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GCT: Graph Co-Training for Semi-Supervised
Few-Shot Learning
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Abstract— Few-shot learning (FSL), purposing to resolve the
problem of data-scarce, has attracted considerable attention in
recent years. A popular FSL framework contains two phases:
(i) the pre-train phase employs the base data to train a
CNN-based feature extractor. (ii) the meta-test phase applies the
frozen feature extractor to novel data (novel data has different
categories from base data) and designs a classifier for recognition.
To correct few-shot data distribution, researchers propose Semi-
Supervised Few-Shot Learning (SSFSL) by introducing unlabeled
data. Although SSFSL has been proved to achieve outstanding
performances in the FSL community, there still exists a funda-
mental problem: the pre-trained feature extractor cannot adapt
to the novel data flawlessly due to the cross-category setting.
Usually, large amounts of noises are introduced to the novel
feature. We dub it as Feature-Extractor-Maladaptive (FEM)
problem. To tackle FEM, we make two efforts in this paper.
First, we propose a novel label prediction method, Isolated
Graph Learning (IGL). IGL introduces the Laplacian operator
to encode the raw data to graph space, which helps reduce the
dependence on features when classifying, and then project graph
representation to label space for prediction. The key point is that:
IGL can weaken the negative influence of noise from the feature
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representation perspective, and is also flexible to independently
complete training and testing procedures, which is suitable for
SSFSL. Second, we propose Graph Co-Training (GCT) to tackle
this challenge from a multi-modal fusion perspective by extending
the proposed IGL to the co-training framework. GCT is a
semi-supervised method that exploits the unlabeled samples with
two modal features to crossly strengthen the IGL classifier.
We estimate our method on five benchmark few-shot learning
datasets and achieve outstanding performances compared with
other state-of-the-art methods. It demonstrates the effectiveness
of our GCT.

Index Terms— Few-shot learning, semi-supervised few-shot
learning (SSFSL), feature-extractor-maladaptive (FEM), isolated
graph learning (IGL), graph co-training (GCT).

I. INTRODUCTION

IN RECENT years, the performance of computer vision
tasks based on deep learning has reached or even surpassed

the human beings’ level, such as image classification [1]–[3],
person re-identification [4]–[6], and point cloud recogni-
tion [7]–[9]. The adequate labeled data plays a crucial role
for the success. However, it is a challenge for data collection
and maintenance in real-world situations. To this end, few-
shot learning (FSL), as a pioneer work to address the lack
of labeled samples for each category, has aroused widespread
concerns.

In a standard FSL, the employed data includes two parts,
i.e., base set and novel set. There are many labeled samples
in the base set, but very few in the novel set (typically, for
the general FSL setting, each category only has 1 or 5 labeled
samples). Notably, the categories contained in the base set
are entirely different from those in the novel set. Generally,
researchers split the FSL model into two phases: (i) pre-train.
Training a feature extractor through the base set. (ii) meta-test.
First, employing the feature extractor to extract the features
of novel data, and then designing a classifier to recognize
the novel data’s category. Besides, to overcome overfitting
caused by the few-shot setting, researchers prefer to decouple
the complete model, that is, freezing the parameters of the
feature extractor after pre-training and directly extracting the
cross-category novel features in the meta-test phase.

During the stage of designing the classifier, the FSL-based
methods can be categorized into two sorts according to the
type of data employed: (i) supervised FSL, and (ii) semi-
supervised FSL. Specifically, the novel data includes three
components: support data (i.e., labeled training data), unla-
beled data (i.e., unlabeled training data), and query data (i.e.,
to-be-classified testing data). The difference between the two
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Fig. 1. Isolated graph learning (IGL) classifier. l· and u· denote the
labeled and unlabeled samples, respectively. IGL first encodes the samples to
graph representation and then propagate the label information through graph
structure for prediction.

settings is whether to use the unlabeled data when building
the classifier. For more details, please see Section III.

Compared with the supervised FSL, semi-supervised
approaches [10]–[13] can effectively correct few-shot data dis-
tributions to make the learned classifiers have higher quality.
However, to achieve this goal, it must be on the premise that
sample features are less noisy. But unfortunately, a fundamen-
tal problem in FSL, Feature-Extractor-Maladaptive (FEM),
is easy to break up the assumption. Specifically, researchers
obtain a feature extractor in the pre-train process and apply
it directly to the meta-test process, which is challenging to
ensure that the frozen feature extractor is capable of adapting
to the novel categories. To solve this challenge, we make two
efforts in this paper.

First, inspired by [14], we know that transforming the
raw data to graph representation is helpful in reducing the
dependence on features in classification tasks. To this end,
we propose a novel label prediction method dubbed as Isolated
Graph Learning (IGL), try to weaken the negative impact of
noise from the feature representation perspective. The frame-
work of IGL is shown in Figure 1. We first introduce the graph
Laplacian operator to encode the sample’s feature embedding
to graph space and then project the graph representation
to label space for prediction by regularization. Compared
with the traditional graph learning method [15], needing both
labeled and unlabelled data to propagate label information,
our IGL is more flexible to independently complete training
and testing procedures. Furthermore, compared with graph
neural network (GNN) based methods, there are no abundant
parameters in our IGL that need to be updated with the
propagation of deep neural networks. In other words, it is
easy to be implemented. These attributes are very friendly for
few-shot classification in the semi-supervised setting.

Second, we propose Graph Co-Training (GCT) to weaken
the negative effect of noise from a multi-modal fusion
perspective. Suppose that we have features from differ-
ent feature extractors, we can integrate different predictions
(obtained from different features) through collaborative train-
ing (co-training) to complete the final classification. To be
more specific, we first try to get two-modal features from
two designed feature extractors. In this phase, we have the
flexibility to adapt the classical models in few-shot commu-
nities. This paper uses two kinds of self-supervision ways
from [16], [17]. Then, we exploit the support data to train
two basic classifiers (i.e., IGL) with different modal features.
Next, we separately predict the unlabeled data with the two
modalities of classifiers. At last, we apply the unlabeled

data with the most confident predictions to crossly update
the classifiers. The designed co-training way is mainly to
strengthen our classifier’s robustness to reduce the interference
caused by FEM. We illustrate the framework of our GCT in
Figure 2. For convenience, we list some crucial abbreviations
and notations in Table I.

In summary, the main contributions focus on:
• Aiming at the Feature-Extractor-Maladaptive (FEM)

problem in semi-supervised few-shot learning, we pro-
pose a novel graph learning based classifier dubbed as
Isolated Graph Learning (IGL), which completes training
and testing procedures independently.

• We combine our IGL with the co-training framework to
design a Graph Co-training (GCT) algorithm. It extends
IGL to semi-supervised few-shot learning through fusing
multi-modal information.

• The comparison results with SOTAs on five benchmark
FSL datasets have evaluated the efficiency of our GCT.

II. RELATED WORK

A. Semi-Supervised Few-Shot Learning

Recently, semi-supervised few-shot learning (SSFSL) has
attracted lots of attention. Researchers assume that abundant
unlabeled data is available to be used for constructing the
classifier. They introduce various traditional semi-supervised
learning methods to the few-shot learning (FSL) task. Here,
we list several classical semi-supervised approaches and cor-
responding FSL works. (i) Consistency regularization methods
aim to improve the robustness of classifiers when the images
are noisy. MetaMix [18], BR-ProtoNet [19] et.al. promote the
classifier from this way. (ii) Self-training methods first train a
classifier with labeled data, then exploit it to generate pseudo
labels for unlabeled data, and at last update the classifier with
pseudo-labeled data. Recent self-training based FSL methods,
including LST [10] ICI [11], PLCM [12], iLPC [13] have
achieved outstanding performances. (iii) Hybrid based FSL
methods, such as MixMatch [20], and FixMatch [21], try
to construct a unified framework of semi-supervised learning
by combining several current dominant approaches such as
self-training and consistency regularization.

B. Multi-Modal Few-Shot Learning

As there are two sides to every coin, it is boundedness
to define objects from a single point of view. Multi-view
learning as an effective strategy has attracted extensive atten-
tion in the past decade. In few-shot learning, some similar
methods have been proposed, such as: DenseCls [22], its
feature map is divided into various blocks, and the cor-
responding labels are predicted; DivCoop [23] trains the
feature extractors on various datasets and integrates them
into a multi-domain representation; URT [24] is an improved
method compared with DivCoop [23], which proposes a
transformer layer to help the network employ various datasets;
DWC [25] introduces a cooperate strategy on a designed
ensemble model to integrate multiple information. Although
the above-mentioned approaches are based on multi-modal
learning, they are limited by the fused feature extractors and
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TABLE I

THE DEFINITION OF ABBREVIATIONS AND NOTATIONS

Fig. 2. The flowchart of graph co-training (GCT) in inductive semi-supervised case. We have two kinds of feature extractors, i.e., rotation-modal feature
extractor and mirror-modal feature extractor. Xr

s and Xm
s indicate the features of support data in rotation-modality and mirror-modality. Xr

u and Xm
u represent

the features of unlabeled data in corresponding modalities. In each modality, we first employ the support samples to train the basic classifiers Pr and Pm

(i.e., IGL). Then, we use IGL classifier to predict unlabeled samples and obtain the corresponded soft-pseudo label matrices Yr
u and Ym

u . Next, we select
the most confident sample and give it one-hot-pseudo label. Note that different modalities may predict different results. Finally, we crossly expand the
predicted-pseudo-sample to the support set and update the IGL classifier.

classifiers. To be more specific, their methods are based on
the unified framework, which means that the feature extrac-
tors are usually guaranteed to match classifiers in a fixed
way. Without this combination, the model performance will

be significantly reduced, which greatly limits the scalability
of the methods. While our GCT is freed with the feature
extractor, thereby is more flexible to be applied in real
scenarios.
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C. Graph Learning

Graph Learning is an efficient way to model the data corre-
lation of samples, composed of vertex set (i.e., samples) and
edge set. Each edge connects two vertices, which is capable of
modeling pair-wise relations of samples. Researchers usually
employ the adjacency matrix to represent a graph structure.
[15] first proposed Graph Learning. In recent years, graph-
based neural networks (GNN) have received extensive atten-
tion and have developed rapidly. Due to its good performance,
GNN-based technologies have been applied in many fields,
including few-shot learning [26]–[29], face clustering [30],
[31], etc. The former achieves satisfactory performance by
cooperating with meta-learning strategy, and the latter designs
multiple kinds of GNNs to cooperate with each other to
complete goals.

This paper focuses on traditional graph learning. In graph
learning, researchers classify the unlabelled data by propagat-
ing the label information through graph structure, which is
constructed by employing all the data (including labeled and
unlabeled data). There are two challenges in the node/graph
classification task by using graph learning: (i) In real appli-
cations, it is hard to know in advance what the to-be-tested
sample looks like. It limits the scenario for this approach.
(ii) Leading to a high computational cost. The predicting
process is entirely online. All the data must be considered
during the learning stage, which results in consuming mas-
sive computing resources. Furthermore, researchers have to
re-construct the graph structure to propagate the label infor-
mation when coming new testing data. This paper proposes
a novel method dubbed as Isolated Graph Learning (IGL) to
solve this challenge. IGL is a classifier which can be directly
applied in the decoupled FSL task.

III. PROBLEM SETUP

In few-shot learning, there exist two processes (i.e., pre-
train process and meta-test process) with different categories
of samples. Define the base data in pre-train phase as Dbase =
{(x(i), y(i))|y(i) ∈ Cbase}Nbase

i=1 , and the novel data in meta-test
phase as Dnovel = {(x( j ), y( j ))|y j ∈ Cnovel}Nnovel

j=1 , where x
and y denote the sample and corresponded label. Cbase and
Cnovel indicate the categories of base data and novel data,
Cbase ∩ Cnovel = ∅. Nbase and Nnovel indicate the number of
base data and novel data. To overcome overfitting, we follow
the decoupled classification setups as [11]. There are three
main stages in few-shot learning. First, we use Dbase to train
a CNN-based feature extractor ω (·) in the pre-train phase.
Second, we freeze the model’s parameters and extract the
feature embedding of Dnovel . Third, we design a classifier for
the novel categories’ classification.

Specifically, we first define the meta-test dataset as Dnovel =
{S,Q,U}, where S, Q, and U indicate support set, query set,
and unlabeled set, S ∩ Q = ∅, S ∩ U = ∅, Q ∩ U = ∅. Next,
we divide the support, query, and unlabeled sets into different
episodes. Each episode has K -way-O-shot samples, where
K -way indicates K classes, and O-shot denotes O samples
per class. Finally, we employ the to-be-learned classifier to

obtain the average classification accuracies of all the meta-test
episodes on the query set Q.

Besides, according to the differences of data used to con-
struct the classifier, we split the few-shot learning into four
kinds of settings: (i) inductive supervised few-shot learning
(ISFSL), using the support features and labels to train the clas-
sifier; (ii) transductive supervised few-shot learning (TSFSL),
using the support features, support labels, and query features
to train the classifier; (iii) inductive semi-supervised few-shot
learning (ISSFSL), using the support features, support labels,
and unlabeled features to train the classifier; (iv) transduc-
tive semi-supervised few-shot learning (TSSFSL), using the
support features, support labels, unlabeled features, and query
features to train the classifier.

IV. METHODOLOGY

In this section, we describe our approach in detail. First,
we encode the graph structure of samples’ relations to the
adjacency matrix. Second, we propose a novel graph learning
method dubbed as Isolated Graph Learning (IGL) to tackle
the FEM to some extent. This strategy introduces the Lapla-
cian operator to transform the samples in feature space to
graph representation and then project them to label space
for prediction by regularization. Some details are shown in
Figure 1. Third, we propose Graph Co-Training (GCT) by
expanding the IGL to a co-training framework. GCT is capable
of further addressing the FEM problem from a multi-modal
fusion perspective. The flowchart is illustrated in Figure 2.
At last, we introduce our designed feature extractors in detail.

A. Graph Structure Encoder

A graph can be formulated as G = (V, E), where V and E
represent vertex set and edge set, respectively. In the paper,
the vertex set is composed of image samples. We encode
the relations between edges and vertices through adjacency
matrix A ∈ R

|V |×|V |. Given the feature embedding of labeled
vertices as X = [x(1), x(2), · · · , x(N)] ∈ R

dim×N , where
x(i), (i = 1, 2, · · · , N) indicates the embedding of vi , and vi

denotes the ith vertex in V . dim and N denote the dimension
and number of labeled samples. The elements in A can be
defined as:

A(i, j ) =
�

exp
�
−dis

�
x(i), x( j )

�2
�

if (v(i), v( j )) ∈ e

0 o.w.
(1)

where (·)(i, j ) is the (i,j)-element in (·). e indicates an edge
in E . dis

�
x(i), x( j )

�
represents the operator to calculate the

distance of feature embeddings between v(i) and v( j ), in our
method, we select the k Nearest Neighbor (KNN) method.
Following, we define the vertex degree matrix as D ∈ R

N×N ,
which denotes a diagonal matrix with its (i, i)-element equal
to the sum of the i -th row of A.

B. Isolated Graph Learning

In this section, we propose a novel label prediction method
dubbed as Isolated Graph Learning (IGL). IGL is a strategy
to solve the FEM problem by transforming the samples in
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feature space to graph space. Unlike traditional graph learning,
requiring both labeled and unlabelled data to construct the
graph, the proposed IGL is more flexible to independently
complete training and testing procedures by learning a regu-
larized projection P ∈ R

dim×C to classify different categories.
Here, C indicates the total number of classes. We calculate
the cost function as:

F(P) = f1(P) + λ f2(P) + μ f3(P) (2)

where λ and μ represent the parameters to balance the
function. f1(P) denotes the graph Laplacian regularizer, which
can be formulated as:

f1(P) = 1

2

⎛
⎝ N	

i, j=1

A(i, j )


�
XT P

�
(i·)�

D(i,i)
−

�
XT P

�
( j ·)�

D( j, j )

�2
⎞
⎠

= tr
�

PT X�XT P
�

(3)

where (·)(i,·) is the i -th row of (·). � = D− 1
2 AD− 1

2 denotes
the normalized graph Laplacian operator. f2(P) indicates the
empirical loss term, which can be formulated as:

f2(P) =
���XT P − Y

���2

F
(4)

where Y ∈ R
N×C indicates the initial label embedding matrix.

For labeled samples, if the i -th sample belongs to the j -
th class, Y(i, j ) is 1, and otherwise, it is 0. f3(P) is the
constraint term. In this paper, we introduce �2,1-norm to select
an essential feature and avoid overfitting for P, which can be
defined as:

f3(P) = �P��2,1
(5)

where �·��2,1
represents �2,1-norm of (·). The objective func-

tion on IGL can be formulated as:
arg min

P
F(P)

= tr
�

PT X�XT P
�

+ λ
���XT P − Y

���2

F
+ μ �P��2,1

(6)

To optimize this problem, we first relax Equation 6 as:
arg min

P,B
F(P, B)

= tr
�

PT X�XT P
�

+ λ
���XT P − Y

���2

F
+ μtr

�
PT BP

�
(7)

where B is a diagonal matrix. Then we alternately update P
and B until Equation 7 convergence, follow [32], we directly
solve the problems as:

B(i,i) = 1

2
��P(i,·)

��2
2 + 10−8

, i = 1, . . . , dim (8)

P = H(X) = λ
�

X�XT + λXXT + μB
�−1

XY (9)

Following, given a testing sample embedding xt s ∈ R
dim×1,

we predict the xt s’s category by:
Z(xt s) = idmax

�
xt s

T P
�

(10)

where idmax represents an operator to obtain the index of the
max value in the vector.

Algorithm 1: Graph Co-Training for ISSFSL
Input: Base data Dbase, novel data Dnovel

Output: Query label
1 # pre-train phase
2 Employ Dbase to train the rotation-modal feature

extractor ωr (·) and mirror-modal feature extractor ωm(·).
3 # Meta-test phase
4 Extract two-modal feature of Dnovel by

Xr
novel = ωr (Dnovel), and Xm

novel = ωm(Dnovel).
5 # Co-training steps:
6 Intialize B and P.
7 repeat
8 Construct two modal classifiers by Equation 11.
9 Infer pseudo labels and enlarge support data by

Equation 12, 13.
10 until the unlabeled data is exhausted.
11 Predict the query labels by Equation 14.

C. Graph Co-Training for Few-Shot Learning

As mentioned in Section III, there exist four kinds of setting
in FSL. To make our IGL perform well in all kinds of FSL,
we introduce the co-training strategy to further cooperate with
IGL, and named the new approach as Graph Co-Training
(GCT). On the one hand, it can solve the FEM problem from a
multi-modal fusion perspective. For the details of multi-modal
information, please refer to Section IV-E. On the other hand,
GCT is capable of strengthening the robustness of the to-be-
learned classifier by employing the unlabeled data U . We’ll
detail how GCT works in the four settings. Notably, both the
construction of P and the collaborative training are designed
for each episode.

First see the inductive semi-supervised few-shot learning
(ISSFSL). We construct the co-training framework with two
modal features, i.e., rotation-modality and mirror-modality.
The rotation-model feature extractor, ωr (·) follows [16], the
corresponding embeddings of novel data can be defined as
Xr

novel = ωr (Dnovel) = [Xr
s , Xr

u, Xr
q ], where Xr

s = ωr (S),
Xr

u = ωr (U), and Xr
q = ωr (Q) indicate the features of

support, unlabeled, and query data on the rotation-model.
The mirror-modal feature extractor, ωm(·) follows [17], the
features in this modal are denoted as Xm

novel = ωm(Dnovel) =
[Xm

s , Xm
u , Xm

q ]. The complete GCT is demonstrated in Fig-
ure 2, which consists of four steps:

(i) From Equation 9, we construct two different classifiers
Pr and Pm by employing two modal support features Xr

s and
Xm

s , respectively. �
Pr = H(Xr

s )

Pm = H(Xm
s )

(11)

(ii) Predict the unlabeled data’s label from two modal
features by: �

Yr
u = Xr

u
T Pr

Ym
u = Xm

u
T Pm (12)

where Yr
u and Ym

u denote predicted soft-pseudo label matri-
ces of unlabeled data on rotation-modal and mirror-modal.
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(iii) Rank the values in soft-pseudo label matrices, then
selecting the most confident unlabeled samples’ feature xr

select
and xm

select on each modal, then asserting them corresponding
one-hot-pseudo label vectors yr

select and ym
select (for more

details about how to select the most confident sample, please
refer to Section IV-D). Next, crossly extend the pseudo-labeled
samples and corresponding labels to the support set on differ-
ent modals. We formulate this step as:�

Xr
s = [Xr

s , xm
select ], Yr

s = [Yr
s , ym

select ]
Xm

s = [Xm
s , xr

select ], Ym
s = [Ym

s , yr
select ]

(13)

where Yr
s and Ym

s denote the one-hot label matrices of
support data on two models.

(iv) Repeat (i), (ii) (iii) until the unlabeled data is exhausted
(in the real application, we usually select 80 unlabeled sam-
ples, for more discussions and results, please see Section V-C.2
and Figure 7). Then we obtain two optimal classifiers Pr

opt and
Pm

opt . Employ them to predict the query labels by:

Z(Xr
q , Xm

q ) = idmax

⎧⎨
⎩

�
Xr

q
T Pr

opt + Xm
q

T Pm
opt

�
2

⎫⎬
⎭ (14)

where Yr
q = Xr

q
T Pr

opt and Ym
q = Xm

q
T Pm

opt , denote the pre-
dicted soft label matrices of query data on rotation-modality
and mirror-modality. We summarize the steps in Algorithm 1.

Next see the transductive semi-supervised few-shot learning
(TSSFSL). The query feature is also available when construct-
ing the classifier. Here, we can implement TSSFSL with only a
few minor tweaks. Specifically, in step (ii), we have to predict
not only unlabeled data but also query data.

Then see the transductive supervised few-shot learning
(TSFSL), the unlabeled data is not available, but the query
feature is given in advance. Therefore, we just need to replace
the unlabeled data with query data in (i)(ii)(iii) steps, and
finally classify the query data.

At last see the inductive supervised few-shot learning
(ISFSL), the unlabeled data is unavailable, and query data is
not given to us in advance. Thus, the co-training strategy can-
not be used in this case and we think the basic IGL classifier
is optimal. We can complete ISFSL by Equation 11 and 14.

D. How to Select the Most Confident Sample?

Here we take the rotation-modal as an example to illustrate
the strategy. According to Equation 12, we can get the pre-
dicted rotation-model soft label matrix Yr

u ∈ R
Nu×C , where

Nu denotes the number of unlabeled samples; C denotes the
number of unlabeled categories. For each element Yr

u (n,c),
it means the probability of n-th sample belongs to the c-th
category, where n = 1, 2, · · · , Nu , c = 1, 2, · · · , C . In our
strategy, we first traverse all the elements in Yr

u to find the
largest element, which can be defined as Yr

u (nmax ,cmax ). The
nmax -th sample is the to-be-selected most confident sample,
which belongs to the cmax -th category.

E. Multi-Modal Feature Extractor

We can adopt various modal features from different feature
extractors to achieve our purpose. For example: (i) Standard

modality (Std-Mod) [11], the feature extractor comes from a
standard CNN-based classification structure. (ii) Meta modal-
ity (Meta-Mod) [33], the feature extractor combines the strat-
egy of meta-learning with the network. (iii) Self-supervised
rotation modality (SS-R-Mod) [16], the feature extractor intro-
duces auxiliary loss to predict the angle of image rotation,
including {0◦, 90◦, 180◦, 270◦}. (iv) Self-supervised mirror
modality (SS-M-Mod) [17]. Different from the SS-R-Mod,
SS-M-Mod introduces another auxiliary loss to predict image
mirrors, including {ver tically, hori zontally, diagonally}.
In most of the experiments, we present the results of collab-
orative training with SS-R-Mod and SS-M-Mod, and thereby
we briefly introduce them.

In the SS-R-Mod, the feature extractor updates the network
parameters with two kinds of loss, which are the standard
classification loss (i.e., Ls ) and rotation-based self-supervised
auxiliary loss (i.e., Lr ). To be more specific, assume there’s
a base image feature vector x. We project it into a label
space, i.e., x → zs , where zs = [zs

1, zs
2, · · · , zs

Cbase
] ∈ R

Cbase ,
Cbase denotes the number of the base category. Then transform
it to the probability distribution and calculate the standard
classification loss Ls by cross-entropy function:

Ls = −
Cbase	
c=1

ŷs
clog(ys

c) (15)

where ys
c = ezs

c�Cbase
c=1 ezs

c
indicates the predicted probability that

sample x belongs to class c, while ŷs
c denotes the groundtruth

probability. After that, we map the x to rotation-based label
space, i.e., x → zr , where zr = [zr

1, zr
2, zr

3, zr
4] ∈ R

4. We can
get the auxiliary loss by:

Lr = −
4	

c=1

ŷr
c log(yr

c) (16)

where yr
c = ezr

c�4
c=1 ezr

c
indicates the predicted probability of

rotation angle, while ŷr
c denotes the groundtruth probability.

The complete loss in SS-R-Mod is Ls + Lr .
In the SS-M-Mod, it also uses the standard classification

loss, but change the rotation-based self-supervised auxiliary
loss to mirror-based self-supervised auxiliary loss Lm , which
can be defined as:

Lm = −
3	

c=1

ŷm
c log(ym

c ) (17)

where ym
c indicates the predicted probability of mirroring way,

while ŷm
c denotes the groundtruth probability. The complete

loss in SS-M-Mod is Ls + Lm .

F. Discussion and Analysis

In this section, we will further discuss and analyze our work
from two aspects. We first see the comparison of our Isolated
Graph Learning (IGL) with traditional Graph Learning (GL);
next conclude with a comprehensive analysis of the reasons
for the success of GCT.
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1) Comparison of IGL and GL: Compared with IGL, the
GL’s objective function is different, which can be formulated
as:

F(R) = f4(R) + β f5(R) (18)

where R is the to-be-predicted soft label matrix. β denotes
the parameter to balance the function. f4(R) denotes the
graph Laplacian regularizer, which can be formulated as:

f4(R) = tr
�

RT �R
�

(19)

where � = D− 1
2 AD− 1

2 denotes the normalized graph
Laplacian operator. f5(R) indicates the empirical loss term,
which can be formulated as:

f5(R) = �R − Y�2
F (20)

where Y indicates the initial one-hot label matrix.
Comparing equations 2,3,4 and equations 18,19,20, it can

be seen that the most essential difference between IGL and
GL is that we replace R with XT P. If directly using R, the
training samples and the to-be-classified testing samples must
be employed together to achieve the testing samples’ label
prediction. In other words, if we only use the training data
to construct the graph, we can only achieve label propagation
between training samples. When a new batch of testing data
arrives, we must rebuild the graph based on the training and
testing data to realize the label prediction for the testing
samples. While IGL is different. After we get P based on the
training data, we can directly predict the label of new testing
data based on P without rebuilding the graph.

2) Comprehensive Analysis of GCT: Here, let’s sort out
why GCT is effective. After dismantling it, we find that there
are three parts that positively influence our method:

(i) The first point is that the base classifier IGL we designed
maps the original features to the graph space, which can reduce
the dependence on features in the FSL task, thereby weakening
the influence of the FEM problem.

(ii) The second point is that we introduce multi-modal
information. In the FSL task, the features obtained by different
feature extractors are different. Although they all cause the
distribution-shift, the angle of shift varies. Through the mutual
correction of multi-modal information, the final performance
can be improved.

(iii) The third point is that the employed co-training strategy
is reasonable and efficient. As mentioned before, we use multi-
modal information here. However, multi-modal features are
a double-edged sword. If used well, features with different
shortcomings can be corrected with each other to improve
performance. If used incorrectly, the performance will be
further degraded. In the co-training strategy, we select the most
confident sample in a single modality (the selected sample can
be treated as the one that is not affected by distribution-shift),
and then amplify the advantages of each modality through the
alternate iterations of the two modalities, so as to enhance the
classifier’s ability.

V. EXPERIMENTS

In this section, we design experiments to evaluate our
method. Specifically, we first illustrate the experimental
setup, containing datasets and implementation details. Then,
we demonstrate the comparison results and discuss them in
detail. Next, we design ablation studies to further analyze our
method. In the end, we observe the experimental performances
of multi-modal fusion and cross-domain. All experiments are
conducted on a Tesla-V100 GPU with 32G memory.

A. Experimental Setup

1) Datasets: Our experiments are carried out on five
benchmark datasets, including mini-ImageNet [56], tiered-
ImageNet [34], CIFAR-FS [33], FC100 [42], and CUB [57].
mini-ImageNet and tiered-ImageNet are selected from the
ImageNet dataset [58] and as the subsets. mini-ImageNet
consists of 100 classes with 600 images per class, and
tiered-ImageNet has 608 classes and each class contains
1, 281 images on average. Both of them resize the image
to 84 × 84. Following the standard split way as [11], for
mini-ImageNet, the base set contains 64 selected classes,
the validation is composed of 16 classes, and the novel set
includes 20 classes. Similarly, for tiered-ImageNet, the base
set includes 351 classes, the validation set contains 97 classes,
and 160 classes are prepared for the novel set. The CIFAR-FS
and FC100 are the subsets of the CIFAR-100 dataset [59],
which includes 100 classes. According to the split introduced
in [33], CIFAR-FS is divided into 64 classes, and it can be seen
as the base set, the validation set consists of 16 classes, and
the novel set includes 20 classes. And for FC100, we divided
it into 60 classes as the base set, the validation set contains
20 classes, and the novel set includes 20 classes. The image
size of CIFAR-FS and FC100 datasets are set to 32×32. There
are 11, 788 images with 200 categories in the CUB dataset in
total. Referring to the implementation in ICI [11], CUB is
divided into 100 classes as the base set, the validation set
contains 50 classes, and the novel set consists of 50 classes.
In all experiments, the images are cropped into 84 × 84.

2) Implementation Details: In our paper, both the
rotation-modal and mirror-modal feature extractors adopt the
ResNet12 [60] backbone, which contains four residual blocks
(a convolution layer with 3×3 kernel size, batch normalization
layer, and LeakyReLU layer), four 2 × 2 max-pooling layers,
and four dropout layers. The optimizer is adopting stochastic
gradient descent (SGD) with Nesterov momentum (0.9). The
training epochs are set as 120, and then all module was
tested over 600 episodes with 15 query samples per class.
For more details of network experimental implements, such
as the learning rate, data augmentation, and the number of
filters, please refer to ICI [11]. Besides the feature extractor,
the designed classifier also affects the final results (i.e., the
two parameters in Equation 6). For fairness and convenience,
we fix λ = 0.1 and μ = 0.6 for all the datasets by
our empirical tuning. And in Section V-C.1, we discuss the
influence of the two parameters.
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TABLE II

THE 5-WAY SEMI-SUPERVISED FEW-SHOT CLASSIFICATION ACCURACIES (%) WITH 95% CONFIDENCE INTERVALS OVER 600 EPISODES. (·)� , AND

(·)† IN THIS TABLE INDICATE INDUCTIVE SEMI-SUPERVISED, AND TRANSDUCTIVE SEMI-SUPERVISED SETTINGS, RESPECTIVELY. ABOUT THE

INFLUENCE OF THE UNLABELED NUMBER, PLEASE SEE FIGURE 7

TABLE III

THE 5-WAY MULTI-MODAL FUSION BASED FEW-SHOT CLASSIFICATION

ACCURACIES (%) WITH 95% CONFIDENCE INTERVALS OVER 600
EPISODES IN MINI-IMAGENET AND TIERED-IMAGENET. FOR A

FAIR COMPARISON, THE REPORTED RESULTS OF OUR GCT IS

BASED ON THE TRANSDUCTIVE SUPERVISED SETTING

B. Experimental Results

1) Comparison Results With Semi-Supervised
Methods: Table II shows the comparison results with
recently proposed semi-supervised few-shot classification
methods. These approaches use the unlabeled samples
to correct the distribution. Obviously, our GCT achieves
outstanding performances. First see the comparison without
considering PTN [38]. Specifically, in mini-ImageNet, GCT
exceeds others 0.78%-17.94% in the 1-shot case, and 1.27%-
14.97% in the 5-shot case; in tiered-ImageNet, GCT exceeds
others 1.17%-20.14% in the 1-shot case, and 0.27%-11.07%
in the 5-shot case; in CIFAR-FS, GCT exceeds others
0.37%-12.11% in the 1-shot case, and 0.81%-6.24% in the
5-shot case; in FC100, GCT exceeds others 2.69%-10.87%
in the 1-shot case, 1.16%-7.54% in the 5-shot case. And
then comparing GCT with PTN, we find that only in mini-
ImageNet, the performance of GCT is slightly inferior to
PTN, while in other datasets, GCT is better than PTN.

2) Comparison Results With Multi-Modal Fusion Methods:
Our GCT fuses two modal information, so that it is necessary
to compare it with recently proposed multi-modal fusion based
methods. The comparison results are presented in Table III.
For a fair comparison, we do not utilize the unlabeled data.
We exploit our GCT in the transductive setting. We find that
our GCT can outperform other methods by 1.82%-12.76% in
mini-ImageNet, and 1.55%-15.66% in tiered-ImageNet.

TABLE IV

THE 5-WAY FEW-SHOT CLASSIFICATION ACCURACIES (%) WITH 95%
CONFIDENCE INTERVALS OVER 600 EPISODES IN CIFAR-FS AND

FC100. THIS TABLE COMPARES OUR GCT WITH STATE-OF-THE-
ARTS WITHOUT CONSIDERING ANY VARIABLES, SUCH AS

BACKBONES, TRICKS, OR EVEN THE FEW-SHOT SETTINGS,
JUST REPORTS THE FINAL PERFORMANCES

3) Comparison Results With State-of-The-Art
Methods: All the works have their highlights and tricks to
improve their final performances. In this section, we compare
our GCT with other state-of-the-art methods. That means,
we do not consider the impact of any variables, such as
backbones, various tricks, or even the few-shot settings (i.e.,
inductive supervised, transductive supervised, inductive semi-
supervised, transductive semi-supervised settings), but only
report their final results. From Table V,IV, we observe that,
our proposed GCT has achieved significant improvements
compared with other SOTAs. In mini-ImageNet dataset,
GCT exceeds others at least 11.47% in the 1-shot case, and
5.17% in the 5-shot case. In tiered-ImageNet dataset, GCT
outperforms others at least 7.95% in the 1-shot case, and
2.17% in the 5-shot case. In CIFAR-FS dataset, GCT gains
improvements of at least 8.53% in the 1-shot case, and 4.52%
in the 5-shot case. In FC100 dataset, GCT surpasses others
by at least 10.36% in the 1-shot case, and 6.88% in the
5-shot case.

C. Ablation Studies

In the paper, we make two efforts to address the FEM
problem. First, we propose the IGL classifier to encode
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TABLE V

THE 5-WAY FEW-SHOT CLASSIFICATION ACCURACIES (%) WITH 95%
CONFIDENCE INTERVALS OVER 600 EPISODES IN MINI-IMAGENET

AND TIERED-IMAGENET. THIS TABLE COMPARES OUR GCT WITH

SEVERAL STATE-OF-THE-ARTS WITHOUT CONSIDERING ANY

VARIABLES, SUCH AS BACKBONES, TRICKS, OR EVEN THE
FEW-SHOT SETTINGS, JUST REPORTS THE

FINAL PERFORMANCES

the sample’s feature embedding to the graph representation.
Second, we propose GCT block, which extends IGL to the
semi-supervised setting and fuses two-modal information.
To this end, we design ablation studies to analyze how the
two blocks affect the results. Besides, there are two important
tricks in our method, i.e., feature-alignment and fine-tuning.
We also evaluate their efficiency to our method in this section.

1) Influence of IGL Classifier: (i) In this paper, we have
pointed out the reason to design the graph-based classifier:
Transforming the raw data to graph representation is helpful
to reduce the dependence on features in classification tasks,
thereby suffering less from feature noise. To evaluate this
conclusion, we deliberately introduce different degrees of
Gaussian noise to the features, and compare our IGL with the
graph-irrelevant classifiers, including Logistic Regression (LR)
and Support Vector Machine (SVM). The results with induc-
tive supervised setting are presented in Figure 3. Obviously,
our IGL is more insensitive to noise, and achieves better
performances on both 5-way 1-shot and 5-way 5-shot cases.

To better understand the phenomenon, we give an expla-
nation here: In the LR and SVM, the features are directly
used to construct the classifiers; while in the GCT, the features
are first be used to construct the adjacency matrix A through
Equation 1, and then the A is used to construct the classifier
by cooperating with graph Laplacian operator through Equa-
tion 3, 9. That means, the graph-based classifiers rely not
only on the quality of the features, but also on the way of
constructing A.

(ii) Building a high-quality graph structure is the corner-
stone of the success of our approach. In this paper, we adopt

Fig. 3. Comparison results with different noise ratios. The experiments
are conducted in mini-ImageNet with inductive supervised setting. These
experiments do not use the feature-alignment and fine-tuning tricks.

Fig. 4. Comparison results of different K in KNN-based graph-constructing
method. The experiments are conducted in mini-ImageNet with inductive
supervised setting. These experiments do not use the feature-alignment and
fine-tuning tricks.

TABLE VI

COMPARISON RESULTS OF EMPLOYING DIFFERENT GRAPH-
CONSTRUCTING METHODS. THE EXPERIMENTS ARE CONDUCTED IN

MINI-IMAGENET WITH INDUCTIVE SUPERVISED SETTING. THESE

EXPERIMENTS DO NOT USE THE FEATURE-ALIGNMENT AND

FINE-TUNING TRICK

the KNN method to construct the graph. It is crucial to
choose a reasonable K. Here, we show the influence of K in
Figure 4. The experiments are conducted in mini-ImageNet
with inductive supervised setting. We observe that K=3 in
the 1-shot case and K=20 in the 5-shot case are the optimal
selection. In practice, we will first simulate the real scene with
the base data, select the appropriate K and apply it directly to
the corresponding task.

In order to further evaluate the influence of the
graph-constructing method on the results, we use another
classical method KMeans to complete related tasks. In the
KNN-based method, each vertex will have the same number
of edges, that is, the degrees of the vertices are the same, while
the KMeans-based method does not have this constraint. The
comparison results are listed in Table VI. We find that the
KMeans-based method is slightly inferior in the FSL task.

(iii) From Equation 6, we know that there exist two para-
meters (i.e., λ and μ) influence the performance. Let’s fix one
to see how the other changes. The results of four datasets are
listed in Figure 6. All the experiments are conducted in the
inductive supervised setting. From the results, we find our IGL
is not sensitive to the parameters.

2) Influence of GCT Block: (i) The IGL can be extended to
semi-supervised tasks through the proposed GCT block. The
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TABLE VII

ABLATION STUDY TO EVALUATE THE INFLUENCE OF DIFFERENT TRICKS
(feature-alignment AND fine-tuning) IN INDUCTIVE SEMI-SUPERVISED

CASE WITH 80 UNLABELED SAMPLES

TABLE VIII

COMPARISON RESULTS OF DIFFERENT MODALS IN MINI-IMAGENET.
WHEN ADOPTING SELF-TRAINING OR CO-TRAINING STRATEGIES,

THE USED UNLABELED SAMPLES ARE 15. IGL IS THE CLAS-
SIFIER. ST-R DENOTES USING THE FEATURE OF SS-R-MOD;

ST-M DENOTES USING THE FEATURE OF SS-M-MOD;
ST-R-M DENOTES FUSING ROTATION-BASED AND

MIRROR-BASED SELF-SUPERVISED STRATEGIES TO
ONE BRANCH IN THE PRE-TRAINING STAGE. ④

DENOTES DIRECTLY FUSING THEIR DECI-
SIONS THROUGH EQUATION 14. THESE

EXPERIMENTS DO NOT USE THE
FEATURE-ALIGNMENT AND FINE-

TUNING TRICKS

employed number of unlabeled samples plays a critical role
in our final performance. We report the comparison results
in Figure 7, the x-axis represents the number of unlabeled
samples. Obviously, with the increasing of unlabeled samples,
the performance of our method has become more competitive.
Meanwhile, the performance will reach saturation or even
decline after 50 unlabeled samples.

(ii) Besides, GCT is a powerful method to fuse two modal
information. Therefore, we design ablation studies to observe
the single-modal performances. We demonstrate the results in
Table VIII. Experimental results demonstrate the effectiveness
of the fusion strategy to a certain extent. To estimate the
influence of fusion further, we demonstrate the results of each
class. To be more specific, we select one episode (including
5 classes) on a 5-shot case, randomly. And then visualize the
corresponding confusion matrices of each modal in Figure 8,9.
Obviously, different results are obtained from various modal
features for a specific class. And the proposed GCT achieves
competitive results, reaching the same as the best performance
result of a single model. Therefore, with the increase of
category number, the performance of the proposed method also
improves and is naturally more favorable.

3) Influence of Tricks: Each classical paper has the cor-
responding tricks to improve the final performance, and so
do we. (i) Since the to-be-fused features come from differ-
ent separate spaces, it consists of inconsistent measurement

TABLE IX

TIME CONSUMING. THE EXPERIMENTS ARE CONDUCTED IN OUR TESLA-
V100 GPU. IN TESTING PHASE, THE REPORTED RESULTS ARE CON-

DUCTED IN THE INDUCTIVE SEMI-SUPERVISED SETTING WITH 15
UNLABELED SAMPLES. THE TESTING TIMES FOR DIFFERENT

DATASETS ARE BASICALLY THE SAME BECAUSE WE SET
THE EPISODES FOR EACH DATASET TO 600

Fig. 5. The effect of the number of unlabeled samples on IGL and GL. The
experiments are conducted in mini-ImageNet with inductive semi-supervised
setting without using the feature-alignment and fine-tuning tricks.

scales problem. Therefore, before starting our GCT operation,
we attempt to align the features through the conventional
subspace learning algorithm to transfer the initial features to a
unified space with reconstructed low-dimensional representa-
tion. Specifically, we treat one-sample’s-V -modals-features as
V -samples’-features, and use PCA [61] to achieve the aligned
features. The influence of the feature-alignment trick is shown
in Table VII. Obviously, this trick is very helpful for our GCT,
can improve its performance by about 1%-3%. (ii) Inspired
by [62], we re-use the base data to fine-tune the frozen-
pre-trained feature extractor with the smaller batchsize and
learning rate to improve the model’s performance. We fix the
batchsize to 16 and the learning rate to 0.001. The influence of
fine-tuning trick is also shown in Table VII. The results show
that this trick can improve the performance of the original
model by about 1%-2%.

D. Comparison of GL and IGL

In this section, we will further analyze the GL and IGL
in inductive semi-supervised setting. The experimental results
are listed in Figure 5. We find that when there are fewer
labeled samples, the performance of the GL method is slightly
higher than the IGL method. But with the increase of unlabeled
samples, we find that the performance of the GL method
increases slower than our proposed IGL. The reason is that:

From the objective function of GL (i.e., Equation 18, we can
directly get the solution as:

R = (D− 1
2 AD− 1

2 )−1Y (21)

where R is the to-be-calculated soft label matrix; Y indicates
the initial label embedding matrix; � = D− 1

2 AD− 1
2 , A is the

adjacency matrix, constructed by all the labeled and unlabeled
samples.
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Fig. 6. Influences of parameters. These experiments do not use the feature-alignment and fine-tuning tricks.

Fig. 7. Comparison results of inductive semi-supervised few-shot classification with varied unlabeled samples. These experiments do not use the
feature-alignment and fine-tuning tricks.

Fig. 8. Confusion matrices on mini-ImageNet.

While for the IGL, we predict the xt s’s category by
Equation 10. Compared with Equation 21 and Equation 10,
it’s easy to find that: The sample feature has a far greater
impact on Equation 10 than on Equation 21. That means,
Equation 10 can better utilize the high-quality samples selected
by the co-training strategy to get ideal results. To be more
specific, in Equation 10, the selected samples will affect X,
A (when pseudo-labels are assigned to unlabeled samples
through co-training, A will be reconstructed), and Y. While in
Equation 21, the selected samples will only affect Y (because
all labeled samples and unlabeled samples are directly used
when building A here, so A is fixed and will not be updated
in the future). Therefore, in this case, the advantage of IGL
over GL does not disappear. And on the contrary, the more
unlabeled samples are used, the greater the improvement of
IGL over GL.

E. Discussion About Self-Supervision Fusion

In this paper, we introduce two different self-supervised
strategies (rotation-based and mirror-based) to strengthen the
model and fuse them by our GCT in the meta-test phase.
It is interesting to see the results directly fusing them into
one branch in the pre-training stage. We list the results in
Table VIII. Comparing ③ with ①, ②; ⑦ with ⑤, ⑥; we find
that the results of fusing different self-supervision into one
branch are better than the ones only using rotation-based or
mirror-based strategy. But comparing ④ with ③; ⑧ with ⑦;

we find that the experimental results obtained by GCT fusion
in the meta-test stage are better than those obtained by directly
fusing different self-supervision in the pre-training stage.

But this phenomenon doesn’t mean that the co-training strat-
egy is more effective than the self-supervised strategy. Their
attention is different. The method based on self-supervision
directly makes the pre-trained model have good transferability
to extract more discriminative novel features, which is very
helpful for cross-domain problems in few-shot classification
tasks. However, the co-training method aims to strengthen the
classifier to make it not be disturbed by noise features as
much as possible. The two strategies are not a competitive
relationship, but a cooperative relationship.

F. Time Consuming

In this section, we report the time-consuming of our method.
It includes three parts, training time, fine-tuning time, and
testing time. The results are listed in Table IX.

G. Multi-Modal Fusion

Besides SS-R-Mod and SS-M-Mod, we introduce Std-Mod
and Meat-Mod (described in Section IV-E) to further evaluate
the proposed method. We list the performances of more kinds
of integrated ways on mini-ImageNet in Table X. All the
results are on account of the inductive semi-supervised setting
with 15 unlabeled samples. From the table, we can conclude
that with the increase of fusion modalities, our method has the
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Fig. 9. Confusion matrices on CIFAR-FS.

TABLE X

COMPARISON RESULTS OF FUSING MULTI-MODAL FEATURES IN 5-WAY 1-SHOT CASE. THE EXPERIMENTS ARE CONDUCTED ON THE

INDUCTIVE SEMI-SUPERVISED SETTING WITH 15 UNLABELED SAMPLES. THESE EXPERIMENTS DO NOT USE THE

FEATURE-ALIGNMENT FINE-TUNING TRICKS

TABLE XI

COMPARISON IN CROSS-DOMAIN DATASET SCENARIO. OUR GCT IS ON

INDUCTIVE SEMI-SUPERVISED SETTING WITH 15 UNLABELED SAM-
PLES. (·)� AND (·)	 REPRESENT THE REPORTED RESULTS COME

FROM [63] AND [16], RESPECTIVELY. THESE EXPERIMENTS

DO NOT USE THE FEATURE-ALIGNMENT AND
FINE-TUNING TRICKS

possibility of further improvement. And in this paper, we fix
the fusion strategy to combine SS-R-Mod with SS-M-Mod for
convenience.

H. Cross-Domain Few-Shot Learning

The GCT can be regarded as a highly robust approach in
real-world situations, benefiting from the introduced multi-
model information. That is, we estimate the proposed method
with the transductive implements on a cross-domain dataset:
i.e., mini-ImageNet −→ CUB. The feature extractor was
trained on the mini-ImageNet dataset in the pre-train process.
And in the meta-test task, we classify the CUB dataset. All
quantitative results are shown in Table XI. Compared with the
SOTAs methods, our approaches have apparently improved,

at least 11.3% in the 1-shot case and 5.1% in the 5-shot case.
Based on the above experiment results, it is demonstrated that
the GCT can solve the FEM problem better. The experimental
results on the cross-domain few-shot learning task show that
the proposed GCT would be effective in real situations.

VI. CONCLUSION

There is a fundamental problem in Few-shot learning based
tasks, i.e., Feature-Extractor-Maladaptive (FEM) problem.
In this paper, we make two efforts to address this challenge.
First, we propose a novel label prediction method, Isolated
Graph Learning (IGL), to encode the feature embedding to
graph representation and then propagate the label information
through graph structure for prediction. Second, we extend IGL
to the co-training framework to exploit multi-modal features
in the semi-supervised setting, dubbed as Graph Co-Training
(GCT). From the two perspectives, we have tackled this
challenge to some extent. In our future work, we may study
to improve the quality of the co-training strategy.
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