Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Basic Notations/Definitions/Theorems

Let R be the set of all real numbers. Sometimes, we write $R=(-\infty, \infty)$. Let $a, b \in R$ with $a<b$.
I is a non-empty interval in \boldsymbol{R} if I is one of the following forms:
$(a, b),(a, b],[a, b),[a, b],(-\infty, b),(-\infty, b],(a, \infty),[a, \infty)$ and R.
Let $R^{n}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right): x_{1}, x_{2}, \cdots, x_{n} \in R\right\}$, that is, it is the set of all n - coordinate points.
Each n-tuple $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ can be considered as a position vector from the origin $O(0,0, \cdots, 0)$ to the point $P\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, that is $\overrightarrow{O P}$.
The norm/length/magnitude of the vector $\overrightarrow{O P}$ is $\left\|\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right\|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{n}{ }^{2}}$.
Zero Vector is denoted as $\overrightarrow{0}$ (no directions and no magnitudes).
The position vector $\overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P}$. Sometimes, we denotes it as \vec{v} or \boldsymbol{v}.
Sometimes, we write the norm of \vec{v} as $|\vec{v}|$ or $\|\vec{v}\|$
Notes:
Let $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n}, \lambda \in R$.

1. $\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left(b_{1}, b_{2}, \cdots, b_{n}\right) \Leftrightarrow a_{i}=b_{i}$ for all $i=1,2, \cdots, n$
2. $\left(a_{1}, a_{2}, \cdots, a_{n}\right)+\left(b_{1}, b_{2}, \cdots, b_{n}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \cdots, a_{n}+b_{n}\right)$
3. $\left(a_{1}, a_{2}, \cdots, a_{n}\right)-\left(b_{1}, b_{2}, \cdots, b_{n}\right)=\left(a_{1}-b_{1}, a_{2}-b_{2}, \cdots, a_{n}-b_{n}\right)$
4. $\lambda\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left(\lambda a_{1}, \lambda a_{2}, \cdots, \lambda a_{n}\right)$

Unit vector is a vector with magnitude 1.
Unit vector in the direction of a non-zero vector \vec{u} is $\frac{1}{|\vec{u}|} \vec{u}$.
Let $\vec{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$.
We define the dot product/inner product $\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}$.
Let θ be the angle between the vectors \vec{u} and \vec{v}.
We can show that $\vec{u} \cdot \vec{v}=|\vec{u}| \cdot|\vec{v}| \cdot \cos \theta$.

Theorem:

Suppose \vec{u} and \vec{v} are non-zero vectors.
\vec{u} and \vec{v} are perpendicular to each other $\Leftrightarrow \vec{u} \cdot \vec{v}=0$

For three-dimensional case:

We let $\vec{\imath}=(1,0,0), \vec{\jmath}=(0,1,0)$ and $\vec{k}=(0,0,1)$.
For any vector $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$, we can write $\vec{u}=u_{1} \vec{\imath}+u_{2} \vec{\jmath}+u_{3} \vec{k}$.
Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$.
We define the cross product
$\vec{u} \times \vec{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \vec{\imath}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \vec{\jmath}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \vec{k}$.
We can remember this as $\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$.

Course Code:

MATH 2000
Course Name:
Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Theorems:

Suppose \vec{u} and \vec{v} are non-zero vectors.
Let θ be the angle between the vectors \vec{u} and \vec{v}.
(i) The vectors \vec{u}, \vec{v} and $\vec{u} \times \vec{v}$ form a right-handed triple.

(ii) $\quad|\vec{u} \times \vec{v}|=|\vec{u}| \cdot|\vec{v}| \cdot \sin \theta$
(iii) \vec{u} and \vec{v} are parallel to each other $\Leftrightarrow \vec{u} \times \vec{v}=\overrightarrow{0}$

\# Function of Several Variables

Function of Two Variables:

Let D be a non-empty subset of R^{2}.
f is called a real-valued function defined on D if for every $(x, y) \in D$, we assign it to exactly one real number.
In this case, we write it as $f(x, y)$. We call $f: D \rightarrow R$ a real-valued function and D the domain.

Example:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=x+y . f$ is a real-valued function on R^{2}.

Function of Three Variables:

Let D be a non-empty subset of $R^{3} . f$ is called a real-valued function defined on D if for every $(x, y, z) \in D$, we assign it to exactly one real number. In this case, we write it as $f(x, y, z)$.
We call $f: D \rightarrow R$ a real-valued function and D the domain.

Example:

Let $f: R^{3} \rightarrow R$ be defined by $f(x, y, z)=x+y-z . f$ is a real-valued function on R^{3}.

Function of \boldsymbol{n} - Variables:

Let D be a non-empty subset of $R^{n} . f$ is called a real-valued function defined on D if for every $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D$, we assign it to exactly one real number. In this case, we write it as $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
We call $f: D \rightarrow R$ a real-valued function and D the domain.

Example:

Let $f: R^{n} \rightarrow R$ be defined by $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1} x_{2} \cdots x_{n} . f$ is a real-valued function on R^{n}.

\# (Natural) Domain of Function of Several Variables

Example 1:

Find the (natural) domains of the functions:

$$
\begin{align*}
& f(x, y)=\sqrt{25-x^{2}-y^{2}} \tag{i}\\
& g(x, y, z)=\frac{x+y+z}{\sqrt{x^{2}+y^{2}+z^{2}}} \tag{ii}
\end{align*}
$$

Solutions

The (natural) domains are:
$D=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 25\right\}$
(ii) $D=R^{3} \backslash\{(0,0,0)\}$

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 2:

Find the (natural) domain of the function $f(x, y)=\frac{y}{\sqrt{x-y^{2}}}$. Find also the points (x, y) at which $f(x, y)= \pm 1$

Solutions

The domain is $\left\{(x, y) \in R^{2}: x-y^{2}>0\right\}$.
$f(x, y)= \pm 1 \Leftrightarrow \frac{y}{\sqrt{x-y^{2}}}= \pm 1 \Leftrightarrow y^{2}=x-y^{2} \Leftrightarrow x=2 y^{2}$
(Note: We assumed $x-y^{2}>0$)
The points (x, y) at which $f(x, y)= \pm 1$ are given by
$\left\{(x, y) \in R^{2} \backslash\{(0,0)\}: x=2 y^{2}\right\}$.

\# Graphs

Let D be a non-empty subset of R^{n}.
f is a real-valued function defined on D.
We define the graph of f as the set
$\left\{\left(x_{1}, x_{2}, \cdots, x_{n}, y\right) \in R^{n+1}:\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D, y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right\}$

Example 1:

Sketch the graph of the function $f(x, y)=2-\frac{1}{2} x-\frac{1}{3} y$.

Solutions

Let $z=f(x, y)=2-\frac{1}{2} x-\frac{1}{3} y$ for any $(x, y) \in R^{2}$.
$3 x+2 y+6 z=12$
It is the plane with normal vector $(3,2,6)$ and passing through the point $(0,6,0)$.

Example 2:

The graph of the function $f(x, y)=x^{2}+y^{2}$ is the familiar circular paraboloid $z=x^{2}+y^{2}$ shown in the figure.

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 3:

Find the domain of the function $g(x, y)=\frac{1}{2} \sqrt{4-4 x^{2}-y^{2}}$ and sketch its graph.

Solutions

The domain is $\left\{(x, y) \in R^{2}: 4 x^{2}+y^{2} \leq 4\right\}$

The graph is the upper half of the ellipsoid.

\# Level Curves/Level Surfaces/Level Sets

Let D be a non-empty subset of R^{n}. Let $c \in R . f$ is a real-valued function defined on D.
We define the level set of f as the set $L_{c}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D: f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=c\right\}$
(where the function has the same value C).
When $n=2$, level set is commonly called level curve.
When $n=3$, level set is commonly called level surface.

Example 1:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=25-x^{2}-y^{2}$. Domain $=R^{2}$. Let $c \in R$.
$L_{c}=\left\{(x, y) \in R^{2}: 25-x^{2}-y^{2}=c\right\}$.

Note: $L_{c}=\phi$ if $c>25$ and $L_{25}=\{(0,0)\}$.

Example 2:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=y^{2}-x^{2}$. Domain $=R^{2}$. Let $c \in R$.
$L_{c}=\left\{(x, y) \in R^{2}: y^{2}-x^{2}=c\right\}$.

Notes:
(i) If $c>0$, the level curve $y^{2}-x^{2}=c$ is a hyperbola opens along the y-axis.
(ii) If $c<0$, the level curve $y^{2}-x^{2}=c$ is a hyperbola opens along the x-axis.
(iii) If $c=0$, the level curve $y^{2}-x^{2}=0$ consists of two straight lines given by $y=x$ and $y=-x$.

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 3:

Let $f: R^{3} \rightarrow R$ be defined by $f(x, y, z)=x^{2}+y^{2}-z^{2}$.
Domain $=R^{3}$. Let $c \in R . L_{c}=\left\{(x, y, z) \in R^{3}: x^{2}+y^{2}-z^{2}=c\right\}$.

Notes:
(i) If $c>0$, the level surface $x^{2}+y^{2}-z^{2}=c$ is a hyperboloid of one sheet.
(ii) If $c<0$, the level surface $x^{2}+y^{2}-z^{2}=c$ is a hyperboloid of two sheets.
(iii) If $c=0$, the level surface $x^{2}+y^{2}-z^{2}=0$ is a cone lies between these two types of hyperboloids.

Example 4:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=\left(x^{2}-y^{2}\right) e^{-x^{2}-y^{2}}$. Domain $=R^{2}$.

Remark: The patterns of nested level curves can indicate "pits" and "peaks" on the surface.

Example 5:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=\sin \sqrt{x^{2}+y^{2}}$. Domain $=R^{2}$.

$z=\sin r$ where $r=\sqrt{x^{2}+y^{2}}$

Example 6:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=\frac{3}{4} y^{2}+\frac{1}{24} y^{3}-\frac{1}{32} y^{4}-x^{2}$. Domain $=R^{2}$. Investigate the graph of f.

Course Code:
Course Name:

MATH 2000
Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Solutions

Note 1:
If we set $y=y_{0}$ and let $k=\frac{3}{4} y_{0}{ }^{2}+\frac{1}{24} y_{0}{ }^{3}-\frac{1}{32} y_{0}{ }^{4}$, then $f(x, y)=k-x^{2}$. $z=k-x^{2}$ is an equation of a parabola in the $x z-$ plane.

Note 2: If we set $x=0$, then $f(0, y)=\frac{3}{4} y^{2}+\frac{1}{24} y^{3}-\frac{1}{32} y^{4}$. $z=\frac{3}{4} y^{2}+\frac{1}{24} y^{3}-\frac{1}{32} y^{4}$ is a curve in the $y z-$ plane.

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Open Sets and Closed Sets in $\boldsymbol{R}^{\boldsymbol{n}}$

Definitions:

Let $P\left(p_{1}, p_{2}, \cdots, p_{n}\right) \in R^{n}$ and $r \in R$ with $r>0$. The open ball centered at P with radius r is
$\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in R^{n}:\left\|\left(x_{1}, x_{2}, \cdots, x_{n}\right)-\left(p_{1}, p_{2}, \cdots, p_{n}\right)\right\|<r\right\}$. It is usually denoted as $B(P, r)$.
That is, $B(P, r)=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in R^{n}: \sqrt{\left(x_{1}-p_{1}\right)^{2}+\left(x_{2}-p_{2}\right)^{2}+\cdots+\left(x_{n}-p_{n}\right)^{2}}<r\right\}$
Let $\phi \neq S \subset R^{n}$. For any $P \in S$, we can find $r \in R$ with $r>0$ such that $B(P, r) \subset S$.
S is called an open set in $\boldsymbol{R}^{\boldsymbol{n}}$.
Let $\phi \neq T \subset R^{n} . T$ is called a closed set in \boldsymbol{R}^{n} if $R^{n} \backslash T$ is an open set in R^{n}.
Examples of Open Sets in $\boldsymbol{R}^{\mathbf{2}}$:
$S_{1}=\left\{(x, y) \in R^{2}: x>1\right\}, S_{2}=\left\{(x, y) \in R^{2}: 1<x^{2}+y^{2}<2\right\}, S_{3}=R^{2} \backslash\{(0,0)\}$
Examples of Closed Sets in $\boldsymbol{R}^{\mathbf{2}}$:
$T_{1}=\left\{(x, y) \in R^{2}: x \leq 1\right\}, T_{2}=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1\right\} \cup\left\{(x, y) \in R^{2}: x^{2}+y^{2} \geq 2\right\}, T_{3}=\{(0,0)\}$
\# Interior Points, Accumulation Points and Boundary Points
Definitions:
Let $\phi \neq S \subset R^{n}$ and $P \in R^{n}$.
P is called an interior point of S if we can find $r \in R$ with $r>0$ such that $B(P, r) \subset S$.
P is called an accumulation point of S if for any $r \in R$ with $r>0$, we can find $Q \in R^{n}$ with $Q \neq P$ and $Q \in B(P, r) \cap S$.
P is called a boundary point of S if for any $r \in R$ with $r>0$, we must have $B(P, r) \cap S \neq \phi$ and $B(P, r) \cap\left(R^{n} \backslash S\right) \neq \phi$.

We define the boundary of S is $\partial S=\{$ all boundary points of $S \quad\}$.

Notes:

(i) $\quad P$ is an interior point of $S \Rightarrow P$ is an accumulation point of S
(ii) $\quad P$ is an accumulation point of S and is NOT an interior point of S

$$
\Rightarrow P \text { is a boundary point of } S
$$

(iii) $\quad P$ is an accumulation point of $S \Leftrightarrow$
P is an interior point of S or P is a boundary point of S

Example:

Let $S=\left\{(x, y) \in R^{2}: x \leq 1\right\}$.
We can check that:
(i) $\quad(0,0)$ is an interior point of S
(ii) $\quad(1,0)$ is an accumulation point of S and is not an interior point of S
(iii) $\quad(1,0)$ is a boundary point of S

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Bounded Sets and Unbounded Sets in $\boldsymbol{R}^{\boldsymbol{n}}$
 Definitions:

Let $\phi \neq S \subset R^{n}$ and $\phi \neq T \subset R^{n}$
S is bounded if we can find $r \in R$ with $r>0$ such that $S \subset B(O, r)$ where $O(0,0, \cdots, 0)$ is the origin.
T is unbounded if for any $r \in R$ with $r>0$, we have $\left(R^{n} \backslash B(O, r)\right) \cap T \neq \phi$ where $O(0,0, \cdots, 0)$ is the origin.

Example:

$S=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1\right\}$ is bounded.
$T=\left\{(x, y) \in R^{2}: x>1\right\}$ is unbounded.

Remarks:

Usually we consider:
(i) Limit/Differentiability at accumulation points or on open sets
(ii) Continuity on open sets/closed sets
(iii) Maxima/Minima on closed and bounded sets

\# Limits and Continuity

For One Dimensional Case:

Recall the definition for $\lim _{x \rightarrow a} f(x)=L$:
Let $f: R \rightarrow R$ be a function and $a, L \in R$.
For any $\varepsilon>0$, we can find $\delta>0(\delta$ may depend on ε) such that $0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$.

For Two Dimensional Case:

Definition for $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$:
Let $f: R^{2} \rightarrow R$ be a function, $(a, b) \in R^{2}$ and $L \in R$.
For any $\varepsilon>0$, we can find $\delta>0$ (δ may depend on ε) such that $0<\|(x, y)-(a, b)\|<\delta \Rightarrow|f(x, y)-L|<\varepsilon$.
In this case, we say $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(a, b)$.
Remark: $\|(x, y)-(a, b)\|=\sqrt{(x-a)^{2}+(y-b)^{2}}$

For \boldsymbol{n} - Dimensional Case:

Definition for $\lim _{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow\left(a_{1}, a_{2}, \cdots, a_{n}\right)} f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=L$:
Let $f: R^{n} \rightarrow R$ be a function, $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in R^{n}$ and $L \in R$.
For any $\varepsilon>0$, we can find $\delta>0(\delta$ may depend on $\varepsilon)$ such that
$0<\left\|\left(x_{1}, x_{2}, \cdots, x_{n}\right)-\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right\|<\delta \Longrightarrow\left|f\left(x_{1}, x_{2}, \cdots, x_{n}\right)-L\right|<\varepsilon$.
In this case, we say $f\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow L$ as $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow\left(a_{1}, a_{2}, \cdots, a_{n}\right)$.
Remark: $\left\|\left(x_{1}, x_{2}, \cdots, x_{n}\right)-\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right\|=\sqrt{\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}}$

Uniqueness of Limit

Let $f: R^{n} \rightarrow R$ be a function, $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in R^{n}$ and $L_{1}, L_{2} \in R$.
If $\lim _{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow\left(a_{1}, a_{2}, \cdots, a_{n}\right)} f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=L_{1}$ and ${ }_{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow\left(a_{1}, a_{2}, \cdots, a_{n}\right)} f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=L_{2}$, then $L_{1}=L_{2}$.
Proof: Omitted (As Exercise)

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 1:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=x y$ and $(a, b)=(2,3)$. Show that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=6$.

Proof:

For any $\varepsilon>0$, choose $\delta=\min \left\{1, \frac{\varepsilon}{7}\right\}>0$
$0<\sqrt{(x-2)^{2}+(y-3)^{2}}<\delta \Rightarrow 0<|x-2|<\delta \Leftrightarrow 2-\delta<x<2+\delta$ and $x \neq 2$
$0<\sqrt{(x-2)^{2}+(y-3)^{2}}<\delta \Rightarrow 0<|y-3|<\delta \Leftrightarrow 3-\delta<y<3+\delta$ and $y \neq 3$
As $0<\delta \leq 1$, both $2-\delta>0$ and $3-\delta>0$.
So, $0<\sqrt{(x-2)^{2}+(y-3)^{2}}<\delta \Rightarrow(2-\delta)(3-\delta)<x y<(2+\delta)(3+\delta)$
$(2-\delta)(3-\delta)<x y<(2+\delta)(3+\delta) \Leftrightarrow-5 \delta+\delta^{2}<x y-6<5 \delta+\delta^{2}$
As $0<\delta \leq 1,0<\delta^{2} \leq \delta$. So $5 \delta+\delta^{2} \leq 6 \delta<7 \delta \leq \varepsilon$ and $-5 \delta+\delta^{2}>-5 \delta>-7 \delta \geq-\varepsilon$.
combining all results,
$0<\sqrt{(x-2)^{2}+(y-3)^{2}}<\delta \Rightarrow-\varepsilon<x y-6<\varepsilon$
that is, $0<\sqrt{(x-2)^{2}+(y-3)^{2}}<\delta \Rightarrow|f(x, y)-6|=|x y-6|<\varepsilon$
Thus, $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=6$.

Example 2:

Determine whether each of the following limits exists and find the limit if it exists:
(i) $\quad \lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$
(ii)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}
$$

(iii) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$

Solution (i):

$\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=0}} \frac{x-y}{x+y}=\lim _{x \rightarrow 0} \frac{x-0}{x+0}=\lim _{x \rightarrow 0} \frac{x}{x}=\lim _{x \rightarrow 0} 1=1$
$\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=0}} \frac{x-y}{x+y}=\lim _{y \rightarrow 0} \frac{0-y}{0+y}=\lim _{y \rightarrow 0} \frac{-y}{y}=\lim _{y \rightarrow 0}-1=-1$
So, $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$ doesn't exist.

Solution (ii):

$\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=m x^{2}}} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=m x^{2}}} \frac{m x^{4}}{x^{4}+m^{2} x^{4}}=\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=m x^{2}}} \frac{m}{1+m^{2}}=\frac{m}{1+m^{2}}$
So, $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=x^{2}}} \frac{x^{2} y}{x^{4}+y^{2}}=\frac{1}{2} \neq \frac{-1}{2}=\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=-x^{2}}} \frac{x^{2} y}{x^{4}+y^{2}}$.
So, $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$ doesn't exist.

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Solution (iii):

Let $x=r \cos \theta$ and $y=r \sin \theta$.
$x^{2}+y^{2}=r^{2}$,
$x y\left(x^{2}-y^{2}\right)=r^{4} \sin \theta \cos \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\frac{1}{2} r^{4} \cdot 2 \sin \theta \cos \theta \cdot \cos 2 \theta$
$=\frac{1}{2} r^{4} \cdot \sin 2 \theta \cdot \cos 2 \theta=\frac{1}{4} r^{4} \sin 4 \theta$
$\lim _{(x, y) \rightarrow(0,0)} \frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}=\lim _{r \rightarrow 0^{+}} \frac{\frac{1}{4} r^{4} \sin 4 \theta}{r^{2}}=\frac{1}{4} \lim _{r \rightarrow 0^{+}} r^{2} \sin 4 \theta=0$
Notes:
(i) $\quad(x, y) \rightarrow(0,0) \Leftrightarrow \sqrt{x^{2}+y^{2}} \rightarrow 0^{+} \Leftrightarrow r \rightarrow 0^{+}$
(ii) \quad As $|\sin 4 \theta| \leq 1,\left|r^{2} \sin 4 \theta\right| \leq r^{2}$.
$\lim _{r \rightarrow 0^{+}} r^{2}=0 \Rightarrow \lim _{r \rightarrow 0^{+}} r^{2} \sin 4 \theta=0$

Exercise:

Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=1$.
[Hint: $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$]

Rules for Finding Limits:

Let $\phi \neq S \subset R^{n}$ and S is an open set. Let $f: S \rightarrow R$ and $g: S \rightarrow R$ be functions. Let $L, M, \lambda \in R$ and $X, P \in S$.
Suppose $\lim _{X \rightarrow P} f(X)=L$ and $\lim _{X \rightarrow P} g(X)=M$.
Then,
(i) $\quad \lim _{X \rightarrow P}(f(X)+g(X))=L+M$
(ii) $\lim _{X \rightarrow P}(f(X)-g(X))=L-M$
(iii) $\lim _{X \rightarrow P}(f(X) \cdot g(X))=L M$
(iv) $\quad \lim _{X \rightarrow P} \frac{f(X)}{g(X)}=\frac{L}{M}$
(Assumed $M \neq 0$ and we can find $r \in R$ with $r>0$ such that $B(P, r) \subset S$ and $g(X) \neq 0$ for any $X \in B(P, r) \backslash\{P\}$.)
(v) $\lim _{X \rightarrow P} \lambda f(X)=\lambda L$

Proof: Omitted (As Exercises)

Example 1 (re-visited)

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=x y$ and $(a, b)=(2,3)$. Show that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=6$.
Proof:
Let $g: R^{2} \rightarrow R$ be defined by $g(x, y)=x$ and $h: R^{2} \rightarrow R$ be defined by $h(x, y)=y$.
$\lim _{(x, y) \rightarrow(2,3)} g(x, y)=\lim _{(x, y) \rightarrow(2,3)} x=\lim _{x \rightarrow 2} x=2$ (Note: $\left.(x, y) \rightarrow(2,3) \Longrightarrow x \rightarrow 2\right)$
Similarly, $\lim _{(x, y) \rightarrow(2,3)} h(x, y)=\lim _{(x, y) \rightarrow(2,3)} y=3$.
$\lim _{(x, y) \rightarrow(a, b)} f(x, y)=\lim _{(x, y) \rightarrow(2,3)} g(x, y) \times \lim _{(x, y) \rightarrow(2,3)} h(x, y)=2 \times 3=6$.

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 2:

Suppose $f: R^{2} \rightarrow R$ is a polynomial in x and y, say $f(x, y)=\sum_{(i, j) \in T} a_{(i, j)} x^{i} y^{j}$
where $a_{(i, j)} \in R$ for all $(i, j) \in T,(i, j) \in T \Longrightarrow i, j \in\{0,1,2, \cdots\}$ and T is a finite set.
We can show that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

Example 3:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=2 x^{4} y^{2}-7 x y+4 x^{2} y^{3}-5$. Find $\lim _{(x, y) \rightarrow(-1,2)} f(x, y)$.

Solution

$\lim _{(x, y) \rightarrow(-1,2)} f(x, y)=f(-1,2)=8+14+32-5=49$

\# Continuity

Recall:
One Dimensional Case:
Let f be a function on $x \in R$ and let $a \in R$.
Suppose:
(i) $\quad(a-\delta, a+\delta) \subset$ the domain of f for some $\delta>0$ (that is, f is defined at all the points in a neighborhood of a.) AND
(ii) $\quad \lim _{x \rightarrow a} f(x)$ exists as a real number AND
(iii) $\lim _{x \rightarrow a} f(x)=f(a)$.

Then, we say \boldsymbol{f} is continuous at \boldsymbol{a}. Otherwise, we say f is NOT continuous at a or f is discontinuous at a.

Two Dimensional Case:

Let f be a function on $(x, y) \in R^{2}$ and let $(a, b) \in R^{2}$.
Suppose:

$$
\begin{equation*}
B((a, b), \delta) \subset \text { the domain of } f \text { for some } \delta>0 \tag{i}
\end{equation*}
$$

(that is, f is defined at all the points in a neighborhood of (a, b).) AND
(ii) $\quad \lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists as a real number AND
(iii) $\quad \lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

Then, we say \boldsymbol{f} is continuous at $(\boldsymbol{a}, \boldsymbol{b})$. Otherwise, we say f is NOT continuous at (a, b) or f is discontinuous at (a, b).

\underline{n} - Dimensional Case:

Let f be a function on $X \in R^{n}$ and let $P \in R^{n}$.
Suppose:
(i) $\quad B(P, \delta) \subset$ the domain of f for some $\delta>0$
(that is, f is defined at all the points in a neighborhood of P.) AND
(ii) $\quad \lim _{X \rightarrow P} f(X)$ exists as a real number AND
(iii) $\quad \lim _{X \rightarrow P} f(X)=f(P)$.

Then, we say \boldsymbol{f} is continuous at \boldsymbol{P}. Otherwise, we say f is NOT continuous at P or f is discontinuous at P.
One Dimensional Case:
Let $\phi \neq S \subset R$. Let f be a function on $x \in R$ and is defined on S.
We say f is continuous on S if f is continuous at x for any $x \in S$.

Two Dimensional Case:

Let $\phi \neq S \subset R^{2}$. Let f be a function on $(x, y) \in R^{2}$ and is defined on S.
We say f is continuous on S if f is continuous at (x, y) for any $(x, y) \in S$.

n-Dimensional Case:

Let $\phi \neq S \subset R^{n}$. Let f be a function on $X \in R^{n}$ and is defined on S. We say f is continuous on S if f is continuous at X for any $X \in S$.

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 1:

Let $f: D \rightarrow R$ be defined by $f(x, y)=1$ where $D=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1\right\}$. Show that f is continuous on D.
Proof:
For any $(a, b) \in D, \lim _{(x, y) \rightarrow(a, b)} f(x, y)=1=f(a, b)$.
So, f is continuous at (a, b).
Thus, f is continuous on D.

Example 2:

Let $g: R^{2} \rightarrow R$ be defined by $g(x, y)=\left\{\begin{array}{l}1 \text { if }(x, y) \in D \\ 0 \text { otherwise }\end{array}\right.$, where $D=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1\right\}$.
Show that g is NOT continuous on R^{2}.
Proof:
Suffices to show that g is NOT continuous at $(1,0)$.
$g(1,0)=1$.
$\lim _{(x, y) \rightarrow(1,0)} g(x, y)=\lim _{(x, y) \rightarrow(1,0)} 1=1$
$x<1$ and $y=0 \quad x<1$ and $y=0$
$\lim _{(x, y) \rightarrow(1,0)} g(x, y)=\lim _{(x, y) \rightarrow(1,0)} 0=0$
$x>1$ and $y=0 \quad x>1$ and $y=0$
Thus, $\lim _{\substack{(x, y) \rightarrow(1,0) \\ y=0}} g(x, y)$ doesn't exist. Hence, $\lim _{(x, y) \rightarrow(1,0)} g(x, y)$ doesn't exist.

Rules for Continuous Functions:

Let $\phi \neq S \subset R^{n}$ and S is an open set. Let $f: S \rightarrow R$ and $g: S \rightarrow R$ be functions. Let $\lambda \in R$ and $P \in S$.
Suppose f and g are continuous at P.
Then,
(i) $f+g$ is continuous at P
(ii) $f-g$ is continuous at P
(iii) $f \cdot g$ is continuous at P
(iv) $\frac{f}{g}$ is continuous at P
(Assumed that we can find $r \in R$ with $r>0$ such that $B(P, r) \subset S$ and $g(X) \neq 0$ for any $X \in B(P, r)$.) λf is continuous at P
(v) Proof: Omitted (As Exercises)

Theorem (Composition of Continuous Functions)

Let $\phi \neq S \subset R^{n}$ and S is an open set. Let $\phi \neq I \subset R$ and I is an open interval.
Let $f: S \rightarrow R$ and $g: I \rightarrow R$ be functions. Let $P \in S$ and $f(P) \in I$.
Suppose f is continuous at P and g is continuous at $f(P)$.
Then, $g^{\circ} f$ is continuous at P.
Proof: Omitted (As Exercise)

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example:

$$
\text { Show that } z=\sin \left(x^{2}+y^{2}\right) \text { is continuous on } R^{2} \text {. }
$$

Proof:
Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=x^{2}+y^{2}$ and $g: R \rightarrow R$ be defined by $g(\theta)=\sin \theta$.
As f is continuous on R^{2} and g is continuous on $R, z=\sin \left(x^{2}+y^{2}\right)=g^{\circ} f(x, y)$ is continuous on R^{2}.

\# Partial Differentiation (Two Dimensional Case):

Let $\phi \neq S \subset R^{2}$ and S is an open set. Let $f: S \rightarrow R$ be a function on (x, y) and $(a, b) \in S$.
We define:
(ii) $\quad f_{x}(a, b)=\left.\frac{\partial f}{\partial x}\right|_{(x, y)=(a, b)}=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$
(iii) $\quad f_{y}(x, y)=\frac{\partial f}{\partial y}=\lim _{k \rightarrow 0} \frac{f(x, y+k)-f(x, y)}{k}$
(iv) $\quad f_{y}(a, b)=\left.\frac{\partial f}{\partial y}\right|_{(x, y)=(a, b)}=\lim _{k \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{k}$

Rules for finding partial derivative:
(i) To find $\frac{\partial f}{\partial x}$, regard y as a constant and differentiate with respect to x
(ii) To find $\frac{\partial f}{\partial y}$, regard x as a constant and differentiate with respect to y

Example 1:

Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of the function $f(x, y)=x^{2}+2 x y^{2}-y^{3}$.

Solutions

$$
\frac{\partial f}{\partial x}=2 x+2 y^{2} \text { and } \frac{\partial f}{\partial y}=4 x y-3 y^{2} .
$$

Example 2:

Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z=\left(x^{2}+y^{2}\right) e^{-x y}$.

Solutions

$\frac{\partial z}{\partial x}=2 x e^{-x y}+\left(x^{2}+y^{2}\right) e^{-x y} \cdot(-y)=\left(2 x-x^{2} y-y^{3}\right) e^{-x y}$
$\frac{\partial z}{\partial y}=2 y e^{-x y}+\left(x^{2}+y^{2}\right) e^{-x y} \cdot(-x)=\left(2 y-x y^{2}-x^{3}\right) e^{-x y}$.

Example 3:

The volume V (in cubic centimetres (or cm^{3})) of 1 mole (or mol.) of an ideal gas is given by $V=\frac{82.06}{p} T$, where p is the pressure (in atmospheres (or $a t m$)) and T is the absolute temperature (in Kelvins (or K)).

Find the rates of change of the volume of 1 mol . of an ideal gas with respect to pressure (assuming temperature is kept constant) and with respect to temperature (assuming pressure is kept constant) when $T=300 \mathrm{~K}$ and $p=5 \mathrm{~atm}$.

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Solutions

$V=\frac{82.06}{p} T$
$\frac{\partial V}{\partial T}=\frac{82.06}{p},\left.\frac{\partial V}{\partial T}\right|_{T=300, p=5}=\frac{82.06}{5}=16.412\left(\right.$ in $\left.\mathrm{cm}^{3} / \mathrm{K}\right)$
$\frac{\partial V}{\partial p}=\frac{-82.06}{p^{2}} T,\left.\frac{\partial V}{\partial p}\right|_{T=300, p=5}=\frac{-82.06}{5^{2}} \times 300=-984.72\left(\right.$ in $\left.\mathrm{cm}^{3} / \mathrm{atm}\right)$
Negative sign means decreasing.
Positive sign means increasing.

Geometric Interpretation of Partial Derivatives

The value $f_{x}(a, b)=\left.\frac{\partial f}{\partial x}\right|_{(x, y)=(a, b)}=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}$ is the slope of the tangent at the point $P(a, b, c)$ to the $x-$ curve through P on the surface $z=f(x, y)$.
Note: $c=f(a, b)$.

A vertical plane parallel to the $x z-$ plane intersects the surface $z=f(x, y)$ in an $x-$ curve.

Projection into the $x z$ - plane of the x - curve through $P(a, b, c)$ and its tangent line

The value $f_{y}(a, b)=\left.\frac{\partial f}{\partial y}\right|_{(x, y)=(a, b)}=\lim _{k \rightarrow 0} \frac{f(a, b+k)-f(a, b)}{k}$ is the slope of the tangent at the point $P(a, b, c)$ to the $y-$ curve through P on the surface $z=f(x, y)$.

Note: $c=f(a, b)$.

A vertical plane parallel to the $y z-$ plane intersects the surface $z=$ $f(x, y)$ in a $y-$ curve.

Projection into the $y z$ - plane of the y - curve through $P(a, b, c)$ and its tangent line

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

One Dimensional Case (The Line Tangent to a Curve)

Let $\phi \neq S \subset R$ and S is an open interval. Let $f: S \rightarrow R$ be a function on x and $a \in S$. Let $y=f(x)$.
Suppose f is differentiable on S.
An equation of the tangent to the curve $y=f(x)$ is
$\frac{y-f(a)}{x-a}=f^{\prime}(a)$.
That is, $y=f(a)+f^{\prime}(a)(x-a)$.

Two Dimensional Case (The Plane Tangent to a Surface)

Let $\phi \neq S \subset R^{2}$ and S is an open set. Let $f: S \rightarrow R$ be a function on (x, y) and $(a, b) \in S$.
Let $z=f(x, y)$. Suppose we can find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ on S.
Let us define $C_{1}:(a-\delta, a+\delta) \rightarrow R^{3}$ by $C_{1}(t)=(t, b, f(t, b))$.
C_{1} is a curve passing through $(a, b, f(a, b))$ on the surface $z=f(x, y)$.
$\vec{u}=C_{1}{ }^{\prime}(a)$ is a vector on the tangent plane to the surface $z=f(x, y)$ at $(a, b, f(a, b))$.
$\vec{u}=C_{1}{ }^{\prime}(a)=\left(1,0, f_{x}(a, b)\right)$.
Let us define $C_{2}:(b-\delta, b+\delta) \rightarrow R^{3}$ by $C_{2}(t)=(a, t, f(a, t))$.
C_{2} is a curve passing through $(a, b, f(a, b))$ on the surface $z=f(x, y)$.
$\vec{v}=C_{2}{ }^{\prime}(b)$ is a vector on the tangent plane to the surface $z=f(x, y)$ at $(a, b, f(a, b))$.
$\vec{v}=C_{2}{ }^{\prime}(b)=\left(0,1, f_{y}(a, b)\right)$.
Let $\vec{n}=\vec{u} \times \vec{v}$. Then, \vec{n} will be a normal vector of required tangent plane.
$\vec{n}=\vec{u} \times \vec{v}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 0 & f_{x}(a, b) \\ 0 & 1 & f_{y}(a, b)\end{array}\right|=-f_{x}(a, b) \vec{\imath}-f_{y}(a, b) \vec{\jmath}+\vec{k}=\left(-f_{x}(a, b),-f_{y}(a, b), 1\right)$
An equation of the plane tangent to the surface $z=f(x, y)$ at (a, b, c) is
$((x, y, z)-(a, b, c)) \cdot\left(-f_{x}(a, b),-f_{y}(a, b), 1\right)=0$
$-f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)+z-c=0$
$z=c+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$

Remark:

$$
\begin{aligned}
& z=f(x, y) \\
& \left.\frac{\partial z}{\partial x}\right|_{(x, y)=(a, b)}=f_{x}(a, b) \text { and }\left.\frac{\partial z}{\partial y}\right|_{(x, y)=(a, b)}=f_{y}(a, b), ~
\end{aligned}
$$

Summary:

An equation of the plane tangent to the surface $z=f(x, y)$ at $(a, b, f(a, b))$ is $z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$

Course Code:
 MATH 2000
 Course Name:
 Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 1:

Write an equation of the plane tangent to the paraboloid
$z=5-2 x^{2}-y^{2}$ at the point $P(1,1,2)$.

Solutions
$z=f(x, y)=5-2 x^{2}-y^{2}$
$\frac{\partial z}{\partial x}=-4 x,\left.\frac{\partial z}{\partial x}\right|_{(x, y)=(1,1)}=-4$
$\frac{\partial z}{\partial y}=-2 y,\left.\frac{\partial z}{\partial y}\right|_{(x, y)=(1,1)}=-2$
A normal vector of required tangent plane is $\left(-f_{x}(1,1),-f_{y}(1,1), 1\right)=(4,2,1)$.
An equation of required tangent is
$((x, y, z)-(1,1,2)) \cdot(4,2,1)=0$
$4(x-1)+2(y-1)+z-2=0$
$z=-4 x-2 y+8$

Example 2:

Write an equation of the plane tangent to the paraboloid
$z=x^{2}-y^{3}$ at the point $P(2,1,3)$.

Solutions

$z=f(x, y)=x^{2}-y^{3}$
$\frac{\partial z}{\partial x}=2 x,\left.\frac{\partial z}{\partial x}\right|_{(x, y)=(2,1)}=4$
$\frac{\partial z}{\partial y}=-3 y^{2},\left.\frac{\partial z}{\partial y}\right|_{(x, y)=(2,1)}=-3$
A normal vector of required tangent plane is $\left(-f_{x}(2,1),-f_{y}(2,1), 1\right)=(-4,3,1)$.
An equation of required tangent is
$((x, y, z)-(2,1,3)) \cdot(-4,3,1)=0$
$-4(x-2)+3(y-1)+z-3=0$
$z=4 x-3 y-2$

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Partial Differentiation (Three Dimensional Case):

Let $\phi \neq S \subset R^{3}$ and S is an open set.
Let $f: S \rightarrow R$ be a function on (x, y, z) and $(a, b, c) \in S$.
We define:

$$
\begin{equation*}
f_{x}(x, y, z)=\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h} \tag{i}
\end{equation*}
$$

(ii) $\quad f_{x}(a, b, c)=\left.\frac{\partial f}{\partial x}\right|_{(x, y, z)=(a, b, c)}=\lim _{h \rightarrow 0} \frac{f(a+h, b, c)-f(a, b, c)}{h}$
(iii) $\quad f_{y}(x, y, z)=\frac{\partial f}{\partial y}=\lim _{k \rightarrow 0} \frac{f(x, y+k, z)-f(x, y, z)}{k}$
(iv) $\quad f_{y}(a, b, c)=\left.\frac{\partial f}{\partial y}\right|_{(x, y, z)=(a, b, c)}=\lim _{k \rightarrow 0} \frac{f(a, b+k, c)-f(a, b, c)}{k}$
(v) $f_{z}(x, y, z)=\frac{\partial f}{\partial z}=\lim _{l \rightarrow 0} \frac{f(x, y, z+l)-f(x, y, z)}{l}$
(vi) $\quad f_{z}(a, b, c)=\left.\frac{\partial f}{\partial z}\right|_{(x, y, z)=(a, b, c)}=\lim _{l \rightarrow 0} \frac{f(a, b, c+l)-f(a, b, c)}{l}$

Rules for finding partial derivative:
(i) To find $\frac{\partial f}{\partial x}$, regard y and z as constants and differentiate with respect to x
(ii) To find $\frac{\partial f}{\partial y}$, regard x and z as constants and differentiate with respect to y
(iii) To find $\frac{\partial f}{\partial z}$, regard x and y as constants and differentiate with respect to z

Example:

$$
\text { Compute } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \text { and } \frac{\partial f}{\partial z} \text { of the function } f(x, y, z)=x^{2} y^{3} z^{4} \text {. }
$$

Solutions

$$
\frac{\partial f}{\partial x}=2 x y^{3} z^{4}, \frac{\partial f}{\partial y}=3 x^{2} y^{2} z^{4} \text { and } \frac{\partial f}{\partial z}=4 x^{2} y^{3} z^{3}
$$

\# Partial Differentiation (\boldsymbol{n}-Dimensional Case):

Let $\phi \neq S \subset R^{n}$ and S is an open set.
Let $f: S \rightarrow R$ be a function on $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $A=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in S$.
We define $e_{i}=\left\{\begin{array}{cc}x_{i} & \text { if } i \neq j \\ x_{i}+h & \text { if } i=j\end{array}\right.$ and
$f_{x_{j}}(X)=f_{x_{j}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\frac{\partial f}{\partial x_{j}}=\lim _{h \rightarrow 0} \frac{f\left(e_{1}, e_{2}, \cdots, e_{n}\right)-f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{h}$.
We define $\theta_{i}=\left\{\begin{array}{cl}a_{i} & \text { if } i \neq j \\ a_{i}+h & \text { if } i=j\end{array}\right.$ and
$f_{x_{j}}(A)=f_{x_{j}}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left.\frac{\partial f}{\partial x_{j}}\right|_{X=A}=\lim _{h \rightarrow 0} \frac{f\left(\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right)-f\left(a_{1}, a_{2}, \cdots, a_{n}\right)}{h}$.

Rule for finding partial derivative:

To find $\frac{\partial f}{\partial x_{j}}$, regard $x_{i}(i \neq j)$ as constants and differentiate with respect to x_{j}

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 1:

Find the four partial derivatives of the function $g(x, y, u, v)=e^{u x} \sin v y$.

Solutions

$$
g_{x}=u e^{u x} \sin v y, g_{u}=x e^{u x} \sin v y, g_{y}=v e^{u x} \cos v y, g_{v}=y e^{u x} \cos v y
$$

Example 2:

Find the four partial derivatives of the function $g(x, y, u, v)=x^{2} y^{3}-u^{4} v^{5}$.

Solutions

$$
g_{x}=2 x y^{3}, g_{y}=3 x^{2} y^{2}, g_{u}=-4 u^{3} v^{5}, g_{v}=-5 u^{4} v^{4}
$$

\# Higher Order Partial Derivatives

We define:
(i) $\quad f_{x x}=\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}$
(ii) $f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}$
(iii) $f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}$
(iv) $f_{y y}=\left(f_{y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}$

$$
\begin{equation*}
f_{x x y}=\left(f_{x x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial^{2} f}{\partial x^{2}}\right)=\frac{\partial^{3} f}{\partial y \partial x^{2}} \tag{v}
\end{equation*}
$$

$$
\begin{equation*}
f_{x y x}=\left(f_{x y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial y \partial x}\right)=\frac{\partial^{3} f}{\partial x \partial y \partial x} \tag{vi}
\end{equation*}
$$

$$
\begin{equation*}
f_{x y y}=\left(f_{x y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial^{2} f}{\partial y \partial x}\right)=\frac{\partial^{3} f}{\partial y^{2} \partial x} \tag{vii}
\end{equation*}
$$

and others.

Example:

Show that the partial derivatives of third and fourth orders of the function $z=f(x, y)=x^{2}+2 x y^{2}-y^{3}$ are constants.

Solutions

$f_{x}=2 x+2 y^{2} ; f_{y}=4 x y-3 y^{2}$;
$f_{x x}=2 ; f_{x y}=4 y ; f_{y x}=4 y ; f_{y y}=4 x-6 y$;
$f_{x x x}=0 ; f_{x x y}=0 ; f_{x y x}=0 ; f_{x y y}=4 ; f_{y x x}=0 ; f_{y x y}=4 ; f_{y y x}=4 ; f_{y y y}=-6$
Partial derivatives of fourth orders are all zeros.
So, partial derivatives of third and fourth orders are constants.

Remark

In general, $f_{x y}$ and $f_{y x}$ may not be the same.
We can show that if $f_{x y}$ and $f_{y x}$ are continuous on an open set, then $f_{x y}=f_{y x}$.

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Multivariable Optimization Problem

\# Global Minima and Global Maxima
Let $\phi \neq S \subset R^{n}$. Let $f: S \rightarrow R$ be a function on $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and is defined on S. Let $m, M \in R$.
We say f attains the global minimum value (or the absolute minimum value) m on S if:
(i) $\quad f(X) \geq m$ for any $X \in S$ AND
(ii) we can find $U \in S$ such that $f(U)=m$

We say f attains the global maximum value (or the absolute maximum value) M on S if:
(i) $\quad f(X) \leq M$ for any $X \in S$ AND
(ii) we can find $V \in S$ such that $f(V)=M$

Remark: We say $(U, f(U))$ a global minima and $(V, f(V))$ a global maxima.
Theorem 1:
Let $m_{1}, m_{2} \in R$. Suppose $f(X) \geq m_{1}$ for any $X \in S$ AND $f(X) \geq m_{2}$ for any $X \in S$.
Suppose we can find $U_{1}, U_{2} \in S$ such that $f\left(U_{1}\right)=m_{1}$ and $f\left(U_{2}\right)=m_{2}$.
Then, $m_{1}=m_{2}$.
Proof:
$m_{2}=f\left(U_{2}\right) \geq m_{1}$. Also, $m_{1}=f\left(U_{1}\right) \geq m_{2}$. So, $m_{1}=m_{2}$.

Theorem 2:

Let $M_{1}, M_{2} \in R$. Suppose $f(X) \leq M_{1}$ for any $X \in S$ AND $f(X) \leq M_{2}$ for any $X \in S$.
Suppose we can find $V_{1}, V_{2} \in S$ such that $f\left(V_{1}\right)=M_{1}$ and $f\left(V_{2}\right)=M_{2}$.
Then, $M_{1}=M_{2}$.
Proof: Omitted (As Exercise)

Theorem:

Let $\phi \neq S \subset R^{n}$. Suppose S is closed and bounded.
Let $f: S \rightarrow R$ be a function on $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and is defined on S.
Suppose f is continuous on \boldsymbol{S}.
Then, f must attain the global minimum value and the global maximum value on S.
Proof: Will be discussed on course "Real Analysis"

Definition

$(W, f(W))$ is called a global extrema if it is a global maxima or it is a global minima

\# Local Minima and Local Maxima

Let $\phi \neq S \subset R^{n}$. Let $f: S \rightarrow R$ be a function on $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and is defined on S. Let $U, V \in S$.
 for any $X \in B(U, r)$. In this case, $f(U)$ is called a local minimum value (or a relative minimum value).

We say $(V, f(V)) \underline{a}$ local maxima (or a relative maxima) if we can find $r \in R$ with $r>0$ such that $B(V, r) \subset S$ and $f(X) \leq f(V)$ for any $X \in B(V, r)$. In this case, $f(V)$ is called a local maximum value (or a relative maximum value).

Theorem 1:

Let $U \in S$ and U is an interior point of S.
$(U, f(U))$ is a global mínima $\Rightarrow(U, f(U))$ is a local minima

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Theorem 2:

Let $V \in S$ and V is an interior point of S.
$(V, f(V))$ is a global maxima $\Rightarrow(V, f(V))$ is a local maxima

Remark: The converse of above theorems may not be true.

Diagram showing the relationship between global maxima and local maxima / between global minima and local minima (Note: the choice of the region / boundary is important.)
$f(x, y)=3(x-1)^{2} e^{-x^{2}-(y+1)^{2}}+\left(-2 x+10 x^{3}+10 y^{5}\right) e^{-x^{2}-y^{2}}-\frac{1}{3} e^{-(x+1)^{2}-y^{2}}$ for
$(x, y) \in\left\{(a, b) \in R^{2}:-3 \leq a \leq 3,-3 \leq b \leq 3\right\}$.
A local maximum value MAY not be the global maximum value.

Definition

$(W, f(W))$ is called a local extrema if it is a local maxima or it is a local minima

Theorem 1 (Necessary Conditions for Local Minima)

Let $\phi \neq S \subset R^{n}$. Let $f: S \rightarrow R$ be a function on $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and is defined on S. Let $U \in S$ and $r \in R$ with $r>0$.
Suppose $B(U, r) \subset S$ and $f(X) \geq f(U)$ for any $X \in B(U, r)$.
That is, $(U, f(U))$ is a local minima.
Suppose we can find $f_{x_{j}}(X)$ for any $X \in B(U, r)$ and $j=1,2, \cdots, n$.
Then, $f_{x_{j}}(U)=0$ for $j=1,2, \cdots, n$

Theorem 2 (Necessary Conditions for Local Maxima)

Let $\phi \neq S \subset R^{n}$. Let $f: S \rightarrow R$ be a function on $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and is defined on S. Let $V \in S$ and $r \in R$ with $r>0$.
Suppose $B(V, r) \subset S$ and $f(X) \leq f(V)$ for any $X \in B(V, r)$.
That is, $(V, f(V))$ is a local minima.
Suppose we can find $f_{x_{j}}(X)$ for any $X \in B(V, r)$ and $j=1,2, \cdots, n$.
Then, $f_{x_{j}}(V)=0$ for $j=1,2, \cdots, n$

Example 1:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=x^{2}+y^{2}$.
Show that $(0,0)$ is a local minima and is the global minima on $D=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1\right\}$.

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Proof:

$f(0,0)=0 \leq x^{2}+y^{2}=f(x, y)$ for any $(x, y) \in B(0,1)$, so it is a local minima. $f(0,0)=0 \leq x^{2}+y^{2}=f(x, y)$ for any $(x, y) \in D$, so it is a global minima on D. As $x^{2}+y^{2}=0 \Leftrightarrow(x, y)=(0,0)$, it is the global minima on D.

Exercise 1:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=1-x^{2}-y^{2}$.
Show that $(0,0)$ is a local maxima and is the global maxima on $D=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1\right\}$.

Proof: Omitted (As Exercise)

Exercise 2:

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=y^{2}-x^{2}$.
Show that $(0,0)$ is neither a local maxima nor a local minima.
This point is called a saddle point.

Proof: Omitted (As Exercise)

Example 2:

Find all points on the surface $z=\frac{3}{4} y^{2}+\frac{1}{24} y^{3}-\frac{1}{32} y^{4}-x^{2}$ at which the tangent

Solutions

$z_{x}=-2 x$
Put $z_{x}=0$, we have $x=0$.
$z_{y}=\frac{3}{2} y+\frac{1}{8} y^{2}-\frac{1}{8} y^{3}=\frac{-1}{8} y\left(y^{2}-y-12\right)=\frac{-1}{8} y(y-4)(y+3)$
Put $z_{y}=0$, we have $y=0$ or 4 or -3 .
Required points are $(0,0,0),\left(0,4, \frac{20}{3}\right)$ and $\left(0,-3, \frac{99}{32}\right)$

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Strategy for finding global extrema:

Let $\phi \neq S \subset R^{n}$

Usual Case: A continuous function f on closed and bounded region S in R^{n} AND $f_{x_{j}}(X)$ exists for all $X \in S \backslash \partial S$
(i) \quad Find $M_{\partial S}=\max \{f(X): X \in \partial S\}$ and $m_{\partial S}=\min \{f(X): X \in \partial S\}$
(ii) \quad Consider $T=\left\{\quad X \in S \backslash \partial S: f_{x_{j}}(X)=0\right.$ for $\left.j=1,2, \cdots, n \quad\right\}$
and find $M_{S \backslash \partial S}=\max \{f(X): X \in T\}$ and $m_{S \backslash \partial S}=\min \{f(X): X \in T\}$
(iii) The global maximum value is $\max \left\{M_{\partial S}, M_{S \backslash \partial S}\right\}$

The global minimum value is $\min \left\{m_{\partial S}, m_{S \backslash \partial S}\right\}$

Example 1:

Let $f(x, y)=\sqrt{x^{2}+y^{2}}$ on the region R consisting of the points on and within the circle $x^{2}+y^{2}=1$ in the $x y-$ plane. Find the global maximum value and the global minimum value of f on R.

Solutions

(i) When $x^{2}+y^{2}=1, f(x, y)=\sqrt{x^{2}+y^{2}}=1$.

So, $M_{\partial R}=\max \{f(X): X \in \partial R\}=1$ and $m_{\partial R}=\min \{f(X): X \in \partial R\}=1$
(ii) $\quad f(x, y)=\sqrt{x^{2}+y^{2}}$

For $x^{2}+y^{2}>0$,
$f_{x}(x, y)=\frac{1}{2 \sqrt{x^{2}+y^{2}}} \cdot(2 x)=\frac{x}{\sqrt{x^{2}+y^{2}}}$
$f_{y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}$
$f_{x}(x, y)=0 \Leftrightarrow x=0$
$f_{y}(x, y)=0 \Leftrightarrow y=0$
But $(0,0)$ doesn't satisfy $x^{2}+y^{2}>0$.
Thus, $\left\{\quad X \in\left\{(x, y) \in R^{2}: 0<x^{2}+y^{2}<1\right\}: f_{x_{j}}(X)=0\right.$ for $\left.j=1,2, \cdots, n \quad\right\}=\phi$
$f(0,0)=\sqrt{0^{2}+0^{2}}=0$
(iii) The global maximum value is $\max \{1,0\}=1$

The global minimum value is $\min \{1,0\}=0$

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 2:

Find the maximum and minimum values attained by the function $f(x, y)=x y-x-y+3$ at points of the triangular region R in the $x y-$ plane with vertices at $(0,0),(2,0)$ and $(0,4)$.

Solutions

(i) When $x=0, f(0, y)=-y+3$
$\max \{f(X): X \in \partial R$ and $x=0\}=0+3=3$
$\min \{f(X): X \in \partial R$ and $x=0\}=-4+3=-1$
When $y=0, f(x, 0)=-x+3$
$\max \{f(X): X \in \partial R$ and $y=0\}=0+3=3$
$\min \{f(X): X \in \partial R$ and $y=0\}=-2+3=1$
When $2 x+y=4$,
$f(x, y)=x(4-2 x)-x-(4-2 x)+3$
$=-2 x^{2}+5 x-1=-2\left(x^{2}-\frac{5}{2} x\right)-1$
$=-2\left(x-\frac{5}{4}\right)^{2}+\frac{17}{8}$
When $x=0, y=4, f(0,4)=-1$.
When $x=2, y=0, f(2,0)=1$.
$\max \{f(X): X \in \partial R$ and $2 x+y=4\}=\max \left\{-1,1, \frac{17}{8}\right\}=\frac{17}{8}$
$\min \{f(X): X \in \partial R$ and $2 x+y=4\}=\min \left\{-1,1, \frac{17}{8}\right\}=-1$
So, $M_{\partial R}=\max \{f(X): X \in \partial R\}=\max \left\{3,3, \frac{17}{8}\right\}=3$
and $m_{\partial R}=\min \{f(X): X \in \partial R\}=\min \{-1,1,-1\}=-1$
(ii) $f(x, y)=x y-x-y+3$
$f_{x}(x, y)=y-1$
$f_{y}(x, y)=x-1$
$f_{x}(x, y)=0 \Leftrightarrow x=1$
$f_{y}(x, y)=0 \Leftrightarrow y=1$
$(1,1) \in R \backslash \partial R$
$f(1,1)=1-1-1+3=2$
(iii) The global maximum value is $\max \{3,2\}=3$

The global minimum value is $\min \{-1,2\}=-1$

Course Code:
 MATH 2000
 Course Name:
 Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 3:

Find the highest point on the surface

$$
z=f(x, y)=\frac{8}{3} x^{3}+4 y^{3}-x^{4}-y^{4} .
$$

Solutions

$f_{x}(x, y)=8 x^{2}-4 x^{3}=4 x^{2}(2-x)$
$f_{x}(x, y)=0 \Leftrightarrow 4 x^{2}(2-x)=0 \Leftrightarrow x=0$ or 2
$f_{y}(x, y)=12 y^{2}-4 y^{3}=4 y^{2}(3-y)$
$f_{y}(x, y)=0 \Leftrightarrow 4 y^{2}(3-y)=0 \Leftrightarrow y=0$ or 3
For $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$, we have only 4 points $(0,0),(0,3),(2,0)$ and $(2,3)$ for consideration.
$f(0,0)=0, f(0,3)=27, f(2,0)=\frac{16}{3}, f(2,3)=\frac{97}{3}$
When $x \rightarrow+\infty, f(x, y) \rightarrow-\infty$ as it is dominated by $-x^{4}$.
When $x \rightarrow-\infty, f(x, y) \rightarrow-\infty$ as it is dominated by $-x^{4}$.
When $y \rightarrow+\infty, f(x, y) \rightarrow-\infty$ as it is dominated by $-y^{4}$.
When $y \rightarrow-\infty, f(x, y) \rightarrow-\infty$ as it is dominated by $-y^{4}$.
Thus, the highest point is $\left(2,3, \frac{97}{3}\right)$.

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 4:

Find the minimum cost of a rectangular box with volume $48 \mathrm{ft}^{3}$ if the front and back cost $\$ 1 / f t^{2}$, the top and bottom cost $\$ 2 / f t^{2}$, and the two ends cost $\$ 3 / f t^{2}$. This box is shown in the figure.

Solutions

Let the length be $x \mathrm{ft}$., the width be $y \mathrm{ft}$., the height be $z \mathrm{ft}$. and the cost be $\$ C(x, y)$.
Then, $C(x, y)=4 x y+\frac{96}{y}+\frac{288}{x}$ (Assumed both $x>0$ and $y>0$).
Note:
The cost is $\$ 2 \cdot(2 x y+x z+3 y z)=\$(4 x y+2 x z+6 y z)$ and $x y z=48$.
$C_{x}(x, y)=4 y-288 x^{-2}$
$C_{x}(x, y)=0 \Leftrightarrow 4 y-288 x^{-2}=0 \Leftrightarrow \frac{288}{x}=4 x y$
$C_{y}(x, y)=4 x-96 y^{-2}$
$C_{y}(x, y)=0 \Leftrightarrow 4 x-96 y^{-2}=0 \Leftrightarrow \frac{96}{y}=4 x y$
For both $C_{x}(x, y)=0$ and $C_{x}(x, y)=0, \frac{288}{x}=4 x y=\frac{96}{y}$.
So, $y=\frac{1}{3} x$ and $x^{3}=216$. Thus $x=6$ and $y=2($ so, $z=4)$
$C(x, y)=4 x y+\frac{96}{y}+\frac{288}{x}=12 x y=144$
The minimum cost is $\$ 144$ when the dimensions are $6 \mathrm{ft} . \times 2 \mathrm{ft} . \times 4 \mathrm{ft}$.
Note: We don't need to consider the boundary.
Choose $\delta, M \in R$ with $\delta>0$ and $M>0$.
Let $T=\left\{(x, y) \in R^{2}: \delta<x<M\right.$ and $\left.\delta<y<M\right\}$.
We can choose δ and M so that on the boundaries,
$\frac{96}{y}>1000$ on the side nearest to x - axis
$\frac{288}{x}>1000$ on the side nearest to $y-$ axis
$4 x y>1000$ on the remaining two sides
So $C(x, y)>1000$ on T

Course Code:
 MATH 2000
 Course Name:
 Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 5:

Determine whether the function $f(x, y, z)=x y+y z-x z$ has any local extrema

Solutions

$f_{x}(x, y, z)=y-z$
$f_{x}(x, y, z)=0 \Leftrightarrow y-z=0 \Leftrightarrow y=z$
$f_{y}(x, y, z)=x+z$
$f_{y}(x, y, z)=0 \Leftrightarrow x+z=0 \Leftrightarrow x=-z$
$f_{z}(x, y, z)=y-x$
$f_{z}(x, y, z)=0 \Leftrightarrow y-x=0 \Leftrightarrow x=y$
Put $f_{x}(x, y, z)=0$ and $f_{y}(x, y, z)=0$ and $f_{z}(x, y, z)=0$, we have
$x=y$ and $x=-z$ and $y=z$.
Thus, $x=y=z=0$.
$f(0,0,0)=0$
$f(t, t, t)=t^{2} \geq 0=f(0,0,0)$ for any $t \in R$.
$f(-t, t,-t)=-3 t^{2} \leq 0=f(0,0,0)$ for any $t \in R$.
So, $(0,0,0)$ is neither a local maxima nor a local minima.
So, f has no local extrema on R^{3}.
Note:
$f(t, t, t)=t^{2} \rightarrow+\infty$ as $t \rightarrow+\infty$
$f(t, t, t)=t^{2} \rightarrow+\infty$ as $t \rightarrow-\infty$
$f(-t, t,-t)=-3 t^{2} \rightarrow-\infty$ as $t \rightarrow+\infty$
$f(-t, t,-t)=-3 t^{2} \rightarrow-\infty$ as $t \rightarrow-\infty$
So, f has no global extrema on R^{3}.

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Increments and Linear Approximation

Recall:
One Dimensional Case:
Let $f: R \rightarrow R$ be a function on x.
Suppose f is differentiable at a.
So, $f(a+h)-f(a) \approx f^{\prime}(a) \cdot h$ when $h \approx 0$.

Two Dimensional Case:

Let $f: R^{2} \rightarrow R$ be a function on (x, y).
Suppose f_{x} and f_{y} are continuous at points near to (a, b). Let $z=f(x, y)$.
$f(a+h, b+k)-f(a, b+k) \approx f_{x}(a, b+k) \cdot h$ when $h \approx 0$
$f(a, b+k)-f(a, b) \approx f_{y}(a, b) \cdot k$ when $k \approx 0$
So, $f(a+h, b+k)-f(a, b) \approx f_{x}(a, b+k) \cdot h+f_{y}(a, b) \cdot k$ when $h \approx 0$ and $k \approx 0$
Assume f_{x} is continuous near to (a, b). Then, $f_{x}(a, b+k) \approx f_{x}(a, b)$ when $k \approx 0$.
Thus, when $h \approx 0$ and $k \approx 0$, we have $f(a+h, b+k)$
$\approx f(a, b)+f_{x}(a, b) \cdot h+f_{y}(a, b) \cdot k$
$=f(a, b)+\left(f_{x}(a, b), f_{y}(a, b)\right) \cdot(h, k)$
Note: $\Delta z=f(a+h, b+k)-f(a, b) ; d x=\Delta x=h ; d y=\Delta y=k$
We define $d z=f_{x}(a, b) \cdot d x+f_{y}(a, b) \cdot d y$.
Then, $f(a+h, b+k)-f(a, b)=\Delta z \approx d z=f_{x}(a, b) \cdot h+f_{y}(a, b) \cdot k$
For $z=f(x, y)$, at general point $(x, y), d z=f_{x}(x, y) \cdot d x+f_{y}(x, y) \cdot d y$

Example 1:

Find the differential $d f$ of the function $f(x, y)=x^{2}+3 x y-2 y^{2}$. Then, compare $d f$ and the actual increment Δf when (x, y) changes from $P(3,5)$ to $Q(3.2,4.9)$.

Solutions

$f_{x}(x, y)=2 x+3 y ; f_{y}(x, y)=3 x-4 y$
$d f=f_{x}(x, y) \cdot d x+f_{y}(x, y) \cdot d y=(2 x+3 y) d x+(3 x-4 y) d y$
$f(3,5)=4 ; f(3.2,4.9)=9.26$;
$f_{x}(3,5)=21 ; f_{y}(3,5)=-11$;
$d x=\Delta x=3.2-3=0.2 ; d y=\Delta y=4.9-5=-0.1$.
For (x, y) changes from $P(3,5)$ to $Q(3.2,4.9)$,
$\Delta f=9.26-4=5.26$
$d f=21 \times 0.2+(-11) \times(-0.1)=5.3$
$d f \approx \Delta f$

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 2:

Use linear approximation to estimate $\sqrt{2 \cdot(2.02)^{3}+(2.97)^{2}}$.

Solutions

Let f be a real valued function on (x, y) and is defined by $f(x, y)=\sqrt{2 x^{3}+y^{2}}$.
(Note: We may assume $x \geq 0$ so that it is well defined.)
Let $z=f(x, y)$.
$f(2,3)=\sqrt{2 \times 8+9}=5$;
$f_{x}(x, y)=\frac{1}{2 \sqrt{2 x^{3}+y^{2}}} \cdot 6 x^{2}=\frac{3 x^{2}}{\sqrt{2 x^{3}+y^{2}}} ; f_{x}(2,3)=\frac{12}{5}$
$f_{y}(x, y)=\frac{1}{2 \sqrt{2 x^{3}+y^{2}}} \cdot 2 y=\frac{y}{\sqrt{2 x^{3}+y^{2}}} ; f_{y}(2,3)=\frac{3}{5}$
$d x=\Delta x=2.02-2=0.02 ; d y=\Delta y=2.97-3=-0.03$
$d z=\frac{12}{5} \times 0.02+\frac{3}{5} \times(-0.03)=0.03$
$\sqrt{2 \cdot(2.02)^{3}+(2.97)^{2}} \approx 5+0.03=5.03$
Note: $\sqrt{2 \cdot(2.02)^{3}+(2.97)^{2}} \approx 5.0305$ (by calculator)

Example 3:

The volume V (in cubic centimetres (or cm^{3})) of 1 mole (or mol.) of an ideal gas is given by $V=\frac{82.06}{p} T$, where p is the pressure (in atmospheres (or $a t m$)) and T is the absolute temperature (in Kelvins (or K)).

Approximate the change in V when p is increased from 5 atm to 5.2 atm and T is increased from 300 K to 310 K .

Solutions

$V=\frac{82.06}{p} T$; When $T=300$ and $p=5, V=\frac{82.06}{5} \times 300=4923.6\left(\right.$ in $\left.\mathrm{cm}^{3}\right)$
$\frac{\partial V}{\partial T}=\frac{82.06}{p},\left.\frac{\partial V}{\partial T}\right|_{T=300, p=5}=\frac{82.06}{5}=16.412\left(\right.$ in $\left.\mathrm{cm}^{3} / \mathrm{K}\right)$
$\frac{\partial V}{\partial p}=\frac{-82.06}{p^{2}} T,\left.\frac{\partial V}{\partial p}\right|_{T=300, p=5}=\frac{-82.06}{5^{2}} \times 300=-984.72\left(\mathrm{in} \mathrm{cm}^{3} / \mathrm{atm}\right)$
$d p=\Delta p=5.2-5=0.2 ; d T=\Delta T=310-300=10$
$\Delta V \approx d V=16.412 \times 10+(-984.72) \times 0.2=-32.824\left(\right.$ in $\left.\mathrm{cm}^{3}\right)$
Note: $\Delta V=\frac{82.06}{5.2} \times 310-\frac{82.06}{5} \times 300=-31.5615\left(\right.$ in $\left.\mathrm{cm}^{3}\right)$

Example 4:

The point $(1,2)$ lies on the curve with equation $f(x, y)=2 x^{3}+y^{3}-5 x y=0$.

Approximate the y - coordinate of the nearby point (x, y) on this curve for which $x=1.2$.

The graph of $g(y)=y^{3}-6 y+3.456$
(Put $x=1.2$ into $\left.2 x^{3}+y^{3}-5 x y\right)$

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Solutions

Let $z=f(x, y)=2 x^{3}+y^{3}-5 x y, f(1,2)=0$ and $f(1.2,2+\Delta y)=0$.
$\Delta z=0$.
$f_{x}(x, y)=6 x^{2}-5 y ; f_{x}(1,2)=-4 ; d x=\Delta x=1.2-1=0.2$
$f_{y}(x, y)=3 y^{2}-5 x ; f_{y}(1,2)=7 ; d y=\Delta y$
$0=\Delta z \approx d z=(-4) \times 0.2+7 \Delta y$
So, $\Delta y \approx \frac{4 \times 0.2}{7} \approx 0.114$
Required $y-$ coordinate $\approx 2+0.114=2.114$ (may take the approximate value 2.1)
Note: Required $y-$ coordinate ≈ 2.084 (by Newton's Method)

Three Dimensional Case:

Let $f: R^{3} \rightarrow R$ be a function on (x, y, z).
Suppose f_{x}, f_{y} and f_{z} are continuous at points near to (a, b, c).
$f(a+h, b+k, c+l)-f(a, b+k, c+l) \approx f_{x}(a, b+k, c+l) \cdot h$ when $h \approx 0$
$f(a, b+k, c+l)-f(a, b, c+l) \approx f_{y}(a, b, c+l) \cdot k$ when $k \approx 0$
$f(a, b, c+l)-f(a, b, c) \approx f_{z}(a, b, c) \cdot l$ when $l \approx 0$
So, $f(a+h, b+k, c+l)-f(a, b, c)$
$\approx f_{x}(a, b+k, c+l) \cdot h+f_{y}(a, b, c+l) \cdot k+f_{z}(a, b, c) \cdot l$ when $h \approx 0$ and $k \approx 0$ and $l \approx 0$
Assume f_{x} and f_{y} are continuous near to (a, b, c).
Then, $f_{x}(a, b+k, c+l) \approx f_{x}(a, b, c)$ and $f_{y}(a, b, c+l) \approx f_{y}(a, b, c)$ when $k \approx 0$ and $l \approx 0$
Thus, when $h \approx 0$ and $k \approx 0$ and $l \approx 0$, we have $f(a+h, b+k, c+l)$
$\approx f(a, b, c)+f_{x}(a, b, c) \cdot h+f_{y}(a, b, c) \cdot k+f_{z}(a, b, c) \cdot l$
$=f(a, b, c)+\left(f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right) \cdot(h, k, l)$
We define
$d f=f_{x}(x, y, z) \cdot d x+f_{y}(x, y, z) \cdot d y+f_{z}(x, y, z) \cdot d z$

Example:

We have constructed a metal cube that is supposed to have edge length 100 mm , but each of its three measured dimensions x, y and z may be in error by as much as a millimeter. Use differentials to estimate the maximum resulting error in its calculated volume $V=x y z$.

Solutions

$V(x, y, z)=x y z$
$V_{x}(x, y, z)=y z ; V_{y}(x, y, z)=x z ; V_{z}(x, y, z)=x y$
$d V=V_{x}(x, y, z) d x+V_{y}(x, y, z) d y+V_{z}(x, y, z) d z=y z d x+x z d y+x y d z$
$\Delta V \approx d V=100 \times 100 \times \pm 1+100 \times 100 \times \pm 1+100 \times 100 \times \pm 1$
Note: $100 \times 100 \times 1+100 \times 100 \times 1+100 \times 100 \times 1=30000$
the maximum resulting error in its calculated volume
$\approx \pm 30000$ (in mm^{3})

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\boldsymbol{n} - Dimensional Case:

Let $f: R^{n} \rightarrow R$ be a function and $A, H \in R^{n}$.
Suppose $f_{x_{1}}, f_{x_{2}}, \cdots, f_{x_{n}}$ are continuous at points near to A.
We can show that $f(A+H) \approx f(A)+\left(f_{x_{1}}(A), f_{x_{2}}(A), \cdots, f_{x_{n}}(A)\right) \cdot H$ when $\|H\| \approx 0$.
We define the gradient of f at A as $\operatorname{grad} f(A)=\nabla f(A)=\left(f_{x_{1}}(A), f_{x_{2}}(A), \cdots, f_{x_{n}}(A)\right)$.
Then, $f(A+H) \approx f(A)+\nabla f(A) \cdot H$ when $\|H\| \approx 0$.
At general point $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, we define the gradient of f at X as
$\operatorname{grad} f(X)=\nabla f(X)=\left(f_{x_{1}}(X), f_{x_{2}}(X), \cdots, f_{x_{n}}(X)\right)$.
Then, $f(X+H) \approx f(X)+\nabla f(X) \cdot H$ when $\|H\| \approx 0$.

Linear Approximation

Let $f: R^{n} \rightarrow R$ be a function and $A, H \in R^{n}$.
Suppose we can find:
(i) $\quad \delta \in R$ with $\delta>0$ AND
(ii) $\quad \nabla f(A)$
so that there exists a function $\boldsymbol{\varepsilon}: B(0, \delta) \rightarrow R$ such that $\boldsymbol{\varepsilon}(H) \rightarrow 0$ as $\|H\| \rightarrow 0$
AND $f(A+H)=f(A)+\nabla f(A) \cdot H+\boldsymbol{\varepsilon}(H) \cdot\|H\|$.
In this case, we say $f(A)+\nabla f(A) \cdot H$ is the linear approximation of $f(A+H)$ when $\|H\| \approx 0$.

Concept of Differentiability

$\frac{f(A+H)-f(A)-\nabla f(A) \cdot H}{\|H\|}=\frac{\varepsilon(H) \cdot\|H\|}{\|H\|}=\boldsymbol{\varepsilon}(H) \rightarrow 0$ as $\|H\| \rightarrow 0$
So, $\lim _{\|H\| \rightarrow 0} \frac{f(A+H)-f(A)-\nabla f(A) \cdot H}{\|H\|}=0$

Remark 1:

The property "the linear approximation" $\Rightarrow \lim _{\|H\| \rightarrow 0} \frac{f(A+H)-f(A)-\nabla f(A) \cdot H}{\|H\|}=0$

Remark 2:

Suppose $\lim _{\|H\| \rightarrow 0} \frac{f(A+H)-f(A)-\nabla f(A) \cdot H}{\|H\|}=0$.
We may define $\boldsymbol{\varepsilon}: R^{n} \rightarrow R$ by $\boldsymbol{\varepsilon}(H)=\frac{f(A+H)-f(A)-\nabla f(A) \cdot H}{\|H\|}$.
Then, $f(A+H)=f(A)+\nabla f(A) \cdot H+\boldsymbol{\varepsilon}(H) \cdot\|H\|$ and $\boldsymbol{\varepsilon}(H) \rightarrow 0$ as $\|H\| \rightarrow 0$
$\lim _{\|H\| \rightarrow 0} \frac{f(A+H)-f(A)-\nabla f(A) \cdot H}{\|H\|}=0 \Rightarrow$ The property "the linear approximation"

Definition

Let $f: R^{n} \rightarrow R$ be a function and $A \in R^{n}$.
Suppose we can find:
(i) $\quad \delta \in R$ with $\delta>0$ AND
(ii) $\quad \nabla f(A)$
so that there exists a function $\boldsymbol{\varepsilon}: B(O, \delta) \rightarrow R$ such that $\boldsymbol{\varepsilon}(H) \rightarrow 0$ as $\|H\| \rightarrow 0$
AND $f(A+H)=f(A)+\nabla f(A) \cdot H+\boldsymbol{\varepsilon}(H) \cdot\|H\|$.
In this case, we say \boldsymbol{f} is differentiable at \boldsymbol{A}.
Remark: $\lim _{\|H\| \rightarrow 0} \frac{f(A+H)-f(A)-\nabla f(A) \cdot H}{\|H\|}=0$.

Definition

Let $f: R^{n} \rightarrow R$ be a function and $A \in R^{n}$. We say f is continuously differentiable at \boldsymbol{A} if we can find $r \in R$ with $r>0$ such that $f_{x_{1}}, f_{x_{2}}, \cdots, f_{x_{n}}$ are continuous on $B(A, r)$.

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Theorem:

Let $f: R^{n} \rightarrow R$ be a function and $A \in R^{n}$.
f is continuously differentiable at $\boldsymbol{A} \Rightarrow \boldsymbol{f}$ is differentiable at \boldsymbol{A}
Remarks:
(i) the converse in general is not true
(ii) \boldsymbol{f} is differentiable at $\boldsymbol{A} \Rightarrow$
we can find $\nabla f(A)$, but $f_{x_{1}}, f_{x_{2}}, \cdots, f_{x_{n}}$ may not be continuous near A
Theorem:
Let $f: R^{n} \rightarrow R$ be a function and $A \in R^{n}$.
f is differentiable at $\boldsymbol{A} \Rightarrow \boldsymbol{f}$ is continuous at \boldsymbol{A}

Definition

Let $f: R^{n} \rightarrow R$ be a function.
Let $\phi \neq S \subset R^{n}$ and S is an open set.
We say f is differentiable on \boldsymbol{S} if f is differentiable at A for any $A \in S$.

Example 1

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=x y$.
Show that f is differentiable at $(1,2)$.
Proof
$f(1,2)=2 ; f_{x}(x, y)=y ; f_{x}(1,2)=2 ; f_{y}(x, y)=x ; f_{y}(1,2)=1$;
$\nabla f(1,2) \cdot(h, k)=(2,1) \cdot(h, k)=2 h+k$
$f(1+h, 2+k)=(1+h)(2+k)=2+2 h+k+h k=f(1,2)+\nabla f(1,2) \cdot(h, k)+h k$
Let $\varepsilon: R^{2} \rightarrow R$ be defined by $\varepsilon(h, k)=\left\{\begin{array}{cl}\frac{h k}{\sqrt{h^{2}+k^{2}}} & \text { if }(h, k) \neq(0,0) \\ 0 & \text { if }(h, k)=(0,0)\end{array}\right.$.
Note: $\|(h, k)\|=\sqrt{h^{2}+k^{2}}$.
Then, $f(1+h, 2+k)=f(1,2)+\nabla f(1,2) \cdot(h, k)+\varepsilon(h, k)\|(h, k)\|$.
$\lim _{\|(h, k)\| \rightarrow 0} \varepsilon(h, k)=\lim _{\|(h, k)\| \rightarrow 0} \frac{h k}{\sqrt{h^{2}+k^{2}}}=\lim _{r \rightarrow 0^{+}} \frac{1}{2} r \sin 2 \theta=0$
Reason:
Let $h=r \cos \theta, k=r \sin \theta$ where $r \geq 0$.
Then, $\frac{h k}{\sqrt{h^{2}+k^{2}}}=\frac{r^{2} \sin \theta \cos \theta}{r}=\frac{1}{2} r \sin 2 \theta$
Note: $|\sin 2 \theta| \leq 1$

Thus, f is differentiable at $(1,2)$.

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 2

Let $f: R^{2} \rightarrow R$ be defined by $f(x, y)=\sqrt{x^{2}+y^{2}}$.
Show that f is not differentiable at $(0,0)$.

Proof:

Suffices to show $f_{x}(0,0)$ doesn't exist.
$f(0,0)=0 . f(0+h, 0)=f(h, 0)=\sqrt{h^{2}+0}=|h| . f(0+h, 0)-f(0,0)=|h|$.
$\lim _{h \rightarrow 0^{+}} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1$
$\lim _{h \rightarrow 0^{-}} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1$
$\lim _{h \rightarrow 0^{+}} \frac{f(0+h, 0)-f(0,0)}{h}=1 \neq-1=\lim _{h \rightarrow 0^{-}} \frac{f(0+h, 0)-f(0,0)}{h}$
So, $\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}$ doesn't exist.
Thus, $f_{x}(0,0)$ doesn't exist.

Rules for Differentiation

Theorem:

Let $\phi \neq S \subset R^{n}$ and S is an open set.
Let $f: S \rightarrow R$ and $g: S \rightarrow R$ be functions.
Let $\lambda \in R$ and $P \in S$.
Suppose both f and g are differentiable at P.
Then,
(i) $f+g$ is differentiable at P
(ii) $f-g$ is differentiable at P
(iii) $f \cdot g$ is differentiable at P
(iv) $\quad \frac{f}{g}$ is differentiable at P
(Assumed that we can find $r \in R$ with $r>0$ such that $B(P, r) \subset S$ and $g(X) \neq 0$ for any $X \in B(P, r)$.)
(v) $\quad \lambda f$ is differentiable at P

Proof: Omitted (As Exercises)

\# Multivariable Chain Rule

Theorem 1:

Let $x: I \rightarrow R$ and $y: I \rightarrow R$ are functions, where I is an open interval.
Suppose x and y are differentiable on I.
Let $\phi \neq S \subset R^{2}$ and S is an open set.
Suppose $\{(x(t), y(t)): t \in I\} \subset S$.
Let $f: S \rightarrow R$ be a function.
Suppose all partial derivatives of f are continuous on S.
Then we can define a function $z: I \rightarrow R$ by $z(t)=f(x(t), y(t))$ and it is differentiable on I.
$\frac{d z}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}$
Remark: Sometimes, if we write $w=f(x, y)$, then we also write $\frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}$
by considering $w=w(t)=f(x(t), y(t))$.

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Idea of the proof

$\Delta z \approx d z=\frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y$
$\frac{\Delta z}{\Delta t} \approx \frac{\partial f}{\partial x} \cdot \frac{\Delta x}{\Delta t}+\frac{\partial f}{\partial y} \cdot \frac{\Delta y}{\Delta t}$
Taking the limit $\Delta t \rightarrow 0$, we get $\frac{d z}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}$.

Example 1:

$$
\text { Suppose that } w=e^{x y}, x=t^{2} \text { and } y=t^{3} \text {. Find } \frac{d w}{d t} \text {. }
$$

Solutions

Method 1

$w=e^{x y}=e^{\left(t^{2} \cdot t^{3}\right)}=e^{\left(t^{5}\right)}$

Method 2 (By Chain Rule)

$\frac{d w}{d t}=e^{\left(t^{5}\right)} \cdot \frac{d}{d t} t^{5}=5 t^{4} \cdot e^{\left(t^{5}\right)}$

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=y e^{x y} ; \frac{d x}{d t}=2 t ; \frac{\partial w}{\partial y}=x e^{x y} ; \frac{d y}{d t}=3 t^{2} \\
& \frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t} \\
& =y e^{x y} \cdot 2 t+x e^{x y} \cdot 3 t^{2} \\
& =2 t^{4} \cdot e^{\left(t^{5}\right)}+3 t^{4} \cdot e^{\left(t^{5}\right)} \\
& =5 t^{4} \cdot e^{\left(t^{5}\right)}
\end{aligned}
$$

Example 2:

The figure shows a melting cylindrical block of ice.
Because of the sun's heat beating down from above, its height h is decreasing more rapidly than its radius r.
If its height is decreasing at $3 \mathrm{~cm} / \mathrm{h}$ and its radius is decreasing at $1 \mathrm{~cm} / \mathrm{h}$ when $r=15 \mathrm{~cm}$ and $h=40 \mathrm{~cm}$, what is the rate of change of the volume V of the block at that instant?

Solutions

As $V=\pi r^{2} h$, by Chain Rule, $\frac{d V}{d t}=2 \pi r h \frac{d r}{d t}+\pi r^{2} \frac{d h}{d t}$.
When $r=15$ and $h=40, \frac{d h}{d t}=-3, \frac{d r}{d t}=-1$ (minus sign means decreasing).
$\frac{d V}{d t}=2 \pi \cdot 15 \cdot 40 \cdot(-1)+\pi \cdot 15^{2} \cdot(-3)=-1875 \pi \approx-5890.49\left(\mathrm{in} \mathrm{cm}^{3} / \mathrm{h}\right)$.
The volume of the block at that instant is decreasing at the rate of $5890 \mathrm{~cm}^{3} / \mathrm{h}$.

Example 3:

$$
\text { Find } \frac{d w}{d t} \text { if } w=x^{2}+z e^{y}+\sin x z, x=t, y=t^{2}, z=t^{3} .
$$

Solutions

Method 1

$$
\overline{w=x^{2}+z e^{y}+\sin x z}
$$

$$
=t^{2}+t^{3} e^{\left(t^{2}\right)}+\sin \left(t^{4}\right)
$$

$$
\frac{d w}{d t}
$$

$$
=2 t+3 t^{2} e^{\left(t^{2}\right)}+t^{3} e^{\left(t^{2}\right)} \cdot 2 t+\cos \left(t^{4}\right) \cdot 4 t^{3}
$$

$$
=2 t+\left(3 t^{2}+2 t^{4}\right) e^{\left(t^{2}\right)}+4 t^{3} \cos \left(t^{4}\right)
$$

```
Method 2 (By Chain Rule)
    \(\frac{\partial w}{\partial x}=2 x+z \cos x z ; \frac{d x}{d t}=1\)
\(\frac{\partial w}{\partial y}=z e^{y} ; \frac{d y}{d t}=2 t\)
\(\frac{\partial w}{\partial z}=e^{y}+x \cos x z ; \frac{d z}{d t}=3 t^{2}\)
\(\frac{d w}{d t}\)
\(=(2 x+z \cos x z) \cdot 1+\left(z e^{y}\right) \cdot 2 t+\left(e^{y}+x \cos x z\right) \cdot 3 t^{2}\)
\(=2 t+t^{3} \cos \left(t^{4}\right)+2 t^{4} e^{\left(t^{2}\right)}+3 t^{2} e^{\left(t^{2}\right)}+3 t^{3} \cos \left(t^{4}\right)\)
\(=2 t+\left(3 t^{2}+2 t^{4}\right) e^{\left(t^{2}\right)}+4 t^{3} \cos \left(t^{4}\right)\)
```


Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Theorem 2:

Let $x_{i}: I \rightarrow R$ is a function, for $i=1,2, \cdots, n$, where I is an open interval.
Suppose x_{i} is differentiable on I, for $i=1,2, \cdots, n$.
Let $\phi \neq S \subset R^{n}$ and S is an open set.
Suppose $\left\{\left(x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right): t \in I\right\} \subset S$.
Let $f: S \rightarrow R$ be a function.
Suppose all partial derivatives of f are continuous on S.
Then we can define a function $z: I \rightarrow R$ by $z(t)=f\left(x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right)$ and it is differentiable on I.
$\frac{d z}{d t}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \cdot \frac{d x_{i}}{d t}$

Theorem 3 (General Chain Rule):

Let $\phi \neq T \subset R^{n}$ and T is an open set.
Let $x_{i}: T \rightarrow R$ is a function, for $i=1,2, \cdots, m$.
Suppose all partial derivatives of x_{i} are continuous on T, for $i=1,2, \cdots, m$.
Let $\phi \neq S \subset R^{m}$ and S is an open set.
Suppose $\left\{\left(x_{1}(A), x_{2}(A), \cdots, x_{m}(A)\right): A \in T\right\} \subset S$.
Let $f: S \rightarrow R$ be a function.
Suppose all partial derivatives of f are continuous on S.
Then we can define a function $z: T \rightarrow R$ by $z(A)=f\left(x_{1}(A), x_{2}(A), \cdots, x_{m}(A)\right)$ and all its partial derivatives are continuous on T. $\frac{\partial z}{\partial t_{k}}=\sum_{i=1}^{m} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial t_{k}}$

Example 4:

Suppose $z=f(u, v), u=2 x+y, v=3 x-2 y$.
Given the values of $\frac{\partial z}{\partial u}=3$ and $\frac{\partial z}{\partial v}=-2$ at the point $(u, v)=(3,1)$.
Find the values of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the corresponding point $(x, y)=(1,1)$.

Solutions

At $(x, y)=(1,1)$ and $(u, v)=(3,1)$,
$\frac{\partial u}{\partial x}=2 ; \frac{\partial v}{\partial x}=3$
$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}=3 \times 2+(-2) \times 3=0$
$\frac{\partial u}{\partial y}=1 ; \frac{\partial v}{\partial y}=-2$
$\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}=3 \times 1+(-2) \times(-2)=7$

Course Code:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 5:

Let $w=f(x, y)$ where x and y are given in polar coordinates by the equations $x=r \cos \theta$ and $y=r \sin \theta$.
Calculate $\frac{\partial w}{\partial r}, \frac{\partial w}{\partial \theta}$ and $\frac{\partial^{2} w}{\partial r^{2}}$ in terms of r, θ and the partial derivatives of w with respect to x and y.

Solutions

$\frac{\partial x}{\partial r}=\cos \theta ; \frac{\partial x}{\partial \theta}=-r \sin \theta ; \frac{\partial y}{\partial r}=\sin \theta ; \frac{\partial y}{\partial \theta}=r \cos \theta$
$\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial r}=\cos \theta \frac{\partial w}{\partial x}+\sin \theta \frac{\partial w}{\partial y}$
$\frac{\partial w}{\partial \theta}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \theta}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \theta}=-r \sin \theta \frac{\partial w}{\partial x}+r \cos \theta \frac{\partial w}{\partial y}$
$\frac{\partial^{2} w}{\partial r^{2}}=\frac{\partial}{\partial r}\left(\cos \theta \frac{\partial w}{\partial x}+\sin \theta \frac{\partial w}{\partial y}\right)$
$=\cos \theta \frac{\partial}{\partial r}\left(\frac{\partial w}{\partial x}\right)+\sin \theta \frac{\partial}{\partial r}\left(\frac{\partial w}{\partial y}\right)$
$=\cos \theta\left(\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial x}\right) \cdot \frac{\partial x}{\partial r}+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial x}\right) \cdot \frac{\partial y}{\partial r}\right)+\sin \theta\left(\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial y}\right) \cdot \frac{\partial x}{\partial r}+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial y}\right) \cdot \frac{\partial y}{\partial r}\right)$
$=\cos \theta\left(\frac{\partial^{2} w}{\partial x^{2}} \cdot \cos \theta+\frac{\partial^{2} w}{\partial y \partial x} \cdot \sin \theta\right)+\sin \theta\left(\frac{\partial^{2} w}{\partial x \partial y} \cdot \cos \theta+\frac{\partial^{2} w}{\partial y^{2}} \cdot \sin \theta\right)$
$=\cos ^{2} \theta \frac{\partial^{2} w}{\partial x^{2}}+2 \sin \theta \cos \theta \frac{\partial^{2} w}{\partial y \partial x}+\sin ^{2} \theta \frac{\partial^{2} w}{\partial y^{2}}$
Note: $\frac{\partial^{2} w}{\partial y \partial x}=\frac{\partial^{2} w}{\partial x \partial y}$

Example 6:

Suppose that $w=f(u, v, x, y)$ where u and v are functions of x and y.
Find $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$.
[Hint: x and y play dual roles as intermediate and independent variables.]

Solutions

$\frac{\partial w}{\partial x}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x}+\frac{\partial f}{\partial x}$
$\frac{\partial w}{\partial y}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}+\frac{\partial f}{\partial y}$

Example 7:

Consider a parametric curve $x=x(t), y=y(t), z=z(t)$ that lies on the surface $z=f(x, y)$ in space.
Recall that if $\vec{T}=\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)$ and $\vec{N}=\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y},-1\right)$, then \vec{T} is tangent to the curve and \vec{N} is normal to the surface.
Show that \vec{T} and \vec{N} are everywhere perprndicular.
Proof:
$\vec{T} \cdot \vec{N}=\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right) \cdot\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y},-1\right)$
$=\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t}-\frac{d z}{d t}$
$=\frac{d z}{d t}-\frac{d z}{d t}=0$
So, \vec{T} and \vec{N} are everywhere perprndicular.

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Exercise

Suppose $f(x, y)$ satisfy $f(t x, t y)=t^{m} f(x, y)$ for any $(x, y) \in R^{2}$, where m is a fixed positive integer.
Show that $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=m f$.
[Hint: Consider $\frac{\partial}{\partial t} f(t x, t y)$.]

\# Implicit Partial Differentiation

Theorem:

Suppose that the function $F\left(x_{1}, x_{2}, \cdots, x_{n}, z\right)$ is continuously differentiable near to the point $\left(a_{1}, a_{2}, \cdots, a_{n}, b\right)$ at which $F\left(a_{1}, a_{2}, \cdots, a_{n}, b\right)=0$ and $\frac{\partial F}{\partial z} \neq 0$.
Then, there exists a continuously differentiable function $z=g\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ such that $b=g\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $F\left(x_{1}, x_{2}, \cdots, x_{n}, g\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right)=0$ for $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ near $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$.

Example 1:

Consider the graph of the equation $F(x, y)=x^{3}+y^{3}-3 x y=0$,
find $\frac{d y}{d x}$ if it is well defined.

Solutions

Note: $F(x, y)=x^{3}+y^{3}-3 x y$
$0=\frac{d}{d x} F(x, y)=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \cdot \frac{d y}{d x}=3 x^{2}-3 y+\left(3 y^{2}-3 x\right) \frac{d y}{d x}$
So, $\frac{d y}{d x}=-\frac{3 x^{2}-3 y}{3 y^{2}-3 x}=-\frac{x^{2}-y}{y^{2}-x}\left(\right.$ Assumed $\left.y^{2}-x \neq 0\right)$
Consider $y^{2}-x=0$ and $x^{3}+y^{3}-3 x y=0$, we have
$y^{6}+y^{3}-3 y^{3}=0 \Rightarrow y^{6}-2 y^{3}=0 \Rightarrow y^{3}\left(y^{3}-2\right)=0 \Rightarrow y=0$ or $\sqrt[3]{2}$
When $y=0, x=0$.
When $y=\sqrt[3]{2}, x=\sqrt[3]{4}$.
$\frac{d y}{d x}$ is undefined at points $(0,0)$ and $(\sqrt[3]{4}, \sqrt[3]{2})$.

Example 2:

Suppose $w=G(x, y), u=u(x, y)$ and $v=v(x, y)$ be given.
Suppose we know that x and y can be solved in terms of u and v.
Find $\frac{\partial G}{\partial x}$ and $\frac{\partial G}{\partial y}$ in terms of $\frac{\partial w}{\partial u}, \frac{\partial w}{\partial v}, \frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}, \frac{\partial y}{\partial u}$ and $\frac{\partial y}{\partial v}$.

Solutions

$\frac{\partial w}{\partial u}=\frac{\partial G}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial G}{\partial y} \cdot \frac{\partial y}{\partial u}$
$\frac{\partial w}{\partial v}=\frac{\partial G}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial G}{\partial y} \cdot \frac{\partial y}{\partial v}$
In Matrix Form
$\binom{\frac{\partial w}{\partial u}}{\frac{\partial w}{\partial v}}=\left(\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}\end{array}\right)\binom{\frac{\partial G}{\partial x}}{\frac{\partial G}{\partial y}}$, so $\binom{\frac{\partial G}{\partial x}}{\frac{\partial G}{\partial y}}=\left(\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}\end{array}\right)^{-1}\binom{\frac{\partial w}{\partial u}}{\frac{\partial w}{\partial v}}=\frac{1}{\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}}\left(\begin{array}{cc}\frac{\partial y}{\partial v} & -\frac{\partial y}{\partial u} \\ -\frac{\partial x}{\partial v} & \frac{\partial x}{\partial u}\end{array}\right)\binom{\frac{\partial w}{\partial u}}{\frac{\partial w}{\partial v}}$

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Directional Derivatives and Gradient Vector

Concept of partial derivative

Suppose $n=2,3, \cdots$.
Let $\phi \neq S \subset R^{n}$ and S is an open set.
Let $f: S \rightarrow R$ be a function on $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
Let $E_{j}=\left(e_{j 1}, e_{j 2}, \cdots, e_{j n}\right)$ be defined by $e_{j i}=\left\{\begin{array}{lll}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{array}\right.$.
That is, only $j-$ th cordinate is 1 , other coordinates are zeros.
Note: E_{j} is an unit vector in the direction of the coordinate axis for x_{j}.
$f_{x_{j}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\frac{\partial f}{\partial x_{j}}=\lim _{h \rightarrow 0} \frac{f\left(X+h E_{j}\right)-f(X)}{h}$.

Concept of directional derivative

Suppose $n=2,3, \cdots$.
Let $\phi \neq S \subset R^{n}$ and S is an open set.
Let $f: S \rightarrow R$ be a function on $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
Let \boldsymbol{u} be any unit vector.
We define:
$D_{\boldsymbol{u}} f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\lim _{h \rightarrow 0} \frac{f(X+h \boldsymbol{u})-f(X)}{h}$.
Theorem:
$D_{u} f(X)=\nabla f(X) \cdot u$
Proof:
$D_{\boldsymbol{u}} f(X)$
$=\lim _{h \rightarrow 0} \frac{f(X+h \boldsymbol{u})-f(X)}{h}=\lim _{h \rightarrow 0} \frac{\nabla f(X) \cdot(h \boldsymbol{u})}{h}=\lim _{h \rightarrow 0} \frac{h \nabla f(X) \cdot \boldsymbol{u}}{h}=\lim _{h \rightarrow 0} \nabla f(X) \cdot \boldsymbol{u}=\nabla f(X) \cdot \boldsymbol{u}$

Example:

Suppose $f(x, y)=\frac{1}{180}(7400-4 x-9 y-0.03 x y)$ for any $(x, y) \in R^{2}$.
Find $D_{\boldsymbol{u}} f((200,200))$ where \boldsymbol{u} is the unit vector in the direction of $\boldsymbol{v}=(3,4)$.

Solutions

$f_{x}(x, y)=\frac{1}{180}(-4-0.03 y), f_{x}(200,200)=\frac{-1}{18} ;$
$f_{y}(x, y)=\frac{1}{180}(-9-0.03 x), f_{y}(200,200)=\frac{-1}{12}$;
$\nabla f((200,200))=\left(\frac{-1}{18}, \frac{-1}{12}\right)$.
$\|v\|=\|(3,4)\|=\sqrt{3^{2}+4^{2}}=5$
$\boldsymbol{u}=\frac{1}{\|\boldsymbol{v}\|} \boldsymbol{v}=\frac{1}{5}(3,4)=\left(\frac{3}{5}, \frac{4}{5}\right)$
$D_{\boldsymbol{u}} f((200,200))=\nabla f((200,200)) \cdot \boldsymbol{u}=\left(\frac{-1}{18}, \frac{-1}{12}\right) \cdot\left(\frac{3}{5}, \frac{4}{5}\right)=\frac{-1}{10}$

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Application:

If $f(x, y)$ denotes the temperature (in degrees Celsius) at the point (x, y) near an airport where distances x and y are measured in kilometers, then $D_{\boldsymbol{u}} f((200,200))$ will be the initial rate of change of temperature when the aircraft heads northeast in the direction specified by the vector \boldsymbol{v} at the location $(200,200)$.

Note:
$D_{\boldsymbol{u}} f((200,200))=-0.1$ means "The instantaneous rate of change is decreasing at $0.1{ }^{\circ} \mathrm{C} / \mathrm{km}$ ".

Significance of the Gradient Vector

Suppose θ is the angle between $\nabla f(X)$ and \boldsymbol{u}.
$D_{u} f(X)=\nabla f(X) \cdot u=\|\nabla f(X)\| \cdot\|u\| \cos \theta=\|\nabla f(X)\| \cos \theta$
Note:
The maximum value of $D_{u} f(X)$ is $\|\nabla f(X)\|$.
The maximum value is obtained when $\cos \theta=1$, that is \boldsymbol{u} is in the same direction as $\nabla f(X)$.
In this case, $\boldsymbol{u}=\frac{1}{\|\nabla f(X)\|} \nabla f(X)$.

Geometric Meaning of the Gradient Vector

Suppose $\boldsymbol{r}(t)=(x(t), y(t), z(t))$ is a curve on the surface $F(x, y, z)=0$ where F is continuously differentiable.
$0=F(x(t), y(t), z(t))$
$0=\frac{d}{d t} 0=\frac{d}{d t} F(x(t), y(t), z(t))=\frac{\partial F}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial F}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial F}{\partial z} \cdot \frac{d z}{d t}$
$=\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) \cdot\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)=\nabla F \cdot \boldsymbol{r}^{\prime}$
∇F is always perpendicular to the tangent vector of the curve on the surface.
So, ∇F is a normal vector of the tangent plane.

Application:

Suppose $F(x, y, z)=z-f(x, y)$.
$\nabla F=\left(-f_{x}(x, y, z),-f_{y}(x, y, z), 1\right)$ is a normal vector of the surface $z=f(x, y)$.

Example:

Write an equation of the plane tangent to the ellipsoid $2 x^{2}+4 y^{2}+z^{2}=45$ at the point $P(2,-3,-1)$.

Solutions

Let $F(x, y, z)=2 x^{2}+4 y^{2}+z^{2}-45$ for any $(x, y, z) \in R^{3}$.
$\nabla F(x, y, z)=(4 x, 8 y, 2 z)$
$\nabla F(2,-3,-1)=(8,-24,-2)$ is a normal vector of required tangent plane.
An equation of required tangent plane is
$((x, y, z)-(2,-3,-1)) \cdot(8,-24,-2)=0$
$8 x-24 y-2 z-(16+72+2)=0$
$8 x-24 y-2 z-90=0$
$4 x-12 y-z-45=0$

Theorem:

Suppose F and G are continuously differentiable. The intersection of $F(x, y, z)=0$ and $G(x, y, z)=0$ will be some sort of curve in space.

If $P(a, b, c)$ is a point of such curve such that $\nabla F(P)$ and $\nabla G(P)$ are not collinear, then $\nabla F(P) \times \nabla G(P)$ will be a vector parallelt to the tangent vector of the curve (the intersection of the two surfaces) at P.

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 1:

The point $P(1,-1,2)$ lies on both paraboloids $F(x, y, z)=x^{2}+y^{2}-z=0$ and $G(x, y, z)=2 x^{2}+3 y^{2}+z^{2}-9=0$.

Write an equation of the plane through P and is normal to the curve of intersection of these two surfaces.

Solutions

$F(x, y, z)=x^{2}+y^{2}-z$
$\nabla F(x, y, z)=(2 x, 2 y,-1) ; \nabla F(P)=\nabla F(1,-1,2)=(2,-2,-1)$
$G(x, y, z)=2 x^{2}+3 y^{2}+z^{2}-9$
$\nabla G(x, y, z)=(4 x, 6 y, 2 z) ; \nabla G(P)=\nabla G(1,-1,2)=(4,-6,4)$
$\nabla F(P) \times \nabla G(P)$
$=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & -2 & -1 \\ 4 & -6 & 4\end{array}\right|=-14 \vec{\imath}-12 \vec{\jmath}-4 \vec{k}=(-14,-12,-4)$
An equation of required tangent plane is
$((x, y, z)-(1,-1,2)) \cdot(-14,-12,-4)=0$
$-14 x-12 y-4 z-(-14+12-8)=0$
$-14 x-12 y-4 z+10=0$
$7 x+6 y+2 z-5=0$

Example 2:

Write an equation of the line tangent at the point $P(1,2)$ to the folium of Descartes with equation $F(x, y)=2 x^{3}+2 y^{3}-9 x y=0$.

Solutions

$F(x, y)=2 x^{3}+2 y^{3}-9 x y$
$\nabla F(x, y)=\left(6 x^{2}-9 y, 6 y^{2}-9 x\right) ; \nabla F(P)=\nabla F(1,2)=(-12,15)$
A vector normal to required tangent line is $(-12,15)$.
For any point (x, y) on required tangent line, $(x, y)-(1,2)$ is a vector in the direction of the required tangent line.
An equation of required tangent line is $((x, y)-(1,2)) \cdot(-12,15)=0$.
$-12(x-1)+15(y-2)=0$
$-12 x+12+15 y-30=0$
$-12 x+15 y-18=0$
$4 x-5 y+6=0$

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Lagrange Multiplers and Constrained Optimization

Theorem (Two Dimensional Case)

Let $f(x, y)$ and $g(x, y)$ be continuously differentiable functions.
If the maximum value (or minimum value) of $f(x, y)$ subject to the constraint $g(x, y)=0$ occur at a point $P\left(x_{0}, y_{0}\right)$ where
$\nabla g(P) \neq(0,0)$, then $\nabla f(P)=\lambda \nabla g(P)$ for some constant λ.

Proof for the case (maximum value at $\boldsymbol{P}\left(\boldsymbol{x}_{0}, y_{0}\right)$)

Suppose the maximum value of $f(x, y)$ subject to the constraint $g(x, y)=0$ occurs at a point $P\left(x_{0}, y_{0}\right)$ where $\nabla g(P) \neq(0,0)$.
We consider a curve on $g(x, y)=0$ and passing through P, say $r:(-1,1) \rightarrow R^{2}$,
$r(t)=(x(t), y(t))$ and $r(0)=P\left(x_{0}, y_{0}\right)$.
$0=\left.\frac{d}{d t} f(x(t), y(t))\right|_{t=0}$ (as P is a local maxima on $g(x, y)=0$)
$0=\left.\frac{d}{d t} f(x(t), y(t))\right|_{t=0}=\left.\nabla f(x(t), y(t)) \cdot r^{\prime}(t)\right|_{t=0}=\nabla f(P) \cdot r^{\prime}(0)$
This is true for every curve on $g(x, y)=0$ and passing through P.
So, $\nabla f(P)$ is normal to any tangent vector of every curve that is on $g(x, y)=0$ and is passing through P.
Also, $0=g(x(t), y(t))$. We have $0=\frac{d}{d t} g(x(t), y(t))=\left.\frac{d}{d t} g(x(t), y(t))\right|_{t=0}$ $=\left.\nabla g(x(t), y(t)) \cdot r^{\prime}(t)\right|_{t=0}=\nabla g(P) \cdot r^{\prime}(0)$
This is true for every curve on $g(x, y)=0$ and passing through P.
So, $\nabla g(P)$ is normal to any tangent vector of every curve that is on $g(x, y)=0$ and is passing through P.
As $\nabla g(P) \neq(0,0), \nabla f(P)$ and $\nabla g(P)$ must be parallel to each other.
So, $\nabla f(P)=\lambda \nabla g(P)$ for some constant λ.
Remark: We may generalize to \mathbf{n}-dimensional case.

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 1:

Find the points of the rectangular hyperbola $x y=1$ that are closest to the origin $(0,0)$.

Solutions

Let $d(x, y)=\sqrt{x^{2}+y^{2}}$ for any $(x, y) \in R^{2}$.
Let $f(x, y)=x^{2}+y^{2}$ for any $(x, y) \in R^{2}$.
Let $g(x, y)=x y-1$ for any $(x, y) \in R^{2}$.
$d\left(x_{0}, y_{0}\right)$ is a solution for "Minimize $d(x, y)$ subject to $g(x, y)=0$ " \Leftrightarrow
$f\left(x_{0}, y_{0}\right)$ is a solution for "Minimize $f(x, y)$ subject to $g(x, y)=0$ "
Consider the problem "Minimize $f(x, y)=x^{2}+y^{2}$ subject to $g(x, y)=0$ ",
$\nabla f(x, y)=(2 x, 2 y), \nabla g(x, y)=(y, x)$
Put $\nabla f(x, y)=\lambda \nabla g(x, y)$, we have $(2 x, 2 y)=\lambda(y, x)$
$\{2 x=\lambda y$
$2 y=\lambda x$
So, $4 y=\lambda(2 x)=\lambda(\lambda y)=\lambda^{2} y \Rightarrow(\lambda-2)(\lambda+2) y=0 \Rightarrow \lambda=2$ or -2 or $y=0$
$y=0$ must be rejected as $x y=1$
For $\lambda=2, x=y$, so $x^{2}=1$ (as $x y=1$), $x=1$ or -1 . The two points are $(1,1)$ and $(-1,-1)$.
For $\lambda=-2, x=-y$, so $-y^{2}=1$ (as $x y=1$), $y^{2}=-1$. No real solutions.
Thus, the two points are $(1,1)$ and $(-1,-1)$.

Course Code:
 MATH 2000
 Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 2:

What is the maximal cross-sectional area of a rectangular beam cut as indicated from an elliptical \log with semi-axes of lengths $a=2 f t$. and $b=1 f t$.?

Solutions

An equation of the given ellipse is $\frac{x^{2}}{2^{2}}+y^{2}=1$.
Let $A(x, y)=4 x y$ for any $(x, y) \in R^{2}$.
Let $g(x, y)=\frac{1}{4} x^{2}+y^{2}-1$ for any $(x, y) \in R^{2}$.
We consider "Maximize $A(x, y)$ subject to $g(x, y)=0$ ".
$\nabla A(x, y)=(4 y, 4 x), \nabla g(x, y)=\left(\frac{1}{2} x, 2 y\right)$
Put $\nabla A(x, y)=\lambda \nabla g(x, y)$, we have $(4 y, 4 x)=\lambda\left(\frac{1}{2} x, 2 y\right)$
$\left\{\begin{array}{l}4 y=\frac{1}{2} \lambda x \\ 4 x=2 \lambda y\end{array}\right.$
$8 x=\lambda(4 y)=\lambda\left(\frac{1}{2} \lambda x\right)=\frac{1}{2} \lambda^{2} x \Rightarrow 16 x=\lambda^{2} x \Rightarrow(\lambda-4)(\lambda+4) x=0 \Rightarrow \lambda=4$ or -4 or $x=0$
But $x=0$ must be rejected, otherwise $x=0=y$ (But it doesn't satisfy $\frac{1}{4} x^{2}+y^{2}=1$)
For $\lambda=4,4 y=2 x, x=2 y$. Also, we have $\frac{1}{4} x^{2}+y^{2}=1 \Rightarrow y^{2}+y^{2}=1 \Rightarrow 2 y^{2}=1 \Rightarrow y=\frac{ \pm 1}{\sqrt{2}}$.
The four points on the ellipse for this case are $\left(\frac{2}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{2}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right),\left(\frac{-2}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{-2}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$.
For $\lambda=-4,4 y=-2 x, x=-2 y$.
Also, we have $\frac{1}{4} x^{2}+y^{2}=1 \Rightarrow y^{2}+y^{2}=1 \Rightarrow 2 y^{2}=1 \Rightarrow y=\frac{ \pm 1}{\sqrt{2}}$.
The four points on the ellipse for this case are $\left(\frac{2}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{2}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right),\left(\frac{-2}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{-2}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$.
The maximal cross-sectional area is $4 \times \frac{2}{\sqrt{2}} \times \frac{1}{\sqrt{2}}=4$ (in $f t^{2}$.)
Remark:
Area of the ellipse is $\pi a b=2 \pi$.
$\frac{4}{2 \pi} \times 100 \% \approx 63.66 \%$

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 3:

Find the maximum volume of a rectangular box inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ with its faces parallel to the coordinate planes.
(Assumed $a>0, b>0$ and $c>0$.)

Solutions

Let $V(x, y, y)=8 x y z$ for any $(x, y, z) \in R^{3}$.
Let $g(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1$ for any $(x, y, z) \in R^{3}$.
We consider "Maximize $V(x, y, z)$ subject to $g(x, y, z)=0$ ".
$\nabla V(x, y, z)=(8 y z, 8 x z, 8 x y), \nabla g(x, y, z)=\left(\frac{2 x}{a^{2}}, \frac{2 y}{b^{2}}, \frac{2 z}{c^{2}}\right)$
Put $\nabla V(x, y, z)=\lambda \nabla g(x, y, z)$, we have $(8 y z, 8 x z, 8 x y)=\lambda\left(\frac{2 x}{a^{2}}, \frac{2 y}{b^{2}}, \frac{2 z}{c^{2}}\right)$
$\left\{\begin{array}{l}8 y z=\frac{2 \lambda x}{a^{2}} \\ 8 x z=\frac{2 \lambda y}{b^{2}} \\ 8 x y=\frac{2 \lambda z}{c^{2}}\end{array}\right.$
$\frac{2 \lambda x^{2}}{a^{2}}=\frac{2 \lambda y^{2}}{b^{2}}=\frac{2 \lambda z^{2}}{c^{2}}=8 x y z \Rightarrow \frac{x^{2}}{a^{2}}=\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$
Also, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. Thus, $\frac{x^{2}}{a^{2}}=\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}=\frac{1}{3}$.
Assume $x>0, y>0$ and $z>0$, we have $x=\frac{1}{\sqrt{3}} a, y=\frac{1}{\sqrt{3}} b$ and $z=\frac{1}{\sqrt{3}} c$.
The maximum volume is $8 \times \frac{1}{\sqrt{3}} a \times \frac{1}{\sqrt{3}} b \times \frac{1}{\sqrt{3}} c=\frac{8 \sqrt{3}}{9} a b c$.
Remark:
The volume of the ellipsoid is $\frac{4}{3} \pi a b c$.
$\frac{\frac{8 \sqrt{3}}{9} a b c}{\frac{4}{3} \pi a b c} \times 100 \%=\frac{2 \sqrt{3}}{3 \pi} \times 100 \% \approx 36.76 \%$

Course Code:
 MATH 2000
 Course Name:
 Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# With 2 Constraints

Theorem (Three Dimensional Case)

Let $f(x, y, z), g(x, y, z)$ and $h(x, y, z)$ be continuously differentiable functions.
If the maximum value (or minimum value) of $f(x, y, z)$ subject to the constraints $g(x, y, z)=0$ and $h(x, y, z)=0$ occur at a point $P\left(x_{0}, y_{0}, z_{0}\right)$ where $\nabla g(P) \neq(0,0,0)$ and $\nabla h(P) \neq(0,0,0)$, then $\nabla f(P)=\lambda_{1} \nabla g(P)+\lambda_{2} \nabla h(P)$ for some constants λ_{1} and λ_{2}.

Proof for the case (maximum value at $\left.P\left(x_{0}, y_{0}, z_{0}\right)\right)$

Suppose the maximum value of $f(x, y, z)$ subject to the constraints $g(x, y, z)=0$ and $h(x, y, z)=0$ occurs at a point $P\left(x_{0}, y_{0}, z_{0}\right)$ where $\nabla g(P) \neq(0,0,0)$ and $\nabla h(P) \neq(0,0,0)$.

We consider a curve that is on the intersection of $g(x, y, z)=0$ and $h(x, y, z)=0$ and is passing through P, say
$r:(-1,1) \rightarrow R^{3}, r(t)=(x(t), y(t), z(t))$ and $r(0)=P\left(x_{0}, y_{0}, z_{0}\right)$.
Similar to the proof for one constraint case, we have
$\nabla f(P) \cdot r^{\prime}(0)=0$
$\nabla g(P) \cdot r^{\prime}(0)=0$
$\nabla h(P) \cdot r^{\prime}(0)=0$
As $\nabla g(P) \neq(0,0,0)$ and $\nabla h(P) \neq(0,0,0)$, they are also non-parallel, $f(P)$ must lie on the plane spanned by $\nabla g(P)$ and $\nabla h(P)$.

So, $\nabla f(P)=\lambda_{1} \nabla g(P)+\lambda_{2} \nabla h(P)$ for some constants λ_{1} and λ_{2}.
Remark: We may generalize to case with more constraints.

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 4:

The plane $x+y+z=12$ interesects the paraboloid $z=x^{2}+y^{2}$ in an ellipse.
Find the highest and lowest points on this ellipse.

Solutions

Let $f(x, y, z)=z$ for any $(x, y, z) \in R^{3}$.
Let $g(x, y, z)=x+y+z-12$ for any $(x, y, z) \in R^{3}$.
Let $h(x, y, z)=z-x^{2}-y^{2}$ for any $(x, y, z) \in R^{3}$.
We consider "Maximize $f(x, y, z)$ subject to $g(x, y, z)=0$ and $h(x, y, z)=0$ " AND
"Minimize $f(x, y, z)$ subject to $g(x, y, z)=0$ and $h(x, y, z)=0$ ".
$\nabla f(x, y, z)=(0,0,1) ; \nabla g(x, y, z)=(1,1,1) ; \nabla h(x, y, z)=(-2 x,-2 y, 1)$
$\nabla f(x, y, z)=\lambda_{1} \nabla g(x, y, z)+\lambda_{2} \nabla h(x, y, z)$
$(0,0,1)=\lambda_{1}(1,1,1)+\lambda_{2}(-2 x,-2 y, 1)$

So, $\left\{\begin{array}{c}\lambda_{1}-2 \lambda_{2} x=0 \\ \lambda_{1}-2 \lambda_{2} y=0 \\ \lambda_{1}+\lambda_{2}=1\end{array}\right.$.
From the first two equations, we have $x=\frac{\lambda_{1}}{2 \lambda_{2}}=y$.
$g(x, y, z)=0 \Rightarrow x+y+z-12=0 \Rightarrow z=12-2 x$
$h(x, y, z)=0 \Rightarrow z-x^{2}-y^{2}=0 \Rightarrow z=2 x^{2}$
Put $2 x^{2}=12-2 x \Rightarrow x^{2}+x-6=0 \Rightarrow(x+3)(x-2)=0 \Rightarrow x=-3$ or 2 .
The points are $(-3,-3,18)$ and $(2,2,8)$.
The highest point is $(-3,-3,18)$ and the lowest point is $(2,2,8)$.

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Applications

Example 1 (Shell's Law):

A traveller (initially started at a fixed point h_{1} units above a line L) has to go through the line to get to another fixed point h_{2} units below the line L in minimum time. Suppose his speed is constantly v_{1} above the line and constantly v_{2} below the line. Show that the condition for the minimum time path is $\frac{v_{1}}{v_{2}}=\frac{\sin \alpha}{\sin \beta}$, where α is the angle of incidence and β is the angle of reflection.

Proof
$\cos \alpha=\frac{h_{1}}{d_{1}} ; d_{1}=h_{1} \sec \alpha ; \cos \beta=\frac{h_{2}}{d_{2}} ; d_{2}=h_{2} \sec \beta$
Let $T(\alpha, \beta)=\frac{d_{1}}{v_{1}}+\frac{d_{2}}{v_{2}}=\frac{h_{1}}{v_{1}} \sec \alpha+\frac{h_{2}}{v_{2}} \sec \beta$.
Note that: $h_{1} \tan \alpha+h_{2} \tan \beta$ must be a constant (From a fixed point to another fixed point), say C.
Let $g(\alpha, \beta)=h_{1} \tan \alpha+h_{2} \tan \beta-C$.
We consider "Minimize $T(\alpha, \beta)$ subject to $g(\alpha, \beta)=0$ ".
$\nabla T(\alpha, \beta)=\left(\frac{h_{1}}{v_{1}} \tan \alpha \cdot \sec \alpha, \frac{h_{2}}{v_{2}} \tan \beta \cdot \sec \beta\right) ; \nabla g(\alpha, \beta)=\left(h_{1} \sec ^{2} \alpha, h_{2} \sec ^{2} \beta\right)$
$\nabla T(\alpha, \beta)=\lambda \nabla g(\alpha, \beta) \Rightarrow\left(\frac{h_{1}}{v_{1}} \tan \alpha \cdot \sec \alpha, \frac{h_{2}}{v_{2}} \tan \beta \cdot \sec \beta\right)=\lambda\left(h_{1} \sec ^{2} \alpha, h_{2} \sec ^{2} \beta\right)$
$\left\{\begin{array}{l}\frac{h_{1}}{v_{1}} \tan \alpha \cdot \sec \alpha=\lambda h_{1} \sec ^{2} \alpha \\ \frac{h_{2}}{v_{2}} \tan \beta \cdot \sec \beta=\lambda h_{2} \sec ^{2} \beta\end{array}\right.$
So, $\lambda=\frac{\sin \alpha}{v_{1}}=\frac{\sin \beta}{v_{2}}$.
Thus, $\frac{v_{1}}{v_{2}}=\frac{\sin \alpha}{\sin \beta}$

Course Code:
 MATH 2000
 Course Name:
 Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 2 (Arithmetic-Geometric Mean Inequality):

(i) Suppose that $x_{1}, x_{2}, \cdots, x_{n}$ are positive. Show that the minimum value of $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}$ subject to the constraint $x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n}=1$ is n.
(ii) Given n positive numbers $a_{1}, a_{2}, \cdots, a_{n}$, let $x_{i}=\frac{a_{i}}{\left(a_{1} \cdot a_{2} \cdots \cdots a_{n}\right)^{1 / n}}$ for $i=1,2, \cdots, n$ and apply the result in part (i) to deduce the arithmetic-geometric mean inequality:

$$
\sqrt[n]{a_{1} \cdot a_{2} \cdots \cdots a_{n}} \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}
$$

Proof of (ii)

As $x_{i}=\frac{a_{i}}{\left(a_{1} \cdot a_{2} \cdots \cdots a_{n}\right)^{1 / n}}$ for $i=1,2, \cdots, n$,
$x_{1} \cdot x_{2} \cdots \cdot x_{n}=\prod_{i=1}^{n} \frac{a_{i}}{\left(a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n}\right)^{\frac{1}{n}}}=\frac{a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n}}{a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n}}=1$
$x_{1}+x_{2}+\cdots+x_{n}=\sum_{i=1}^{n} \frac{a_{i}}{\left(a_{1} \cdot a_{2} \cdots \cdots a_{n}\right)^{\frac{1}{n}}}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{\left(a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n}\right)^{\frac{1}{n}}}$
By part(i), $\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1}^{\frac{1}{n}}} \geq n$
Thus, $\sqrt[n]{a_{1} \cdot a_{2} \cdots \cdots \cdot a_{n}} \leq \frac{\left(a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n}{ }^{\frac{1}{n}}\right.}{n}$

Proof of (i)

Let $f: R^{n} \rightarrow R$ be defined by $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}$ and let $g: R^{n} \rightarrow R$ be defined by
$g\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1} \cdot x_{2} \cdots x_{n}-1$. Let $q_{i}=\frac{x_{1} \cdot x_{2} \cdots \cdot x_{n}}{x_{i}}$ for $i=1,2, \cdots, n$.
We consider "Minimize $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ subject to $g\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0$ ".
$\nabla f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=(1,1, \cdots, 1), \nabla g\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(q_{1}, q_{2}, \cdots, q_{n}\right)$
$\nabla f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\lambda \nabla g\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
$\Rightarrow(1,1, \cdots, 1)=\lambda\left(q_{1}, q_{2}, \cdots, q_{n}\right) \Rightarrow x_{1}=x_{2}=\cdots=x_{n}=\lambda \cdot x_{1} \cdot x_{2} \cdots \cdots x_{n}$
Also $x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n}-1=0$, we have $x_{1}{ }^{n}=1$. Hence, $x_{1}=1$ (as $x_{1}>0$)
Thus, $x_{1}=x_{2}=\cdots=x_{n}=1$ and $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{n}=n$.
The minimum value is n.

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Critical Points of Functions of One Variable

\# Second Derivative Test

Let f be a real-valued function on x and let $c, \delta \in R$ with $\delta>0$.
Suppose $f^{\prime \prime}$ is continuous on $(c-\delta, c+\delta)$ AND $f^{\prime}(c)=0$.
We have:
(i) If $f^{\prime \prime}(c)>0$, then $(c, f(c))$ is $\underline{\mathbf{a}}$ local minima.
(ii) If $f^{\prime \prime}(c)<0$, then $(c, f(c))$ is a local maxima.
(iii) If $f^{\prime \prime}(c)=0$, then we have NO conclusions on the nature of $(c, f(c))$.

\# Critical Points of Functions of Two Variables

Definition

Let $r \in R$ with $r>0$ and $P(a, b) \in R^{2}$.
Suppose $f(x, y)$ is a continuously differentiable function defined on an open ball $B(P, r)$.
Note: $f_{x y}(P)=f_{y x}(P)$.
We say P is a critical point of f if $\nabla f(P)=(0,0)$.
Let $A=f_{x x}(P), B=f_{x y}(P)=f_{y x}(P), C=f_{y y}(P)$.
Let $\Delta=\left|\begin{array}{ll}A & B \\ B & C\end{array}\right|=A C-B^{2}$.

Theorem (Two Variables Second Derivative Tests)

(i) If $A>0$ and $\Delta>0$, then $(a, b, f(a, b))$ is a local minima
(ii) If $A<0$ and $\Delta>0$, then $(a, b, f(a, b))$ is a local maxima
(iii) If $\Delta<0$, then $(a, b, f(a, b))$ is neither a local minima nor a local maxima. It is called a saddle point.
Proof: Will be discussed later

Course Code:

Course Name:

MATH 2000

Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 1:

Locate and classify the critical points of $f(x, y)=3 x-x^{3}-3 x y^{2}$.

Solution

As f is a polynomial in x and y, f is continuously differentiable on R^{2}.
$\nabla f(x, y)=\left(3-3 x^{2}-3 y^{2},-6 x y\right)$
$f_{x}(x, y)=0 \Leftrightarrow 3-3 x^{2}-3 y^{2}=0 \Leftrightarrow x^{2}+y^{2}=1$
$f_{y}(x, y)=0 \Leftrightarrow-6 x y=0 \Leftrightarrow x=0$ or $y=0$
$\nabla f(x, y)=(0,0) \Leftrightarrow(x, y)=(0,1)$ or $(0,-1)$ or $(1,0)$ or $(-1,0)$
The critical points of f on R^{2} are $(0,1),(0,-1),(1,0)$ and $(-1,0)$.
$f_{x x}(x, y)=-6 x ; f_{x y}(x, y)=f_{y x}(x, y)=-6 y ; f_{y y}(x, y)=-6 x$
$\Delta(x, y)=\left|\begin{array}{ll}f_{x x}(x, y) & f_{x y}(x, y) \\ f_{y x}(x, y) & f_{y y}(x, y)\end{array}\right|=\left|\begin{array}{ll}-6 x & -6 y \\ -6 y & -6 x\end{array}\right|=36 x^{2}-36 y^{2}$
(i) Consider the critical point $(1,0)$

$$
f_{x x}(1,0)=-6<0, \Delta(1,0)=36>0,(1,0,2) \text { is a local maxima }
$$

(ii) Consider the critical point $(-1,0)$

$$
f_{x x}(-1,0)=6>0, \Delta(-1,0)=36>0,(-1,0,-2) \text { is a local minima }
$$

(iii) Consider the critical point $(0,1)$
$f_{x x}(0,1)=0, \Delta(0,1)=-36<0,(0,1,0)$ is a saddle point
(iv) Consider the critical point $(0,-1)$
$f_{x x}(0,-1)=0, \Delta(0,-1)=-36<0,(0,-1,0)$ is a saddle point

Course Code:

MATH 2000
Course Name:

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 2:

Locate and classify the critical points of $f(x, y)=6 x y^{2}-2 x^{3}-3 y^{4}$.

Solution

As f is a polynomial in x and y, f is continuously differentiable on R^{2}.
$\nabla f(x, y)=\left(6 y^{2}-6 x^{2}, 12 x y-12 y^{3}\right)$
$f_{x}(x, y)=0 \Leftrightarrow 6 y^{2}-6 x^{2}=0 \Leftrightarrow x^{2}=y^{2} \Leftrightarrow x=y$ or $x=-y$
$f_{y}(x, y)=0 \Leftrightarrow 12 x y-12 y^{3}=0 \Leftrightarrow 12 y\left(x-y^{2}\right)=0 \Leftrightarrow y=0$ or $x=y^{2}$
For $x=y^{2}$ and $x=y$, we have $(x, y)=(0,0)$ or $(x, y)=(1,1)$
For $x=y^{2}$ and $x=-y$, we have $(x, y)=(0,0)$ or $(x, y)=(1,-1)$
$\nabla f(x, y)=(0,0) \Leftrightarrow(x, y)=(0,0)$ or $(1,1)$ or $(1,-1)$
The critical points of f on R^{2} are $(0,0),(1,1)$ and $(1,-1)$.
$f_{x x}(x, y)=-12 x ; f_{x y}(x, y)=f_{y x}(x, y)=12 y ; f_{y y}(x, y)=12 x-36 y^{2}$
$\Delta(x, y)=\left|\begin{array}{ll}f_{x x}(x, y) & f_{x y}(x, y) \\ f_{y x}(x, y) & f_{y y}(x, y)\end{array}\right|=\left|\begin{array}{cc}-12 x & 12 y \\ 12 y & 12 x-36 y^{2}\end{array}\right|$
(i) Consider the critical point $(0,0,0)$
$f_{x x}(0,0)=0, \Delta(0,0)=0$
The test fails.
$f(0,0)=0$
$f(0, y)=-3 y^{4}<0$ when $y \neq 0$ amd $y \approx 0$
$f(x, 0)=-2 x^{3}>0$ when $x<0$ and $x \approx 0$
$(0,0,0)$ is neither a local maxima nor a local minima. It is a saddle point.
(ii) Consider the critical point $(1,1)$
$f_{x x}(1,1)=-12<0, \Delta(1,1)=\left|\begin{array}{cc}-12 & 12 \\ 12 & -24\end{array}\right|=144>0,(1,1,1)$ is a local maxima
(iii) Consider the critical point $(1,-1)$
$f_{x x}(1,-1)=-12<0, \Delta(1,-1)=\left|\begin{array}{ll}-12 & -12 \\ -12 & -24\end{array}\right|=144>0,(1,-1,1)$ is a local maxima

Course Code:

MATH 2000
Course Name:
Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 3:

Locate and classify the critical points of $f(x, y)=x^{2}-y^{4}$.

Solution

As f is a polynomial in x and y, f is continuously differentiable on R^{2}.
$\nabla f(x, y)=\left(2 x,-4 y^{3}\right)$
$\nabla f(x, y)=(0,0) \Leftrightarrow\left(2 x,-4 y^{3}\right)=(0,0) \Leftrightarrow(x, y)=(0,0)$
The critical point of f on R^{2} is $(0,0)$
$f_{x x}(x, y)=2 ; f_{x y}(x, y)=f_{y x}(x, y)=0 ; f_{y y}(x, y)=-12 y^{2}$
$\Delta(x, y)=\left|\begin{array}{ll}f_{x x}(x, y) & f_{x y}(x, y) \\ f_{y x}(x, y) & f_{y y}(x, y)\end{array}\right|=\left|\begin{array}{cc}2 & 0 \\ 0 & -12 y^{2}\end{array}\right|$
$f_{x x}(0,0)=0, \Delta(0,0)=0$
The test fails.
$f(0,0)=0$
$f(0, y)=-y^{4}<0$ when $y \neq 0$ and $y \approx 0$
$f(x, 0)=x^{2}>0$ when $x \neq 0$ and $x \approx 0$
$(0,0,0)$ is neither a local maxima nor a local minima. It is a saddle point.

Course Code:

MATH 2000
Course Name:
Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

Example 4:

Locate and classify the critical points of $f(x, y)=x^{2}+y^{4}$.

Solution

As f is a polynomial in x and y, f is continuously differentiable on R^{2}.
$\nabla f(x, y)=\left(2 x, 4 y^{3}\right)$
$\nabla f(x, y)=(0,0) \Leftrightarrow\left(2 x, 4 y^{3}\right)=(0,0) \Leftrightarrow(x, y)=(0,0)$
The critical point of f on R^{2} is $(0,0)$
$f_{x x}(x, y)=2 ; f_{x y}(x, y)=f_{y x}(x, y)=0 ; f_{y y}(x, y)=12 y^{2}$
$\Delta(x, y)=\left|\begin{array}{ll}f_{x x}(x, y) & f_{x y}(x, y) \\ f_{y x}(x, y) & f_{y y}(x, y)\end{array}\right|=\left|\begin{array}{cc}2 & 0 \\ 0 & 12 y^{2}\end{array}\right|$
$f_{x x}(0,0)=0, \Delta(0,0)=0$
The test fails.
$f(0,0)=0$
$f(x, y)=x^{2}+y^{4} \geq 0$ for any $(x, y) \in R^{2}$
$(0,0,0)$ is a local minima.

Exercise 5:

Locate and classify the critical points of $f(x, y)=-x^{2}-y^{4}$.

Answer

The critical point of f on R^{2} is $(0,0)$.
$(0,0,0)$ is a local maxima.

Course Code:

MATH 2000
Course Name:
Engineering Mathematics I

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Behaviour of Quadratic Form
Let $Q(h, k)=A h^{2}+2 B h k+C k^{2}$.
Suppose $A \neq 0$. Let $\Delta=A C-B^{2}$.
Then, $Q(h, k)=\frac{1}{A}\left[(A h+B k)^{2}+\Delta k^{2}\right]$.
Theorems:
(i) If $A>0$ and $\Delta>0$, then $(0,0,0)$ is a local minima.

Proof:
$Q(h, k) \geq 0=Q(0,0)$

(ii) If $A<0$ and $\Delta>0$, then $(0,0,0)$ is a local maxima.

Proof:
$Q(h, k) \leq 0=Q(0,0)$

(iii) If $\Delta<0$, then $(0,0,0)$ is neither a local minima nor a local maxima.

Proof:
Case 1: $A>0$
We can choose $k>0$ and $k \approx 0$ so that $(A h+B k)^{2}+\Delta k^{2}>0$ and $\|(h, k)\|$ is small. We can choose $h>0$ and $h \approx 0$ so that $(A h+B k)^{2}+\Delta k^{2}<0$ and $\|(h, k)\|$ is small.
Case 2: $A<0$
Omitted (As Exercise)

Lecture Notes for Chapter 12: Differentiation of Functions of Several Variables

\# Taylor's Formula for One Variable

Let $\phi \neq I \subset R$ and I is an open interval. Let $a, x \in I$.
Suppose f is a function defined on I.
Suppose $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \cdots$ are continuous on I.
Then, $f(x)=f(a)+\left[\sum_{i=1}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}\right]+R_{n+1}$
where $R_{n+1}=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$ for some c between a and x.
Roughly Speaking, $f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}$ when $x-a \approx 0$

\# Taylor's Formula for Two Variables

Let $f(t)=F(a+t h, b+t k)$.
Then, $F(a+h, b+k)=f(1)=f(0)+\left[\sum_{i=1}^{n} \frac{f^{(i)}(0)}{i!}\right]+R_{n+1}$
$f(0)=F(a, b)$
$f^{\prime}(t)=F_{x}(a+t h, b+t k) \cdot h+F_{y}(a+t h, b+t k) \cdot k$
$f^{\prime}(0)=F_{x}(a, b) \cdot h+F_{y}(a, b) \cdot k$
$f^{\prime \prime}(t)=\frac{d}{d t}\left[F_{x}(a+t h, b+t k) \cdot h+F_{y}(a+t h, b+t k) \cdot k\right]$
$=F_{x x}(a+t h, b+t k) \cdot h^{2}+2 F_{x y}(a+t h, b+t k) \cdot h k+F_{y y}(a+t h, b+t k) \cdot k^{2}$
$f^{\prime \prime}(0)=F_{x x}(a, b) \cdot h^{2}+2 F_{x y}(a, b) \cdot h k+F_{y y}(a, b) \cdot k^{2}$
We can show that
$F(a+h, b+k)=F(a, b)+\left[\left.\sum_{n=1}^{N} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \cdot \frac{\partial^{n} F}{\partial x^{n-j} \partial y^{j}}\right|_{(x, y)=(a, b)} \cdot h^{n-j} k^{j}\right]+R_{N+1}$
Roughly Speaking,
$F(a+h, b+k)$
$\approx F(a, b)+F_{x}(a, b) \cdot h+F_{y}(a, b) \cdot k+\frac{1}{2}\left[F_{x x}(a, b) \cdot h^{2}+2 F_{x y}(a, b) \cdot h k+F_{y y}(a, b) \cdot k^{2}\right]$ when $\|(h, k)\| \approx 0$
Suppose $\nabla F(a, b)=(0,0)$.
Then, $F(a+h, b+k) \approx F(a, b)+\frac{1}{2}\left[F_{x x}(a, b) \cdot h^{2}+2 F_{x y}(a, b) \cdot h k+F_{y y}(a, b) \cdot k^{2}\right]$ when $\|(h, k)\| \approx 0$
Let $A=F_{x x}(a, b), B=F_{x y}(a, b)=F_{y x}(a, b)$ and $C=F_{y y}(a, b)$.
$F(a+h, b+k)-F(a, b) \approx \frac{1}{2}\left[A h^{2}+2 B h k+C k^{2}\right]$ when $\|(h, k)\| \approx 0$
It behaves like a quadratic form. Thus,
(i) If $A>0$ and $\Delta>0$, then $(a, b, F(a, b))$ is a local minima.
(ii) If $A<0$ and $\Delta>0$, then $(a, b, F(a, b))$ is a local maxima.
(iii) If $\Delta<0$, then $(a, b, F(a, b))$ is neither a local minima nor a local maxima. It is called a saddle point.

