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Abstract. Nonlinearly preconditioned inexact Newton methods have been applied successfully4
for some difficult nonlinear systems of algebraic equations arising from the discretization of partial5
differential equations. The preconditioning step involves identifying and balancing of the nonlinear-6
ities in the system. One of the challenging tasks when applying the methods is to accurately and7
efficiently identify the unbalanced nonlinearities. In this work, we propose an unsupervised learning8
strategy based on the classical principal component analysis that learns the bad behavior of a New-9
ton solver in the nonlinear residual subspace of a training problem. A new initial guess is produced10
by the nonlinear preconditioner where a projected low dimensional Jacobian system corresponding11
to the slow subspace of the current residuals is solved for the Newton correction vector. Numerical12
experiments for high Reynolds number incompressible flow problems show that the proposed method13
is more robust and efficient compared with existing nonlinear solvers.14
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1. Introduction. Nonlinear preconditioning is a technique to enhance the ro-18

bustness and efficiency of Newton-type methods for solving nonlinearly difficult system19

of algebraic equations arising from the discretization of nonlinear partial differential20

equations [7, 8, 22, 23]. The technique aims to balance the nonlinearities of the system21

by changing the function or the variable of the system without changing the solution,22

similar to linear preconditioning of linear systems [12]. Left nonlinear preconditioner23

changes the function of the original system and then solves the new system by a24

Jacobian-free Newton method [7, 10, 14, 18, 25, 30, 31, 32]. On the other hand,25

right nonlinear preconditioner changes the unknown variables of the original system26

[8, 17, 19, 24, 34, 35, 36, 43, 44, 45]. For most applications considered so far, the right27

preconditioner is easier to implement than the left version since it is less invasive to28

the standard software for inexact Newton methods. The key assumption needed in the29

design of a right preconditioner is that the components of the nonlinear system can30

be decomposed into two subspaces: a good subspace to be kept for further Newton31

iterations, and a bad subspace to be eliminated approximately using inner subspace32

Newton iterations. The method is often regarded as a nonlinear extension of Gaussian33

elimination, therefore, in the rest of the paper we refer to the method as Nonlinear34

Elimination (NE) preconditioning. The ability to identify the components that slow35

down the convergence is essential to the success of the NE preconditioner. Though36

the NE preconditioned inexact Newton method (PIN-NE) has been quite successful37

in many applications, there are challenges when using the method in practice:38

1. The existing strategies identify the slow components by using knowledge of39

the physics or feedback from the intermediate solution, which generally re-40

quire extra analysis of the numerical results. For example, for the tran-41

sonic flow problems, the physics-based approach requires to detect the region42

where the shock occurs [19]. The field-based approach requires to determine43

which field variable is responsible for the dominant part of the residual norm44
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[36, 43, 44].45

2. In some of the existing approaches such as the pointwise approach [17, 35,46

45], the region-based approach [34], and the subdomain-based approach [8],47

the number of slow components to be eliminated depends sensitively on the48

preselected parameters, which has a significant impact on the effectiveness49

and efficiency of the preconditioner.50

3. For domain-based approaches [8, 24, 34, 35, 45], new jumps may be produced51

in the residual across the interface between the good and bad regions or the52

subdomains, and this may lead to the relocation of unbalanced nonlinearities.53

Such interfacial jumps are often not easy to remove.54

In this paper, we propose and study a novel nonlinear preconditioning method based55

on unsupervised learning to circumvent these obstacles.56

Recent advances in machine learning and data analysis have shed light on devising57

new numerical methods with learning capability. With the explosive growth of avail-58

able data and computing resources, a series of learning-based approaches emerged in59

the past decade for various scientific applications, i.e., image recognition [28], weather60

prediction [5], fluid mechanics [6], and particularly, the solve of general partial dif-61

ferential equations [20, 40]. The goal of this work is to develop a new paradigm62

in integrating learning capability into the class of preconditioned inexact Newton63

methods for nonlinear system of equations. We consider an unsupervised learning64

algorithm based on the classical principal component analysis (PCA), which is also65

known as the proper orthogonal decomposition (POD) method [11]. PCA was de-66

signed to find a low dimensional subspace of the given (high dimensional) data that67

keeps its most statistically descriptive factors, which has been successfully used in a68

variety of fields including data compression [33], computational fluid dynamics [26],69

structural mechanics [21], and reservoir simulation [37]. For the purpose of reduced70

order modeling, the algorithm has been applied to improve the convergence of lin-71

ear solvers. In [9], the authors proposed a class of POD-augmented Krylov-subspace72

recycling methods. In [38], a reduced order model based preconditioner was intro-73

duced for the solution of transient diffusion equations. The preconditioners in both74

references [9, 38] are obtained by nesting appropriate POD projection into the clas-75

sical conjugate gradient method. In [3], the authors combined POD with a two-stage76

constrained pressure residual solver for the solution of a two-phase reservoir model.77

In this work, we associate the bad behavior of a Newton solver with the prin-78

cipal components of the nonlinear system, and apply PCA to find a reduced order79

approximation of the residuals with the projection operators learned from a training80

problem. Such an approximation is regarded as the low frequency components of the81

nonlinearity and is then reduced by a nonlinear preconditioning step. In the non-82

linear preconditioner, a subspace Newton iteration with a projected low dimensional83

Jacobian system corresponding to the slow subspace of the residuals is introduced to84

obtain a new initial guess for the global Newton iteration. In contrast to common85

reduced order models, the training problem may differ from the original problem in86

size and complexity. Moreover, the proposed nonlinear preconditioner features a low87

computational cost since the projected Jacobian system generally has a very small88

size. We test the proposed method with two high Reynolds number incompress-89

ible flow problems including the lid-driven cavity flows and the backward-facing step90

flows. For such problems, the classical inexact Newton method often suffers from91

slow convergence or not converge at all, even with a good initial guess provided by92

some continuation techniques, such as parameter continuation [1] and mesh sequenc-93

ing [27]. Numerical results show that the proposed method outperforms the classical94
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inexact Newton method and other preconditioned inexact Newton methods in terms95

of robustness and efficiency.96

The paper is organized as follows. In Section 2, the proposed preconditioned97

inexact Newton method with learning capability is presented. The algorithm of PCA98

and the process of the proposed method are described in detail. In Section 3, numerical99

experiments for high Reynolds number incompressible flow problems are provided,100

including the validation with benchmark results, the study of robustness and efficiency101

of the algorithm, and the comparison with other nonlinear solvers. Some concluding102

remarks are given in Section 4.103

2. Preconditioned inexact Newton methods with learning capability.104

Consider a nonlinear system of algebraic equations F : Rn → Rn. We seek X∗ ∈ Rn,105

such that106

F (X∗) = 0,(2.1)107108

starting from an initial guess X0 ∈ Rn, where F = (F1, . . . , Fn)T , Fi = Fi(X), and109

X = (X1, . . . , Xn)T . We first recall the inexact Newton algorithm with backtrack-110

ing (IN) [42]. Assume Xk is the current approximate solution, a new Xk+1 can be111

computed via112

Xk+1 = Xk + λkSk,(2.2)113114

where the inexact Newton direction Sk satisfies115

‖F ′(Xk)Sk + F (Xk)‖ ≤ ηk‖F (Xk)‖.(2.3)116117

Here, ηk ∈ [0, 1) is a forcing term that determines how accurately the Jacobian system118

needs to be solved. The step length λk ∈ [0, 1] is obtained from a standard backtrack-119

ing line search technique [13]. It determines a step size along the inexact Newton120

direction Sk such that121

f(Xk + λkSk) ≤ f(Xk) + αλk∇f(Xk)TSk,(2.4)122123

where the merit function f = ‖F‖2/2, and the parameter α is used to assure that f124

is reduced sufficiently (herein α = 10−4). The nonlinear iteration is stopped if125

‖F (Xk)‖ ≤ max
{
γa, γr‖F (X0)‖

}
,(2.5)126127

where γa and γr are prescribed absolute and relative tolerances, respectively.128

We remark that λk is a critically important parameter in IN. IN converges slowly129

when the value of λk is too small. In practice, the value of λk is often determined130

by a small number of components in the system that contribute a large percentage of131

the nonlinear residual norm.132

The idea of nonlinear preconditioning is to increase the value of λk by balancing133

the overall nonlinearities of the system so that a single search direction Sk benefits134

all components of the system. Inspired by the recent advances in unsupervised learn-135

ing techniques, we present a novel nonlinear preconditioning method with learning136

capability in this paper.137

For the classical IN, the residual vectors computed during the Newton iterations138

offer useful information that is currently not sufficiently utilized. For example, there139

are often dominant coherent structures in the residual profile obtained at different140
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Newton steps, which are associated with the slow components of F . Using the lan-141

guage of multigrid methods, such structures characterize the low frequency compo-142

nents of the residual space that are difficult to be removed effectively by using global143

Newton iterations. In this work, we propose a nonlinear preconditioning algorithm to144

smooth these dominant structures by learning their patterns from the residual data.145

In the rest of the paper, we refer to this method as PINL: preconditioned inexact146

Newton method with learning capability.147

2.1. Unsupervised learning based on principal component analysis. In148

this section, we consider the widely used PCA to characterize a low dimensional149

approximation to the residuals produced by inexact Newton iterations. PCA first150

centers the dataset by a mean subtraction, then represents the dataset with a new151

coordinate system determined by the principal components that are uncorrelated152

(orthogonal) to each other, but have maximal correlation.153

Suppose a dataset of s residual vectors
{
F (Xk) ∈ Rn, k = 0, . . . , s− 1

}
is gen-154

erated by the Newton iterations of a training problem, which can be assembled as a155

residual matrix156

F =
[
F (X0), F (X1), . . . , F (Xs−1)

]
∈ Rn×s.(2.6)157158

PCA is to find an orthonormal matrix P ∈ Rn×d, where d is an integer much smaller159

than n such that
{
yk = PTF (Xk) ∈ Rd, k = 0, . . . , s− 1

}
forms a reduced dimen-160

sional subspace that keeps important features of F and the variance of the projected161

vectors is maximized. We define the space162

Hn×d =
{

P | P ∈ Rn×d, PT P = Id×d
}
,163164

where Id×d is a d× d identity matrix, and the variance165

V(P) =

s−1∑
k=0

∥∥∥∥∥yk − 1

s

s−1∑
l=0

yl

∥∥∥∥∥
2

=

s−1∑
k=0

∥∥∥∥∥PT

(
F (Xk)− 1

s

s−1∑
l=0

F (X l)

)∥∥∥∥∥
2

,(2.7)166

167

then P is obtained by solving the optimization problem168

max
P∈Hn×d

V(P).(2.8)169

170

Let the mean of the residual vectors be F̄ =
1

s

s−1∑
l=0

F (X l) ∈ Rn. We denote171

the centered residual vector as F̂ k = F (Xk) − F̄ , and the centered residual matrix172

F̂ =
[
F̂ 0, F̂ 1, . . . , F̂ s−1

]
. To obtain the residual subspace projector P, we perform the173

singular value decomposition (SVD) of F̂ as follows:174

F̂ = ÛF Σ̂F V̂
T

F ,(2.9)175176

where ÛF is an n× n orthogonal matrix, Σ̂F is an n× s diagonal matrix of singular177

values σ0
F , σ1

F , . . . , σ
s−1
F arranged in a decreasing order, and V̂F is an s×s orthogonal178

matrix. The solution to the optimization problem (2.8) is given as P = Û
d

F , consisting179

of the first d columns of ÛF that form a new coordinate system of F, which is regarded180
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as the slow subspace of the nonlinear residuals. Therefore, P can be used to construct181

a PCA-projection of F (X), i.e.,182

F(X) = PPT (F (X)− F̄ ) + F̄ .(2.10)183184

Using this approximation, we can define an approximate nonlinear system185

F(Y ) = 0,(2.11)186187

whose solution Y will play the main role in the preconditioning algorithm to be188

introduced later.189

Corresponding to the residual matrix (2.6), we define the following approximate190

solution matrix191

X =
[
X0, X1, . . . , Xs−1] ∈ Rn×s.(2.12)192193

Similar to the residual subspace projector, we also introduce a solution subspace194

projector Q such that195

max
Q∈Hn×d

J (Q),(2.13)196

197

where198

J (Q) =

s−1∑
k=0

∥∥∥∥∥QT

(
Xk − 1

s

s−1∑
l=0

X l

)∥∥∥∥∥
2

.(2.14)199

200

Let the mean of the solution vectors be X̄ =
1

s

s−1∑
l=0

X l ∈ Rn. We denote the cen-201

tered solution vector as X̂k = Xk − X̄, and the centered solution matrix X̂ =202 [
X̂0, X̂1, . . . , X̂s−1

]
. To obtain Q, we perform the SVD203

X̂ = ÛXΣ̂XV̂
T

X ,(2.15)204205

then Q can be formed by the first d columns of ÛX . Note that for standard problems206

in, for example, image processing [29], a single PCA is performed, but here we need207

a pair of PCA projections. Because d is often a small value, the cost of calculating208

the SVDs is usually small.209

2.2. The PINL algorithm. In this section, we describe the main steps of the210

proposed PINL algorithm:211

Step 1. (The training step) Choose a suitable training problem, and run the classical212

IN to generate the training dataset. Compute P and Q by PCA based on the213

training dataset.214

Step 2. (The nonlinear preconditioning step) Solve the approximated nonlinear sys-215

tem F(Y ) = 0 by a subspace Newton method to be discussed below with the216

initial guess Y 0 = X0. The intermediate solution Y ∗ is accepted as an output217

when ‖F(Y ∗)‖ is sufficiently small.218

Step 3. (The global IN step) Solve the original nonlinear system F (X) = 0 by using219

IN with a corrected initial solution X(0) = Y ∗.220
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Steps 1 and 3 have been discussed in the previous section, here we focus on221

Step 2. The approximate nonlinear system F(Y ) = 0 is intended to capture the low222

frequency components of the original nonlinear system but its dimension is still n, and223

moreover its definition involves an n × n matrix PPT which is generally dense. It is224

often computationally intensive to solve the resulting algebraic system directly using225

a Newton-Krylov method. We hereby introduce a subspace Newton iteration with a226

projected low dimensional Jacobian system corresponding to the slow subspace of the227

residuals to correct the Newton solution. Start from the initial guess Y 0 = X0, we228

proceed the following steps for j = 0, 1, . . .229

1. Compute the dimension-reduced PCA-projection230

Fp = PTF(Y j) = PTF (Y j) ∈ Rd.(2.16)231232

2. Compute the low dimensional Newton correction Sj
p ∈ Rd by solving233

JpS
j
p = −Fp,(2.17)234235

where236

Jp = PTF ′(Y j)Q(2.18)237238

is the projected Jacobian of size d× d.239

3. Compute the new approximate solution240

Y j+1 = Y j + QSj
p.(2.19)241242

The resulting Y ∗ is accepted as a corrected solution if the stopping condition243

‖F(Y ∗)‖ ≤ γsr‖F(Y 0)‖244

is satisfied, where γsr is a relative tolerance.245

In the subspace Newton iteration, we use an exact Newton method without line246

search because the system is small. From an algebraic point of view, this process can247

be regarded as restricting the space Rn to a subspace of dimension d, finding the exact248

solution in Rd and prolongating the reduced solution back to Rn. This is similar to249

a two-level multigrid method used to correct the low frequency components in the250

residual space. A detailed description of the overall method is presented in Algorithm251

2.1.252

Remark 2.1. In Step 2 of Algorithem 2.1, the solve of F(Y ) = 0 is considered as253

a nonlinear preconditioner of F , that is, Y = G(X). Hence, the nonlinear system can254

be written as255

F (G(X)) = 0(2.20)256257

and is called a right-preconditioned nonlinear system.258

Remark 2.2. The dimension of the subspace Jacobian system is determined by259

the number of principal components d which is often small, thus the solve of the260

subspace Jacobian system is almost trivial. This is one key advantage of the proposed261

algorithm.262

Remark 2.3. The learning-based preconditioner identifies the slow components by263

using an algebraic method for the residual space, by nature, it does not require extra264
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Algorithm 2.1 PINL: Preconditioned Inexact Newton methods with Learning ca-
pability.

Step 1. The training step:
(1) Collect s nonlinear residual vectors F (Xk) and s approximate solution

vectors Xk from a training problem solved by IN, k = 0, . . . , s− 1.

(2) Form the centered residual matrix F̂ =
[
F̂ 0, F̂ 1, . . . , F̂ s−1

]
and the cen-

tered solution matrix X̂ = [X̂0, X̂1, . . . , X̂s−1] by a mean subtraction.

(3) Compute the SVD for the centered residual matrix F̂ = ÛF Σ̂F V̂
T

F and

for the centered solution matrix X̂ = ÛXΣ̂XV̂
T

X .

(4) Form the residual subspace projector P = Û
d

F and the solution subspace

projector Q = Û
d

X .
Step 2. The nonlinear preconditioning step:

Start from the initial guess Y 0 = X0, for j = 0, 1, . . .
(1) Compute the approximated residual vector F(Y j) = PPT (F (Y j)− F̄ )+

F̄ .
(2) If the stopping condition ‖F(Y j)‖ ≤ γsr‖F(Y 0)‖ is satisfied, set Y ∗ =

Y j , go to Step 3.
(3) Project F(Y j) to a dimension-reduced vector Fp = PTF(Y j).

(4) Compute the projected Jacobian Jp = PTF ′(Y j)Q.
(5) Exactly solve JpS

j
p = −Fp.

(6) Update Y j+1 = Y j + QSj
p.

Step 3. The global IN step:
Start from the initial guess X(0) = Y ∗, for i = 0, 1, . . .
(1) Form the nonlinear residual F (X(i)).
(2) If the global stopping condition ‖F (X(i))‖ ≤ max

{
γa, γr‖F (X0)‖

}
is

satisfied, set X∗ = X(i), stop.
(3) Form the Jacobian J = F ′(X(i)).
(4) Inexactly solve JS(i) = −F (X(i)).
(5) Compute λ(i) using the cubic backtracking line search.
(6) Update X(i+1) = X(i) + λ(i)S(i).

analysis of the physics behind the partial differential equations. For the incompressible265

flow problems to be studied in Section 3, we will not separate the field variables266

or apply any prior knowledge of the solution or the intermediate solutions when267

performing the training step and the nonlinear preconditioning step.268

Remark 2.4. Compared to the domain-based NE preconditioners [8, 24, 34, 35,269

45], the proposed method does not partition the domain into different parts and treat270

them differently, thus avoiding the potential interfacial jumps.271

Remark 2.5. In contrast to the adaptive nonlinear elimination preconditioner [17,272

19, 32, 34, 35, 45], the learning-based nonlinear preconditioner is applied only once273

before the global Newton iteration, saving considerable compute time.274

2.3. Other training methods. Since the training step of Algorithm 2.1 is for275

the construction of a preconditioner which does not need to be very precise, in this276

section, we propose several possible approximations of the training step without going277

into details:278
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• Training with a different problem. In the previous section we assume the279

training datasets (2.6) and (2.12) are from the original problem (2.1). In280

practical applications, the training problem is not necessary to be identical281

to the original problem. Similar to the idea of transfer learning, one may282

choose a training problem with certain parameters so that it is easier to solve283

than the original problem.284

• Training on a different mesh. The algorithm introduced in the previous sec-285

tion is for nonlinear algebraic systems without requiring any mesh informa-286

tion. For problems defined on a mesh, the robustness of the nonlinear solver287

often degrades when the mesh is fine because more delicate physics are re-288

solved, such as the small eddies of a driven cavity flow considered in the289

numerical experiments of this paper. When applying PINL directly on a fine290

mesh, the computational cost of the training step and the preconditioning291

step could be high. In order to reduce the computational cost, one possible292

strategy is to move the training step and the preconditioning step to a coarser293

mesh, and interpolate the solution to the fine mesh.294

• Training data generated by a different method. Besides the classical IN, a295

variety of nonlinear solvers can be used to generate the training dataset, such296

as PIN-NE and other nonlinear preconditioned Newton methods. In partic-297

ular, one can use PINL to generate a new dataset for further training and298

preconditioning by another PINL applied to even more difficult problems.299

The idea of retraining is similar to the continuation approaches utilizing re-300

sults of prior problems [1, 27], but applied in a learning procedure. We will301

show in numerical tests that the proposed method is more powerful than the302

continuation approaches for solving highly nonlinear problems.303

3. Numerical experiments. To evaluate the performance of the proposed algo-304

rithm, we consider two steady-state incompressible flow problems with high Reynolds305

numbers: the lid-driven cavity flows and the backward-facing step flows. Let Ω =306

(a, b) × (c, d) be a bounded domain in R2. These flow problems can be modeled by307

the Navier-Stokes equations in the velocity-vorticity formulation:308

(3.1)


−∆u− ∂ω

∂y
= 0, in Ω,

−∆v +
∂ω

∂x
= 0, in Ω,

− 1

Re
∆ω + u

∂ω

∂x
+ v

∂ω

∂y
= 0, in Ω,

309

where u and v are the velocity fields in the x- and y-directions, respectively, and310

ω =
∂v

∂x
− ∂u

∂y
(3.2)311

312

is the vorticity normal to the xy-plane. The Reynolds number Re quantifies the rela-313

tive importance of inertial forces to viscous forces. Suitable boundary conditions are314

needed to close the system, which will be given later in the two problems respectively.315

A standard central second-order finite difference scheme is used for the discretiza-316

tion of both the Laplacian operators and the first order partial derivatives in (3.1).317

Let Ω be covered by a M ×N mesh, then each point pij = (xi, yj) is located at the318

position xi = a+(i−1)hx with i = 1, . . . ,M and yj = c+(j−1)hy with j = 1, . . . , N ,319

hx = (b− a)/(M − 1), and hy = (d− c)/(N − 1). In this work, we consider the point-320

block ordering to build up the large sparse nonlinear system of algebraic equations321
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(2.1), in which the unknown variables uij , vij , ωij associated with a mesh point pij322

are always together in a 3× 3 block, i.e.,323

X = (u11, v11, ω11, u21, v21, ω21, . . . , uMN , vMN , ωMN )
T
,324325

and the corresponding functions are in the order of326

F = (Fu
11, F

v
11, F

ω
11, F

u
21, F

v
21, F

ω
21, . . . , F

u
MN , F

v
MN , F

ω
MN )

T
,327328

where Fu
ij , F

v
ij , F

ω
ij are the components of F corresponding to the variables u, v, ω,329

respectively.330

The numerical experiments are carried out on a computer with an Intel Xeon331

6248 2.50GHz CPU. A zero vector is used as the initial guess, i.e., X0 = 0. GMRES332

[41] is used for solving the Jacobian systems both in the global and subspace Newton333

iterations where the Jacobian matrices are computed analytically. The nonlinear334

solver is implemented using PETSc [4] and the SVD is calculated using the LAPACK335

dgesvd routine [2]. We use the following parameters in our solvers if they are not336

specifically stated. The restart value of GMRES is fixed at 50. A point-block ILU337

factorization with 3 fill-in levels is used for preconditioning the GMRES solver. The338

relative and absolute tolerance of the global nonlinear solver are γr = 10−12 and339

γa = 10−8, respectively. To enhance the robustness of inexact Newton, the forcing340

term η(i) is computed based on norms that are by-products of the iteration. For341

i = 1, 2, . . ., we choose342

(3.3) η(i) =


η0, ‖F (X(i))‖ ≥ β,∣∣‖F (X(i))‖−‖F ′(X(i−1))S(i−1)+F (X(i−1)))‖

∣∣
‖F (X(i−1))‖ , ‖F (X(i))‖ < β,

343

where η0 ∈ [0, 1) and β are given constants. By default we use β = ∞ which corre-344

sponds to the Eisenstat-Walker method [15].345

In the rest of this paper, “NIg” denotes the number of global Newton iterations;346

“LIg” denotes the averaged number of GMRES iterations per global Newton iteration;347

“NIs” refers to the averaged number of subspace Newton iterations in the nonlinear348

preconditioning step; “LIs” is the averaged number of GMRES iterations per subspace349

Newton; “Ttotal(s)” is the total compute time in seconds for the overall algorithm;350

“Tprecon(s)” is the compute time in seconds for the nonlinear preconditioning step;351

“Ttrain(s)” is the compute time in seconds for PCA in the training step, in which the352

time needed for solving with IN to collect the datasets for PCA is not included.353

3.1. The lid-driven cavity flow problem. In this section, we consider flows354

confined in the unit domain Ω = (0, 1) × (0, 1), as depicted in Figure 1. The top355

boundary Γlid represents a lid moving with velocity u = 1 in the positive x-direction.356

On all walls we impose a no-slip and no-penetration boundary condition, specifically,357

(3.4)


u = 1, on Γlid,

u = 0, on ∂Ω/Γlid,

v = 0, on ∂Ω,

ω = ∂v
∂x −

∂u
∂y , on ∂Ω.

358

The boundary condition for the vorticity is discretized with a second-order approxi-359

mation using mesh points adjacent to the boundary [39].360
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Fig. 1. The computational domain for the lid-driven cavity flow problem.

3.1.1. Validation of the proposed numerical method. We first validate the361

finite difference discretization and the proposed algorithm by comparing the velocity362

profiles of the cavity flow with benchmark results. A sequence of refined meshes363

ranging from 129 × 129 to 513 × 513 are used for the tests. Figure 2 shows the two364

velocity components u and v along the vertical and horizontal centerlines of the cavity365

for cases Re = 103, 3.2 × 103, 5 × 103, 7.5 × 103, and 104. The computed velocity366

profiles converge as the mesh is refined, and show good agreement with the published367

benchmark solutions in [16].
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Ghia et al.
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v

Ghia et al.

PINL 129x129

PINL 257x257

PINL 513x513

(b) v(x, 1/2)

Fig. 2. Velocity profiles of the cavity flow at different Reynolds numbers. Note that the profiles
are shifted for visual comparison. (a) u, from left to right: Re = 103, 3.2× 103, 5× 103, 7.5× 103,
and 104. (b) v, from bottom to top: Re = 103, 3.2× 103, 5× 103, 7.5× 103, and 104.

368
Figure 3 and Figure 4 show the streamlines and vorticity contours for the cavity369

flow with Re = 600, 103, 5×103, and 104, respectively. The mesh size is 513×513. As370

Re increases, a sequence of eddies with diminishing size are observed at the corners371

of the cavity. The patterns of streamlines and the vorticity contours match well with372

the results in the earlier studies [16, 18, 45].373

3.1.2. Comparison of IN and PINL. In this section, we study how PINL im-374

proves the convergence of the classical IN. Figure 5 displays the history of nonlinear375
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(a) Re = 600 (b) Re = 103

(c) Re = 5× 103 (d) Re = 104

Fig. 3. Streamlines for the cavity flow with different Reynolds numbers. The mesh size is
513× 513.

residuals obtained using IN and PINL for the cavity flow with Re = 600 on a 257×257376

mesh. For the classical IN, it is observed that the residual norm stagnates around377

10−2 and the method requires 20 Newton steps to converge. We collect the resulting378

residuals to form the residual matrix F and learn the slow subspace by PCA. The379

singular values of F̂ and X̂ are plotted in Figure 6. Observed from Figure 6, d = 5380

is a suitable choice for PCA to capture the principal components of the problem.381

The corresponding singular vectors that characterize the dominant patterns of non-382

linearities are shown in Figure 7. In PINL, the relative tolerance for the subspace383

Newton is set to be γsr = 10−3, and the parameters for the forcing term are given as384

(η0, β) = (0.1, 10−3). The numbers of iterations and compute time obtained using IN385

and PINL for this test are presented in Table 1. It can be seen in Figure 5 that with386

only 3 subspace Newton steps the residual norm reaches O(10−3), providing a bet-387

ter initial guess for the global Newton iteration. Then, the global Newton converges388

quickly without any stagnation.389

To see how the proposed preconditioner smoothes out the nonlinearities of the390

system, we show in Figure 8 the residual of components u and ω at different subspace391
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(a) Re = 600
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(b) Re = 103
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(c) Re = 5× 103
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(d) Re = 104

Fig. 4. Vorticity contours for the cavity flow with different Reynolds numbers. The mesh size
is 513× 513.

Newton steps (j = 0, 1, 2). Note that the nonlinear function F = PPT (F − F̄ ) + F̄ is392

an approximation of F that characterizes its low frequency components. We can see393

from the figure that F captures the main features of F very well though a small value394

of d is used (d = 5), while the difference F −F shows the high frequency components.395

It is also seen that the subspace Newton effectively reduces the magnitude of the396

residuals, which leads to the fast convergence of PINL.397

As Re increases, the nonlinear system becomes harder to solve. On a 257 × 257398

mesh, the classical IN fails to converge when Re is greater than 700, resulting in a399

series of residuals that can hardly be reduced. With such a dataset, PCA is not able400

to identify the slow subspace effectively. In this work, we perform the training step on401

the dataset obtained from a low Reynolds number problem, i.e., Re = 600, and use402

the resulting subspace projectors for preconditioning the nonlinear solver for a high403
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Fig. 5. Nonlinear residual history obtained using IN and PINL for the cavity flow with Re =
600. The mesh size is 257× 257. d = 5, γsr = 10−3.
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Fig. 6. Singular values obtained using PCA for the residual dataset (a) and the solution dataset
(b).

Reynolds number problem, i.e., Re ≥ 103. Figure 9(a) shows the nonlinear residual404

history obtained using IN and PINL for the cavity flow problem with different Re.405

For PINL, we choose d = 10 and γsr = 10−4. For comparison, the results obtained406

using the Reynolds number continuation approach [1] are also presented in which the407

solution for case Re = 600 is used as the initial guess for cases with a larger Re. The408

continuation approach converges when Re ≤ 5×103 but fails for cases Re ≥ 7.5×103.409

In contrast, PINL converges well for all cases with Re = 103 ∼ 104. Figure 9(b) shows410

the step length λ(i) with respect to the global Newton step for case Re = 104. PINL411

results in λ(i) = 1 for almost every Newton step. The ability to restore the full step412

length along the Newton direction implies fast convergence of the Newton iteration.413

A detailed comparison for the numbers of iterations and the total compute times414

between the two methods are summarized in Table 2. When Re > 103, PINL per-415

forms better than the Re continuation approach in terms of the numbers of global416

iterations and the total compute time. This shows that the proposed preconditioning417

technique is superior to the continuation approach provided with the same solution418

of the training problem. We also note that the compute time for the training step419
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(a) Component u of P(:, 1) (b) Component ω of P(:, 2) (c) Component ω of P(:, 3)

(d) Component ω of P(:, 4) (e) Component ω of P(:, 5)

Fig. 7. Surface plot of the first five singular vectors of F̂ (columns of the residual subspace

projector P). F̂ is obtained by using IN for the cavity flow with Re = 600 on a 257× 257 mesh.

Table 1
The results obtained using IN and PINL for the cavity flow with Re = 600. The mesh size is

257× 257, d = 5, and γsr = 10−3. “NI” denotes the number of Newton iterations, “LI” denotes the
averaged number of GMRES iterations per Newton iteration, “T(s)” denotes the compute time in
seconds.

IN PINL

Training Subspace Newton Global IN

NI 20 3 4
LI 23.6 1 36.8
T(s) 45.7 0.7 1.2 19.3

and the preconditioning step take a small percentage of the total compute time of420

PINL. On one hand, since the dataset F and X consist of a small number of residual421

and solution vectors obtained from a low Re problem, the application of PCA can422

be done efficiently. On the other hand, because the projected Jacobian system in the423

subspace Newton iteration has only d dimensions, one iteration is often sufficient for424

the linear solve.425

3.1.3. The impact of preselected parameters and datasets. To under-426

stand the impact of the parameters on the performance of PINL, we test the case427

Re = 103 using different values of d and γsr . The mesh size is 257× 257. The dataset428

collected for PCA is obtained by using IN for case Re = 600. The resulting num-429

bers of Newton iterations and the compute times are shown in Table 3. The relative430

tolerance γsr is used to determine how accurately the subspace nonlinear problem is431

to be solved. We find from the table that the method is robust with respect to γsr432
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(a) Fu(Y 0) (b) Fu(Y 0) (c) Fu(Y 0)-Fu(Y 0)

(d) Fu(Y 1) (e) Fu(Y 1) (f) Fu(Y 1)-Fu(Y 1)

(g) Fω(Y 1) (h) Fω(Y 1) (i) Fω(Y 1)-Fω(Y 1)

(j) Fω(Y 2) (k) Fω(Y 2) (l) Fω(Y 2)-Fω(Y 2)

Fig. 8. The residual of components u and ω at different subspace Newton steps (j = 0, 1, 2)
obtained using PINL for the cavity flow with Re = 600. The mesh size is 257×257, d = 5, γsr = 10−3.
(a),(d),(g),(j) are the residuals computed using the original nonlinear function F . (b),(e),(h),(k) are
the residuals computed using the approximated function F . (c),(f),(i),(l) are the difference between
F (Y j) and F(Y j).
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Fig. 9. (a) Nonlinear residual history obtained using IN, the Reynolds number continuation
approach, and PINL for the cavity flow problem. (b) The step length λ(i) in the global Newton
iteration for the case with Re = 104. The mesh size is 257× 257, d = 10, and γsr = 10−4.

Table 2
The numbers of iterations and compute times obtained using IN with the Reynolds number

continuation approach and PINL for the cavity flow problem. The mesh size is 257 × 257, d = 10,
and γsr = 10−4.

Re Ttrain(s) NIs LIs Tprecon(s) NIg LIg Ttotal(s)

IN (Re continuation)
103 7 39.6 20.1

3.2× 103 12 24.2 24.8
5× 103 17 31.4 43.7

PINL

103 0.8 5 1 2.4 9 23.1 23.7
3.2× 103 0.8 3 1 1.5 10 24.8 24.4
5× 103 0.8 3 1 1.4 10 25.7 26.5

7.5× 103 0.8 3 1 1.4 11 21.3 22.8
104 0.8 3 1 1.4 14 22.1 30.5

in terms of the number of global Newton iterations. Since the output projector of433

PCA is used for the purpose of nonlinear preconditioning, the selection of d should be434

within a suitable range. On one hand, when d is too small, the principal components435

selected may not be sufficient to figure out the slow subspace of the residuals, and436

the subspace Newton may not converge when a small γsr is used. On the other hand,437

when d is too large, the residual subspace may have no distinction from the original438

space so that solving the system in nonlinear preconditioning is as difficult as the439

original problem, which violates the purpose of preconditioning. In terms of the total440

compute time, the best choice for this case is d = 10, which is half the size of the441

dataset.442

The dataset collected for PCA is another important factor that affects the perfor-443

mance of PINL. With different datasets obtained using IN for cases Re = 300 ∼ 600,444

we compare the results in Table 4. For each dataset we choose a suitable d to obtain445

the optimal performance. When the training problem is far from the original prob-446

lem, i.e., the one obtained from Case Re = 300, the subspace projectors P and Q447

learned from this dataset are considered not good enough for preconditioning. With448

such preconditioning PINL needs more global Newton iterations and more compute449
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Table 3
The impact of parameters d and γsr on the performance of PINL for the cavity flow problem

with Re = 103. The mesh size is 257× 257. “*” means the subspace Newton does not converge and
returns the intermediate solution at this step.

γs
r = 10−3 γs

r = 10−4 γs
r = 10−5

d NIs NIg Ttotal(s) NIs NIg Ttotal(s) NIs NIg Ttotal(s)

5 3 19 40.8 6* 19 45.6 6* 19 45.1
7 6 11 28.5 9* 10 29.7 9* 10 28.1
10 4 9 21.2 5 9 23.7 7* 9 26.6
12 5 11 29.6 7 10 26.6 7 10 27.0

time to converge, or not converge at all for the difficult case Re = 104. We remark450

that the classical IN fails for Re > 700 and the resulting dataset does not work well.451

One way to provide useful dataset for preconditioning high Re problems is by using452

PINL instead of IN. For example, with the dataset obtained using PINL for case453

Re = 5 × 103, choosing only one principal component (d = 1) in the nonlinear pre-454

conditioning is sufficient for case Re = 104 to converge. With a suitable choice of d455

and γsr , solution of more difficult cases with Re = 104 ∼ 2 × 104 can be obtained by456

the proposed PINL, as shown in the table.

Table 4
The impact of dataset on the performance of PINL for the cavity flow problem. The mesh size

is 257 × 257. “s” refers to the number of vectors (samples) in the dataset. “–” indicates that the
case fails to converge.

Re Data collection method s d γs
r Ttrain(s) NIg Ttotal(s)

5× 103 IN for Re = 300 18 5 10−4 0.6 14 31.2
IN for Re = 400 17 7 10−4 0.6 11 27.6
IN for Re = 600 20 10 10−4 0.8 10 26.5

104 IN for Re = 300 18 5 10−4 0.6 – –
IN for Re = 400 17 7 10−4 0.6 19 49.9
IN for Re = 600 20 10 10−4 0.8 14 30.5

104 PINL for Re = 5× 103 10 1 10−1 0.2 9 21.7
1.5× 104 PINL for Re = 5× 103 10 2 10−2 0.3 10 24.8
2× 104 PINL for Re = 5× 103 10 4 10−2 0.3 14 32.3

457

3.1.4. Performance of training and preconditioning on a coarser mesh.458

We next study the convergence of the proposed method using a fine mesh 513× 513459

for the cavity flow problem. As discussed in Section 2.3, we perform the training460

step and the nonlinear preconditioning step on a coarser mesh 257× 257, and project461

the corrected initial guess to the fine mesh using a standard linear interpolation. We462

use the same dataset and parameters as in the convergence test on the coarse mesh463

(Table 2), except for selecting a larger restart value 100 for GMRES and (η0, β) =464

(0.25, 10−3) for the forcing term. We compare the convergence of PINL with the465

mesh sequencing approach [27] in which the solution obtained for case Re = 600 on466

the coarse mesh is interpolated to the fine mesh as an initial guess. Figure 10 shows467

the nonlinear residual history and the step length. It is observed that PINL with468

the proposed coarse mesh preconditioning converges well for Re = 103 ∼ 104 within469

12 global Newton steps. In contrast, the mesh sequencing approach fails to converge470

for almost all cases except using β = ∞ for case Re = 103. The results show that471

PINL yields better convergence and robustness compared with the mesh sequencing472

approach for problems with a large Re defined on a fine mesh.473
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Fig. 10. (a) Nonlinear residual history and (b) step length for the cavity flow problem obtained
using the mesh sequencing approach and PINL with training and preconditioning on a coarser mesh.
The size of the fine mesh is 513×513, the size of the coarse mesh is 257×257. d = 10, and γsr = 10−4.

Fig. 11. The computational domain for the backward-facing step flow problem.

3.2. The backward-facing step flow problem. In this section, we consider474

the backward-facing step flow problem defined on a channel Ω = (0, 6) × (0, 1) as475

shown in Figure 11. A fully developed parabolic velocity profile is specified at the476

inlet boundary Γin : x = 0, 0.5 ≤ y ≤ 1; an outflow boundary condition is given on477

the right boundary Γout : x = 6; on the other boundaries ∂Ω \ (Γin ∪Γout) we impose478

no-slip and no-penetration conditions, specifically,479

(3.5)
u = 8(0.5− y)(y − 1), v = 0, ω = ∂v

∂x + 16y − 12, on Γin,

u = −y(y − 1), v = 0, ω = ∂v
∂x + 2y − 1, on Γout,

u = 0, v = 0, ω = ∂v
∂x −

∂u
∂y , on ∂Ω \ (Γin ∪ Γout).

480

The boundary condition for the vorticity on Γin and Γout is discretized with a second-481

order central finite difference method. For the boundary condition on ∂Ω\(Γin∪Γout)482

we use the same discretization as in the driven cavity flow problem. The mesh size483

used for this case is 481 × 81. Figure 12 shows the streamlines for the backward-484

facing step flow with Re = 50, 200, and 1.2 × 103, respectively. A vortex appears at485

the bottom left region caused by the flow separation, and its size develops with the486

increase of Re.487

For this problem, the classical IN fails to converge when Re ≥ 800. We com-488

pare the performance of the proposed method with a multilayer pointwise PIN-NE489
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(a) Re = 50

(b) Re = 200

(c) Re = 1.2× 103

Fig. 12. Streamlines for the backward-facing step flows with different Reynolds numbers. The
mesh size is 481× 81.

approach that is efficient for solving incompressible flows with high Reynolds numbers490

[35]. At the kth global Newton step, the components corresponding to a mesh point491

(i, j) are eliminated if ‖F (Xk)‖/‖F (Xk−1)‖ ≥ 0.9 and492

max{|Fu
ij(X

k)|, |F v
ij(X

k)|, |Fω
ij(Xk)|} > ρl‖F (Xk)‖∞,(3.6)493494

where ρl is a preselected parameter used for determining the number of the to-be-495

eliminated components on the lth layer. We refer to [35] for more details of this496

approach. In the test, we consider a single-layer approach with ρ1 = 10−2 and a497

two-layer approach with (ρ1, ρ2) = (10−2, 10−3). For PINL, the dataset collected for498

PCA is obtained by using IN for case Re = 200, consisting of 7 vectors in F and499

X. The number of principal components used is d = 4. We use the same relative500

tolerance γsr = 10−3 for all methods in the test. Figure 13 shows the nonlinear501

residual history obtained using IN, the single-layer PIN-NE, the two-layer PIN-NE,502

and PINL for cases with Re = 800, 103, and 1.2 × 103. A detailed comparison503

for the numbers of iterations and the total compute times is shown in Table 5. As504

Re increases, both the single-layer PIN-NE and the two-layer PIN-NE result in more505

global Newton iterations. Note that the single-layer PIN-NE fails in line search for case506

Re = 1.2× 103. The two-layer approach significantly improves the convergence of the507

single-layer approach. Compared to PIN-NE, PINL saves more than half of the global508
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Newton steps and half of the total compute time for the difficult case Re = 1.2× 103.509

We summarize the observations as follows: (1) In PINL, the subspace Newton is510

performed only once before the global Newton is called, in contrast to the PIN-NE511

methods that usually perform subspace Newton multiple times when NE is activated512

adaptively. (2) The compute time spent for the subspace Newton iteration in PINL is513

much smaller than the NE approaches since the dimension of the subspace Jacobian514

problem (d-dimensions) is rather smaller compared to the dimension controlled by515

ρl in PIN-NE. (3) PINL results in a fixed number of global Newton iteration that516

is independent of Re for this problem, which shows the robustness of the proposed517

method for nonlinearly difficult problems.
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Fig. 13. Nonlinear residual history obtained using IN, single-layer PIN-NE, two-layer PIN-NE,
and PINL for the backward-facing step flow problem.

518

Table 5
The numbers of iterations and compute times obtained using the single-layer PIN-NE, the two-

layer PIN-NE, and PINL for the backward-facing step flow problem. “Nne” is the number of NE
applications in PIN-NE.

Re Ttrain(s) Nne NIs LIs Tprecon(s) NIg LIg Ttotal(s)

Single-layer PIN-NE
800 2 3 19.2 6.3 21 12.0 25.3
103 6 8 22.7 50.8 31 9.9 80.6

Two-layer PIN-NE
800 1 2.5 1.2 1.1 10 16.1 10.5
103 1 2.5 1.2 1.1 12 17.1 12.3

1.2× 103 1 2.5 1.2 1.1 20 17.6 20.7

PINL

800 0.1 1 1 0.2 9 14.7 8.7
103 0.1 1 1 0.2 9 16.2 9.1

1.2× 103 0.1 1 1 0.2 9 16.6 9.5

To explore how PINL improves the convergence, we show in Figure 14 the resid-519

ual of components u and ω before and after the nonlinear preconditioning for the520

backward-facing step flow with Re = 1.2 × 103. From Figure 14 (a) and (d) we ob-521

serve that the local high nonlinearities cluster around the inlet and outlet boundaries.522

After the two-layer NE preconditioning, such nonlinearities are reduced by a factor523

of 10. In comparison, the learning-based preconditioning reduces the nonlinearities524
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by a factor of 104 and returns a better initial guess for the global Newton iteration.525

The comparison results indicate that the learning-based approach is more powerful to526

identify and balance the nonlinearities of the system compared to the NE approach.

(a) Fu before preconditioning (b) Fu after the two-layer NE
preconditioning

(c) Fu after the learning-based
preconditioning

(d) Fω before preconditioning (e) Fω after the two-layer NE
preconditioning

(f) Fω after the learning-based
preconditioning

Fig. 14. The residual of components u and ω before and after the two-layer NE preconditioning
and the learning-based preconditioning for the backward-facing step flow problem with Re = 1.2×103.

527

4. Concluding remarks. We propose and study a novel nonlinearly precondi-528

tioned inexact Newton method with learning capability for solving nonlinear system529

of algebraic equations. The preconditioner is constructed by a decomposition of the530

nonlinear residual space into two subspaces; one corresponds to the low frequency sub-531

space and the other corresponds to the high frequency subspace. Such a decomposition532

is obtained by a PCA based unsupervised learning method from a training problem.533

The nonlinear preconditioner is applied to produce a better initial guess for the global534

Newton iteration, within which a projected low dimensional Jacobian system is con-535

structed and solved at each subspace Newton iteration. The new method features536

a low computational cost and is capable of balancing the overall nonlinearity effec-537

tively. We test the algorithm with extensive numerical experiments for high Reynolds538

number incompressible flow problems. Results show that the proposed method is539

more robust and faster than other popular nonlinear solvers, such as PIN-NE and the540

classical IN with globalization techniques such as parameter continuation and mesh541

sequencing. The focus of the paper was on the incompressible flow problems, but the542

algorithm is algebraic, and is expected to work for other highly nonlinear problems.543
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