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Abstract— With the widespread use of automated speech
recognition (ASR) systems in modern consumer devices, attack
against ASR systems have become an attractive topic in recent
years. Although related white-box attack methods have achieved
remarkable success in fooling neural networks, they rely heavily
on obtaining full access to the details of the target models.
Due to the lack of prior knowledge of the victim model and
the inefficiency in utilizing query results, most of the existing
black-box attack methods for ASR systems are query-intensive.
In this paper, we propose a new black-box attack called the Monte
Carlo gradient sign attack (MGSA) to generate adversarial audio
samples with substantially fewer queries. It updates an original
sample based on the elements obtained by a Monte Carlo tree
search. We attribute its high query efficiency to the effective
utilization of the dominant gradient phenomenon, which refers
to the fact that only a few elements of each origin sample
have significant effect on the output of ASR systems. Extensive
experiments are performed to evaluate the efficiency of MGSA
and the stealthiness of the generated adversarial examples on the
DeepSpeech system. The experimental results show that MGSA
achieves 98% and 99% attack success rates on the LibriSpeech
and Mozilla Common Voice datasets, respectively. Compared with
the state-of-the-art methods, the average number of queries is
reduced by 27% and the signal-to-noise ratio is increased by 31%.

Index Terms— Adversarial example, automatic speech recog-
nition, black-box attack, Monte Carlo tree search.
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I. INTRODUCTION

NEURAL networks have incredible representative abil-
ities, which makes them suitable for various signal

processing and analysis tasks. Prior works [1], [2], [3] have
verified the success of adversarial attacks on neural networks.
These attacks bring great potential threats to artificial intelli-
gence systems [4]. Most existing works are devoted to the
image domain [5], [6], [7], [8], [9], [10] and text domain
[11], [12]. With the wide application of audio speech recogni-
tion (ASR) systems, the issue of adversarial examples against
ASR has not received enough attention [13]. As shown in
Fig. 1, the audio adversarial attack deceives the victim model
by adding adversarial noise to the original signal. Due to some
non-trivial challenges [14], [15], [16], studies on adversarial
attacks in the audio domain is still limited. Existing works
on audio adversarial attacks have mainly focused on white-
box scenarios, [3], [5], [17] which assume that attackers have
access to all the parameters of the target systems. However,
this assumption does not hold in practice [18]. In most cases,
attackers can only obtain the output of ASR systems [19],
[20], [21], [22]. With a sufficient number of queries, black-box
attack methods utilize the feedback information to generate
adversarial examples; thus, they have become major threats to
artificial intelligence models for signal processing.

Existing black-box attack methods are generally query-
intensive [18], [23], [24]. The speech signal usually con-
tains numerous sampling points, and we call these sampling
points the elements of the speech signal. As the number of
elements of the original sample increases, the search space
increases rapidly, which results in an excessive number of
queries per attack. For most black-box attacks, however,
an excessive number of queries is unacceptable [25], [26],
[27], [28]. Existing black-box attack methods [18], [19], [20]
add perturbations to the adversarial example in each iteration.
These perturbations cover almost each element of the speech
signal when the targeted attack is completed. This leads
to the fact that adversarial examples are easily detected by
detectors. We attribute the excessive queries required by the
existing methods to the blind selection of elements during the
generation of adversarial examples.

In this paper, we propose a new black-box attack method
called the Monte Carlo gradient sign attack (MGSA). Com-
pared with prior works, the proposed method improves the
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Fig. 1. Illustration of the adversarial attack against ASR systems.

number of queries and the SNR of the adversarial examples.
The main contributions of this paper are summarized as
follows:
• We first investigate the phenomenon that only a few

elements with large gradients have a sufficient impact
on the output of ASR, which is called the dominant
gradient phenomenon. The experimental results verify
that the utilization of elements with dominant gradients
can significantly reduce the number of queries of black-
box attacks.

• We propose a new black-box attack, called MGSA for
ASR systems; this attack, builds a Monte Carlo tree to
search elements with the dominant gradients. Further-
more, we introduce a sampling gradient sign strategy
and a momentum iterative strategy to accelerate the
convergence speed of the algorithm.

• We conduct extensive experiments on the Mozilla Com-
mon Voice and LibriSpeech datasets using DeepSpeech
as the target model. The results verify that the proposed
method achieves a 98% attack success rate. The average
number of queries is reduced by 27% and the signal-to-
noise is increased by 31% compared with the state-of-
the-art methods.

The rest of the paper is organized as follows. The back-
ground of ASR systems and the related work of adversarial
attack methods are provided in Section II. The principle and
details of the proposed algorithm are provided in Section III.
In Section IV, we carry out experimental verification and
comparative analysis of the experimental results. We conclude
this paper in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we first briefly introduce the background
knowledge of ASR systems and then review the related
research on adversarial attacks and Monte Carlo tree search
methods.

A. Deep Learning-Based ASR Systems

Audio signals are usually sampled as N-dimensional vectors
in the time domain. Mel-frequency cepstrum (MFC) is often
used as the feature extraction method in the ASR systems
to obtain an audio representation by simulating the human
auditory system [15], [29]. MFC divides each sound wave
into 50 frames per second and projects each frame into the
frequency domain. In ASR systems, as shown in Fig. 2,

recurrent neural networks (RNN) are usually used to map a
preprocessed audio signal to the probability distribution on the
output tag [30]. The RNN in ASR systems can be expressed as
(si+1, yi ) = f (si , vi ), where vi is the ith frame of the input
vector, si is the state vector of vi , and yi is the probability
distribution of the output of vi .

In this paper, the DeepSpeech system [31] is employed
as the target ASR system. Since the inputs of ASR are
unaligned, connectionist temporal classification (CTC) [32] is
introduced to DeepSpeech to find the precise mapping rela-
tionship between a pair of inputs and outputs. The objective of
CTC is to maximize the sum of the probabilities of all possible
alignment paths between the input and the target sequence:

Pr(t|y) =
∑

π∈D(t)

Pr(π |y) =
∑

π∈D(t)

∏
i

yi
πi

, (1)

where π denotes the possible alignments of target sequence
t through the mapping operation D(·), and πi is the char-
acteristic of π at element i [33]. The loss function used in
the DeepSpeech system for training the RNN is the following
negative logarithm maximum likelihood functions:

LCT C (y, t) = − log Pr(t|y). (2)

Since the search space is large, dynamic programming is
usually employed to improve the computational efficiency.

B. Adversarial Attacks on ASR Systems

The success of adversarial attacks on images has inspired
the study of adversarial audio attack on ASR systems [14].
Due to the high dimensionality of the inputs and the almost
infinite number of possible target texts, targeted attacks on
ASR systems are far more difficult than those on image
classification models [34]. Most existing attack methods for
ASR systems are only applicable in white-box settings [3],
[20], [21], [22], [35]. Iter et al. [36] added perturbations
to MFCC features and then reconstructed the speech signal
from the perturbed MFCC features. However, the perturbations
introduced by the inverse-MFCC process are proven to be
too noisy for human ears [14]. Carlini et al. [22] addressed
this problem by rebuilding the feature extraction function
and proposed an iterative optimization method to generate
adversarial examples. Nevertheless, their method takes more
than one hour to generate a 3-second adversarial audio sample
and thus is very inefficient.

Since an attacker may not be able to obtain enough system
information in real scenarios, the black-box attacks have also
attracted the attention of researchers. Cisse et al. [21] pro-
posed a transferable adversarial attack, which is only effective
for target text that is similar to the content of the origi-
nal audio. Yuan et al. [37] transferred adversarial examples
from Kaldi [38] to DeepSpeech [31] and revealed the poor
performance of the transferability of adversarial examples.
Zheng et al. [39] claimed that minimal information could be
used to improve the transferability of adversarial examples.
Other recent works [10], [40], [41] have also implemented
black-box attacks based on the transferability of adversarial
examples. Despite such attacks are successful, they have major
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Fig. 2. Typical structure of end-to-end ASR system.

limitations because attackers usually cannot obtain enough
training data with the same distribution as that used in the
target model. Even if the attacks are implemented, it is
too expensive to retrain one or more alternative models for
adversarial examples. Another class of black-box attacks is
based on queries and these models generate adversarial exam-
ples using the feedback information from the target model.
Mun et al. [42] proposed an adversarial attack method based
on particle swarm optimization and applied it to the speech
command model. Zong et al. [43] implemented a variational
autoencoder (VAE) based black-box attack. Although the algo-
rithm has the characteristic of low queries, it is only suitable
for untargeted attacks. Alzantot et al. [44] first searched
for targeted attacks based on the output probabilities of the
victim model. They applied a genetic algorithm to the speech
command model and achieved an attack success rate of 87%.
Taori et al. [45] combined a genetic algorithm and gradient
estimation to attack ASR systems, and they successfully
realized the targeted attack of two-word phrases. However,
this method is ineffective for long speech and complex target
texts, and it takes an extremely long time and requires a
great number of queries. Wang et al. [18] proposed a selective
gradient estimation attack (SGEA), which selects a small batch
of elements to perturb in each iteration based on the results of
the previous iterations. However, the effective elements change
during the generation of adversarial examples. At the later
stage of algorithm execution, the efficiency of this method
is similar to that of selecting elements randomly. Although
SGEA requires fewer queries than other methods, the noise
introduced by this method can still be noticed by the human
ear. Khare et al. [20] proposed a multiobjective genetic algo-
rithm to improve the success rate of black-box attacks, but the
algorithm requires more queries during the attack than other
methods.

In summary, the existing black-box attack methods still have
many problems to solve, such as alternative model depen-
dencies, excessive queries, long time- consumption, heavy
additional noise, and low success rates for long speech or
complex target texts.

C. Monte Carlo Tree Search

The Monte Carlo tree search (MCTS) is the best-first search
method under the guidance of Monte Carlo simulation [46];
it was proposed for finite zero-sum games. The goal of MCTS

is to give the best next action for a given game state. Compared
with other tree search algorithms, MCTS does not need a state
evaluate function, so it is widely used in fields, such as robotics
planning [47], [48], [49], [50] and optimization [51], [52],
[53], [54], where the value of each state is difficult to evaluate.

The main idea of MCTS is to expand an incomplete search
tree and predict the best next action using the simulation
results. After the Monte Carlo tree (MCT) is initialized,
MCTS mainly iterates through four steps: selection, expansion,
simulation and backtracking. (1) In the selection step, the
algorithm selects a path from the root node of MCT to the end
node through some strategies. (2) In the expansion step, new
nodes are added to MCT as the children of the nodes selected
in the selection step. (3) In the simulation step, the algorithm
simulates from the new nodes generated in the expansion step
to the final state several times to obtain feedback information.
(4) In backtracking step, the algorithm uses simulated feedback
information to update the statistical information of all nodes
on the backpropagation path.

In MCTS, the statistical information including simulation
reward Q(v) and total number of visits N(v), is important
attribute of a node and are used to determine the probability
that the node will be selected in the selection step. A simple
form of Q(v) is the sum of the simulation feedback of the
node and its children, and N(v) represents the times the node
appears on the backpropagation path.

III. MONTE CARLO GRADIENT SIGN ATTACK

In this section, we first explain the motivation of the MGSA
algorithm and then introduce the details of the proposed
algorithm.

A. Problem Formulation

To attack a black-box target model F with high-dimensional
input, an attacker needs to inject an invisible perturbation
into the original example, so that the model outputs the
target text. Given an original speech example X and a target
text t , the problem of searching adversarial examples can be
formulated as

min ||δ||2,
s.t. F(X + δ) = t, X + δ ∈ [−m, m], (3)
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where || · ||2 is the L2 norm, δ denotes adversarial perturba-
tion, and m denotes the boundary parameter of legal exam-
ples. However, it is difficult to guarantee that the constraint
F(X + δ) = t during the optimization process. Therefore,
we optimize the L2 norm of adversarial perturbation ||δ||2
and the distance d(F(X), t) between the model output F(X)
and the target text t at the same time. In the field of image
recognition, the distance can be measured easily based on the
output F(X) and the target label, because the dimension of
F(X) is usually set to be the same as the number of labels.
However, in the field of speech recognition, many sequences
can be normalized to the target text. We take the sequence
that has the lowest CTC loss with the original example as the
optimization target:

πt = arg min
π∈D(t)

(LCT C (F(X), π)). (4)

Therefore, the distance between F(X) and target text t can be
caculated by

d(F(X), t) = LCT C(F(X), πt ). (5)

By taking the L2 norm of the adversarial perturbation as
the restriction, the optimization problem in Eq. 3 can be
transformed to

δ = arg min
δ

(L(X, δ, t)),

L(X, δ, t) = c · ||δ||2 + d(F(X + δ), T ), (6)

where c is a balance parameter.
In a black-box setting, the gradient of the target model is

not available, so a zero-order optimization method is needed
to solve the optimization problem described in Eq. (6). In this
paper, we estimate the gradient of the loss function by

∇Lδ(X, δ, t) ≈

⎡
⎢⎢⎢⎣

(L(X, δ1, t)− d(F(X), t))/|δ1|
(L(X, δ2, t)− d(F(X), t))/|δ2|

...
(L(X, δn, t)− d(F(X), t))/|δn |

⎤
⎥⎥⎥⎦ , (7)

where (δ1 · · · δn) is a group of sparse orthogonal vectors, and
δi is set to one at element i and zero at the other elements.
However, the number of queries required to estimate the
gradient for each element is equal to the dimension of the
speech signal. For example, when the sampling rate is 16 kHZ,
a 3-second audio sample has 48,000 elements, which results
in at least 48,000 queries for a round of gradient estimation.
Moreover, even if the gradient is estimated for each element,
more queries are needed to obtain the appropriate step size.

B. Dominant Gradient Phenomenon

Since the input of an ASR system has the characteris-
tic of high dimensionality, attackers usually adopt iterative
algorithms to draw the adversarial examples gradually to the
target text. Perturbations accumulate gradually in the iterative
process. As a result, it is easy for human ear to detect the final
adversarial example.

As shown in Fig. 3, a perturbation in an invalid direction
increases the additional noise. Therefore, it is critical to select
an effective direction to update the adversarial examples during

Fig. 3. Illustration of the invalid direction. The surface represents the loss
function, and the gradient update in the invalid dimension x will increase the
noise of the adversarial example.

each iteration. Therefore, we investigate the CTC-Loss gradi-
ent distribution of an end-to-end ASR system. As shown in
Fig. 4, the output of the ASR system is not strongly correlated
with each element of the input example. The gradients of most
elements in the input example are almost zero. Elements whose
gradient reaches 80% of the maximum gradient account for
only 5% of the total number of elements, which is called the
dominant gradient phenomenon. This phenomenon means that
the benefits of gradient estimation for most elements are not
evident. The direction represented by each element can be
viewed as mutually orthogonal in the search space, and only
a few elements can draw the adversarial example to the target
text. Therefore, it is instructive that searching the effective
elements of the input example with a few queries will improve
the attack efficiency.

C. Efficient Element Search

According to the dominant gradient phenomenon, the key
to reducing the number of queries is to select the elements
with dominant gradients, as mentioned in Section III-B. In this
section, an efficient element search algorithm based on MCTS
is proposed.

Different from the common application domains of MCTS
such as multistep decision games, we study how to quickly
find the most effective elements for adversarial examples in
this paper. There are two main challenges: (1) In a multistep
decision game, the algorithm needs to provide the best next
action which corresponds to the first layer under the root node
of MCT. However, in our problem, since the algorithm needs
to provide the best leaf node (the most effective elements), the
middle nodes from the end nodes of MCT to the final states
are not important in the simulation step. Therefore, we directly
sample elements from the end nodes to evaluate the path.
(2) In a multistep decision game, the difficulty comes from the
uncertain action of the opponent. MCT can be subsequently
deployed by simulating the opponent’s actions in a multistep
decision game. Since it is easy to determine the reward based
on the endgame state, obtaining the final value of each path is
inexpensive. In our problem, the main difficulty is obtaining
the value of each path, which comes from the output of the
model and therefore relies on expensive queries. To reduce
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Fig. 4. CTC-Loss gradient distribution of the end-to-end ASR system: For a 2-second speech signal with a sampling rate of 16000, it is shown in (a) that
the gradient of CTC-Loss for each element in three different target phrases (i.e. OK Google, Hello world, send a message). In (b), we show the gradient
statistics corresponding to (a), where the abscissa is the percentage of elements sorted by gradient.

the number of queries, we should set a reasonable number of
branches of MCT to reduce the number of nodes in MCT.
We analyze the influence of branches on the search efficiency
in section IV-B.

The search process of efficient elements is shown in
Algorithm 1. We first take all elements of the original example
as the root node, called node0. The visit number of node0 is
initialized to zero. MCTS in the proposed attack can be
divided into four steps: selection, splitting, sampling, and
backtracking.

Selection is implemented layer by layer from the root to the
end of MCT base on the value of each node. To ensure that
each node has a chance to be selected, we add a penalty term
based on the visit number of the nodes. As the visit number
of a node increases, the probability of the node being selected
will decrease. Therefore, the value of each node in the search
process is defined as

Vnodek =
Snodek∑

nodei∈D Snodei

+ α ·
√

2 log Np

Nnodek

, (8)

where Snodek is the score of nodek and the nodek is obtained
from sampling setp; D is the layer where nodek resides;
Nnodek represents the visit number of nodek ; Np represents
the visit number of nodek’s parent; and α is a coefficient to
control the trade-off between the node score and the penalty
term. We select the node with the highest score in the end
layer of MCT and mark it as Selected node.

If the size of Selected node is less than the set threshold,
it is added to the selected leaf set, called Leaves, and
marked as unelectable for this round of search; otherwise,

we split Selected node randomly into n new child nodes
N = {node1, node2, . . . noden}, and add N into MCT.

After splitting, random sampling is performed on the ele-
ments to obtain m leaves L = {l1, l2 . . . lm} for each nodei in
N respectively. Note that L is not added to MCT. The score
of nodei is set as the average of the gradients of its leaves:

Snodei =
1

m
·

m∑
j=1

L(x
l j
1 , . . . , x

l j
p )− L(x

l j
1 + δ, . . . , x

l j
p + δ)

p · δ ,

(9)

where p is the element number of the nodei and x
l j
p is the

pth element of l j .
In backtracking step, one is added to the visit number of

each node on the path of Selected node. Moreover, the score
of each node on the path of Selected node is updated in a
bottom-up fashion using the average of the original score and
the scores of its children.

As shown by the workflow in Fig. 5, we repeat selection,
splitting, sampling, and backtracking until there are enough
nodes in the leaf set.

D. Design of the Iterative Method

After selecting effective elements, we need to obtain the
accurate update direction of the adversarial example. In previ-
ous black-box attack methods [18], [22], [24], [25], [44], [45],
gradient estimation is usually employed to caculate the gra-
dient sign. The vector composed of the gradient sign is
regarded as the update direction, and the adversarial example
is updated by

Xt+1 = Xt + β · sign(Gt ), (10)
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Fig. 5. Workflow of Monte Carlo tree search for effective elements: In an iteration, MCTS starts with building the tree via splitting the root node, then
it expands the tree with selection, splitting, sampling, and backtracking. It performs the search iteratively, and select a leaf in each round of search until there
are enough leaves selected for update.

Algorithm 1 Efficient Gradient Search Algorithm (EGSA)
Input:

Original benign input X ; Target text y; Maximum iteration
T ; Victim model F ; Monte Carlo Tree MCT

Output:
Selected elements best elements;

1: Initialize the following parameters:
• Set of leaves Leaves; Set of node selection times H
• Branches of nodes m; Size of leaves b

2: Selected node← root node of MCT
3: For t from 1 to T do
4: While the length of Selected node > b do
5: If Selected node is end node of MCT do
6: Select node n p according to Eq. (8)
7: Else do
8: Divid Selected node into N = {n1, n2, . . . , nm}
9: For ni ∈ N do

10: Random sampling to obtain m leaves
L = {l1

ni
, l2

ni
. . . lm

ni
}

11: Calculate the score Sni of ni using Eq. (9)
12: End For
13: Add N into MCT
14: Select node n p according to Eq. (8)
15: End If
16: Selected node← n p

17: For ni on the path of Selected node
18: Hni ← Hni + 1
19: Sni ← 1

m+1 · (Sni +
∑m

j=1 S
n j

i
)

// n j
i is the jth child of ni

20: End For
21: End While
22: Add Selected node into Leaves
23: End For
24: Select nodes with highest score in Leaves as

best elements
25: return best elements

where β is the step size for updating. It is obvious that
estimating the gradient of each element is a query intensive
strategy. To reduce the number of queries per iteration, the

authors in [45] updated the adversarial example with the batch
gradient. For selected elements Bt = [x1

t , x2
t . . . , xn

t ] in the tth

iteration, the batch gradient is given by

G(Bt ) =
L(X + δ ·∑xi

t ∈Bt
ei )− L(X)

δ
, (11)

where ei is a unit vector with 1 at element xi and 0 at the
other elements.

However, elements with positive and negative gradients are
often included in the same batch, resulting in G(Bt ) not being
able to correctly reflect the gradient sign of the effective
element. The problem is alleviated after the introduction
of MCTS. Since the elements with the largest gradient are
concentrated in leaves, the gradient signs of most selected
elements are the same. Based on the characteristics men-
tioned above, we propose a sampling gradient sign strategy
to further increase the utilization of the queries during the
update process, and introduce a momentum iteration strategy
to accelerate the algorithm.

1) Sampling Gradient Sign Strategy: In black-box attacks,
it is proven to be necessary to obtain the gradient sign of
the selected elements. As MCTS progresses, elements with
positive gradients gradually become concentrated in the leaf
set. Therefore, we use a few queries to select elements with
negative gradients among the selected elements. We first
divide the selected element set Bt into m subsets Dt =
{D1

t , D2
t · · ·Dm

t }, and perform batch gradient estimation on
each subset to obtain {G(D1

t ), G(D2
t ) · · ·G(Dm

t )}. Then the
expectation of the gradient sign of x p ∈ Bt is evaluated as

Et (x p) =
∑m

i=1 I(x p) · G(Di
t )∑m

i=1 I(x p)
, (12)

where Et (x p) is the expectation of the gradient of element x p

and I(x p) is an indicator function that is defined as

I(x p) =
{

1 if x p ∈ Di
t

0 if x p /∈ Di
t

(13)

Finally, the update direction GSt is set as the vector composed
of sign(Et (x p) − τ ) for x p ∈ Bt , where τ is a threshold to
control the ratio of the negative gradient.
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2) Momentum Iteration Strategy: In addition to the elements
selected by MCTS, the k elements with the largest momentum
gradient are used to update the gradient. The momentum
iteration strategy proposed in this paper can be expressed as

At = topk Mt ,

Mt = μ · Mt−1 + (Xt−1 − Xt−2), M0 = 01×N , (14)

where Mt is the momentum of the tth iteration, μ is the decay
factor, and At is the set of k selected elements. The update
direction GMt is set as the vector sign(G(At )), where G(At )
is the gradient of At calculated by Eq. (11). The momentum
iteration method can accumulate gradients and accelerate the
convergence speed of gradient descent.

Algorithm 2 Monte Carlo Gradient Sign Attack (MGSA)
Input:

Original benign input X ; Target phrase y; Victim model L
Output:

Adversarial audio sample X ′;
1: Initialize the following parameters:

• Maximum iteration T ;
• Expectation threshold τ ;
• Decay factor μ; Learning rate β.
• Root node N0 = {x1, x2, . . . , x p}

2: M0 ← 01×N

3: t ← 0, X0 ← X
4: MCT ← N0
5: While t < T and Decode(xt)! = y do
6: Bt ← EGS A(xt , y, T, L, MCT ) // Call Algorithm 1
7: Divide Bt into Dt = {D1

t · · ·Dm
t }

8: Perform batch gradient estimation on Dt to obtain
{G(D1

t ), G(D2
t ) · · ·G(Dm

t )}
9: Calculate the expectation of gradient sign by Eq. (12)

10: GSt ←∑
x p∈Bt

ep · sign (Et (x p)− τ )
11: Mt+1 ← μ · Mt + (Xt − Xt−1)
12: At ← topk(M1

t , M2
t , . . . , Mn

t )
13: For xi ∈ At do

14: G(xi )← L(Xt + ei · δ, y)− L(Xt , y)

δ
15: End For
16: GMt ←∑

xi∈At
ei · sign G(xi )

17: Xt+1← Xt + β · (GSt + GMt )
18: t ← t + 1
19: End While
20: X ′ ← Xt

21: return X ′

The details of MGSA are provided in Algorithm 2. In each
iteration, we update the adversarial example with the above
two strategies as follows:

Xt+1 = Xt + β · (GSt + GMt ), (15)

where GSt and GMt are the gradient signs from the sam-
pling gradient sign strategy and momentum iteration strategy,
respectively.

E. Robustness Training

In real scenarios, adversarial examples often need to be
played outside the target ASR system and re-recorded, which
introduces new noise and sequential offset. To improve the
robustness of adversarial examples, we introduce robustness
training to the proposed method.

The frequency range of human speech is typically 20 to
200,00 HZ, and adversarial examples outside the legal fre-
quency range will be truncated when they are re-recorded.
Therefore, we first perform bandpass filtering on the adversar-
ial examples. The range of the filter is set to 1000 to 4000 HZ
in our experiments.

ASR systems conform to the acoustic time window to retain
speech features, so that the speech features satisfy the short-
term stability of the speech even if there is time sequence
offset after framing. Different from natural speech, adversarial
examples are randomly searched in the gradient direction and
have no continuity or smoothness. Therefore, high-frequency
enhancement and framing operations after the time sequence
offset of speech will destroy adversarial examples. To improve
the offset robustness, random offset are introduced to adver-
sarial examples in MGSA.

The perturbation introduced during the rerecording varies
and includes not only the noise in the air, but also the
room reverberation and electronic noise related to equipment.
Therefore, it is difficult to directly capture the distribution of
noise in the real world. According to relevant studies in the
field of speech enhancement, a random noise fragment in a
natural environment can be generated by a linear combination
of basic noise. We sample white Gaussian noise to simulate
natural noise, so the transfer on the adversarial examples can
be expressed as

t (x) = pad(r, x)+ ε, ε ∼ N , r ∼ R, (16)

where, pad(r, x) is filled with r bit zeros before x , N
is a Gaussian distribution and R is the distribution of the
sequential offset that is setted as a uniform distribution in our
experiments. Therefore, the objective function with robustness
training can be formulated as

L RT = Eε∼N ,r∼R[LCT C(t (x + B(δ)), T )], (17)

where T is the target text of the adversarial attack and B is
the bandpass filter. We optimize L RT with MGSA, and the
experiments are described in detail in section IV

IV. EXPERIMENT

In this section, experiments are conducted to test the effec-
tiveness of the proposed attack. The experimental settings,
including the dataset, the target model and evaluation metrics,
are described in Section IV-A. The influence of the hyperpa-
rameters of MCT is analyzed in Section IV-B. The effects of
the sampling gradient sign strategy and momentum iteration
strategy are presented in Section IV-C. Finally, we com-
pare the proposed method with the state-of-the-art methods
in Section IV-D.
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A. Experimental Settings

1) Datasets: Mozilla common voice dataset (MCVD) and
LibriSpeech dataset are chosen in our experiments. MCVD is
the largest publicly available voice dataset. It contains nearly
1,400 hours of voice data from more than 42,000 contributors.
The LibriSpeech corpus [55] is a collection of approximately
1,000 hours of audiobooks, and it is suitable for training
and evaluating ASR systems. We randomly choose 100 audio
samples from the LibriSpeech and MCVD corpus, respec-
tively, and segment each sample into two-second clips. Unless
otherwise specified, all our experimental results are averaged
over these 200 instances.

2) Target Model: DeepSpeech [31] is adopted as the target
model in our experiment. As a current state-of-the-art ASR
model, this model has become a common target for counter-
attacks [14], [18], [56], [57]. We treat it as a black-box model
and can only access the output logits of the model.

3) Evaluation Metrics: We use the following indicators to
measure the performance of the attack methods.

• The success Rate (SR) refers to the proportion of
adversarial examples recognized as target texts by the
target model.

• The number of queries (NoQ) refers to the visit number
of the target model during the generation of adversarial
examples.

• The pearson correlation coefficient (PCC) is an indi-
cator used to measure the similarity between the original
audio and adversarial examples.

• The word error rate (WER) is an indicator used to
measure the difference between the target text and the
decoded text, and is calculated by

W E R = 100 · Dword + Sword + Iword

Nword
%, (18)

where Dword , Sword and Iword are the numbers of dele-
tions, substitutions, and insertions of words, respectively,
and Nword is the total number of words in the target
text.

• The signal-to-noise ratio (SNR) is used to measure the
level of noise added by the attack algorithm, and can be
calculated by

SN R = 10 log10(
dBaudio

dBnoise
), (19)

where dBaudio and dBnoise are the energies of the original
audio and the noise, respectively.

4) Target Text: Untargeted attacks against the ASR model
are usually considered meaningless, while the existing black-
box attacks introduce excessive noise or require intensive
queries for complex target texts. To better evaluate the effec-
tiveness of the proposed method, we first adopt short texts
commonly used in related works as the target texts, such as
“OK Google”, “Thank You”, “Hello World” and “Open the
Door”. Then, we choose more complex texts, such as “Ask
capital one to make a credit card payment” and “Call the police
for help quickly”.

TABLE I

ACCURACY RATE OF SAMPLING GRADIENT ESTIMATION IN
THE WHOLE ITERATION PROCESS OF MGSA

B. Hyperparameter Analysis of the Monte Carlo Tree Search

In this section, we analyze the influence of the hyperparame-
ters in MCTS and determine the appropriate hyperparameter
values.

The hyperparameters that play a key role in the search
efficiency include the number m of branches of each layer, the
size b of the leaf, and the number s of search rounds. Since
the target of the search step is to obtain effective elements
with the least number of queries, we define the search effect
E as the ratio of the average gradients of the selected elements
to the number of queries:

E =
∑

i∈s gradi

n ·∑i∈s Qi
, (20)

where n is the number of selected elements, gradi is the
gradient of the selected leaf in the ith search, and Qi is the
number of queries.

The number m of branches affects the number of queries
in each round of the search, and the number s of search
rounds affects the gradients of the selected elements. A larger
m leads to more queries, while a smaller m means that
there is more effective element loss at the high layer of the
search tree. With an increase in s, an increasing number of
effective elements are selected, but the gain of the new queries
decreases. The influence of m and s on the search effect E
is shown in Fig. 6(a). The experimental results are obtained
after 100 iterations. It can be seen that the search performance
reaches the highest level when s = 7 and m = 8.

In addition, we test the influence of leaf size b on the
performance of MCTS under the conditions of Q = 50,000
and m = 8. Fig. 6(b) shows that random selection (the number
of search rounds b = 0) can only achieve a 71% attack
success rate after 50,000 queries, while the attack success rate
increases to 79% when b = 7. The algorithm performs best
when the leaf size is set to 7, and invalid elements will be
mixed into the selected leaves when the leaf size continues to
increase, thereby reducing the success rate of the attack.

C. Experimental Analysis of the Iterative Method

In Section III-D, we propose a sampling gradient sign
strategy and momentum iteration strategy to improve the
performance of the algorithm. In this section, we test the
accuracy of the gradient sign estimation strategy and the effect
of the momentum iteration strategy.

Table I reports the accuracy of sampling gradient sign
estimation in the whole iteration process, where the sampling
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Fig. 6. Hyperparametric analysis: search efficiency and success rate of MGSA on the branch m of each layer, the size b of leaf, and the number s of
search rounds.

Fig. 7. Comparison of convergence speed and SNR between with and without Monte Carlo tree, sampling gradient sign strategy, momentum iterative strategy.

TABLE II

IMPACT OF MOMENTUM ITERATION STRATEGY (MI)
ON ATTACK EFFECT AFTER 200,000 QUERIES

batch is set to 5. It can be seen that the accuracy of sampling
gradient sign estimation is above 80%, which means that
the sign of the gradient can be estimated correctly for most
selected elements. The experimental results of the momentum
algorithm are shown in Table II. In the experiment, we set the
number of elements updated in each iteration to 100, and the
decay factor μ is set to 0.9. It can be seen from Table II that
WER is reduced by 9% when the momentum iteration strategy
is used.

A comparison of the algorithm convergence with and with-
out the proposed search strategy is presented in Fig. 7. Since
there are fewer and fewer effective elements in the later stage
of the process, random sampling cannot accurately capture the
effective elements. Therefore, the efficiency of the proposed
algorithm can be greatly improved by using MCTS. As shown
in Fig. 7(a), although the convergence rate of the algorithm is

TABLE III

ABLATION STUDY OF MGSA ON LIBRISPEECH

slow in the early stage of the process after the introduction of
MCTS, the total number of queries is less than the number
of queries required for random sampling. After using the
sampling gradient sign strategy, the number of queries for
gradient updating decreases, which significantly reduces the
total number of queries. As a result, the convergence speed
of the algorithm is accelerated. A comparison of the SNRs
is shown in Fig. 7(b). The SNR of the adversarial examples
generated by MGSA is 30% higher than that of the adversial
examples generated by the baseline method. The ablation study
of the MGSA on LibriSpeech is shown in Table III. It can be
seen that the number of queries decreases by 22% with MCTS
compared with the baseline method. The experimental results
show that the use of the sampling gradient sign strategy further
reduces the number of queries by 17%.
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TABLE IV

COMPARISON RESULTS OF GAA [45], GEA [27], PSO [42], NES [26], NGD [58], SGEA [18],
AND MGSA (THE PROPOSED ATTACK) ON LIBRISPEECH AND COMMON VOICE DATASETS

TABLE V

COMPARISION RESULTS OF GEA, PSO, NES, NGD, SGEA, AND MGSA ON MORE COMPLEX TARGET TEXTS ON LIBRISPEECH DATASETS

D. Comparison Results
In this section, the proposed algorithm is compared with

a genetic algorithm based attack (GAA) [45], gradient esti-
mation attack (GEA) [27], selective gradient estimation attack
(SGEA) [18], particle swarm optimization (PSO) attack [42],
natural evolution strategy (NES) attack [26] and natural gradi-
ent descent (NGD) attack [58]. In our experiments, we set the
same learning rate and decay rate for five algorithms (GEA,
SGEA, NES, NGD and MGSA), as in [44]. It is worth noting
that for NGD, we need to calculate the Fisher information
matrix F = ∑T

t=1 p(t|x, δ)∇ log p(t|x, δ)∇ log p(t|x, δ)T ,
where T denotes all possible classes. Since NGD is used to
attack the image classification model in [58], the classes are
limited. However, the ASR model is sequence to sequence,

and the possible outputs are almost infinite. To enable NGD
to work on the ASR model, we reconstruct the Fisher informa-
tion matrix as F = p(t ′|x, δ)∇ log p(t ′|x, δ)∇ log p(t ′|x, δ)T ,
where t ′ is the target text. We adopt the same experimental
setup for PSO as in [42]. In the comparison experiments,
we set the upper limit of the number of queries to 300,000.
Therefore, attacks are considered to have failed when the
number of queries is greater than 300,000. Table IV reports the
average results in terms of SR, PCC, NoQ, WER and SNR for
the 200 samples sampled in section IV-A. It can be seen from
Table IV that GAA and PSO usually cannot find effective
adversarial examples even after 300,000 queries. Although
NES, NGD, GEA and SGEA are able to realize successful
targeted attacks, their SNRs are less than 18 dB. The success
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TABLE VI

COMPARISON RESULTS ON ROBUSTNESS OF ADVERSARIAL EXAMPLE AMONG ATTACKS: GAA, GEA, PSO, NES, NGD, SGEA, MGSA (WITHOUT
ROBUSTNESS TRAINING) AND MGSA (WITH ROBUSTNESS TRAINING). THE VALUE OF N IS THE SNR OF ADDED

WHITE NOISE, AND THE VALUE OF O IS THE AMOUNT OF SEQUENTIAL OFFSET

Fig. 8. Comparison of the waveforms and spectrograms among the original audio and the adversarial audios generated by NGD and MGSA.

rate of the MGSA algorithm reaches 98%, and the similarity
between the adversarial examples and the original example
reaches 0.99. The number of queries required by MGSA is also
much lower than those required by the compared methods.

In Table V, we test the algorithm on more complex target
texts. As the length of the target text increases, the number of
queries required by MGSA grows at a significantly lower rate
than that of the compared algorithms. This can be attributed
to the selection of effective elements with MCTS.

We further test the robustness of the algorithm against
noise and sequential offset for adversarial examples. In the
robustness training of MGSA, Monte Carlo approximation is
used to replace the expectation in L RT :

L̂ RT = 1

nMC

nMC∑
i=1

LCT C (t (x + B P F(δi )), T ), (21)

where nMC is set to 3 and δi is sampled from distributions N
and R every 10 iterations. As shown in Table VI, MGSA has
a lower WER score than the compared methods even without
robustness training. Because less disturbance is introduced by
MGSA, it is harder for the adversial samples to be destroyed
by noise and sequential offset. After robustness training,
the robustness of the adversarial examples is significantly
improved. However, since the task is more difficult, the robust-
ness training requires more queries. Although the algorithm
is effective, the WER value is still high when both noise
and offset are introduced, which is worth further study in the
future.

We show the time consumption of the proposed method and
the compared methods in Table VII. Due to the introduction
of MCTS, each iteration of MGSA for longer than GEA
and SGEA. However, since MGSA requires fewer queries,
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TABLE VII

TIME CONSUMPTION OF GAA, GEA, PSO,
NES, NGD, SGEA AND MGSA

fewer iterations are needed. Especially under long target texts,
MGSA achieves a higher SNR value and is not significantly
slower than the compared methods.

In Fig. 8, we compare the waveforms and spectra of
adversarial examples generated by NGD and MGSA. From
the waveforms, it can be seen that the MGSA adversial
examples essentially maintain the waveform of the original
audio sample, while the NGD adversial examples have obvious
noise. In the spectra, the adversarial examples generated bu
MGSA are almost indistinguishable from the original audio
samples in the areas with no human voice (noted by blue
circled), and NGD introduces more noise. This means that
the noise introduced by MGSA is mixed with human voice
samples and is thus less detectable.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a novel adversarial attack method
called MGSA, which takes advantage of the phenomenon of
the dominant gradient in ASR systems. First, we introduce
MCTS to improve the query efficiency. Then, we propose a
sampling gradient sign strategy and momentum iterative strat-
egy for updating adversarial examples. Finally, we introduce
robustness training to improve the robustness of the adversarial
examples. The extensive experimental results show that the
proposed method requires fewer queries and introduces less
noise than the existing black-box attacks. After robustness
training, the robustness of adversarial examples generated by
MGSA is improved significantly. The superiority of MGSA
compared with the related methods provides direction for
future works and encourages the investigation of queries to
search for dominant gradient elements to improve the effi-
ciency of black-box attacks.

Although MGSA achieves superior performance on black-
box attack, there are still two issues that should be considered
in future research. First, MGSA is a score-based black-box
attack that relies on querying the CTC-loss of the target model,
which makes it difficult to conduct attacks on the commer-
cial ASR that only provides real-time decoding. An efficient
decision-based black-box attack method that only requires the
output texts from the target model, is expected in the future.

Second, we find in our experiments that the robustness of
the adversarial examples generated by the existing methods
and the proposed MGSA is insufficient, resulting in a low
success rate in “over-the-air” scenarios. Due to the lack of
short-term stability, adversarial examples are easily destroyed
by transforms such as noise and sequential offset transforms.
Therefore, it is worth studying how to improve the stability of
adversarial examples in the future.
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