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Abstract— In recent years, convolutional neural
networks (CNNs) have achieved great success in hyperspectral
image (HSI) classification attributed to their unparalleled
capacity to extract the local information. However, to successfully
learn the high-level semantic image features, they always require
massive amounts of manually labeled data during the training
process, which is expensive, scarce, and impractical, and severely
hinders the improvement of supervised deep learning methods.
To alleviate these burdens, we present self-supervised learning
(SSL) methods for HSI classification by a pretraining model
using extensive unlabeled data and fine-tuning the HSI target
classification. In this article, we propose a new method for
learning image characteristics by training a CNN to recognize
the image scale (IS) that is applied to the HSIs. In addition,
we propose a multipretext task (MT) method to learn stable and
good feature representations combing two different pretext task
methods and contrastive loss function. We evaluate the proposed
methods in SSL benchmarks on four benchmark HSIs datasets.
The experiment results demonstrate that the proposed methods
outperform the traditional supervised deep learning methods
when large amounts of unlabeled HSIs data are used. Moreover,
it demonstrates that the SSL method is promising to alleviate
dependence on manually labeled data of HSI classification.
Finally, our research contributes to the creation and refinement
of SSL methods for pretextual tasks within the HSIs community.

Index Terms— Hyperspectral image (HSI) classification, lim-
ited labeled samples, self-supervised learning (SSL), unsupervised
learning.
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I. INTRODUCTION

W ITH the rapid development of hyperspectral sensors,
hyperspectral images (HSIs) play a critical role in

Earth observation missions. Unlike natural RGB images, HSIs
containing more than three bands can sensitively distinguish
various objects using their electromagnetic spectrum distrib-
utions. Benefiting from this advantage, HSIs are extensively
utilized in a variety of fields, such as land classification [1],
[2], marine monitoring [3], and urban planning [4], [5]. HSI
classification is one of the most crucial topics of HSIs data
processing, and it aims to identify the land cover at each
pixel. Since HSIs acquisition is often disturbed by instrumental
effects, and cloud noise, however, accurately identifying HSIs
has attracted extensive attention.

Traditional HSI classification methods are usually divided
into feature extraction and classifier. For example, the widely
used support vector machine (SVM) [6] and K -nearest neigh-
bor (KNN) [7] could be directly applied to HSI classification.
The SVM can also be combined with multinomial logistic
regression [8], Locality Adaptive Discriminant Analysis,
and other feature extraction methods, resulting in some
classification results. Recently, deep learning methods have
been widely used in remote sensing, and deep learning-
based HSI classification methods have gradually become
a research hot topic [9], [10], [11], [12], [13]. Compared
with traditional methods, deep learning-based methods can
automatically capture significant features beneficial to target
tasks, thus resulting in better and stable results. Particularly,
convolutional neural network (CNN) (as shown in Fig. 1)
is one of the most mainstream models, it can effectively
extract hierarchical features from HSIs. For example,
Zhang and Zhang [14] surveyed the remote sensing analysis
based on artificial intelligence (AI) and pointed out that there
have some challenges and opportunities for using AI in remote
sensing. There have been some interesting topics of research,
including the AI methods in real-world remote sensing and
explainable AI algorithms in remote sensing. To fully exploit
the spatial-spectral information, Yang et al. [15] proposed a
3-D-CNN for HSI classification by stacking 3-D convolution
layers. The proposed 3-D-CNN achieves significant results
with a large number of training samples. Different from the
previous 3-D-CNN, Hamida et al. [16] replaced the pooling
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Fig. 1. CNN-based HSI classification method (supervised learning
framework).

layers with the spectral-spatial 3-D convolutional layers to
retrieve rich spectral-spatial features for HSI classification.

The accuracy of HSI classification has vastly increased
with the implementation of diverse deep learning-based
algorithms. However, all these existing deep learning-based
HSI classification methods generally require a large number of
labeled data. Therefore, similar to ImageNet [17] containing
more than ten million labeled RGB images, it is urgent to
build the same-scale HSIs dataset. But it is severely expensive
and impossible to manually label such a massive HSIs dataset
using extensive expertise and regional knowledge. Some
researchers first pretrained the CNNs using a huge natural
image dataset such as ImageNet [17] or CIFAR-10 [18].
The pretrained CNNs were fine-tuned using the target
small remote sensing dataset [4], [19], [20]. However, the
fine-tuning step cannot be applied immediately to HSIs
because of the significant difference between HSIs and RGB
images. There are some semisupervised learning methods
for HSI classification tasks. For example, Zhan et al. [21]
proposed a novel semisupervised method based on the 1-D
generative adversarial network (GAN) for HSI classification.
Zhong et al. [22] proposed a semisupervised GAN for HSI
classification by integrating the GAN and conditional random
field (CRF) to alleviate the shortage of labeled data. In these
two works, the discriminators are first trained with the fake
and real data, and then the pertained discriminators are fine-
tuned to the target task by replacing the last layer of the
discriminators with a new softmax. The proposed methods are
based on GAN, however, it sometimes does not converge, and
the results are unstable.

Self-supervised learning (SSL) techniques have recently
attracted much significant attention from researchers for their
ability to learn the model without requiring human cost
samples [23], [24], [25], [26]. By handling the pretext tasks,
they can learn a good feature representation from a large
unlabeled source dataset. Following that, they transfer and
fine-tune the pretrained models to the target tasks with fewer
labeled examples. Inspired by these, the SSL technique could
work for HSI classification when fewer labeled samples
are used. There might be two reasons for this: 1) CNNs
can be pretrained with any type of HSIs dataset without
manually labeled samples and 2) due to the similar source
and target data, pretraining CNNs on these data using SSL
can potentially alleviate the domain difference. Therefore,
to solve the little labeled samples and leverage considerably
more spatial and spectral information, an image scale (IS)

pretext task method is proposed in this article for HSI
classification tasks. Specifically, we propose to learn a stable
representation by predicting the IS and Spectral Order. The
learned representation could be further fine-tuned for the
target HSIs task to achieve the final HSI classification
results. In addition, a multipretext task (MT) method is
proposed to learn a stable and good feature representation.
The contributions of this article are summarized as follows.

1) We introduce the SSL methods into HSI classification to
address the problem resulting from insufficient manually
labeled data in the deep learning-based methods. It is
a new way to learn the feature representation from
unlabeled samples.

2) We propose a new and simple self-supervised task
called IS that makes full use of the spatial and
spectral information, resulting in offering a powerful
supervisory signal for semantic feature learning for HSI
classification task.

3) We further investigate an MT method to simultaneously
estimate the central pixel, boundary information and
pixel rotation by combining two SSL pretext task
methods, including the Image Rotation and IS methods.
Additionally, we also integrate the contrastive loss
function in the proposed MT. It enables the development
of a stable and good feature representation.

4) Extensive experiments on four benchmark HSIs datasets
demonstrate that SSL approaches for the pretext task,
particularly the proposed IS method and MT method,
outperform the standard CNN-based methods, pretrained
methods, and other SSL methods.

The remainder of this article is organized as follows.
Section II discusses related work. Section III illustrates
the proposed methods and discusses SSL pretext tasks
methods. Section IV contains the results of the experiments
and analyses. Section V concludes with findings and
recommendations of future research.

II. RELATED WORK

A. HSI Classification Using Deep Learning-Based Methods

Benefiting from the powerful feature extraction capabilities
of deep learning models, many deep learning-based HSI
classification methods have been proposed for identifying
HSIs [27], [28], [29], [30], [31]. For example, to capture
the spatial-spectral contexture information, Yang et al. [15]
proposed a 2-D-CNN model by stacking 2-D convolutional
layers for HSI classification. The proposed 2-D-CNN achieves
satisfactory classification results; however, it requires a lot of
computing resources. To reduce computing resources, Ribalta
Lorenzo et al. [32] first utilized an attention mechanism
to choose bands, and then proposed a 2-D-CNN model
for HSI classification. However, these deep learning-based
approaches analyze spatial and spectral data separately, rather
than extracting features by merging them. It will be unable to
perform a satisfactory performance as a result of insufficient
retrieved information.

Now, more and more 3-D-CNNs-based HSI classification
methods have been proposed, which are attributed to
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their power capability of representing spatial-spectral fusion
information [16], [33], [34]. For example, Chen et al. [35]
utilized the 3-D convolution layers to realize a deep 3-D-CNN
model for HSI classification. To fully exploit the 2-D and 3-D
convolution layers, Yang et al. [10] presented an integrated
network for HSI classification by combining 2-D-CNN and
3-D-CNN into a single framework. Although these 3-D-CNNs-
based algorithms have attained high performance, they require
a large number of labeled samples. Obtaining a large number
of accurate human-annotation tagged samples, however, is a
time-consuming process that requires substantial skill and
in-depth regional knowledge.

B. SSL Methods
Different from supervised learning methods, SSL

approaches first acquire useful feature representations from
their supervised data rather than through human annotation,
and then fine-tune them to the target tasks [36], [37]. In
short, SSL algorithms create their own supervised knowledge
without relying on human annotation samples [23], [38], [39].
SSL methods could be divided into two categories: pretext
tasks and contrastive representation. Pretext tasks aim to
pretrain the methods using a pretext task, and then fine-tune
the target task. For example, Misra and Maaten [37] and
Doersch et al. [40] demonstrated SSL approaches for exploring
spatial relationships to develop feature representations.
Pathak et al. [41] also developed a novel SSL technique, e.g.,
image inpainting (IP), for learning a satisfactory feature repre-
sentation through the use of an encoder–decoder architecture.
Only the pretrained encoder was used to fine-tune the target
tasks in IP. Dinh et al. [42] trained an image reconstruction
model beforehand and then fine-tuned it for the target task.
Several researchers choose to demonstrate SSL approaches
using data enhancements, such as color modification [43] and
spatial rotation [44], [45]. Additionally, there are some SSL
tasks, such as image colorization [43], [46] and patch reorder-
ing [47], [48], [49], [50]. However, all of these strategies are
provided for natural image problems and typically require
anticipating some covariant low-level property of an image
change. Except for a few super-pixel-based SSL approaches,
there are few methods for HSI classification that use SSL [51].
Wang et al. [51] first introduced the SSL method to HSI classi-
fication using the CRF embedding. In this article, we propose
a simple SSL method based on IS prediction, which could
be used to learn invariant feature representations of image
transformations rather than covariant feature representations.

Compared to pretext tasks, contrastive representation
learning aims to learn an embedding space in which similar
sample pairs stay close to each other while dissimilar ones
are far apart. For example, Chen et al. [24] proposed a simple
framework for contrastive learning called SIMCLR, which
defines “positive” and “negative” sample pairs that are treated
differently in the loss function. It makes the representation
of the positive sample similar, and the representation of
the negative sample and the positive sample far away using
a contrast loss. However, the negative samples are related
to the batch size, which is limited by the memory of the
GPU. In addition, He et al. utilized the asymmetric learning

updates, and proposed the MoCo V1 [52] and MoCo V2 [53].
In these two methods, the momentum encoders and the
main networks are updated separately. Another is the cluster
feature representation method that uses two shared parameters
in end-to-end networks to obtain different representations
followed by a clustering algorithm to cluster similar sample
representations. For example, k-means in Deep Cluster
(DEEPCLUSTER) [54] or nondifferentiable operators in
swapping assignments between multiple views (SWAV) [55].
In another recent line of work, bootstrap your own latent
(BYOL) [56] and Simple Siamese (SIMSIAM) [57], both the
network architecture and parameter updates are modified to
introduce asymmetry. Inspired by these works, Hou et al. [58]
first introduced contrastive learning to HSI classification and
achieved improved results.

III. METHODOLOGY

A. Overview of SSL Architecture

In this article, we suggest using the SSL framework to solve
the HSI classification task, and propose two new pretext tasks
(e.g., IS and MT) for HSI classification. As shown in Fig. 2,
the SSL framework is divided into two stages: 1) pretraining
stage: training a CNN model using the pretext task methods
(e.g., IS and MT) and 2) fine-tuning stage: fine-tune the CNN
model with the target HSI classification task. It is noted that
the CNN (as shown in Fig. 1) contains three convolutional
operations, followed by the Max-pooling and Rectified Linear
Unit (ReLU) functions. In the pretrained stage, the CNN model
is trained to acquire a meaningful feature representation using
a preset pretext task method based on a large number of
unlabeled images. The learned function representation will be
preserved in the parameters of the CNN model. In the fine-
tuning stage, the pretrained model will be fine-tuned on the
target task to deliver a superior outcome.

B. Proposed Pretext Task Method: IS

The purpose of SSL pretext task method for HSI
classification is to train a CNN-based feature representation
in the absence of target labels. To achieve this objective,
we propose a unique and easy pretext task method of
distinguishing cropped images to train the CNN model F(·).
In particular, we first flip the Spectral Order of the input image
to generate two images I1 and I2 with label z. We then create
a set of K geometric transformations G = g(· | y)K

y=1, where
g(· | y) crops the image X ∈ (I1, I1) and gives the cropped
image X (z,y) = g(X | (z, y)) with varied size and label (z, y).
It is noted that the central pixel is always referred to as (z, y) in
the operation of the geometric transformation. The difference
between X (z,y) is the border when using the inter-nearest
function. Then, the CNN model F(·) accepts an input image
X (z∗,y∗) (with the mask (z∗, y∗) unknown to model F(·)) and
creates a probability group for the input image X (z∗,y∗)

F
(

X (z∗,y∗) | (W, b)
) = F y

(
X (z∗,y∗) | (W, b)

)
(1)

where F y(X (z∗,y∗) | (W, b)) is the predicted probability for
the geometric transformation with label (z, y) and the (W, b)
is the parameter of the CNN model.
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Fig. 2. SSL framework for HSI classification.

Given a set of N training samples X N
i=0, the object function

of the proposed IS is

min
1

N

N∑
i=1

loss(Xi , (W, b)). (2)

There are two loss function, i.e., lossz and lossy. The lossz

and lossy are used to calculate the distance difference between
the prediction and ground truth for the Spectral Order and
IS, respectively. Both of them are calculated using the CE
function. Thus, the total loss function is formulated as follows:

losstotal = lossz + lossy

lossz = − 1

N

N∑
1

M∑
i=1

zi · log(pi)

lossy = − 1

N

N∑
1

C∑
j=1

y j · log(q j) (3)

where N is the total number of samples, M and C denote the
number of categories of IS and Spectral Orders, respectively.
zi is the true label for category i of the Spectral Orders, while
pi represents the calculated probability value of category. y j

and q j are the true label and the calculated probability value
of the category j .

1) IS for HSI Classification: According to the above
illustrations, the proposed IS should force the CNN model
F(·) to execute an effective feature representation for HSI
classification. As a result, the set of geometric transformations
G is defined as all the ISs of different sizes, shown in Fig. 3.
More precisely, in our work we first flip the input image I ,
resulting in two flipped images I1 and I2 with labels z = (1, 2);
we then recommend using G with different odd multiple sizes
on these two images, e.g., 1 × 1, 3 × 3, . . . , and 15 × 15,
to create K = 8 images. Thus, we can obtain 16 images that
have the label (z, y), wherein z ∈ (1, 2) and y ∈ (1, 2, . . . , 8).
We note that all the generated images would be resized to the
max size, such as 15 × 15 in our work.

a) Forcing the learning of semantic features: Learning
a suitable feature representation, a good CNN model
may effectively execute the aforementioned IS identification
challenge. The goal of implementing IS as a sequence of
geometric changes is to train the CNN model to distinguish
and detect objects in images as well as their semantic parts.
To be more specific, the CNN model should learn to localize
salient objects in an image and distinguish their spatial
and spectral order differences, object category, and boundary
information. And it should effectively distinguish the scale
classes of the input images using the difference information
and boundary information. Fig. 4 shows some attention maps
(with 128 × 128 patches) developed on target classification
task (supervised learning) and pretext task method, e.g.,
IS (SSL). It is noted that the brighter part represents the focus
of the model. Fig. 4(b) depicts the attention maps generated
by a CNN model trained on IS, while Fig. 4(c) illustrates
the attention maps created by a CNN model supervised and
trained on the target classification task. These attention maps
are calculated based on the activation amplitude of each spatial
unit of the convolutional layer, which essentially reflects
where the CNN network focuses most of its attention to
classify the input image. From Fig. 4(b), we can observe
that in order for the CNN model to accomplish the scale
prediction task, it learns to focus on the high-level object
parts surrounding the center pixel, such as the buildings, lands,
spectral order, and boundary information. By comparing them
with the attention maps generated by a CNN model trained on
the target classification task in a supervised way [see Fig. 4(c)],
we can observe that both learn a feature representation by
working on approximately the same regions of the input image.
Remarkably, the proposed IS method has a greater amount of
variety even than the supervised method, such as the attention
maps of the second and fourth rows.

b) Easy-to-detect low-level visual features: An important
advantage of using IS over other pretext task methods is
that they can be realized by flipping the spectral order and
intercepting different sizes (as shown in Fig. 3). All the
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Fig. 3. Illustration of the proposed IS method. It first flips the input image, and then generates different scale images. The flipped and scaled images are
resized the same size and then fed into the CNN architecture to learn a feature representation by predicting the flip and scale labels.

Fig. 4. Attention maps generated by the CNNs model trained on (b) IS and (c) supervised method. The brighter part represents the focus of the model. Conv-1,
Conv-2, and Conv-3 are the first, second, and third Convolution layers in the CNN model, respectively. (a) Inputs. (b) Attention maps of IS. (c) Attention
maps of supervised method.

generated images would be resized the same size that will
lead the boundary information more and more different as the
size increases, and more and more information surrounding the
center pixel. In addition, the flipping operation in the spectral
dimension makes the CNN model easy to learn the subtle
spectral difference.

c) Well-defined: Furthermore, HSI classification is a pixel
recognition task, thus making the IS task well defined. Given
the input patch 15 × 15, we can get a set of different

scale images by cropping different scale center pixels. And
then, the generated images (such as 1 × 1, 5 × 5, and
13 × 13) are resized to 15 × 15 using the interpolation
operation. With the interpolation operation, the generated
patches will obtain two kinds of information, including
the central pixels that are retained from the input patch
15 × 15 and the boundary pixels are obtained by interpolating
from the neighborhood pixels. Thus, the generated patches are
different in the boundary information and can help to learn a
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Fig. 5. Architecture of the multipretext task method by combing the IRO and IS pretext tasks. The LIRO and L IS denote the loss in the two pretext tasks.

good feature representation. It is noted that the central pixels
of all the generated patches are equal to the central pixels of
the raw input patch.

2) Discussion: Since HSI classification is equivalent to
pixel classification, it is challenging to depict HSIs using
Image Rotations. This displays features in a “up-standing”
state in human-captured images. A significant benefit of
utilizing IS over other pretext task methods, such as Image
Rotation, and IP, is that a CNN model learns a feature
representation by distinguishing the differences among the
pixels of the input image, especially for the boundary
information. In addition, it has the same computational cost
as supervised learning, similar to training convergence speed.
Furthermore, it can be easily embedded in other SSL models,
such as Image Rotation. Despite the simplicity of our proposed
method, as we will see in Section IV, the features learned
by our approach have made significant improvements to the
unsupervised feature learning benchmarks.

C. Multipretext Task SSL Architecture

Various pretext task SSL architectures learn the optimum
feature representation for HSIs classification by gaining
diverse feature attention. For example, the Image Rotation
architecture focuses on the difference between the rotated
pixels, while the image relative (IRE) architecture focuses
on the difference between two neighboring patches. Distinct
pretext task methods learn different information, and thus
results in various representations. Thus, we propose an MT
method with a common trunk starting with a CNN model and
a head for each pretext task. Additionally, the proposed MT
method also introduces the contrastive loss function.

As shown in Fig. 5, the proposed MT method is built with
two pretext tasks, including the Image Rotation (IRO) and
IS. Each task in the proposed MT method employs a unique
separated loss function and an additional layer for a head.
To construct this MT method, we first fed all inputs into
the data-preprocessing modules to generate the new inputs
for multiple pretext tasks (i.e., IRO and IS). It is noted that
two data-preprocessing modules are used to generate two
kinds of inputs for multiple pretext tasks (i.e., IRO and IS).
We then put these all generated inputs into the trunk to
train, and only one task was active at each training iteration.
However, after several training iterations with all active pretext

task, the average gradients can be computed. Inspired by
Tian et al. [59], we also introduced a contrastive loss function
[i.e., noise contrastive estimation (NCE) loss function] to
enhance the feature learning ability. The NCE could enhance
the feature learning ability of each task (i.e., IRO and IS).
Hence, the total loss is the summation of all the losses from
the various pretext task methods. It is noted that different
loss functions are used for different tasks corresponding to
the settings of their papers.

From Fig. 5, it can be observed that it is very simple to
construct an MT framework based on two pretext task baseline
methods, and the final loss function can be calculated by

loss = losspretexts + αlosscontrast

= lossIRO + lossIS + αlosscontrast (4)

where α is a weight to balance losses. Here, the α is set as
0.5. lossIS is shown in (3). lossIRO is represented as follows:

lossIRO = 1

l
C E

(
yi , y̌(w,b)

i

)

= −1

l

K∑
i

yi logy̌(w,b)
i

)
(5)

where w and b are the parameters of the CNNs model F(·),
y̌i is the projected label of input image Xi , and yi is the true
label. Finally, l is the total number of training samples.

For losscontrast, we rewrite it here. It is noted that the
contrastive is similar to [59]. Suppose t is the target sample,
which is P(t|C = 1; θ) = p_(θ)(t). And t̆ is the noise sample,
where P(t̆ |C = 0; θ) = q(t̆). Thus, we aim to model the logit
of a sample v from the target data distribution instead of the
noise distribution

lθ = log
p_(θ)(v)

q(v)
= log p_(θ)(v) − log q(v). (6)

We can convert the logits into probabilities using sigmoid σ(·),
and then apply cross entropy loss

LNCE = − 1

N

N∑
i=1

[
log σ(lθ (ti))

+ log
(
1 − σ

(
lθ

(
t̆i
)))]

σ(l) = 1

1 + exp(−l)
= p_(θ)

p_(θ) + q

losscontrast = Lu1

NCE + Lu2

NCE (7)
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Fig. 6. Illustration of the Image Rotation pretext task method. The model is
used to predict the labels of the input rotated images.

where N is the number categories of the target sample. u1 and
u2 are the output feature from IRO and IS, respectively.

D. Pretext Task SSL Architecture Implementation Details

Because each SSL methods requires distinct preprocessing
of its input data, we give additional information on the heads of
our pretext SSL tasks in this section. As we all know, gradients
may vanish with the increasing of networks’ depth, resulting
in the failure of the networks. Therefore, for pretext SSL tasks,
we restart training a CNN with the regular depth, which has
three convolutional layers.

1) Image Scale: We first train the CNN with a set of
patches. The CNN includes three convolutional layers to
produce the output features, each of which contains more than
100 filters with the kernel size of 3 × 3. Each convolutional
block is followed by batch-normalization and down-sampling
algorithms. As a result, we may acquire the final outputs to
identify the category. To be more specific, we first crop the
input images to generate many new images with different
scale sizes (e.g., 1 × 1, 3 × 3, . . . ,, and 15 × 15 ). We then
resize all these images to the max size (such as 15 × 15 in
our work), which are fed into the CNN model to extract
the features. Finally, we add three additional fully connected
layers to provide the final feature outputs. The first layer has
1024 output channels, and the second layer has eight output
channels to produce the softmax outputs for predicting the
input scale, and the third layer has two output channels to
predict the input Spectral Order.

2) Image Rotation (IRO) [44]: We execute the CNN with
four convolutional operations, just like we did with IS.
To minimize the computation complex of CNNs, the patch
of input image is also set as 15 × 15, to generate the output
features. To get a satisfactory performance, the head of this
task should contain more parameters. Thus, we apply two more
fully connected layers to produce the softmax outputs. The
first layer generates 1024 feature maps, while the second layer
generates eight softmax outputs. Its architecture is illustrated
in Fig. 6.

3) Image Inpainting [41]: We run the CNN including four
convolutional operations and three down-sampling operations
in the IP pretext task method. We first crop the input images

Fig. 7. Illustration of the IP pretext task method. The model is utilized to
predict the labels of the input images.

Fig. 8. Illustration of the IRE pretext task method. The model is used to
predict the labels of the input images.

Fig. 9. Illustration of the Image DIM pretext task method. The model is
used to predict the labels of the input images.

to 15 × 15 and mask the central regions of the original
images. The masked images are then fed to the CNN model
to learn a feature representation. Using a U-Net architecture,
these features to create a new image with the same size as
the original image. Finally, the distance between the masked
central regional and the newly generated central regional
is calculated. It should be noticed that we simply preserve
the parameters of the CNN model. Its framework is shown
in Fig. 7.

4) Image Relative [50]: The same CNN including four
convolutional blocks and three max-pooling blocks are used to
retrieve the IRE. The images are first cropped to 15 × 15, and
then sampled to 3 × 3. The example patches are then resized
to 15 × 15 to produce output feature. In terms of IRE, we use
two fully connected layers with 1024 output channels and eight
output softmax channels, respectively. Its architecture is shown
in Fig. 8.

5) Image Deep InfoMax [60]: We execute the CNN, which
contains four convolutional layers and three down-sampling
layers for the Image DIM stage. The input images containing
15 × 15 are fed into the CNNs, and the distance between the
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TABLE I

SETS OF FOUR HSIS DATASETS IN THE EXPERIMENTS

first and final convolutional output features is calculated. As a
result, a feature representation can be learned. The architecture
of DIM is shown in Fig. 9.

IV. EXPERIMENT

In this section, we provide a standardized and fair environ-
ment for evaluating our proposed methods by implementing
them on four benchmark HSIs datasets. All the methods are
implemented on Pytorch platform and use the same backbones,
training epochs. And, the methods are evaluated using two
well-known evaluation metrics [overall accuracy (OA), and
Kappa (κ)]. We spread it on a desktop PC with an Intel
Core 7 Duo CPU (at 3.40 GHz), 64 GB of RAM, and one
GTX R3090 GPU (24 GB of ROM). We train all models with
various techniques on the same computing environment and
store parameters of the CNNs with the different self-supervised
tasks. These stored parameters then initialize the parameters
of the CNNs model for target HSI classification task.

A. Datasets Description and Experiment Designing

The proposed methods will be performed on four
benchmark HSIs datasets, including Indian Pines Scene (IN),
Pavia University scene (PU), Kennedy Space Center (KSC),
and Houston 2013 datasets, shown in Table I. In addition,
we will compare the proposed methods to several state-of-
the-art deep learning-based methods.

1) IN Dataset: The IN dataset collected in northwestern
India using the AVIRIS sensor in 1992, records remote
sensing images of Indian Pines. The Indian Pines image is
145 × 145 in size, and includes 224 bands. Eliminating the
noisy bands, only 200 hyperspectral bands are employed in
the experiments. The ground truth of India Pines is divided
into 16 categories, including Alfalfa, Corn, Woods, and so on,
which are not all mutually exclusive.

2) PU Dataset: The PU dataset was collected using the
ROSIS sensor at Pavia University in Italy. The spatial
dimension of the Pavia University image is 610 × 340 with
103 spectral bands. This dataset contains nine categories,
including Asphalt, Gravel, trees, and so on.

3) KSC Dataset: The AVIRIS sensor recorded the KSC
located in the KSC area in Florida on March 23, 1996. The
spatial dimensions of the KSC image are 512 × 614, and the
spectral dimensions are 224 bands. After eliminating 48 noisy
bands, there are 172 spectral bands left in the experiments.
There are a total of 13 categories, including Scrub, Wate, Salt
marsh, and so on.

4) Houston 2013 Dataset: The National Center for Airborne
Laser Mapping on the University of Houston campus collected
this hyperspectral data. After image processing, it was

provided by the Geoscience and Remote Sensing Society data
fusion competition in 2013. This image is 349 × 1905 in size,
with 144 bands ranging from 364 to 1046 nm. There are a total
of 15 categories, including Trees, Soil, Water, and so on.

B. Evaluation of Self-Supervised Features on the Target
Classification Task

We conduct the following experiments to assess the
performance of self-supervised pretext task methods on the
target HSI classification task. We add a nonlinear classification
layer, such as a softmax, at the bottom of CNN, and then train
on the whole HSIs datasets for the IS pretext task method.
Then, after initializing the parameters of CNN for the HSI
classification task, we restore all pretrained weights and retrain
the CNNs with five samples in each category by adding a
new nonlinear classification layer. Finally, we evaluate the
remained samples. The training samples are not augmented
throughout the training process. It is noted that IS is short for
a single pretext task method by predicting the IS and Spectral
Order, and MT denotes the MT method.

1) Experiments on IN: Next, the experiment results of
various pretext task methods on the Indian Pines testing
dataset are reported. We compare the proposed methods to
CNNs-based methods such as 2-D-CNN [15], 3-D-CNN [15],
Hamida [16], and He [26], as well as the pretrained models
(e.g., ResNet [28]), two contrastive instance learning methods
(i.e., BYOL [56], SIMCLR [24]), and four commonly used
SSL pretext task methods. Two series of evaluation metrics
of all the methods on Indian Pines are presented in Table II.
Table II shows the experimental results using five samples
(L = 5) and ten samples (L = 10).

We can first observe that the proposed methods outperform
other compared methods on both of the five and ten samples.
It indicates the superiority of the proposed methods. A possible
explanation for this might be that the CNN model learns a
good feature representation using the proposed pretext task IS,
resulting in a good performance on the target HSI classification
task. Since the proposed multitask method contains many more
labeled samples, it performs the best classification results.
Second, the pretext task methods (i.e., IRO [44], IRE [50],
IP [41], and DIM [60]) provide better performances than
the CNNs-based methods, the pretrained method, and the
contrastive instance learning methods. This result may be
explained by the fact that the pretext task methods introduce
more data prior to training the CNN model. Third, the
contrastive instance learning methods and pretrained methods
were observed to perform a bad performance when compared
with the 2-D-CNN methods. The main reason is that the
pretrained method (ResNet) is trained on the RGB images
which are different to the HSIs. And the contrastive instance
learning methods are designed to identify the RGB images and
could not learn the subtle difference in the spectral dimension.
Finally, the 2-D-CNN method outperforms the 3-D-CNNs
based methods. It demonstrates that the superior of the
2-D-CNN method when there are only a few training samples.
And these results also demonstrate the SSL methods could
improve the performance of HSI classification.
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TABLE II

CLASSIFICATION RESULTS OF IN

Fig. 10. Classification maps obtained on the AVIRIS Indian Pines dataset (with five training samples). (a) Ground truth. (b) 2-D-CNN. (c) 3-D-CNN.
(d) Hamida. (e) He. (f) ResNet. (g) BYOL. (h) SIMCLR. (i) IRO. (j) IRE. (k) IP. (l) DIM. (m) IS. (n) MT.

We also performed another comparison experiment of all the
SSL methods on the pre_training times and the parameters.
We can see that five pretext task methods (e.g., IRO, IRE,
IP, IS, and MT) have the same number of parameters, which
are fewer parameters than other SSL methods. This result
demonstrates that the pretext task method is easy to implement.
However, the pretext task methods usually need much more
time to learn a good representation. Among them, MT takes
the most time to train the deep learning model. A possible
explanation for this might be that MT generates much more
samples for training the 2-D-CNN. For example, after data
processing, IS generates 16 times data. And MT contains much
more data from two pretext task methods (e.g., IS and IRO).
Fig. 10 provides a visual comparison of the performances of
all methods.

2) Experiments on Houston 2013 Dataset: We adjusted
the number of parameters to 144 to match the bands of
Houston data. We compare the proposed methods to the
CNNs-based methods, pretrained ResNet method, contrastive
instance learning methods (i.e., BYOL [56], SIMCLR [24]),
and four frequently used pretext task SSL methods. We show
the experiment results of all the methods in Table III.

It is apparent that the proposed methods achieve the best
performance, followed by the SSL methods (such as Image
Rotation, IP, IRE and Image DIM methods), the 2-D-CNN
method, the pretrained ResNet method, and the contrastive
instance learning methods. This study confirms that our
proposed methods can improve the performance of CNNs.
The 3-D-CNNs-based methods perform the worst results,
such as 3-D-CNN [15], Hamida [16], and He [26]. This is
also because of the insufficient labeled training samples in
training the 3-D-CNNs-based algorithms. Furthermore, it also
indicates that training the 3-D-CNNs-based methods requires
significantly more labeled data. We can easily observe that MT
has fewer parameters, but needs much more time to learn a
stable representation. The Houston classification results of all
the methods are shown in Fig. 11.

3) Experiments on PU: In this experiment, we build the
same CNNs structures as in the IN experiment, with the
exception that the number of parameters is modified to match
the 102 hyperspectral bands. In this experiment, we compare
the proposed methods to the CNNs-based methods (i.e.,
deep recurrent neural network (DRNN) (1-D-CNN) [12], 2-
D-CNN [15], Hamida [16], He [26]), one per-trained method
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TABLE III

CLASSIFICATION RESULTS OF THE HOUSTON DATA

Fig. 11. Classification maps obtained on some areas of the Houston dataset (with ten training samples). (a) Ground truth. (b) 2-D-CNN. (c) 3-D-CNN.
(d) Hamida. (e) He. (f) ResNet. (g) BYOL. (h) SIMCLR. (i) IRO. (j) IRE. (k) IP. (l) DIM. (m) IS. (n) MT.

TABLE IV

CLASSIFICATION RESULTS OF THE PU

(such as ResNet [28]), two contrastive instance learning
methods (i.e., BYOL [56], SIMCLR [24]), and four commonly
pretext task methods. Table IV displays the experiment results
of all methods. From Table IV, we can observe again that
the proposed methods outperform other comparison methods
both on five and ten training samples. It demonstrates the
superiority of the proposed methods. In addition, the self-
supervised pretext task methods outperform all other methods.
A possible explanation for these results may be the self-
supervised pretext task methods could offer much more prior

knowledge and learn a good feature representation. Since the
difference between HSIs and RGB images, the pretrained
method (such as ResNet) and the contrastive instance learning
methods fail to perform a better performance. The 3-D-CNNs
based methods again perform the worst classification results.
It indicates that the CNNs-based methods urgently need much
more training samples. Again, we also observe that MT and
IS have fewer parameters, but take a lot of time to learn the
representation. Finally, the visualizations of all the approaches
are shown in Fig. 12.
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Fig. 12. Classification maps obtained on the PU dataset (with five training samples). (a) Ground truth. (b) DRNN. (c) 2-D-CNN. (d) Hamida. (e) He.
(f) ResNet. (g) BYOL. (h) SIMCLR. (i) IRO. (j) IRE. (k) IP. (l) DIM. (m) IS. (n) MT.

TABLE V

CLASSIFICATION RESULTS OF THE KSC

4) Experiments on KSC : We set the number of
parameters corresponding to the 176 spectral bands, and
the experimental results of all methods are reported on
Table V. We compare the proposed methods to CNNs-based
methods (i.e., 2-D-CNN [15], 3-D-CNN [15], Hamida [16],
and He [26]), pretrained methods (such as ResNet [28]),
two contrastive instance learning methods (i.e., BYOL [56],
SIMCLR [24]), as well as four frequently used pretext task
SSL methods. Table V shows the results of all methods on
the KSC dataset. It is clear that the proposed pretext task
methods again outperform the other comparison methods. The
SSL methods (i.e., Image Rotation [44], IP [41], IRE [50],
and Image DIM [60] methods) are observed to produce
better performances than other comparison methods. The
3-D-CNNs-based methods, produce the worst results, such as
3-D-CNN [15], Hamida [16], and He [26]. This is mainly

because the labeled training samples are not enough to train
the 3-D-CNNs-based methods. From Table III, we could also
see that the proposed two methods take a lot of time to train
the 2-D-CNN model, while having fewer parameters. The KSC
classification results of all the methods are shown in Fig. 13.

C. Ablation Study of SSL Tasks

In this section, we conduct several experiments on five
training samples to learn the performance of target HSI
classification with various SSL pretext task methods, including
the choice of single self-supervised pretext task method and
the domain difference between source and target dataset.
It should be noted that IN and PU stand for Indian Pines and
PaviaU, respectively.

1) Ablation Study of Nonoverlap Measurement: In addition
to the SSL stage, the overlap of samples also contributes to the
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Fig. 13. Classification maps obtained on the KSC dataset (with five training samples). (a) Ground truth. (b) 2-D-CNN. (c) 3-D-CNN. (d) Hamida. (e) He.
(f) ResNet. (g) BYOL. (h) SIMCLR. (i) IRO. (j) IRE. (k) IP. (l) DIM. (m) IS. (n) MT.

TABLE VI

CLASSIFICATION RESULTS ON ALL TESTING SAMPLES (OVERLAP)
AND NONOVERLAPPED TESTING SAMPLES (NONOVERLAP)

improvement in classification accuracy. To demonstrate how
overlapping samples affect the efficacy of SSL, we conducted
the experiment with nonoverlapping testing and training
samples.

Using the sampling strategy for evaluation [61], we remove
testing samples that overlapped with training samples. Then
we utilize only nonoverlapping testing samples with the
same parameters as previous experiments. Table VI details
the classification findings of all testing samples (Overlap)
and those that do not overlap (Nonoverlap). The 2-D-CNN
is employed as the baseline method. The findings of the
experiment indicate that whether testing on nonoverlap or
overlap samples, performance is improved when the SSL step
is used. This outcome also illustrates the efficacy of the SSL
phase. In the four hyperspectral datasets, we can also notice
that the classification accuracy of Overlap is superior to that of
Nonoverlap. This result is primarily attributable to the spatial
information overlap between the training and testing samples.
Consequently, it is necessary to further investigate ways for
generating more reliable classification findings. In contrast,
the proposed MT categorization actuary works surprisingly
well with the nonoverlap. On the basis of nonoverlapping
testing samples, we will investigate the potential for the SSL
to improve classification accuracy.

2) Ablation Study of the Proposed IS Method: We conduct
the experiments and evaluate the performance of different
methods, i.e., 2-D-CNN, Pretrained 2-D-CNN (P-2-D-CNN),
IS. Table VII presents the average results of the experiments
that are retrained on four benchmark HSIs datasets ten times.
It is noted that we adopt the Houston dataset to P-2-D-CNN for
Indian Pines, PaviaU, and KSC datasets, but the PaviaU dataset
to pretrain the Houston dataset. What stands out in Table VII

TABLE VII

RESULTS OF DIFFERENT METHODS

is that the proposed IS method outperforms the other methods.
This demonstrates that the proposed IS method is an effective
and simple way to improve performance. Not surprisingly, the
P-2-D-CNN produces a better performance than 2-D-CNN,
which causes by introducing the external labeled data. Since
the big difference between different HSIs datasets, the
P-2-D-CNN could not outperform IS. The 2-D-CNN provides
the worst classification results because of the insufficient
samples. These observational studies suggest that the SSL
method in HSIs may help small dataset classification and
improve performance.

3) Ablation Study of the Choice of SSL Pretext Task Method:
We conduct the experiments and evaluate the feature learning
performance of several self-supervised pretext task methods
on target HSIs categorization. The experimental results on
four benchmark HSIs datasets are shown in Table VIII. The
pretrained parameters acquired from pretext task methods to
initialize the target HSI classification task. And the model
is retrained for ten times. Table VIII shows that IS pretext
task method outperforms the other four self-supervised pretext
task methods. This demonstrates IS pretext task method learns
a more suitable feature representation using the difference
between the central pixel and all boundary pixels. These
results indicate that it is critical to learn the high-level
feature representations for HSI classification by selecting
an appropriate pretext task method. And, IS pretext task
method can provide a good feature representation for the HSI
classification.

4) Ablation Study of Different Max Scale Size: Apart from
the learnable parameters of the CNN and the hyperparameters,
the max scale size of the proposed method plays a
significant role in the classification performance. Therefore,
we conduct the experiments with the different scales
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TABLE VIII

RESULTS OF THE CHOICE OF SSL PRETEXT TASK METHODS

Fig. 14. Results of different max scale sizes.

(i.e., 9, 11, 13, 17, 19, 21) to evaluate the performance of the
proposed method. The results of OA obtained by IS are
reported in Fig. 14. It is noted that the generated images
should be resized to the max size before feeding into the CNN.
We can observe that the performance of the CNN increases
with varying the max scale size. A possible explanation for this
might be that with more max scale size, there are much more
training samples that could lead to learning a good feature
representation for the target classification task.

5) Ablation Study of Different Number of Training Samples:
The SSL method could not only improve the performance of
HSI classification, but also relieve the burden of training on
a large number of supervised labeled data. In this section,
we conduct experiments with the different training samples
to evaluate the effectiveness of the SSL method. During the
experiments, we first pick out 5 and 10 from each category of
different HSIs datasets, resulting in 45, 65, 75, and 80 training
samples of PaviaU, KSC, Houston2013, and Indian Pines
datasets. We then vary samples from 0.05% to 0.3% to obtain
different number of training samples of different HSIs datasets
(as shown in Fig. 15). Using these different number of training
samples, the results of OA obtained by MT and 2-D-CNN
are shown in Fig. 15. We can see that the performances
both of MT and 2-D-CNN are improved with increasing
the number of training samples. Moreover, MT (SSL
method) outperforms 2-D-CNN (supervised method). Finally,
the 2-D-CNN performs satisfactory classification results
with many more training samples. However, MT achieves
comparable classification results to the 2-D-CNN with fewer
samples. It demonstrates the SSL step could relieve the burden
of training on a large number of supervised labeled data.

Fig. 15. Classification results of different number of training samples.
(a) Indian Pines dataset. (b) PaviaU dataset. (c) Houston2013 dataset. (d) KSC
dataset.

V. CONCLUSION

In this article, we first introduced self-supervised pretext
task approaches for HSI classification by utilizing limited
labeled examples. Then, for HSI classification, we suggested
a simple SSL method called IS to predict the IS and Spectral
Order. On the other hand, we developed an MT method by
integrating two pretext task methods (such as IRO and IS)
and the contrastive loss function. Additionally, using four
benchmark HSIs datasets, we conducted a fair comparison
of the suggested approaches with the pretrained methods, the
contrastive instance learning methods, the supervised CNNs-
based methods, and four well-utilized signal pretext task
methods. According to the experimental results, SSL pretext
task approaches outperform other comparison methods that use
limited labeled samples. Additionally, we conducted ablation
studies to analyze the effect of IS and MT methods on HSI
classification, and discovered that the choice of self-supervised
pretext tasks and the domain difference between the source and
target datasets affect the performance of IS. We also prove
that IS and MT could relieve the burden of training on a large
number of supervised labeled data. Future work will continue
to examine SSL and expand its application by developing a
robust SSL framework for a variety of HSIs sectors to promote
the adoption of SSL methods by HSIs organizations.
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