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Abstract—Monitoring and forecasting of sintering tem-
perature (ST) is vital for safe, stable, and efficient oper-
ation of rotary kiln production process. Due to the com-
plex coupling and time-varying characteristics of process
data collected by the distributed control system, its long-
range prediction remains a challenge. In this article, we
propose a multivariate time series forecasting model based
on dynamic spatio-temporal graph attention network (GAT)
to model time-varying spatio-temporal correlation between
the process data and perform long-range forecasting of
ST. Aiming at the problem that there is no preset graph
structure for multivariate data, we first propose an adap-
tive adjacency matrix generation algorithm to construct an
elementary graph structure for the process data. Then, we
design a spatio-temporal graph attention module, which
consists of a multihead GAT for extracting time-varying
spatial features and a gated dilated convolutional network
for temporal features. Finally, considering the different time
delay and rhythm of each process variable, we use dynamic
system analysis to estimate the delay time and rhythm of
each variable to guide the selection of dilation rates in
dilated convolutional layers. The application results based
on actual data show that the method has high prediction
accuracy, and has broad application prospects in industrial
processes.
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I. INTRODUCTION

S INTERING temperature (ST) monitoring and forecasting
in high-temperature facilities is very important, and it is

a key element for condition detection and optimal control of
coal-fired industries such as electric power, metallurgy, and
chemical industry [1]. ST forecasting can help the decision-
making system perceive the condition early and guide the
control system to make decision in advance, so as to avoid
the occurrence of abnormal conditions and ensure the stable
production.

By analyzing the thermal process data from the distributed
control system (DCS), data-driven models have been widely
studied and applied in coal-fired industries for estimation and
prediction of the key variables, such as temperature prediction
[1], [2], [3], coal feeding prediction [4], [5], clinker free lime
content estimation [6], and exhaust gas emission prediction [7].
The combustion process of rotary kiln is a complex nonlinear
dynamic system, and the thermal data collected from DCS
are multivariate time series with typical strong coupling and
nonlinear dynamic characteristics. Each variable depends not
only on its historical values but also on other variables, so
the key to multivariate time series analysis is how to model
the relationship of multivariate data in spatial (between each
variable) and temporal (between historical and current data of
variable) dimensions. According to the modeling methods, the
researches can be categorized as traditional statistical-based
methods, machine learning-based methods, and deep-learning-
based methods.

Traditional statistical-based methods use methods such as au-
toregression and Gaussian process fitting [8], which all assume
a linear dependence between variables. With the increase of
variables, the complexity of model increases quadratically, and
it is easy to lead to overfitting. Machine learning-based methods
use principal component analysis [4] or independent component
analysis [9] for thermal signal dimensionality reduction, and
input the low-dimensional data to support vector machines [3],
empirical pattern decomposition [7], and feedforward neural
network [6] to establish a soft sensor model for key parameter
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prediction. Most of these models implement static modeling
prediction, considering the information in a separate spatial or
temporal scale without mining their relationships and dynamic
dependencies.

In recent years, deep learning (DL) has made great achieve-
ments in extracting hierarchical nonlinear representations in
multivariate data prediction applications, thus, it has been also
introduced into the coal-fired industry for process data model-
ing. Zhang et al. [1] employed convolutional neural networks
(CNN) and gated recurrent unit (GRU) to extract local spatial
dependence and dynamic temple features for ST forecasting.
Xu et al. [2] built a soft sensor that combines computational
fluid dynamics and multilayer perceptrons to predict a single
point temperature in the temperature field of a rotary kiln. Wang
et al. [10] proposed a cascaded stack autoencoder model to fuse
prior knowledge and deep hidden information for sintering state
recognition.

Compared to the traditional autoregressive models and
machine learning methods, DL-based methods in the above-
mentioned methods capture the nonlinear correlation between
variables better. However, the long-term prediction of process
data still lacks progress, mainly due to the following challenges.

1) Precise modeling between variables: Existing DL-based
methods usually use CNN to capture the coupling re-
lationship between variables. While CNN is limited to
processing data with standard grid structure, and cannot
precisely capture the correlation between variable pairs
[11].

2) Dynamic spatial correlation: Correlation between the
variables is dynamic, that means it changes when the
working conditions and equipment state changes. How to
dynamically model the relationship between time-varying
variables is a challenging problem.

3) Nonlinear temporal correlation: Existing DL-based
methods used recurrent neural network (RNN) based
methods to capture the temporal correlation of time series.
While using RNN for long-range prediction, it brings
problems of high computational complexity and low con-
vergence speed with a large number of variables.

To address the aforementioned challenges, we propose a
dynamic spatio-temporal graph attention network (DST-GAT) to
predict ST over time steps ahead. As an important data structure,
graph has been widely used, which can effectively and abstractly
express the data information of variables and the relationship be-
tween variables. Graph neural networks (GNNs) can efficiently
propagate and aggregate information among adjacent nodes, and
can capture the correlation between any two variables [11]. Its
strong coupling relationship expression ability can be seen in
its wide application in recommendation systems [12], human
action recognition [13], traffic flow prediction [14], and other
fields. Graph attention network (GAT) introduces a masked
self-attention layer to GNN. In GAT, each node in the graph
can assign different weights to each first-order neighbor node
according to the node characteristics of the first-order neigh-
borhood. Therefore, GAT has stronger dynamic representation
ability and is very suitable for solving the problem of graph
structure changes caused by the time-varying characteristics.

To precisely model the coupling relationship between pro-
cess data, we regard each process data as node of graph, and
the coupling relationship between variable as edge of graph.
Considering both of transmission efficiency and redundancy of
network, we build an elementary graph structure of process data.
Then, we use GAT to dynamically model the spatial correlations
of process variables with a multihead attention mechanism,
a dilated causal convolution network (DCCN) [15] combined
with parallel GRU and residual mechanism to capture long-term
correlation in temporal dimension of variables and accelerate
network convergence. To precisely capture different time delay
and rhythm of each process variable, we use dynamic system
analysis to guide the selection of dilation rates (drs) in dilated
convolutional layers.

The main contributions of this article are as follows.
1) We propose a spatio-temporal GAT (ST-GAT) for the

long-range prediction task of ST, which is the first appli-
cation using GNN for modeling of multivariable process
data without predefined graph structure, and the perfor-
mance of ST forecasting in long-term horizon is better
than other state-of-the-art methods.

2) GNNs rely on a predefined graph structure to perform
time forecasting. The relationships among process time
series are unknown, so there is no an explicit graph
structure. To dynamically construct a graph structure
for the process data, we proposed an adjacency matrix
construction algorithm to construct an elementary graph
structure considering both of transmission efficiency and
redundancy of network, and design a graph attention
layer to dynamically and precisely model the coupling
relationship of process data.

3) We design a gated dilated convolutional layer (GDCCN)
to capture the nonlinear correlation of variables, and we
use dynamic system analysis method to estimate the drs
of dilated convolutional layers and delay time. The spatial
and temporal correlation of variables are modeling more
efficiently and precisely than other methods.

The rest of this article is organized as follows. In Section II,
we describe the characteristics of the process data in rotary
kiln and present the problem formulation. Section III describes
the adjacency matrix construction method and the structure of
the proposed DST-GAT in detail. The experimental results are
presented in Section IV. Finally, Section V concludes this article.

II. BACKGROUND AND PROBLEM FORMULATION

The process data of the rotary kiln are typical multivariate time
series data of complex industrial systems with the characteristics
of multivariate coupling, time varying, and large time lag [1]. As
shown in Fig. 1, the spatial and temporal relationships between
variables are complex and dynamic.

1) Complex spatial correlation of variables: The process
data consist of control variables such as the Coal Feeding
(CF) and Blast Flow (BF), and observable variables such
as main motor current (MMC) and cooling fan current.
The correlation between them is complicated. The change
of an observable variable not only depends on the changes
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Fig. 1. Complex dynamic spatial correlation: spatial coupling: the cou-
pling relationship between variables x1 and x2 is different at different
times; time delay: the impact of changes in variables x2, x4, and x5 on
the variable x1 to be predicted is not real-time, and has a cumulative
effect.

of operate variate, but also other observable variates. Take
ST as an example, it may be affected directly by the
changes of CF and BF. MMC does not affect ST directly,
but it will fluctuate with the changes of CF and BF in
advance of the change of ST, so considering the change
of MMC will help for forecasting of ST. Therefore, MMC
is also an associated variable of ST, and the correlation
between ST and MMC should also be modeled. It means
that an explicit pairwise dependencies modeling of pro-
cess data is necessary.

2) Complex temporal correlation of variables: Due to the
large body and the slow heat transfer mechanism, the
change of control variables cannot be reflected in ob-
servable variables in time, and the lag time of associated
variables are different. And due to the different attributes
of process data, the sampling rhythms of process variables
are also different, so the durations of correlation are
different. For example, ST may be affected by CF from 1
h ago to 40 min ago, BF from 50 min ago to 30 min ago,
and MMC may be affected by CF from 20 min ago to 10
min ago. Therefore, precise forecasting of ST should take
into account of different time lags and cumulative effects
from different variables.

3) Dynamic correlation of variables: In industrial produc-
tion, industrial processes exhibit significant time-varying
behavior due to factors such as raw material quality
fluctuations, catalyst activity reductions, and external en-
vironmental disturbances, therefore, the strength of corre-
lation between variables changes over time. Dynamically
model relevant process data to predict a target variable in
long-term horizon is necessary.

In this article, we focus on multiple input variables and single
output forecasting in long-term horizon. More formally, given
a series of process variates X = [x1, x2, …, xN-1, xN] and xN
is the variate to be estimated (ST), where X � R

n×N, N is the
variable dimension and n is the number of samples collected by
the on-site DCS system. We aim at predicting the next multistep
signals in a rolling forecasting fashion. Assuming [X(t-p+1),
X(t-p+2), …, X(t)], we estimate ST at the next several moments,
[xN(t+1), xN(t+2), …, xN(t+p)], where p is the number of steps.
The nonlinear dynamic mapping will be formulated as follows:

[xN (t+ 1), . . . , xN (t+ p)] = f(X(t− p+1), . . . , X(t)).
(1)

Fig. 2. Schematic diagram of DST-GAT framework.

III. MODELING METHODOLOGY

Aiming at the abovementioned practical modeling problems,
this article proposes a new DST-GAT-based rotary kiln sintering
temperature prediction modeling method, as shown in Fig. 2.

First, to solve the problem that multivariate time series do not
have a preset graph structure, we propose an adaptive adjacency
matrix generation algorithm considering both of transmission
efficiency and redundancy of network. Second, a DST-GAT
network architecture is proposed to extract the spatio-temporal
characteristics of multivariate time series data. DST-GAT net-
work includes two ST-GAT modules and a fully connected
layer. The DST-GAT module consists of a GAT with multihead
self-attention and GDCCN layer. GAT extracts time-varying
spatial domain features. And GDCCN is used to extract features
in the temporal dimension. GDCCN introduces DCCN to reduce
the accuracy degradation of long-range prediction by increasing
the receptive field. Considering that different variables have
different time rhythms, a clock rhythm estimation operator based
on dynamic system analysis is proposed, and the calculated clock
rhythm is used as an estimate of the key hyperparameter dr in
DCCN. A parallel GRU and residual mechanism is added to
DCCN to reduce the problem of vanishing gradients in long-
range prediction and maintain the nonlinearity of the layers.
Finally, considering that complex systems also have large delays
between multiple variables, the delay time between variables is
calculated to align the time dimension of the variables.

A. Elementary Graph Structure Construction

According to the small-world network theory, the character-
istics of complex networks ubiquitous in human society can be
expressed as “six degrees of separation” [16]. Information of
the node in the network can be propagated to other nodes only
through a few nodes. Therefore, when modeling the coupling
relationship between variables, the graph structure should reduce
redundant edges as much as possible while ensuring the efficient
and accurate dissemination of information, and ensuring the
sparseness of the structure to reduce the complexity of the
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network, which is also a real-time requirement for industrial
applications. Based on this, this article finds the balance between
the two and determines the elementary structure of the graph by
quantitatively calculating the propagation efficiency and sparsity
of the graph structure.

The transport properties and sparsity on the graph can be
measured by the Wiener exponent λ and the density D of the
complex network. λ is used to measure the global transmission
distance of complex networks; D is used to quantify the degree
of connection between nodes in complex networks.

The network density D is the ratio of the actual number of
edges in the network to the upper limit of the number of edges
that can be accommodated [17]. It is usually used to characterize
the density of complex networks. The larger D is, the denser the
network structure is. Its expression is

D =
M

N(N − 1)
(2)

where N is the number of graph node and M is the number of
graph edge.

In a complex network G = (V, E), the sum of the distances
between all nodes is called the Wiener exponent λ and its
expression is

λ =
1
2

∑
i,j∈V
i�=j

di,j (3)

where di,j is the distance between node vi and vj. When the
number of paths connecting two nodes increases or when the
path length of any path decreases, the communication between
these two nodes is facilitated [18]. Wiener exponent has the
good property of decreasing, when the distance between node
vi and vj becomes shorter. Thus, it can be used to measure the
convenience of communication between nodes.

In this part, we use multiple variables as network nodes V and
the coupling relationship between variables as edges E. Then,
the multivariate time series can be represented as graphical data.
The correlation matrix R is the set of dependencies between
variables, where ri,j = Xi · Xj

T are the correlation coefficients
between the variables Xi and Xj. We will build an adjacency
matrix A that is both convenient for information transfer and
sparse based on R. Since the calculation of λ is based on the
distance between two nodes, R calculated earlier is a similarity
matrix rather than a distance matrix. Therefore, we transform
the similarity matrix to the distance matrix using the formula

di,j =
1

ri,j + ε
(4)

where ε is a small value preventing rij from being equal to 0.
The specific algorithm flow is shown in Fig. 3.

First, we calculate the correlation coefficient between any
two variables of the multivariate data, and get R. Since R is
a symmetric matrix, the upper triangular matrix Rup is taken.
And the elements in Rup are arranged in descending order to
the vector Rup. Following the order of Rup, the positions (i, j)
corresponding to the first ΔTh%, 2ΔTh %, 3ΔTh % until 100%
of the vector Rup are set to 1, and the rest to 0. Subsequently, a
series of D(A) and λ(A) will be calculated by (2) and (3). Set the

Fig. 3. Flow diagram of adaptive adjacency matrix generation algo-
rithm. Dark red in R and Rup means that the value of rij is larger, and
light red means that the value of rij is smaller. Black in A indicates that
the value of aij is 1, and white in A indicates that the value of aij is 0.

y-coordinate in the intersection (ratio, Th) of the D(A) and λ(A)
curves as the threshold. The ri,j > Th in R is set to 1, and the
rest is set to 0. Finally, the degree of each node of the adjacency
matrix is calculated to ensure that each variable is connected to
other nodes except the self-loop, especially to ensure that the
predicted has external connection. If there is an island node,
connect the island variable to its top k most similar variables to
get the elementary adjacency matrix A.

B. Dynamic Spatio-Temporal Graph Attention Network

1) Spatial Convolution Layer: We use a GNN combined with
a multihead attention mechanism as a spatial layer to capture
the time-varying coupling properties between variables. GNN
obtains node embedding by recursively propagating information
from its neighbors [19]. This framework was later unified into
a general message passing neural network (MPNN) [20], and
recently unified into a relational induction bias model [21]. The
basic idea is that the representation vector of the node is obtained
after k rounds of the message propagation mechanism through
the message function M (Message) and the update function U
(Update) [21]. The message propagation process is as follows:

mk+1
i,j =

∑
vj∈N(vj)

Mk(hl
i, h

l
j ,Ai,j) (5)

kk+1
i = Uk(hk

i ,m
k+1
i ) (6)

where k represents the kth layer of GNN, hk and hk+1 represent
the feature vectors of the k and k+1 layers, ai,j is the edge of
nodes vi and vj, and mi,j is the message between nodes vi and
vj.

The core of MPNN lies in the message function and update
function. The message and update function are

Mk(hl
i, h

l
j) = L̃sym[i, j]W kh̃j (7)

U(mk+1
i ) = σ(mk+1

i ). (8)

The GAT is similar to the GNN [22]. Both are looking for an
aggregation function to describe the feature representation of the
extracted node and its neighborhood. The difference is that GAT
uses a self-attention mechanism [23] to redistribute the weights
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Fig. 4. Network architecture of MGAT.

of neighbor nodes. The calculation process is as follows:

hk+1
i = σ

⎛
⎝ ∑

j∈N(vi)

α(hk
i , h

k
j )W

khk
j

⎞
⎠ (9)

where α(˙) represents the attention function, W represents the
attention weight, and σ represents the activation function of the
neural network. Equation (13) is a typical self-attention, which
summarizes the features required by the learning model from
the same batch of nodes and assigns different weights to these
features.

To make full use of the information of the node and its neigh-
borhood, GAT calculates the attention in different subspaces in
parallel. And we propose to use multihead self-attention instead
of the self-attention mechanism

hk+1
i = ||Hhead=1σ

⎛
⎝ ∑

j∈N(vi)

α(hk
i , h

k
j )W

khk
j

⎞
⎠ (10)

h′
i = σ

⎛
⎝ 1
H

H∑
head=1

∑
j∈N(vi)

αhead
i,j

W headh′
j

⎞
⎠ (11)

where || means splicing. For the same node, the multihead self-
attention calculates H times of attention separately, and merges
the H times of attention in the way of splicing or averaging.

Multiheaded self-attention uses multiple attention calcula-
tions to dig deeper into the potential of node data, allowing
the model to better understand the characteristic meaning of the
node. The network architecture of the entire GAT is shown in
Fig. 4. The calculation of the attention coefficient is completed
by a two-layer multilayer perceptron [24], and the specific
formula is as follows:

αi = Wk
G2 · σ(Wk

G1 ·Xi + bk1 ) + bk2 (12)

α =
exp(αi)∑
i exp(αi)

(13)

where Wk
G1 W

k
G1 and Wk

G2 W
k
G2 are the learnable parameters,

σ is selected as ReLU. The attention weight α is normalized by
the SoftMax function.

2) Temporal Convolution Layer: We use the GDCCN as the
temporal convolutional layer to capture the nonlinear properties
in the time dimension. GDCCN contains the DCCN, GRU, and
residual module, and its architecture is shown in Fig. 5. We
propose the following temporal convolutional layer:

XT = FRES(X) +X = f(WGRUX+ bGRU) +X (14)

Fig. 5. Network architecture of GDCCN.

where X and XT is the input and output of GDCCN, WGRU and
bGRU are the learnable parameters of the GRU.

1) Dilated causal convolution network: When doing long-
range time series prediction, increasing the size of the
temporal convolution layer or temporal convolution ker-
nel will greatly increase the amount of network param-
eters. Therefore, we use DCCN to expand the receptive
field of convolutional networks without increasing net-
work parameters. The core idea of the hole convolution
is to expand the convolution kernel parameters that are
originally closely connected according to the set ratio.
The parameters of the convolution kernel are separated
from each other, and the distance between them is deter-
mined by the expansion rate. The expansion convolution
operation F on the sequence element t is defined as
the calculation formula of the expansion convolution is
defined as

F (t) = (X∗df)(t) =
k−1∑
i=0

f(i)Xt−dr·i (15)

where dr is the dilation ratio, k is the size of the convolution
kernel, and t−dr·i indicates the direction in the past.

1) Gated recurrent unit: There are gradient disappearance
and gradient explosion problems when RNN performs
long sequence prediction. Aiming at this defect, GRU
network adds hidden state, update gate, and reset gate to
memorize long-term information [25]. This more com-
plex information transmission method can effectively
overcome the shortcomings of traditional RNN. The hid-
den state Ht of GRU at time t is computed as

Ht = Zt ⊗Ht−1 + (1 − Zt)⊗ Ĥt

= Zt ⊗Ht−1 + (1 − Zt)⊗ tanh(XtWxh

+ (Rt ⊗Ht−1)Whh + bh) (16)

where Xt is the input of GRU, Wxh, Whh, and bh are the learnable

parameters, Ht-1 is the hidden state at time t-1,
�

Ht Ĥt is the
candidate hidden state, Rt is the update gate, Zt is the reset gate,
and ⊗ is the elementwise multiplication. Rt and Zt is computed
as

Rt = σ(XtWxr +Ht−1Whr + br) (17)

Zt = σ(XtWxz +Ht−1Whz + bz) (18)

where Xt is the input of GRU, Wxr, Whr, Wxz, Whz, br, and bz
are the learnable parameters, Ht-1 is the hidden state at time t-1,
and σ is the sigmoid function, selected as ReLU.
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Fig. 6. Flow diagram of dilated convolution. The subfigure on the upper
right is the alignment process between variables. Xi is the variable to be
predicted. The time t + T(i, j) of Xj and t + T(i, k) of Xk is aligned with the
time t of Xi. The subplots in the lower right corner show the processing
of different variables by dilated convolutions with different dilation rates.
The rhythm clock T(i, i) is 2, T(j, j) is 4, and T(k, k) is also 4.

C. Dilation Rate and Delay Estimation

Each observation in the time series is a comprehensive result
of various factors that simultaneously affect changes. From the
time characteristics of the size and direction of these influencing
factors, the changes in time series data caused by these factors
can be divided into three reasons: trend, periodicity and ran-
domness. The actual change of each value is the superposition
or combination of several changes [26]. Because the variables
in the industrial field have different physical meanings, the trend
and periodic changes of each variable are likely to be different.
This article defines it as a rhythm clock. Based on this, this
article adopts a method based on dynamic system analysis to
estimate the rhythm clock to guide the choice of expansion
ratio. This article chooses MI to estimate the time rhythm T(i,i)
of each variable Xi [27]. The calculation formula of T(i,i) is
as follows:

I(Xi) = 2H(Xi)−H(Xi,Xi) (19)

H(Xi) = −
d∑

p=1

PXi
(Xi,p)log2PXi

(Xi,p) (20)

H(Xi,Xi) = −
d∑

p=1

PXi,Xi
(Xi,p,Xi,p)

× log2PXj ,Xi
(Xi,p,Xi,p). (21)

T(i,i) is the first local minimum of I(Xi), which represents
the time scale for the system to obtain information [28]. So far,
we have obtained an improved DCCN based on time rhythm,
which can accurately and conveniently mine the evolution law
of multiple time series in the time dimension, and improve the
prediction accuracy. At the same time, we calculate T(i,j) to
obtain the delay time between variable Xi and variable Xj, and
perform data alignment, as shown in Fig. 6.

D. Objective Function and Optimization Strategy

The mean squared error loss function is used for optimization
in the model training and is defined as

Loss =
1
L

L∑
i=0

(y − ŷ)2 (22)

where L is the total number of training data in the time sequence,
ŷ is the predicted value, and y is the real value.

According to the abovementioned framework, the Adam opti-
mization algorithm is used to obtain the gradient of the network
error for each weight parameter in the backpropagation, and the
new weight is obtained through the parameter update process.
Adam is a first-order optimization algorithm that can replace the
traditional stochastic gradient descent process. It can iteratively
update the neural network weights based on the training data
until the predetermined small loss is reached, and the optimal
prediction value is obtained. The reason for choosing Adam as
the optimizer is that it can solve the optimization problem of
large data volume and high feature latitude in machine learning,
and design independent adaptive learning rates for different pa-
rameters. Most importantly, Adam requires only a small amount
of memory and is computationally efficient.

IV. EXPERIMENTS AND DISCUSSION

In this section, all experiments are compiled and tested on
Windows system (CPU: Intel(R) Core (TM) i9-10900K @ 3.70
GHz, GPU: NVIDIA GeForce RTX 3090).

A. Experimental Data

The thermal data were collected from the on-site thermal
instrument of the No. 2 rotary kiln manufactured by Zhongzhou
Aluminum Company in China. According to on-site DCS and
expert knowledge, 23 processing variables including observable
variables such as Main Motor Current and Cooling Fan Current,
and control variables such as Coal Feeding (CF) and Blast
Flow (BF) were collected. Sintering temperature is detected by
infrared thermometer. A total of 8223 samples were collected
with a sampling interval of 5 min for prediction and evaluation.
Among them, the first 70% of the rotary kiln data (5756 samples)
is used for training, 20% of the data (1645) is used for validation,
and the last 10% of the data (822) is used for testing.

B. Forecasting Accuracy and Performance Comparison

We use five evaluation indicators, including average absolute
error (MAE), root-mean-square error (RMSE), average absolute
percentage error (MAPE), and correlation coefficient (CC). For
MAE, RMSE, and MAPE, a lower value is better. For CC, a
higher value is better. The definitions are given as

MAE =
1
n

n∑
i=0

|yi − ŷi| (23)
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TABLE I
BASELINE MODELS

RMSE =

√√√√ 1
n

n∑
i=0

(yi − ŷi)
2 (24)

MAPE =
1
n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (25)

CC =
Cov(y, ŷ)√

V ar [y]V ar [ŷ]
(26)

where yi is the actual value in y and ŷi is the predicted value in
ŷ.

To compare the performance of the DST-GAT model, we
conducted extensive experiments in which seven methods were
used on industrial datasets for sintering temperature forecasting.
The methods used in our comparative evaluation are shown in
Table I.

In this article, all methods are retrained using the same dataset,
and the back-propagation algorithm is used to continuously
adjust the weight matrix and bias between the hidden and output
layers. We performed cross-validation and grid search, tuning
hyperparameters to achieve high performance for each model,
compared to DST-GAT. We set the initial learning rate to 0.01
and adjusting it according to the epoch by Adam until error
convergence. According to the results of cross validation and
grid search [see Fig. 7(a) and (b)], we set the chosen hidden unit
of GDCCN to [12], [1], and the graph dim to 64. With the same
input data, 20 models were trained for each model, and the aver-
age of the results was taken as the experimental results, as shown
in Table II. The best result is marked in read bolds, and the black
bolds is the second-best result. Among them, DCGNet [1] and
LSTNet [29] are single-step prediction networks, and DCRNN
[30], ConvTrans [31], GMAN [14], MTGNN [11] and Graph
WaveNet [32] are multistep time series prediction networks.
For the GNN-based networks, graph structures are constructed

Fig. 7. Comparison of the RMSE at different number of (a) tcn_dim,
(b) graph_dim, and (c) dr for DST-GAT.

TABLE II
COMPARISON OF EXPERIMENTAL RESULTS ON INDUSTRIAL DATA

for forecasting using the adaptive adjacency matrix generation
algorithm proposed in this article, excepting for MTGNN is by
learning graph structure. The comparison between the actual
value and the predicted value of the eight prediction methods is
shown in Fig. 8, and the corresponding prediction error curve is
shown in Fig. 9.

As shown in Fig. 8, the models that simply capture time series
information, LSTNet and ConvTrans, have lower prediction
accuracy, and the MAE and MAPE values of these models are
significantly higher than other models. Both models perform
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Fig. 8. Prediction of sintering temperature by different algorithms.

Fig. 9. Prediction error curves of different algorithms.

Fig. 10. Error probability distribution curves of different algorithms.

poorly, and they cannot easily adapt to local trends in actual
values. Compared with the abovementioned two models, the
prediction accuracy of the three models including dynamic
RNNs is significantly improved, as shown in Table II. In contrast,
the prediction performance of the network using the coupling
relationship between variables is better.

Fig. 9 shows that the prediction model using the graph
structure more fully simulates the irregular trend of sintering
temperature. Compared to the static and recurrent networks
compared in Table II, GMAN, Graph WaveNet, MTGNN, and
DST-GAT clearly have the smallest errors. Among them, Graph
WaveNet does not adaptively capture the dynamic changes of the
adjacency matrix and the prediction performance of this hybrid
network can be further improved. Finally, Table II shows that
the model proposed in this article achieves the best prediction

accuracy in long-range predictions, and achieves suboptimal
performance in short-range predictions.

Furthermore, to further evaluate the performance of differ-
ent prediction models, we introduce error probability distribu-
tion curves of prediction residuals based on eight models in
Fig. 10. Compared with other models, error probability distri-
bution obtained by our model is closer to zero with less varia-
tion, which further demonstrates the reliability of the proposed
method.

The computation time of training one epoch of eight models
are list in Table III. We can see that LSTNet has the shortest
training time, but its prediction accuracy is low. In contrast,
MTGNN performs better long-range predictions, but the train-
ing time is significantly longer than other network due to the
large model and excessive parameters. It demostrates that our
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TABLE III
PREDICTED RESULTS IN THE ABLATION STUDY

TABLE IV
PREDICTED RESULTS IN THE ABLATION STUDY

proposed model is a good tradeoff between training time and
prediction accuracy.

C. Ablation Study

To prove the effectiveness of selection of dr and threshold for
adjacency matrix construction, a comparative study was carried
out. We define different models as follows.

1) Our-0.3: Select the first 30% of edges in correlation matrix
R and connect their corresponding nodes.

2) Our-0.8: Select the first 80% of edges in correlation matrix
R and connect the corresponding nodes.

3) Our-nTD: The same expansion rate is uniformly used
for all variables, and the setting value is 2, 4, 8, 16,
respectively.

4) Our-nMA: Multiattention module is not applicable.
For the abovementioned model, the test results measured

by the evaluation index are shown in Table IV and Fig. 7(c).
The results corresponding to our-nTD in Table IV are the best
results obtained when dr is set to 2, 4, 8, and 16, respectively.
Several conclusions drawn from these experimental results are
summarized as follows.

1) The method proposed in this article can indeed reduce the
computational load of graph convolution while ensuring
the prediction accuracy.

2) The chosen expansion rate can indeed play a positive role
in long-range prediction of time-delayed data.

3) Multihead attention can indeed increase the weight of
the coupling relationship between variables that have a

greater impact on the prediction and improve the predic-
tion accuracy.

V. CONCLUSION

In this article, to exploit the coupling relation and dynamic
nonlinearity between two variables in multivariate time series
data, a new prediction model based on spatio-temporal graph
convolutional networks was proposed. The elementary adja-
cency matrix was generated using a complex systems-based
approach. The dilation rate of the temporal convolutional layers
was selected by a dynamic system analysis method to improve
the accuracy of long-range prediction of the model. Then, GAT
and DCCN-based models were built to learn deep represen-
tations for multiple time series. Comparative experiments and
ablation studies on real-world data validate the effectiveness and
robustness of our method. Although we focused on forecasting
of ST, our model could be applied to forecasting of other process
data.
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