given the values of  
𝜕𝑧

𝜕𝑢
= 3 and 

𝜕𝑧

𝜕𝑣
= −2 at the point (𝑢, 𝑣) = (3,1). 

Find the values of  
𝜕𝑧

𝜕𝑥
 and 

𝜕𝑧

𝜕𝑦
 at the corresponding point (𝑥, 𝑦) = (1,1). 

 
Solutions 

At (𝑥, 𝑦) = (1,1) and (𝑢, 𝑣) = (3,1), 
𝜕𝑢

𝜕𝑥
= 2; 

𝜕𝑣

𝜕𝑥
= 3 

𝜕𝑧

𝜕𝑥
=
𝜕𝑧

𝜕𝑢
∙
𝜕𝑢

𝜕𝑥
+
𝜕𝑧

𝜕𝑣
∙
𝜕𝑣

𝜕𝑥
= 3 × 2 + (−2) × 3 = 0 

𝜕𝑢

𝜕𝑦
= 1; 

𝜕𝑣

𝜕𝑦
= −2 

𝜕𝑧

𝜕𝑦
=
𝜕𝑧

𝜕𝑢
∙
𝜕𝑢

𝜕𝑦
+
𝜕𝑧

𝜕𝑣
∙
𝜕𝑣

𝜕𝑦
= 3 × 1 + (−2) × (−2) = 7 
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Example 5: 

Let 𝑤 = 𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 are given in polar coordinates by the equations 𝑥 = 𝑟𝑐𝑜𝑠𝜃 and 𝑦 = 𝑟𝑠𝑖𝑛𝜃.  

Calculate 
𝜕𝑤

𝜕𝑟
, 
𝜕𝑤

𝜕𝜃
 and 

𝜕2𝑤

𝜕𝑟2
 in terms of  𝑟, 𝜃 and the partial derivatives of  𝑤 with respect to 𝑥 and 𝑦. 

 
Solutions 
𝜕𝑥

𝜕𝑟
= 𝑐𝑜𝑠𝜃; 

𝜕𝑥

𝜕𝜃
= −𝑟𝑠𝑖𝑛𝜃; 

𝜕𝑦

𝜕𝑟
= 𝑠𝑖𝑛𝜃; 

𝜕𝑦

𝜕𝜃
= 𝑟𝑐𝑜𝑠𝜃 

𝜕𝑤

𝜕𝑟
=
𝜕𝑤

𝜕𝑥
∙
𝜕𝑥

𝜕𝑟
+
𝜕𝑤

𝜕𝑦
∙
𝜕𝑦

𝜕𝑟
= 𝑐𝑜𝑠𝜃

𝜕𝑤

𝜕𝑥
+ 𝑠𝑖𝑛𝜃

𝜕𝑤

𝜕𝑦
 

𝜕𝑤

𝜕𝜃
=
𝜕𝑤

𝜕𝑥
∙
𝜕𝑥

𝜕𝜃
+
𝜕𝑤

𝜕𝑦
∙
𝜕𝑦

𝜕𝜃
= −𝑟𝑠𝑖𝑛𝜃

𝜕𝑤

𝜕𝑥
+ 𝑟𝑐𝑜𝑠𝜃

𝜕𝑤

𝜕𝑦
 

𝜕2𝑤

𝜕𝑟2
=
𝜕

𝜕𝑟
(𝑐𝑜𝑠𝜃

𝜕𝑤

𝜕𝑥
+ 𝑠𝑖𝑛𝜃

𝜕𝑤

𝜕𝑦
) 

= 𝑐𝑜𝑠𝜃
𝜕

𝜕𝑟
(
𝜕𝑤

𝜕𝑥
) + 𝑠𝑖𝑛𝜃

𝜕

𝜕𝑟
(
𝜕𝑤

𝜕𝑦
) 

=  𝑐𝑜𝑠𝜃 (
𝜕

𝜕𝑥
(
𝜕𝑤

𝜕𝑥
) ∙
𝜕𝑥

𝜕𝑟
+
𝜕

𝜕𝑦
(
𝜕𝑤

𝜕𝑥
) ∙
𝜕𝑦

𝜕𝑟
) + 𝑠𝑖𝑛𝜃 (

𝜕

𝜕𝑥
(
𝜕𝑤

𝜕𝑦
) ∙
𝜕𝑥

𝜕𝑟
+
𝜕

𝜕𝑦
(
𝜕𝑤

𝜕𝑦
) ∙
𝜕𝑦

𝜕𝑟
) 

=  𝑐𝑜𝑠𝜃 (
𝜕2𝑤

𝜕𝑥2
∙ 𝑐𝑜𝑠𝜃 +

𝜕2𝑤

𝜕𝑦𝜕𝑥
∙ 𝑠𝑖𝑛𝜃) + 𝑠𝑖𝑛𝜃 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
∙ 𝑐𝑜𝑠𝜃 +

𝜕2𝑤

𝜕𝑦2
∙ 𝑠𝑖𝑛𝜃) 

= 𝑐𝑜𝑠2𝜃
𝜕2𝑤

𝜕𝑥2
+ 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝜕2𝑤

𝜕𝑦𝜕𝑥
+ 𝑠𝑖𝑛2𝜃

𝜕2𝑤

𝜕𝑦2
 

 

Note: 
𝜕2𝑤

𝜕𝑦𝜕𝑥
=

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

 
Example 6: 

Suppose that 𝑤 = 𝑓(𝑢, 𝑣, 𝑥, 𝑦) where 𝑢 and 𝑣 are functions of  𝑥 and 𝑦. 

Find 
𝜕𝑤

𝜕𝑥
 and 

𝜕𝑤

𝜕𝑦
.  

[Hint: 𝑥 and 𝑦 play dual roles as intermediate and independent variables.] 
 
Solutions 
𝜕𝑤

𝜕𝑥
=
𝜕𝑓

𝜕𝑢
∙
𝜕𝑢

𝜕𝑥
+
𝜕𝑓

𝜕𝑣
∙
𝜕𝑣

𝜕𝑥
+
𝜕𝑓

𝜕𝑥
 

𝜕𝑤

𝜕𝑦
=
𝜕𝑓

𝜕𝑢
∙
𝜕𝑢

𝜕𝑦
+
𝜕𝑓

𝜕𝑣
∙
𝜕𝑣

𝜕𝑦
+
𝜕𝑓

𝜕𝑦
 

 
Example 7: 

Consider a parametric curve 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡) that lies on the surface 𝑧 = 𝑓(𝑥, 𝑦) in space.  

Recall that if  𝑇⃗ = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) and 𝑁⃗⃗ = (

𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
, −1), then 𝑇⃗  is tangent to the curve and 𝑁⃗⃗  is normal to the surface.  

Show that 𝑇⃗  and 𝑁⃗⃗  are everywhere perprndicular. 
 
Proof: 

𝑇⃗ ∙  𝑁⃗⃗ = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) ∙ (

𝜕𝑧

𝜕𝑥
,
𝜕𝑧

𝜕𝑦
, −1) 

=
𝜕𝑧

𝜕𝑥
∙
𝑑𝑥

𝑑𝑡
+
𝜕𝑧

𝜕𝑦
∙
𝑑𝑦

𝑑𝑡
−
𝑑𝑧

𝑑𝑡
 

=
𝑑𝑧

𝑑𝑡
−
𝑑𝑧

𝑑𝑡
= 0 

So, 𝑇⃗  and 𝑁⃗⃗  are everywhere perprndicular. 
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Exercise 

Suppose 𝑓(𝑥, 𝑦) satisfy 𝑓(𝑡𝑥, 𝑡𝑦) = 𝑡𝑚𝑓(𝑥, 𝑦) for any (𝑥, 𝑦) ∈ 𝑅2, where 𝑚 is a fixed positive integer.  

Show that 𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦

𝜕𝑓

𝜕𝑦
= 𝑚𝑓. 

[Hint: Consider 
𝜕

𝜕𝑡
𝑓(𝑡𝑥, 𝑡𝑦).] 

 
# Implicit Partial Differentiation 
Theorem: 

Suppose that the function 𝐹(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , 𝑧) is continuously differentiable near to the point (𝑎1, 𝑎2, ⋯ , 𝑎𝑛, 𝑏) at which 

𝐹(𝑎1, 𝑎2, ⋯ , 𝑎𝑛 , 𝑏) = 0 and 
𝜕𝐹

𝜕𝑧
≠ 0.  

Then, there exists a continuously differentiable function 𝑧 = 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) such that 𝑏 = 𝑔(𝑎1, 𝑎2, ⋯ , 𝑎𝑛) and 

𝐹(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)) = 0 for (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) near (𝑎1, 𝑎2, ⋯ , 𝑎𝑛). 
 
Example 1: 

Consider the graph of  the equation 𝐹(𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥𝑦 = 0,  

find 
𝑑𝑦

𝑑𝑥
 if  it is well defined. 

 
Solutions 

Note: 𝐹(𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥𝑦 

0 =
𝑑

𝑑𝑥
𝐹(𝑥, 𝑦) =

𝜕𝐹

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
∙
𝑑𝑦

𝑑𝑥
= 3𝑥2 − 3𝑦 + (3𝑦2 − 3𝑥)

𝑑𝑦

𝑑𝑥
 

So, 
𝑑𝑦

𝑑𝑥
= −

3𝑥2−3𝑦

3𝑦2−3𝑥
= −

𝑥2−𝑦

𝑦2−𝑥
 (Assumed 𝑦2 − 𝑥 ≠ 0) 

Consider 𝑦2 − 𝑥 = 0 and 𝑥3 + 𝑦3 − 3𝑥𝑦 = 0, we have 

𝑦6 + 𝑦3 − 3𝑦3 = 0 ⟹ 𝑦6 − 2𝑦3 = 0⟹ 𝑦3(𝑦3 − 2) = 0⟹ 𝑦 = 0 or √2
3

 

When 𝑦 = 0, 𝑥 = 0.  

When 𝑦 = √2
3

, 𝑥 = √4
3

. 
𝑑𝑦

𝑑𝑥
 is undefined at points (0,0) and (√4

3
, √2
3
 ). 

 
Example 2: 

Suppose 𝑤 = 𝐺(𝑥, 𝑦), 𝑢 = 𝑢(𝑥, 𝑦) and 𝑣 = 𝑣(𝑥, 𝑦) be given.  

Suppose we know that 𝑥 and 𝑦 can be solved in terms of  𝑢 and 𝑣.  

Find 
𝜕𝐺

𝜕𝑥
 and 

𝜕𝐺

𝜕𝑦
 in terms of  

𝜕𝑤

𝜕𝑢
, 
𝜕𝑤

𝜕𝑣
, 
𝜕𝑥

𝜕𝑢
, 
𝜕𝑥

𝜕𝑣
, 
𝜕𝑦

𝜕𝑢
 and 

𝜕𝑦

𝜕𝑣
. 

 
Solutions 
𝜕𝑤

𝜕𝑢
=
𝜕𝐺

𝜕𝑥
∙
𝜕𝑥

𝜕𝑢
+
𝜕𝐺

𝜕𝑦
∙
𝜕𝑦

𝜕𝑢
 

𝜕𝑤

𝜕𝑣
=
𝜕𝐺

𝜕𝑥
∙
𝜕𝑥

𝜕𝑣
+
𝜕𝐺

𝜕𝑦
∙
𝜕𝑦

𝜕𝑣
 

In Matrix Form 

(

𝜕𝑤

𝜕𝑢
𝜕𝑤

𝜕𝑣

) = (

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢
𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

)(

𝜕𝐺

𝜕𝑥
𝜕𝐺

𝜕𝑦

), so (

𝜕𝐺

𝜕𝑥
𝜕𝐺

𝜕𝑦

) = (

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢
𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

)

−1

(

𝜕𝑤

𝜕𝑢
𝜕𝑤

𝜕𝑣

) =
1

𝜕𝑥

𝜕𝑢
∙
𝜕𝑦

𝜕𝑣
−
𝜕𝑥

𝜕𝑣
∙
𝜕𝑦

𝜕𝑢

(

𝜕𝑦

𝜕𝑣
−
𝜕𝑦

𝜕𝑢

−
𝜕𝑥

𝜕𝑣

𝜕𝑥

𝜕𝑢

)(

𝜕𝑤

𝜕𝑢
𝜕𝑤

𝜕𝑣

) 
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# Directional Derivatives and Gradient Vector 
Concept of  partial derivative 

Suppose 𝑛 = 2,3,⋯. 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. 

Let 𝑓: 𝑆 → 𝑅 be a function on 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛). 

Let 𝐸𝑗 = (𝑒𝑗1, 𝑒𝑗2, ⋯ , 𝑒𝑗𝑛) be defined by 𝑒𝑗𝑖 = {
0
1
  
𝑖𝑓
𝑖𝑓
  
𝑖 ≠ 𝑗
𝑖 = 𝑗

. 

That is, only 𝑗 − th cordinate is 1, other coordinates are zeros. 

Note: 𝐸𝑗 is an unit vector in the direction of  the coordinate axis for 𝑥𝑗 . 

𝑓𝑥𝑗(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =
𝜕𝑓

𝜕𝑥𝑗
= lim

ℎ→0

𝑓(𝑋+ℎ𝐸𝑗)−𝑓(𝑋)

ℎ
. 

 
Concept of  directional derivative 

Suppose 𝑛 = 2,3,⋯. 

Let 𝜙 ≠ 𝑆 ⊂ 𝑅𝑛 and 𝑆 is an open set. 

Let 𝑓: 𝑆 → 𝑅 be a function on 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛). 
Let 𝒖 be any unit vector.  
We define: 

𝐷𝒖𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = lim
ℎ→0

𝑓(𝑋+ℎ𝒖)−𝑓(𝑋)

ℎ
. 

 
Theorem: 

𝑫𝒖𝒇(𝑿) = 𝛁𝒇(𝑿) ∙ 𝒖 
 
Proof: 

𝐷𝒖𝑓(𝑋) 

= lim
ℎ→0

𝑓(𝑋 + ℎ𝒖) − 𝑓(𝑋)

ℎ
= lim

ℎ→0

∇𝑓(𝑋) ∙ (ℎ𝒖)

ℎ
= lim

ℎ→0

ℎ∇𝑓(𝑋) ∙ 𝒖

ℎ
= lim

ℎ→0
∇𝑓(𝑋) ∙ 𝒖 = ∇𝑓(𝑋) ∙ 𝒖 

 
Example: 

Suppose 𝑓(𝑥, 𝑦) =
1

180
(7400 − 4𝑥 − 9𝑦 − 0.03𝑥𝑦) for any (𝑥, 𝑦) ∈ 𝑅2. 

Find 𝐷𝒖𝑓((200,200)) where 𝒖 is the unit vector in the direction of  𝒗 = (3,4). 
 
Solutions 

𝑓𝑥(𝑥, 𝑦) =
1

180
(−4 − 0.03𝑦), 𝑓𝑥(200,200) =

−1

18
; 

𝑓𝑦(𝑥, 𝑦) =
1

180
(−9 − 0.03𝑥), 𝑓𝑦(200,200) =

−1

12
; 

∇𝑓((200,200)) = (
−1

18
,
−1

12
). 

‖𝒗‖ = ‖(3,4)‖ = √32 + 42 = 5 

𝒖 =
1

‖𝒗‖
𝒗 =

1

5
(3,4) = (

3

5
,
4

5
) 

𝐷𝒖𝑓((200,200)) = ∇𝑓((200,200)) ∙ 𝒖 = (
−1

18
,
−1

12
) ∙ (

3

5
,
4

5
) =

−1

10
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Application: 

If  𝑓(𝑥, 𝑦) denotes the temperature (in degrees Celsius) at the point (𝑥, 𝑦) near an airport where distances 𝑥 and 𝑦 are 

measured in kilometers, then 𝐷𝒖𝑓((200,200)) will be the initial rate of  change of  temperature when the aircraft heads northeast in 

the direction specified by the vector 𝒗 at the location (200,200). 
 

Note:  

𝐷𝒖𝑓((200,200)) = −0.1 means “The instantaneous rate of  change is decreasing at 0.1 𝐶𝑂 /𝑘𝑚”. 

 
Significance of  the Gradient Vector 

Suppose 𝜃 is the angle between ∇𝑓(𝑋) and 𝒖. 

𝑫𝒖𝒇(𝑿) = 𝛁𝒇(𝑿) ∙ 𝒖 = ‖𝛁𝒇(𝑿)‖ ∙ ‖𝒖‖𝒄𝒐𝒔𝜽 = ‖𝛁𝒇(𝑿)‖𝒄𝒐𝒔𝜽 
 
Note:  

The maximum value of  𝐷𝑢𝑓(𝑋) is ‖∇𝑓(𝑋)‖. 

The maximum value is obtained when 𝑐𝑜𝑠𝜃 = 1, that is 𝒖 is in the same direction as ∇𝑓(𝑋).  

In this case, 𝒖 =
1

‖∇𝑓(𝑋)‖
∇𝑓(𝑋). 

 
Geometric Meaning of  the Gradient Vector 

Suppose 𝒓(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is a curve on the surface 𝐹(𝑥, 𝑦, 𝑧) = 0 where 𝐹 is continuously differentiable. 

 

0 = 𝐹(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) 

0 =
𝑑

𝑑𝑡
0 =

𝑑

𝑑𝑡
𝐹(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) =

𝜕𝐹

𝜕𝑥
∙
𝑑𝑥

𝑑𝑡
+
𝜕𝐹

𝜕𝑦
∙
𝑑𝑦

𝑑𝑡
+
𝜕𝐹

𝜕𝑧
∙
𝑑𝑧

𝑑𝑡
 

= (
𝜕𝐹

𝜕𝑥
,
𝜕𝐹

𝜕𝑦
,
𝜕𝐹

𝜕𝑧
) ∙ (

𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) = ∇𝐹 ∙ 𝒓′ 

∇𝐹 is always perpendicular to the tangent vector of  the curve on the surface. 

So, ∇𝐹 is a normal vector of  the tangent plane. 
 
Application: 

Suppose 𝐹(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑓(𝑥, 𝑦). 

∇𝐹 = (−𝑓𝑥(𝑥, 𝑦, 𝑧), −𝑓𝑦(𝑥, 𝑦, 𝑧), 1) is a normal vector of  the surface 𝑧 = 𝑓(𝑥, 𝑦). 
 
Example: 

 Write an equation of  the plane tangent to the ellipsoid 2𝑥2 + 4𝑦2 + 𝑧2 = 45 at the point 𝑃(2, −3,−1). 
 
Solutions 

Let 𝐹(𝑥, 𝑦, 𝑧) = 2𝑥2 + 4𝑦2 + 𝑧2 − 45 for any (𝑥, 𝑦, 𝑧) ∈ 𝑅3. 

∇𝐹(𝑥, 𝑦, 𝑧) = (4𝑥, 8𝑦, 2𝑧) 
∇𝐹(2, −3,−1) = (8, −24,−2) is a normal vector of  required tangent plane. 
An equation of  required tangent plane is 

((𝑥, 𝑦, 𝑧) − (2, −3,−1)) ∙ (8, −24,−2) = 0 

8𝑥 − 24𝑦 − 2𝑧 − (16 + 72 + 2) = 0 

8𝑥 − 24𝑦 − 2𝑧 − 90 = 0 

4𝑥 − 12𝑦 − 𝑧 − 45 = 0 
 
Theorem: 

 Suppose 𝐹 and 𝐺 are continuously differentiable. The intersection of  𝐹(𝑥, 𝑦, 𝑧) = 0 and 𝐺(𝑥, 𝑦, 𝑧) = 0 will be some sort of  
curve in space.  

If  𝑃(𝑎, 𝑏, 𝑐) is a point of  such curve such that ∇𝐹(𝑃) and ∇𝐺(𝑃) are not collinear, then ∇𝐹(𝑃) × ∇𝐺(𝑃) will be a vector 

parallelt to the tangent vector of  the curve (the intersection of  the two surfaces) at 𝑃. 
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Example 1: 

 The point 𝑃(1, −1,2) lies on both paraboloids 𝐹(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 𝑧 = 0 and  

𝐺(𝑥, 𝑦, 𝑧) = 2𝑥2 + 3𝑦2 + 𝑧2 − 9 = 0. 

 Write an equation of  the plane through 𝑃 and is normal to the curve of  intersection of  these two surfaces. 
 
Solutions 

𝐹(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 𝑧 

∇𝐹(𝑥, 𝑦, 𝑧) = (2𝑥, 2𝑦, −1); ∇𝐹(𝑃) = ∇𝐹(1, −1,2) = (2, −2,−1) 
𝐺(𝑥, 𝑦, 𝑧) = 2𝑥2 + 3𝑦2 + 𝑧2 − 9 

∇𝐺(𝑥, 𝑦, 𝑧) = (4𝑥, 6𝑦, 2𝑧); ∇𝐺(𝑃) = ∇𝐺(1, −1,2) = (4, −6,4) 
∇𝐹(𝑃) × ∇𝐺(𝑃) 

= |
𝑖 𝑗 𝑘⃗ 

2 −2 −1
4 −6 4

| = −14𝑖 − 12𝑗 − 4𝑘⃗ = (−14,−12,−4) 

An equation of  required tangent plane is 

((𝑥, 𝑦, 𝑧) − (1, −1,2)) ∙ (−14,−12,−4) = 0 

−14𝑥 − 12𝑦 − 4𝑧 − (−14 + 12 − 8) = 0 

−14𝑥 − 12𝑦 − 4𝑧 + 10 = 0 

7𝑥 + 6𝑦 + 2𝑧 − 5 = 0 
 
Example 2: 

Write an equation of  the line tangent at the point 𝑃(1,2) to the folium of  Descartes 

with equation 𝐹(𝑥, 𝑦) = 2𝑥3 + 2𝑦3 − 9𝑥𝑦 = 0.  

 
Solutions 

𝐹(𝑥, 𝑦) = 2𝑥3 + 2𝑦3 − 9𝑥𝑦 

∇𝐹(𝑥, 𝑦) = (6𝑥2 − 9𝑦, 6𝑦2 − 9𝑥); ∇𝐹(𝑃) = ∇𝐹(1,2) = (−12,15) 
A vector normal to required tangent line is (−12,15). 
For any point (𝑥, 𝑦) on required tangent line, (𝑥, 𝑦) − (1,2) is a vector in the direction of  the required tangent line. 

An equation of  required tangent line is ((𝑥, 𝑦) − (1,2)) ∙ (−12,15) = 0. 

−12(𝑥 − 1) + 15(𝑦 − 2) = 0  

−12𝑥 + 12 + 15𝑦 − 30 = 0 

−12𝑥 + 15𝑦 − 18 = 0 

4𝑥 − 5𝑦 + 6 = 0 
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# Lagrange Multiplers and Constrained Optimization 
Theorem (Two Dimensional Case) 

Let 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) be continuously differentiable functions.  

If  the maximum value (or minimum value) of  𝑓(𝑥, 𝑦) subject to the constraint 𝑔(𝑥, 𝑦) = 0 occur at a point 𝑃(𝑥0, 𝑦0) where 

∇𝑔(𝑃) ≠ (0,0), then ∇𝑓(𝑃) = λ∇𝑔(𝑃) for some constant λ. 
 

Proof  for the case (maximum value at 𝑷(𝒙𝟎, 𝒚𝟎)) 
Suppose the maximum value of  𝑓(𝑥, 𝑦) subject to the constraint 𝑔(𝑥, 𝑦) = 0 occurs at a point 𝑃(𝑥0, 𝑦0) where ∇𝑔(𝑃) ≠ (0,0). 
 

We consider a curve on 𝑔(𝑥, 𝑦) = 0 and passing through 𝑃, say 𝑟: (−1,1) → 𝑅2,  

𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) and 𝑟(0) = 𝑃(𝑥0, 𝑦0). 

0 =
𝑑

𝑑𝑡
𝑓(𝑥(𝑡), 𝑦(𝑡))|

𝑡=0
(as 𝑃 is a local maxima on 𝑔(𝑥, 𝑦) = 0) 

0 =
𝑑

𝑑𝑡
𝑓(𝑥(𝑡), 𝑦(𝑡))|

𝑡=0
= ∇𝑓(𝑥(𝑡), 𝑦(𝑡)) ∙ 𝑟′(𝑡)|

𝑡=0
= ∇𝑓(𝑃) ∙ 𝑟′(0) 

This is true for every curve on 𝑔(𝑥, 𝑦) = 0 and passing through 𝑃. 

So, ∇𝑓(𝑃) is normal to any tangent vector of  every curve that is on 𝑔(𝑥, 𝑦) = 0 and is passing through 𝑃. 
  

Also, 0 = 𝑔(𝑥(𝑡), 𝑦(𝑡)). We have 0 =
𝑑

𝑑𝑡
𝑔(𝑥(𝑡), 𝑦(𝑡)) =

𝑑

𝑑𝑡
𝑔(𝑥(𝑡), 𝑦(𝑡))|

𝑡=0
 

= ∇𝑔(𝑥(𝑡), 𝑦(𝑡)) ∙ 𝑟′(𝑡)|
𝑡=0

= ∇𝑔(𝑃) ∙ 𝑟′(0) 

This is true for every curve on 𝑔(𝑥, 𝑦) = 0 and passing through 𝑃. 

So, ∇𝑔(𝑃) is normal to any tangent vector of  every curve that is on 𝑔(𝑥, 𝑦) = 0 and is passing through 𝑃. 

As ∇𝑔(𝑃) ≠ (0,0), ∇𝑓(𝑃) and ∇𝑔(𝑃) must be parallel to each other. 

So, ∇𝑓(𝑃) = λ∇𝑔(𝑃) for some constant λ. 
 

Remark: We may generalize to 𝐧 −dimensional case.  
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Example 1: 

Find the points of  the rectangular hyperbola 𝑥𝑦 = 1 that are closest to the origin (0,0). 

 
 
Solutions 

Let 𝑑(𝑥, 𝑦) = √𝑥2 + 𝑦2  for any (𝑥, 𝑦) ∈ 𝑅2. 

Let 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2  for any (𝑥, 𝑦) ∈ 𝑅2. 

Let 𝑔(𝑥, 𝑦) = 𝑥𝑦 − 1  for any (𝑥, 𝑦) ∈ 𝑅2. 

𝑑(𝑥0, 𝑦0) is a solution for “Minimize 𝑑(𝑥, 𝑦) subject to 𝑔(𝑥, 𝑦) = 0” ⟺ 

𝑓(𝑥0, 𝑦0) is a solution for “Minimize 𝑓(𝑥, 𝑦) subject to 𝑔(𝑥, 𝑦) = 0” 
 

Consider the problem “Minimize 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 subject to 𝑔(𝑥, 𝑦) = 0”, 

∇𝑓(𝑥, 𝑦) = (2𝑥, 2𝑦), ∇𝑔(𝑥, 𝑦) = (𝑦, 𝑥) 
Put ∇𝑓(𝑥, 𝑦) = 𝜆∇𝑔(𝑥, 𝑦), we have (2𝑥, 2𝑦) = 𝜆(𝑦, 𝑥) 

{
2𝑥 = 𝜆𝑦
2𝑦 = 𝜆𝑥

 

So, 4𝑦 = 𝜆(2𝑥) = 𝜆(𝜆𝑦) = 𝜆2𝑦⟹ (𝜆 − 2)(𝜆 + 2)𝑦 = 0⟹ 𝜆 = 2 or −2 or 𝑦 = 0 

𝑦 = 0 must be rejected as 𝑥𝑦 = 1 

For 𝜆 = 2, 𝑥 = 𝑦, so 𝑥2 = 1 (as 𝑥𝑦 = 1), 𝑥 = 1 or −1. The two points are (1,1) and (−1,−1). 
For 𝜆 = −2, 𝑥 = −𝑦, so −𝑦2 = 1 (as 𝑥𝑦 = 1), 𝑦2 = −1. No real solutions. 
 

Thus, the two points are (1,1) and (−1,−1). 
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Example 2: 
What is the maximal cross-sectional area of  a rectangular beam cut as indicated from 

an elliptical log with semi-axes of  lengths 𝑎 = 2 𝑓𝑡. and 𝑏 = 1 𝑓𝑡.? 

 
Solutions 

An equation of  the given ellipse is 
𝑥2

22
+ 𝑦2 = 1. 

Let 𝐴(𝑥, 𝑦) = 4𝑥𝑦 for any (𝑥, 𝑦) ∈ 𝑅2. 

Let 𝑔(𝑥, 𝑦) =
1

4
𝑥2 + 𝑦2 − 1 for any (𝑥, 𝑦) ∈ 𝑅2. 

We consider “Maximize 𝐴(𝑥, 𝑦) subject to 𝑔(𝑥, 𝑦) = 0”. 

∇𝐴(𝑥, 𝑦) = (4𝑦, 4𝑥), ∇𝑔(𝑥, 𝑦) = (
1

2
𝑥, 2𝑦) 

Put ∇𝐴(𝑥, 𝑦) = 𝜆∇𝑔(𝑥, 𝑦), we have (4𝑦, 4𝑥) = 𝜆 (
1

2
𝑥, 2𝑦) 

{
4𝑦 =

1

2
𝜆𝑥

4𝑥 = 2𝜆𝑦
 

8𝑥 = 𝜆(4𝑦) = 𝜆 (
1

2
𝜆𝑥) =

1

2
𝜆2𝑥 ⟹ 16𝑥 = 𝜆2𝑥 ⟹ (𝜆 − 4)(𝜆 + 4)𝑥 = 0 ⟹ 𝜆 = 4 or −4 or 𝑥 = 0 

But 𝑥 = 0 must be rejected, otherwise 𝑥 = 0 = 𝑦 (But it doesn’t satisfy 
1

4
𝑥2 + 𝑦2 = 1) 

For 𝜆 = 4, 4𝑦 = 2𝑥, 𝑥 = 2𝑦. Also, we have 
1

4
𝑥2 + 𝑦2 = 1⟹ 𝑦2 + 𝑦2 = 1⟹ 2𝑦2 = 1⟹ 𝑦 =

±1

√2
. 

The four points on the ellipse for this case are (
2

√2
,
1

√2
), (

2

√2
,
−1

√2
), (

−2

√2
,
1

√2
) and (

−2

√2
,
−1

√2
). 

For 𝜆 = −4, 4𝑦 = −2𝑥, 𝑥 = −2𝑦.  

Also, we have 
1

4
𝑥2 + 𝑦2 = 1⟹ 𝑦2 + 𝑦2 = 1⟹ 2𝑦2 = 1 ⟹ 𝑦 =

±1

√2
. 

The four points on the ellipse for this case are (
2

√2
,
1

√2
), (

2

√2
,
−1

√2
), (

−2

√2
,
1

√2
) and (

−2

√2
,
−1

√2
). 

The maximal cross-sectional area is 4 ×
2

√2
×

1

√2
= 4 (in 𝑓𝑡2.) 

 
Remark: 

Area of  the ellipse is 𝜋𝑎𝑏 = 2𝜋. 
4

2𝜋
× 100% ≈ 63.66% 

 
 
 
 
 
 
 
 
 
  



 
Course Code: MATH 2000 
Course Name: Engineering Mathematics I 

 
Lecture Notes for Chapter 12: Differentiation of  Functions of  Several Variables 

 

Page 43 

 

Example 3: 
Find the maximum volume of  a rectangular box inscribed in the ellipsoid 
𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1 with its faces parallel to the coordinate planes. 

(Assumed 𝑎 > 0, 𝑏 > 0 and 𝑐 > 0.) 

 

Solutions 

Let 𝑉(𝑥, 𝑦, 𝑦) = 8𝑥𝑦𝑧 for any (𝑥, 𝑦, 𝑧) ∈ 𝑅3. 

Let 𝑔(𝑥, 𝑦, 𝑧) =
𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
− 1 for any (𝑥, 𝑦, 𝑧) ∈ 𝑅3. 

We consider “Maximize 𝑉(𝑥, 𝑦, 𝑧) subject to 𝑔(𝑥, 𝑦, 𝑧) = 0”. 

∇𝑉(𝑥, 𝑦, 𝑧) = (8𝑦𝑧, 8𝑥𝑧, 8𝑥𝑦), ∇𝑔(𝑥, 𝑦, 𝑧) = (
2𝑥

𝑎2
,
2𝑦

𝑏2
,
2𝑧

𝑐2
) 

Put ∇𝑉(𝑥, 𝑦, 𝑧) = 𝜆∇𝑔(𝑥, 𝑦, 𝑧), we have (8𝑦𝑧, 8𝑥𝑧, 8𝑥𝑦) = 𝜆 (
2𝑥

𝑎2
,
2𝑦

𝑏2
,
2𝑧

𝑐2
) 

{
 
 

 
 8𝑦𝑧 =

2𝜆𝑥

𝑎2

8𝑥𝑧 =
2𝜆𝑦

𝑏2

8𝑥𝑦 =
2𝜆𝑧

𝑐2

 

2𝜆𝑥2

𝑎2
=
2𝜆𝑦2

𝑏2
=
2𝜆𝑧2

𝑐2
= 8𝑥𝑦𝑧 ⟹

𝑥2

𝑎2
=
𝑦2

𝑏2
=
𝑧2

𝑐2
 

Also, 
𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1. Thus, 

𝑥2

𝑎2
=

𝑦2

𝑏2
=

𝑧2

𝑐2
=

1

3
. 

Assume 𝑥 > 0, 𝑦 > 0 and 𝑧 > 0, we have 𝑥 =
1

√3
𝑎, 𝑦 =

1

√3
𝑏 and 𝑧 =

1

√3
𝑐. 

The maximum volume is 8 ×
1

√3
𝑎 ×

1

√3
𝑏 ×

1

√3
𝑐 =

8√3

9
𝑎𝑏𝑐. 

Remark: 

The volume of  the ellipsoid is 
4

3
𝜋𝑎𝑏𝑐. 

8√3
9
𝑎𝑏𝑐

4
3
𝜋𝑎𝑏𝑐

× 100% =
2√3

3𝜋
× 100% ≈ 36.76% 
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# With 2 Constraints 
Theorem (Three Dimensional Case) 

Let 𝑓(𝑥, 𝑦, 𝑧), 𝑔(𝑥, 𝑦, 𝑧) and ℎ(𝑥, 𝑦, 𝑧) be continuously differentiable functions.  

If  the maximum value (or minimum value) of  𝑓(𝑥, 𝑦, 𝑧) subject to the constraints 𝑔(𝑥, 𝑦, 𝑧) = 0 and ℎ(𝑥, 𝑦, 𝑧) = 0 occur at 

a point 𝑃(𝑥0, 𝑦0, 𝑧0) where ∇𝑔(𝑃) ≠ (0,0,0) and ∇ℎ(𝑃) ≠ (0,0,0), then  

∇𝑓(𝑃) = λ1∇𝑔(𝑃) + λ2∇ℎ(𝑃) for some constants λ1 and λ2. 
 

Proof  for the case (maximum value at 𝑷(𝒙𝟎, 𝒚𝟎, 𝒛𝟎)) 
 Suppose the maximum value of  𝑓(𝑥, 𝑦, 𝑧) subject to the constraints 𝑔(𝑥, 𝑦, 𝑧) = 0 and ℎ(𝑥, 𝑦, 𝑧) = 0 occurs at a point 

𝑃(𝑥0, 𝑦0, 𝑧0) where ∇𝑔(𝑃) ≠ (0,0,0) and ∇ℎ(𝑃) ≠ (0,0,0). 
 We consider a curve that is on the intersection of  𝑔(𝑥, 𝑦, 𝑧) = 0 and ℎ(𝑥, 𝑦, 𝑧) = 0 and is passing through 𝑃, say 

𝑟: (−1,1) → 𝑅3, 𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) and 𝑟(0) = 𝑃(𝑥0, 𝑦0, 𝑧0). 
 Similar to the proof  for one constraint case, we have  

∇𝑓(𝑃) ∙ 𝑟′(0) = 0 

∇𝑔(𝑃) ∙ 𝑟′(0) = 0 

∇ℎ(𝑃) ∙ 𝑟′(0) = 0 

As ∇𝑔(𝑃) ≠ (0,0,0) and ∇ℎ(𝑃) ≠ (0,0,0), they are also non-parallel, 

 𝑓(𝑃) must lie on the plane spanned by ∇𝑔(𝑃) and ∇ℎ(𝑃). 
 

So, ∇𝑓(𝑃) = λ1∇𝑔(𝑃) + λ2∇ℎ(𝑃) for some constants λ1 and λ2. 
 
Remark: We may generalize to case with more constraints. 
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Example 4: 

The plane 𝑥 + 𝑦 + 𝑧 = 12 interesects the paraboloid 𝑧 = 𝑥2 + 𝑦2 in an ellipse. 
Find the highest and lowest points on this ellipse. 

 

Solutions 

Let 𝑓(𝑥, 𝑦, 𝑧) = 𝑧 for any (𝑥, 𝑦, 𝑧) ∈ 𝑅3. 

Let 𝑔(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 − 12 for any (𝑥, 𝑦, 𝑧) ∈ 𝑅3. 

Let ℎ(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑥2 − 𝑦2 for any (𝑥, 𝑦, 𝑧) ∈ 𝑅3. 

We consider “Maximize 𝑓(𝑥, 𝑦, 𝑧) subject to 𝑔(𝑥, 𝑦, 𝑧) = 0 and ℎ(𝑥, 𝑦, 𝑧) = 0” AND  

“Minimize 𝑓(𝑥, 𝑦, 𝑧) subject to 𝑔(𝑥, 𝑦, 𝑧) = 0 and ℎ(𝑥, 𝑦, 𝑧) = 0”. 
 

∇𝑓(𝑥, 𝑦, 𝑧) = (0,0,1); ∇𝑔(𝑥, 𝑦, 𝑧) = (1,1,1); ∇ℎ(𝑥, 𝑦, 𝑧) = (−2𝑥,−2𝑦, 1) 
∇𝑓(𝑥, 𝑦, 𝑧) = λ1∇𝑔(𝑥, 𝑦, 𝑧) + λ2∇ℎ(𝑥, 𝑦, 𝑧) 
(0,0,1) = λ1(1,1,1) + λ2(−2𝑥,−2𝑦, 1) 
 
 

So, {

λ1 − 2λ2𝑥 = 0
λ1 − 2λ2𝑦 = 0
λ1 + λ2 = 1

. 

From the first two equations, we have 𝑥 =
λ1 

2λ2
= 𝑦. 

𝑔(𝑥, 𝑦, 𝑧) = 0⟹ 𝑥 + 𝑦 + 𝑧 − 12 = 0⟹ 𝑧 = 12 − 2𝑥 

ℎ(𝑥, 𝑦, 𝑧) = 0⟹ 𝑧 − 𝑥2 − 𝑦2 = 0⟹ 𝑧 = 2𝑥2 

Put 2𝑥2 = 12 − 2𝑥 ⟹ 𝑥2 + 𝑥 − 6 = 0⟹ (𝑥 + 3)(𝑥 − 2) = 0⟹ 𝑥 = −3 or 2. 

The points are (−3,−3,18) and (2,2,8). 
The highest point is (−3,−3,18) and the lowest point is (2,2,8). 
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Applications 
Example 1 (Shell’s Law): 

A traveller (initially started at a fixed point ℎ1 units above a line 𝐿) has to go through the line 

to get to another fixed point ℎ2 units below the  line 𝐿 in minimum time. Suppose his speed 

is constantly 𝑣1 above the  line and constantly 𝑣2 below the line. Show that the condition for 

the minimum time path is  
𝑣1

𝑣2
=

𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛽
, where 𝛼 is the angle of  incidence and 𝛽 is the angle of  

reflection. 

 
Proof 

𝑐𝑜𝑠𝛼 =
ℎ1

𝑑1
; 𝑑1 = ℎ1𝑠𝑒𝑐𝛼; 𝑐𝑜𝑠𝛽 =

ℎ2

𝑑2
; 𝑑2 = ℎ2𝑠𝑒𝑐𝛽 

Let 𝑇(𝛼, 𝛽) =
𝑑1

𝑣1
+

𝑑2

𝑣2
=

ℎ1

𝑣1
𝑠𝑒𝑐𝛼 +

ℎ2

𝑣2
𝑠𝑒𝑐𝛽. 

Note that: ℎ1𝑡𝑎𝑛𝛼 + ℎ2𝑡𝑎𝑛𝛽 must be a constant (From a fixed point to another fixed point), say 𝐶. 

Let 𝑔(𝛼, 𝛽) = ℎ1𝑡𝑎𝑛𝛼 + ℎ2𝑡𝑎𝑛𝛽 − 𝐶. 

We consider “Minimize 𝑇(𝛼, 𝛽) subject to 𝑔(𝛼, 𝛽) = 0”. 

∇𝑇(𝛼, 𝛽) = (
ℎ1

𝑣1
𝑡𝑎𝑛𝛼 ∙ 𝑠𝑒𝑐𝛼,

ℎ2

𝑣2
𝑡𝑎𝑛𝛽 ∙ 𝑠𝑒𝑐𝛽); ∇𝑔(𝛼, 𝛽) = (ℎ1𝑠𝑒𝑐

2𝛼, ℎ2𝑠𝑒𝑐
2𝛽) 

∇𝑇(𝛼, 𝛽) = 𝜆∇𝑔(𝛼, 𝛽)⟹ (
ℎ1
𝑣1
𝑡𝑎𝑛𝛼 ∙ 𝑠𝑒𝑐𝛼,

ℎ2
𝑣2
𝑡𝑎𝑛𝛽 ∙ 𝑠𝑒𝑐𝛽) = 𝜆(ℎ1𝑠𝑒𝑐

2𝛼, ℎ2𝑠𝑒𝑐
2𝛽) 

{
 

 
ℎ1
𝑣1
𝑡𝑎𝑛𝛼 ∙ 𝑠𝑒𝑐𝛼 = 𝜆ℎ1𝑠𝑒𝑐

2𝛼

ℎ2
𝑣2
𝑡𝑎𝑛𝛽 ∙ 𝑠𝑒𝑐𝛽 = 𝜆ℎ2𝑠𝑒𝑐

2𝛽

 

So, 𝜆 =
𝑠𝑖𝑛𝛼

𝑣1
=

𝑠𝑖𝑛𝛽

𝑣2
. 

Thus, 
𝑣1

𝑣2
=

𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛽
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Example 2 (Arithmetic-Geometric Mean Inequality): 
(i) Suppose that 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are positive. Show that the minimum value of   

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 subject to the constraint 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛 = 1 is 𝑛. 

(ii) Given 𝑛 positive numbers 𝑎1, 𝑎2, ⋯ , 𝑎𝑛, let 𝑥𝑖 =
𝑎𝑖

(𝑎1∙𝑎2∙⋯∙𝑎𝑛)
1/𝑛 for 𝑖 = 1,2,⋯ , 𝑛 and apply the result in part (i)  

to deduce the arithmetic-geometric mean inequality: 

√𝑎1 ∙ 𝑎2 ∙ ⋯ ∙ 𝑎𝑛
𝑛 ≤

𝑎1 + 𝑎2 +⋯+ 𝑎𝑛
𝑛

 

 
Proof  of  (ii) 

As 𝑥𝑖 =
𝑎𝑖

(𝑎1∙𝑎2∙⋯∙𝑎𝑛)
1/𝑛 for 𝑖 = 1,2,⋯ , 𝑛, 

𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛 =∏
𝑎𝑖

(𝑎1 ∙ 𝑎2 ∙ ⋯ ∙ 𝑎𝑛)
1
𝑛

𝑛

𝑖=1
=
𝑎1 ∙ 𝑎2 ∙ ⋯ ∙ 𝑎𝑛
𝑎1 ∙ 𝑎2 ∙ ⋯ ∙ 𝑎𝑛

= 1 

𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 =∑
𝑎𝑖

(𝑎1 ∙ 𝑎2 ∙ ⋯ ∙ 𝑎𝑛)
1
𝑛

𝑛

𝑖=1
=
𝑎1 + 𝑎2 +⋯+ 𝑎𝑛

(𝑎1 ∙ 𝑎2 ∙ ⋯ ∙ 𝑎𝑛)
1
𝑛

 

By part(i), 
𝑎1+𝑎2+⋯+𝑎𝑛

(𝑎1∙𝑎2∙⋯∙𝑎𝑛)
1
𝑛

≥ 𝑛 

Thus, √𝑎1 ∙ 𝑎2 ∙ ⋯ ∙ 𝑎𝑛
𝑛 ≤

𝑎1+𝑎2+⋯+𝑎𝑛

𝑛
 

 
Proof  of  (i) 

Let 𝑓: 𝑅𝑛 → 𝑅 be defined by 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 and let 𝑔: 𝑅𝑛 → 𝑅 be defined by  

𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛 − 1. Let 𝑞𝑖 =
𝑥1∙𝑥2∙⋯∙𝑥𝑛

𝑥𝑖
 for 𝑖 = 1,2,⋯ , 𝑛. 

We consider “Minimize 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) subject to 𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 0”. 

∇𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = (1,1,⋯ ,1), ∇𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = (𝑞1, 𝑞2, ⋯ , 𝑞𝑛) 
∇𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝜆∇𝑔(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 
⟹(1,1,⋯ ,1) = 𝜆(𝑞1, 𝑞2, ⋯ , 𝑞𝑛) ⟹ 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 𝜆 ∙ 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛 

Also 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛 − 1 = 0, we have 𝑥1
𝑛 = 1. Hence, 𝑥1 = 1 (as 𝑥1 > 0) 

Thus, 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 1 and 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 𝑛. 

The minimum value is 𝑛. 
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# Critical Points of  Functions of  One Variable 
# Second Derivative Test 

Let 𝑓 be a real-valued function on 𝑥 and let 𝑐, 𝛿 ∈ 𝑅 with 𝛿 > 0. 

Suppose 𝑓′′ is continuous on (𝑐 − 𝛿, 𝑐 + 𝛿) AND 𝑓′(𝑐) = 0. 
We have: 

(i) If  𝑓′′(𝑐) > 0, then (𝑐, 𝑓(𝑐)) is a local minima.  

(ii) If  𝑓′′(𝑐) < 0, then (𝑐, 𝑓(𝑐)) is a local maxima.  

(iii) If  𝑓′′(𝑐) = 0, then we have NO conclusions on the nature of  (𝑐, 𝑓(𝑐)). 
 

 
# Critical Points of  Functions of  Two Variables 
Definition 

Let 𝑟 ∈ 𝑅 with 𝑟 > 0 and 𝑃(𝑎, 𝑏) ∈ 𝑅2. 

Suppose 𝑓(𝑥, 𝑦) is a continuously differentiable function defined on an open ball 𝐵(𝑃, 𝑟). 
Note: 𝑓𝑥𝑦(𝑃) = 𝑓𝑦𝑥(𝑃). 

We say 𝑃 is a critical point of  𝑓 if  ∇𝑓(𝑃) = (0,0). 
 

Let 𝐴 = 𝑓𝑥𝑥(𝑃), 𝐵 = 𝑓𝑥𝑦(𝑃) = 𝑓𝑦𝑥(𝑃), 𝐶 = 𝑓𝑦𝑦(𝑃). 

Let ∆= |
𝐴 𝐵
𝐵 𝐶

| = 𝐴𝐶 − 𝐵2. 

 
Theorem (Two Variables Second Derivative Tests) 

(i) If  𝐴 > 0 and ∆> 0, then (𝑎, 𝑏, 𝑓(𝑎, 𝑏)) is a local minima 

(ii) If  𝐴 < 0 and ∆> 0, then (𝑎, 𝑏, 𝑓(𝑎, 𝑏)) is a local maxima 

(iii) If  ∆< 0, then (𝑎, 𝑏, 𝑓(𝑎, 𝑏)) is neither a local minima nor a local maxima.  

It is called a saddle point. 
Proof: Will be discussed later 
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Example 1: 

 Locate and classify the critical points of  𝑓(𝑥, 𝑦) = 3𝑥 − 𝑥3 − 3𝑥𝑦2. 
 
Solution 

As 𝑓 is a polynomial in 𝑥 and 𝑦, 𝑓 is continuously differentiable on 𝑅2. 

∇𝑓(𝑥, 𝑦) = (3 − 3𝑥2 − 3𝑦2, −6𝑥𝑦) 
𝑓𝑥(𝑥, 𝑦) = 0⟺ 3 − 3𝑥2 − 3𝑦2 = 0⟺ 𝑥2 + 𝑦2 = 1 

𝑓𝑦(𝑥, 𝑦) = 0⟺−6𝑥𝑦 = 0⟺ 𝑥 = 0 or 𝑦 = 0 

∇𝑓(𝑥, 𝑦) = (0,0)⟺ (𝑥, 𝑦) = (0,1) or (0, −1) or (1,0) or (−1,0) 
The critical points of  𝑓 on 𝑅2 are (0,1), (0, −1), (1,0) and (−1,0). 
𝑓𝑥𝑥(𝑥, 𝑦) = −6𝑥; 𝑓𝑥𝑦(𝑥, 𝑦) = 𝑓𝑦𝑥(𝑥, 𝑦) = −6𝑦; 𝑓𝑦𝑦(𝑥, 𝑦) = −6𝑥 

∆(𝑥, 𝑦) = |
𝑓𝑥𝑥(𝑥, 𝑦) 𝑓𝑥𝑦(𝑥, 𝑦)

𝑓𝑦𝑥(𝑥, 𝑦) 𝑓𝑦𝑦(𝑥, 𝑦)
| = |

−6𝑥 −6𝑦
−6𝑦 −6𝑥

| = 36𝑥2 − 36𝑦2 

 
(i) Consider the critical point (1,0) 

𝑓𝑥𝑥(1,0) = −6 < 0, ∆(1,0) = 36 > 0, (1,0,2) is a local maxima 
(ii) Consider the critical point (−1,0) 

𝑓𝑥𝑥(−1,0) = 6 > 0, ∆(−1,0) = 36 > 0, (−1,0, −2) is a local minima 
(iii)  Consider the critical point (0,1) 

𝑓𝑥𝑥(0,1) = 0, ∆(0,1) = −36 < 0, (0,1,0) is a saddle point 
(iv) Consider the critical point (0, −1) 

𝑓𝑥𝑥(0, −1) = 0, ∆(0, −1) = −36 < 0, (0, −1,0) is a saddle point 
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Example 2: 

 Locate and classify the critical points of  𝑓(𝑥, 𝑦) = 6𝑥𝑦2 − 2𝑥3 − 3𝑦4. 
 
Solution 

As 𝑓 is a polynomial in 𝑥 and 𝑦, 𝑓 is continuously differentiable on 𝑅2. 

∇𝑓(𝑥, 𝑦) = (6𝑦2 − 6𝑥2, 12𝑥𝑦 − 12𝑦3) 
𝑓𝑥(𝑥, 𝑦) = 0⟺ 6𝑦2 − 6𝑥2 = 0⟺ 𝑥2 = 𝑦2⟺𝑥 = 𝑦 or 𝑥 = −𝑦 

𝑓𝑦(𝑥, 𝑦) = 0⟺ 12𝑥𝑦 − 12𝑦3 = 0⟺ 12𝑦(𝑥 − 𝑦2) = 0⟺ 𝑦 = 0 or 𝑥 = 𝑦2 

For 𝑥 = 𝑦2 and 𝑥 = 𝑦, we have (𝑥, 𝑦) = (0,0) or (𝑥, 𝑦) = (1,1) 
For 𝑥 = 𝑦2 and 𝑥 = −𝑦, we have (𝑥, 𝑦) = (0,0) or (𝑥, 𝑦) = (1,−1) 
∇𝑓(𝑥, 𝑦) = (0,0)⟺ (𝑥, 𝑦) = (0,0) or (1,1) or (1, −1) 
The critical points of  𝑓 on 𝑅2 are (0,0), (1,1) and (1, −1). 
𝑓𝑥𝑥(𝑥, 𝑦) = −12𝑥; 𝑓𝑥𝑦(𝑥, 𝑦) = 𝑓𝑦𝑥(𝑥, 𝑦) = 12𝑦; 𝑓𝑦𝑦(𝑥, 𝑦) = 12𝑥 − 36𝑦

2 

∆(𝑥, 𝑦) = |
𝑓𝑥𝑥(𝑥, 𝑦) 𝑓𝑥𝑦(𝑥, 𝑦)

𝑓𝑦𝑥(𝑥, 𝑦) 𝑓𝑦𝑦(𝑥, 𝑦)
| = |

−12𝑥 12𝑦

12𝑦 12𝑥 − 36𝑦2
| 

 
(i) Consider the critical point (0,0,0) 

𝑓𝑥𝑥(0,0) = 0, ∆(0,0) = 0 
The test fails. 

𝑓(0,0) = 0 

𝑓(0, 𝑦) = −3𝑦4 < 0 when 𝑦 ≠ 0 amd 𝑦 ≈ 0 

𝑓(𝑥, 0) = −2𝑥3 > 0 when 𝑥 < 0 and 𝑥 ≈ 0 

(0,0,0) is neither a local maxima nor a local minima. It is a saddle point. 
(ii) Consider the critical point (1,1) 

𝑓𝑥𝑥(1,1) = −12 < 0,  ∆(1,1) = |
−12 12
12 −24

| = 144 > 0, (1,1,1) is a local maxima 

(iii)  Consider the critical point (1, −1) 

𝑓𝑥𝑥(1, −1) = −12 < 0, ∆(1, −1) = |
−12 −12
−12 −24

| = 144 > 0, (1, −1,1) is a local maxima 
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Example 3: 

 Locate and classify the critical points of  𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦4. 
 
Solution 

As 𝑓 is a polynomial in 𝑥 and 𝑦, 𝑓 is continuously differentiable on 𝑅2. 

∇𝑓(𝑥, 𝑦) = (2𝑥, −4𝑦3) 
∇𝑓(𝑥, 𝑦) = (0,0)⟺ (2𝑥,−4𝑦3) = (0,0)⟺ (𝑥, 𝑦) = (0,0) 
The critical point of  𝑓 on 𝑅2 is (0,0) 
𝑓𝑥𝑥(𝑥, 𝑦) = 2; 𝑓𝑥𝑦(𝑥, 𝑦) = 𝑓𝑦𝑥(𝑥, 𝑦) = 0; 𝑓𝑦𝑦(𝑥, 𝑦) = −12𝑦2 

∆(𝑥, 𝑦) = |
𝑓𝑥𝑥(𝑥, 𝑦) 𝑓𝑥𝑦(𝑥, 𝑦)

𝑓𝑦𝑥(𝑥, 𝑦) 𝑓𝑦𝑦(𝑥, 𝑦)
| = |

2 0
0 −12𝑦2

| 

𝑓𝑥𝑥(0,0) = 0, ∆(0,0) = 0 
The test fails. 

𝑓(0,0) = 0 

𝑓(0, 𝑦) = −𝑦4 < 0 when 𝑦 ≠ 0 and 𝑦 ≈ 0 

𝑓(𝑥, 0) = 𝑥2 > 0 when 𝑥 ≠ 0 and 𝑥 ≈ 0 

(0,0,0) is neither a local maxima nor a local minima. It is a saddle point. 
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Example 4: 

 Locate and classify the critical points of  𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦4. 
 
Solution 

As 𝑓 is a polynomial in 𝑥 and 𝑦, 𝑓 is continuously differentiable on 𝑅2. 

∇𝑓(𝑥, 𝑦) = (2𝑥, 4𝑦3) 
∇𝑓(𝑥, 𝑦) = (0,0)⟺ (2𝑥, 4𝑦3) = (0,0)⟺ (𝑥, 𝑦) = (0,0) 
The critical point of  𝑓 on 𝑅2 is (0,0) 
𝑓𝑥𝑥(𝑥, 𝑦) = 2; 𝑓𝑥𝑦(𝑥, 𝑦) = 𝑓𝑦𝑥(𝑥, 𝑦) = 0; 𝑓𝑦𝑦(𝑥, 𝑦) = 12𝑦2 

∆(𝑥, 𝑦) = |
𝑓𝑥𝑥(𝑥, 𝑦) 𝑓𝑥𝑦(𝑥, 𝑦)

𝑓𝑦𝑥(𝑥, 𝑦) 𝑓𝑦𝑦(𝑥, 𝑦)
| = |

2 0
0 12𝑦2

| 

𝑓𝑥𝑥(0,0) = 0, ∆(0,0) = 0 
The test fails. 

𝑓(0,0) = 0 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦4 ≥ 0 for any (𝑥, 𝑦) ∈ 𝑅2 

(0,0,0) is a local minima.  

  
 
Exercise 5: 

 Locate and classify the critical points of  𝑓(𝑥, 𝑦) = −𝑥2 − 𝑦4. 
 
Answer 

The critical point of  𝑓 on 𝑅2 is (0,0). 
(0,0,0) is a local maxima. 
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# Behaviour of  Quadratic Form 

Let 𝑄(ℎ, 𝑘) = 𝐴ℎ2 + 2𝐵ℎ𝑘 + 𝐶𝑘2. 

Suppose 𝐴 ≠ 0. Let ∆= 𝐴𝐶 − 𝐵2. 

Then, 𝑄(ℎ, 𝑘) =
1

𝐴
[(𝐴ℎ + 𝐵𝑘)2 + ∆𝑘2]. 

Theorems: 
(i) If 𝐴 > 0 and ∆> 0, then (0,0,0) is a local minima. 

Proof: 

𝑄(ℎ, 𝑘) ≥ 0 = 𝑄(0,0) 

 
(ii) If 𝐴 < 0 and ∆> 0, then (0,0,0) is a local maxima. 

Proof: 

𝑄(ℎ, 𝑘) ≤ 0 = 𝑄(0,0) 

 
(iii) If  ∆< 0, then (0,0,0) is neither a local minima nor a local maxima. 

Proof: 

Case 1: 𝐴 > 0 

We can choose 𝑘 > 0 and 𝑘 ≈ 0 so that (𝐴ℎ + 𝐵𝑘)2 + ∆𝑘2 > 0 and ‖(ℎ, 𝑘)‖ is small. 

We can choose ℎ > 0 and ℎ ≈ 0 so that (𝐴ℎ + 𝐵𝑘)2 + ∆𝑘2 < 0 and ‖(ℎ, 𝑘)‖ is small. 

Case 2: 𝐴 < 0 
Omitted (As Exercise) 
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# Taylor’s Formula for One Variable 

Let 𝜙 ≠ 𝐼 ⊂ 𝑅 and 𝐼 is an open interval. Let 𝑎, 𝑥 ∈ 𝐼. 
Suppose 𝑓 is a function defined on 𝐼. 
Suppose 𝑓, 𝑓′, 𝑓′′, 𝑓′′′,⋯ are continuous on 𝐼. 

Then, 𝑓(𝑥) = 𝑓(𝑎) + [∑
𝑓(𝑖)(𝑎)

𝑖!
(𝑥 − 𝑎)𝑖𝑛

𝑖=1 ] + 𝑅𝑛+1 

where 𝑅𝑛+1 =
𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑥 − 𝑎)𝑛+1 for some 𝑐 between 𝑎 and 𝑥. 

Roughly Speaking, 𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
1

2!
𝑓′′(𝑎)(𝑥 − 𝑎)2 when 𝑥 − 𝑎 ≈ 0 

 
# Taylor’s Formula for Two Variables 

Let  𝑓(𝑡) = 𝐹(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘). 

Then, 𝐹(𝑎 + ℎ, 𝑏 + 𝑘) = 𝑓(1) = 𝑓(0) + [∑
𝑓(𝑖)(0)

𝑖!

𝑛
𝑖=1 ] + 𝑅𝑛+1 

𝑓(0) = 𝐹(𝑎, 𝑏) 
𝑓′(𝑡) =  𝐹𝑥(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘) ∙ ℎ + 𝐹𝑦(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘) ∙ 𝑘 

𝑓′(0) =  𝐹𝑥(𝑎, 𝑏) ∙ ℎ + 𝐹𝑦(𝑎, 𝑏) ∙ 𝑘 

𝑓′′(𝑡) =
𝑑

𝑑𝑡
[ 𝐹𝑥(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘) ∙ ℎ + 𝐹𝑦(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘) ∙ 𝑘] 

= 𝐹𝑥𝑥(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘) ∙ ℎ
2 +  2𝐹𝑥𝑦(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘) ∙ ℎ𝑘 + 𝐹𝑦𝑦(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘) ∙ 𝑘

2 

𝑓′′(0) = 𝐹𝑥𝑥(𝑎, 𝑏) ∙ ℎ
2 +  2𝐹𝑥𝑦(𝑎, 𝑏) ∙ ℎ𝑘 + 𝐹𝑦𝑦(𝑎, 𝑏) ∙ 𝑘

2 

 
We can show that 

𝐹(𝑎 + ℎ, 𝑏 + 𝑘) = 𝐹(𝑎, 𝑏) + [∑ ∑
𝑛!

𝑗! (𝑛 − 𝑗)!
∙

𝜕𝑛𝐹

𝜕𝑥𝑛−𝑗𝜕𝑦𝑗
|
(𝑥,𝑦)=(𝑎,𝑏)

∙ ℎ𝑛−𝑗𝑘𝑗
𝑛

𝑗=0

𝑁

𝑛=1
] + 𝑅𝑁+1 

Roughly Speaking, 

𝐹(𝑎 + ℎ, 𝑏 + 𝑘) 

≈ 𝐹(𝑎, 𝑏) + 𝐹𝑥(𝑎, 𝑏) ∙ ℎ + 𝐹𝑦(𝑎, 𝑏) ∙ 𝑘 +
1

2
[𝐹𝑥𝑥(𝑎, 𝑏) ∙ ℎ

2 +  2𝐹𝑥𝑦(𝑎, 𝑏) ∙ ℎ𝑘 + 𝐹𝑦𝑦(𝑎, 𝑏) ∙ 𝑘
2] when ‖(ℎ, 𝑘)‖ ≈ 0 

 

Suppose ∇𝐹(𝑎, 𝑏) = (0,0).  

Then, 𝐹(𝑎 + ℎ, 𝑏 + 𝑘) ≈ 𝐹(𝑎, 𝑏) +
1

2
[𝐹𝑥𝑥(𝑎, 𝑏) ∙ ℎ

2 +  2𝐹𝑥𝑦(𝑎, 𝑏) ∙ ℎ𝑘 + 𝐹𝑦𝑦(𝑎, 𝑏) ∙ 𝑘
2] when ‖(ℎ, 𝑘)‖ ≈ 0 

 

Let 𝐴 = 𝐹𝑥𝑥(𝑎, 𝑏), 𝐵 = 𝐹𝑥𝑦(𝑎, 𝑏) = 𝐹𝑦𝑥(𝑎, 𝑏) and 𝐶 = 𝐹𝑦𝑦(𝑎, 𝑏). 
 

𝐹(𝑎 + ℎ, 𝑏 + 𝑘) − 𝐹(𝑎, 𝑏) ≈
1

2
[𝐴ℎ2 + 2𝐵ℎ𝑘 + 𝐶𝑘2] when ‖(ℎ, 𝑘)‖ ≈ 0 

 
It behaves like a quadratic form. Thus, 

(i) If 𝐴 > 0 and ∆> 0, then (𝑎, 𝑏, 𝐹(𝑎, 𝑏)) is a local minima. 

(ii) If 𝐴 < 0 and ∆> 0, then (𝑎, 𝑏, 𝐹(𝑎, 𝑏)) is a local maxima. 

(iii) If  ∆< 0, then (𝑎, 𝑏, 𝐹(𝑎, 𝑏)) is neither a local minima nor a local maxima. It is called a saddle point. 

 


