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Learning Sparse and Discriminative Multimodal
Feature Codes for Finger Recognition
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and Yicong Zhou , Senior Member, IEEE

Abstract—Compared with uni-modal biometrics systems,
multimodal biometrics systems using multiple sources of
information for establishing an individual’s identity have
received considerable attention recently. However, most traditional
multimodal biometrics techniques generally extract features from
each modality independently, ignoring the implicit associations
between different modalities. In addition, most existing work
uses hand-crafted descriptors that are difficult to capture the
latent semantic structure. This paper proposes to learn the
sparse and discriminative multimodal feature codes (SDMFCs)
for multimodal finger recognition, which simultaneously takes
into account the specific and common information among inter-
modality and intra-modality. Specifically, given the multimodal
finger images, we first establish the local difference matrix to
capture informative texture features in local patches. Then, we
aim to jointly learn discriminative and compact binary codes by
constraining the observations from multiple modalities. Finally,
we develop a novel SDMFC-based multimodal finger recognition
framework, which integrates the local histograms of each division
block in the learned binary codes together for classification.
Experimental results on three commonly used finger databases
demonstrate the effectiveness and robustness of the proposed
framework in multimodal biometrics tasks.

Index Terms—Finger recognition, sparse and discriminative
feature, binary codes, inter-modality, intra-modality.

I. INTRODUCTION

UNI-MODAL biometrics generally identifies an individual
based on a single information source from his/her physio-

logical or behavioral characteristics, such as face [1], [2], palm-
print [3], gait and voice [4], etc. Unfortunately, these uni-modal
biometrics systems are often limited by a variety of problems
such as noise in sensed data, spoofing attacks, intra-class vari-
ations, and inter-class similarities [5]. Therefore, multimodal
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biometrics technologies, which can integrate more complemen-
tary information presented by multiple sources, have received
extensive attention in practical applications [6], [7].

Due to its universality and high accuracy, finger-based traits,
such as finger-vein (FV) [8], fingerprint [9], and finger-knuckle-
print (FKP) [10], [11], exhibit remarkable advantages in identity
authentication. Among them, finger-vein and finger-knuckle-
print patterns have plentiful texture features and are located
in close proximity of a finger. Over the past decade, various
finger-based multimodal recognition technologies have been
exhaustively investigated and become increasingly significant
because of their convenience [9], [13]. Generally speaking, a
completed multimodal biometrics system is composed of re-
gion of interest (ROI) extraction, feature representation, feature
fusion, and matching. The purpose of ROI extraction is to de-
tect a sub-region and remove the redundant information from
the complex background in the initial captured image. Feature
representation aims to extract discriminative features to make
the data from different classes more separable, and feature fu-
sion is to design effective strategies to integrate the characteris-
tics of multiple modalities. Matching is to classify the extracted
features by using an appropriate classifier. In such multimodal
biometrics systems, a suitable feature representation approach
and fusion strategy is extremely important for improving the
recognition performance. According to different fusion levels,
the fusion strategies can be roughly separated into pixel-level fu-
sion, feature-level fusion, score-level fusion, and decision-level
fusion [12]. It has been proven that the feature-level fusion is
capable of achieving more effective performances [14]. For ex-
ample, Yang et al. [15] presented a Weber’s law-based cross
section asymmetrical coding feature-level fusion algorithm, ob-
taining a satisfactory recognition performance in bi-modal finger
recognition.

Existing finger-based feature representation approaches can
be broadly grouped into holistic feature-based methods and lo-
cal feature-based methods. The holistic feature-based methods,
such as principal component analysis (PCA) [16] and linear
discriminant analysis (LDA) [17], usually convert the original
data into a low-dimensional subspace such that the projection
features have more discriminant capability. Representative
local feature-based descriptors include local binary pattern
(LBP) [18], and Gabor filters [19]. However, most of the local
feature-based descriptors are manual designed and generally
require much professional knowledge. Moreover, for different
modalities and different databases, the hand-designed feature
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Fig. 1. The basic idea of the proposed SDMFC framework for multimodal finger recognition. 1) For the training FV and FKP images, we first apply the LBP
template to extract the local difference matrices (LDMs). 2) Following this, SDMFC aims to jointly learn a set of projection functions that map and encode the
LDMs into discriminative binary codes. 3) Given the testing images, we also establish the LDMs and encode them to binary features via the pre-trained projection
matrix. 4) Lastly, we concatenate the feature histograms of each modality for matching.

descriptors may not be effective to extract the dominant features.
To this end, the convolutional neural networks (CNN)-based
methods have attracted much interest in finger biometric recog-
nition [20], [21]. Due to the fact that existing finger biometric
datasets have small sample sizes, the CNN-based methods
may be limited in practical applications. Therefore, most of
the CNN-based approaches usually explore to fine-tune the
network parameters by using a pre-trained model (such as VG-
GNet [22] and ResNet [23]) on their considered datasets [24].
Beyond that, the feature learning-based methods, including
subspace learning [25], [26], dictionary learning [27], [28],
sparse representation [29]–[31], hashing learning [32], [33],
and binary code learning [3], [11], [34] have been proposed
in recent years. Among them, the binary code learning-based
methods produce excellent performances in the field of finger
and other biometrics identification. For example, Liu et al. [35]
proposed a cross-modality binary code learning algorithm to
map features from multiple modalities into a new subspace with
compact binary codes. Fei et al. [36] developed a multi-view
feature learning method to project the texture and direction
features into binary codes, which achieved promising results in
finger-knuckle-print and palmprint recognition.

In order to perform multimodal finger recognition effectively,
it is critical and fundamental to solve the core research problems:
1) How to optimally represent the correlation between different
modalities? 2) How to model a data-independent feature learn-
ing framework to adaptively learn discriminant multimodal fea-
tures? With the demand for higher accuracy and the emergence
of complex data, these problems are becoming increasingly im-
portant and have not been solved properly in previous studies. In
this paper, we study these problems systematically and compre-
hensively, by proposing a sparse and discriminative multimodal
feature codes (SDMFCs) learning method to guide the feature
learning procedure adaptively. The proposed SDMFC can be
directly applied to various authentication applications, such as
bank ATM, access control, PC login, electronic payment, and so

on. To the best of our knowledge, this work is indeed ground-
breaking in trying to solve the above two problems in multimodal
finger recognition. We believe that this work will have a signif-
icant impact on the literature related to multimodal biometrics,
especially given that the real applications of authentication in
multimedia computing are booming.

Fig. 1 illustrates the flowchart of the proposed SDMFC
framework. Given the training finger-vein and finger-knuckle-
print samples, we first established the local difference matrices
(LDMs) of each modality by using the LBP template. After-
wards, we integrated the LDM features of each modality as the
input of SDMFC for training. Next, the proposed SDMFC jointly
learned a set of linear mapping functions that project and encode
the raw multimodal features into binary codes such that the pro-
jected features are more compact and discriminative. At last, we
calculated the feature histograms of each modality and concate-
nated them together to form the final feature representation. In
the training stage, the projection functions are learned and saved
in advance, and can be directly used to encode the test samples in
the testing stage. For the given test samples, we first calculated
the LDMs and then mapped them into compact binary codes by
the pre-learned projection matrix. Following this, we computed
the block-wise histograms of these test samples and integrated
them for matching.

Overall, the main contributions of our work are highlighted
as follows:
� A novel sparse and discriminative multimodal feature

learning method with shared structural space is proposed
to jointly learn compact binary codes for multimodal fin-
ger recognition. The latent correlation between the multi-
modal features is captured by narrowing the distance of the
inter-modality samples with the same semantic label.

� The proposed SDMFC aims to transform finger features
from multiple modalities to a common space, and per-
form efficient feature fusion in the projection space to
exploit the common and specific information between
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the inter-modality and intra-modality samples. Exper-
imental results show that integrating finger-vein and
finger-knuckle-print features can significantly boost the
recognition performance.

� We conducted extensive experiments on three widely used
multimodal finger datasets where the results demonstrate
the effectiveness of the proposed method in terms of both
accuracy and efficiency. Without loss of generality, the pro-
posed SDMFC can be easily extended and applied in other
multi-biometrics tasks, such as face and fingerprint fusion,
palmprint and palm vein fusion, to name a few.

The paper is organized as follows: In Section II, we briefly re-
view the binary features-based methods and multimodal recog-
nition methods. Section III presents the proposed SDMFC and
its optimization process in detail. The obtained experimental
results are discussed and analyzed in Section IV. Finally, the
conclusions are drawn in Section V.

II. RELATED WORK

A. Binary Features Representation

Due to its great robustness to local changes, such as illumina-
tion changes and rotation variations, the binary features-based
representation methods have gained tremendous research mo-
mentum. Representative binary features representation methods
including LBP [18] and its variant [37], as well as local graph
structure-based (LGS) [38], have produced outstanding results
in finger biometric recognition. While binary features such as
LBP and LGS-like features have been used in finger-based bio-
metric recognition, most of them are hand-crafted and require
strong prior knowledge. In recent years, works that utilize binary
code learning for feature representation have gradually become
a research hotspot. For example, Lu et al. [39] introduced a com-
pact binary face descriptor to automatically learn binary features
for facial recognition. Afterwards, in [40], a local binary feature
learning method was explored to jointly learn a set of projection
functions to transform the facial data into discriminative binary
codes. Fei et al. [41] developed a discriminant direction binary
palmprint descriptor (DDBPD) that converts the palmprint di-
rection features into binary features. These show that the binary
code learning-based approaches have obtained attractive recog-
nition results in biometrics recognition tasks. In this work, we
propose to adaptively learn a common latent space and project
the multimodal features into discriminative binary codes.

B. Multimodal Analysis

Multimodal data from multiple sources, such as images, text,
and video, are semantically correlated and provide complemen-
tary information to each other [42], [43]. With the rapid devel-
opment of multimedia information, such multimodal systems
combining heterogeneous data from various sensors have been
extensively explored. For example, Zhang et al. [44] integrated
the inter-correlations between images and text information for
marketing intent analysis. Elmadany et al. [7] proposed to learn a
discriminative common space between two different modalities
from RGB videos for human action recognition. Wang et al. [33]

introduced a multimodal hashing method to transform heteroge-
neous data into latent semantic spaces for cross-modal similar-
ity search tasks. Although multimodal methods have achieved
impressive performances in various scenarios, joint multimodal
learning has been rarely addressed in multimodal finger recog-
nition, with a few exceptions [12], [13]. Li et al. [12] proposed a
joint feature learning (JDFL) method to describe the correlations
among multiple modalities for multimodal finger recognition.
Furthermore, a sparse coding based feature learning algorithm,
called JDSC, was presented in [13] and applied for hand-based
multimodal recognition.

Recently, a variety of multimodal finger recognition technolo-
gies have been proposed and widely used in identity authentica-
tion scenarios. For example, Yang et al. [45] proposed a com-
parative competitive coding-based (Compcode) fusion method
that integrated the finger-vein and finger-dorsal-texture features.
Yang et al. [46] developed a cancelable multi-biometrics sys-
tem by extracting the minutia-based fingerprint features and
the image-based finger-vein features, respectively. In addition,
Zhang et al. [47] established a graph structure based feature-level
fusion model (Graph_fusion) to characterize the tri-modal fin-
ger images. A generalized symmetric LGS (GSLGS) descrip-
tor was designed in [38] to independently explore the tri-modal
finger features and perform fusion by concatenating the his-
tograms of each modality. Previous studies in the field of mul-
timodal finger recognition are plagued by problems that have
not been addressed properly. 1) Most of the existing methods
usually focus on extracting information from multiple modali-
ties separately, while the latent common information among the
inter-modality samples from the same class is usually ignored.
2) Most of the conventional multimodal recognition methods are
hand-designed. However, relying solely on the features extracted
by hand-craft may be ineffective at representing the dominating
discrimination of multiple modalities. Hence, how to optimally
express the common and specific information between multi-
ple modalities remains a main challenge in multimodal biomet-
rics tasks. To address these problems, we present a sparse and
discriminative multimodal feature codes (SDMFCs) learning
method, which considers the relationship of the intra-class and
inter-class data, as well as the association of the intra-modality
and inter-modality data.

Note that although DDBPD, JDFL, JDSC, and SDMFC all use
feature learning in its learning procedure, their main concepts
are different. First, unlike DDBPD that learns features from a
single modality, SDMFC jointly utilizes the intra-modality and
inter-modality data from multiple modalities along with their
label information. Secondly, different from JDFL and JDSC
that perform feature learning from the direction information,
SDMFC learns multimodal features from the informative local
texture features. Secondly, SDMFC jointly learns a common
projection matrix for all modalities, while JDSC learns different
projection matrices for different modalities. In addition to the
intra-modality and inter-modality constraints in JDFL, SDMFC
also combines a projection error constraint and a sparse norm
constraint to guarantee the learned binary features is more dis-
criminative and sparse. Therefore, the proposed SDMFC is dif-
ferent from other multimodal feature learning methods.

Authorized licensed use limited to: Universidade de Macau. Downloaded on March 10,2023 at 09:38:20 UTC from IEEE Xplore.  Restrictions apply. 



808 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

Fig. 2. An illustration to show how to extract the local difference matrix.

III. SDMFC-BASED MULTIMODAL FINGER RECOGNITION

In this section, we present the details of the proposed SDMFC.
First, a local difference matrix (LDM) is formed to describe
the local texture features of finger images. Then, the overall
objective function of SDMFC and the theoretical analysis are
given. Finally, a fusion strategy based on SDMFC is developed
for multimodal feature description.

A. Local Difference Matrix

As is well known, both finger-vein and finger-knuckle-print
patterns contain plentiful and distinctive texture features. As one
of the most powerful texture feature descriptors, LBP captures
the signs among the center pixel and the neighbors. Based on the
LBP template, we form a local difference matrix to describe the
local texture features of the finger images. Specifically, for each
center pixel of a finger-vein (or finger-knuckle-print) image, we
selected the neighboring pixels in the local patch with the size
of (2R+1)×(2R+1), where R is the neighborhood radius. After-
wards, we calculate the difference responses between the central
pixel and its neighborhood pixels in sequence. Fig. 2 describes
how to extract the LDM from a finger-vein image. As shown
in Fig. 2, R is selected as 2 and we selected eight neighboring
pixels through experiments to form LDM, such that LDM is
composed of an 8-dimensional feature vector for each pixel.

B. Learning of SDMFC

Let X = [X1,X2, . . .,Xm] is a set of multimodal training
data, where Xm = [xm,1, xm,2, . . ., xm,N ] ∈ Rk×N (1 ≤ m ≤
M) be the data matrix of the m-th modality and xm,n(1 ≤ n ≤
N) is a LDM extracted from a finger image. M is the total num-
ber of modalities and N denotes the total number of training
samples. k represents the dimension of LDM. Table I summa-
rizes the notations used and its corresponding descriptions.

In this subsection, we design a linear sparse and discrim-
inative feature learning method, aiming to project the LDMs
of multimodal finger images into a common subspace. Sup-
pose that SDMFC learns k mapping functions, which project
eachxm,n into a binary matrix ym,n = [ym,n,1, . . ., ym,n,k]with
ym,n,k ∈ {0, 1}k×1. Then, the k-th mapping function is defined
as follows:

ym,n,k = sgn(aTk xm,n) (1)

where ym,n,k represents the learned k-th binary code, sgn(·) is
the element-wise sign function, ak denotes the learned projec-
tion vector of the k-th mapping function.

TABLE I
THE NOTATIONS USED AND ITS CORRESPONDING DESCRIPTIONS

For the projected features, we minimize the quantization error
to preserve the raw semantic information. Then, we enforce the
sparse norm constraint on the projection matrix, such as l1-norm
and l2,1-norm, to make the mapped features more sparse. For the
intra-modality data, the distance of the within-class samples is
minimized, at the same time, the distance of the between-class
samples is maximized. Lastly, since the inter-modality samples
from the same class have the same semantic label, the distance
between them is minimized in the common projection space.
Therefore, the overall objective function can be formulated as:

min
ak

M∑
m=1

N∑
n=1

K∑
k=1

‖ym,n,k − aTk xm,n‖2 + λ1‖ak‖2,1

+ λ2(
∑
i,j∈Γ

‖ym,i,k − ym,j,k‖2 −
∑
i,j∈Λ

‖ym,i,k − ym,j,k‖2)

+ λ3‖ym,n,k − ym+1,n,k‖2, subject to aka
T
k = 1k×1,

(2)
where Γ denotes the sub-dataset containing the within-class im-
ages, and Λ is the sub-dataset that consists of the between-class
images. If i and j belong to the same class, they are assigned
to Γ, otherwise, they are assigned to Λ. Due to the fact that the
l2,1 norm has a better row-sparsity and efficient feature selec-
tion property than the l1 norm, the l2,1 norm is used here, which
can make the learned projection matrix have better interpretabil-
ity [17].

Let A = [a1, a2, . . ., ak] be the projection matrix, then, the
LDM features of multiple modalities can be projected into Y as
follows:

Y = sgn(ATX) (3)
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where Y represents the learned binary features of all training
images. Following this, the objective function of (2) can be re-
written as follows:

min
A

M∑
m=1

‖Y −ATX‖2F + λ1‖A‖2,1

+ λ2(
∑
i,j∈Γ

‖Ym,i −Ym,j‖2F −
∑
i,j∈Λ

‖Ym,i −Ym,j‖2F )

+ λ3

N∑
n=1

‖Ym,n −Ym+1,n‖2F , subject to AAT = I,

(4)
where X = [X1,X2], and Y = [Y1,Y2]. Ym,n is the projected
features of the n-th sample from the m-th modality, ‖ · ‖F
denotes the lF -norm (‘Frobenius’ norm), λ1, λ2, and λ3 are
three non-negative balance parameters of the corresponding con-
straints.

C. SDMFC Optimization

To simplify the presentation, in this paper, we first explore the
application of SDMFC to bi-modal biometric data. Hence, M is
set to 2 in (4). Without loss of generality, our proposed SDMFC
can be easily extended to cases with more biometric modali-
ties with rich texture features. The overall objective function of
SDMFC combined with these feature learning terms is defined
as

min
A

F(A) = min
A

F1 + λ1F2 + λ2F3 + λ3F4 (5)

where F1 is the quantization error constraint, F2 denotes the
sparse norm constraint, F3 is the intra-modality discriminative
constraint, and F4 represents the correlation constraint of the
inter-modality samples from the same class.

Specifically, the first constraint of (5) can be solved as follows:

F1 = ‖Y −ATX‖2F
= Tr((Y −ATX)(Y −ATX)T )

= Tr(ATXXTA− 2YXTA). (6)

The third constraint can be calculated in a matrix form as
follows:

F3 =

2∑
m=1

∑
i,j∈Γ,Λ

‖(ATXm,i −ATXm,j)S‖2F

= Tr(ATXSXTA) (7)

where S ∈ RN×N denotes a label matrix indicating the category
relationships between the within-class and between-class sam-
ples. If two images belong to the same class, S is equal to 1,
otherwise, S is equal to −1.

The fourth constraint can be written as:

F4 = ‖ATX1 −ATX2‖2F
= Tr(ATX1X1

TA− 2ATX1X2
TA+ATX2X2

TA)

= Tr(AT (X1X1
T − 2X1X2

T +X2X2
T )A). (8)

Based on the above derivation of (6), (7), and (8), we can
obtain the following:

F(A) = Tr(ATXXTA− 2YXTA) + λ1‖A‖2,1
+ λ2Tr(A

TXSXTA) + λ3Tr(A
T (XXT − 2X1X2

T )A)

= Tr(ATQA)− 2Tr(YXTA) + λ1‖A‖2,1
(9)

with

Q = XXT + λ2XSXT + λ3(XXT − 2X1X2
T ) (10)

At last, the projection matrix A can be alternately solved by
minimizing the following problem:

A∗ = argmin
A

Tr(ATQA)− 2Tr(YXTA) + λ1‖A‖2,1
(11)

Let the derivative of F(A) with respect to A be 0, then we
obtain

∂F(A)

∂A
= 2QA− 2XYT + λ1UA (12)

where U is defined as U=

⎡
⎢⎣

1
‖a1‖2 . . . 0

0 . . . 0

0 0 1
‖ak‖2

⎤
⎥⎦ , ak is the k-th

row of A, and A=

⎡
⎢⎣
a1

. . .

ak

⎤
⎥⎦ . Here, A can be calculated by the

following

A = (Q +
λ1

2
U)−1XYT. (13)

D. SDMFC-Based Recognition

After the mapping functions are learned, the LDM of each
modality can be transformed intok-bit binary codes. To integrate
the region-specific of the learned multimodal binary features, we
develop a SDMFC-based histogram representation approach for
recognition. The detailed procedure of the SDMFC-based recog-
nition is shown in Fig. 3. Specifically, for the learned binary
codes, we first calculate the real value of each pixel and obtain
the feature map of each modality by weighting and summing
the binary codes (see Fig. 3(a) and (b)). Afterwards, the learned
feature maps are uniformly divided into non-overlapping divi-
sions with 16×16 size. Section IV-E analyzes the selection of
sub-block size. For the sub-blocks in the same position, we in-
tegrate the histograms together to form the local feature vec-
tors (see Fig. 3(c)). At last, the final feature histogram is gen-
erated by concatenating the local histograms of each sub-block
for matching (see Fig. 3(d)). In the matching phase, the fea-
ture histograms of two samples are matched by calculating the
intersection coefficient [48] to determine the similarity. The pro-
posed SDMFC-based recognition framework is summarized in
Algorithm 1.
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Algorithm 1: Framework of SDMFC
Training stage
Input: training samples X=[X1, X2], parameters λ1, λ2,

λ3, iteration number I , convergence parameter σ.
Output: linear projection matrix A.
1: Forming the LDMs of X .
2: Initialize A with a random matrix.
3: Learning the projection matrix A based on the LDMs.

for i=1 to I
Update A by using Eq. (13);

if ‖A(i) −A(i−1)‖2 < σ break;
end

Testing stage
Input: testing samples X ′=[X ′

1, X ′
2], learned projection

matrix A.
Output: the predicted class of the test image.
4: Forming the LDMs of X ′.
5: Calculate binary code by Y ′=sgn(ATX ′).
6: Obtain the feature map and its feature histogram.
7: Predict the class of test image.

Fig. 3. The detailed procedure of the SDMFC-based recognition. (a) The
learned binary codes of the two modalities. (b) These binary codes from each
modality are combined into a real value. (c) The feature map of each modality is
divided into equally sized sub-blocks. (d) The local feature histograms of each
division are calculated and concatenated to establish the final histogram.

IV. EXPERIMENTS

To evaluate the performance of our proposed SDMFC, we
conducted multimodal identification and verification experi-
ments with several state-of-the-art multimodal finger recogni-
tion approaches on three multimodal finger databases.

A. Databases

In this section, we used an existing multimodal finger
database, Data-multi [12], and set up two multimodal finger
databases, SD-PolyU and USM-PolyU.

Data-multi database is a popular multimodal finger database,
which captured finger-vein (FV) and finger-knuckle-print (FKP)
patterns of a subject, simultaneously. The Data-multi database
consists of a FV database (Data-fv) and a FKP database (Data-
fkp), which in total contains 11,700 images collected from 585
fingers. Specifically, each finger respectively provided 10 FV

Fig. 4. Some examples of finger ROI images from a subject on the three
multimodal finger databases. (a) Data-multi, (b) SD-PolyU, (c) USM-PolyU.

images and 10 FKP images. All of the finger ROI images are
resized into 90 × 200 pixels in this database.

SD-PolyU database is formed through two commonly used
uni-modal finger databases, SDUMLA-fv [49] and PolyU-
fkp [10]. SDUMLA-fv database contains a total of 636 classes
captured from 106 volunteers. Each volunteer provided six fin-
gers of both hands, and each finger was collected six times.
Therefore, there are totally 3,816 finger-vein images in the
SDUMLA-fv database. For the captured original finger-vein im-
ages, we extract the ROI using the inter-phalangeal joint prior
method [8], where the size of the ROI image is 110 × 220 pix-
els. PolyU-fkp database was formed using 660 classes from 165
individuals collected by two separate sessions. Each individ-
ual collected four fingers, including the index and middle fin-
gers of the right and left hands, and each finger provided 12
finger-knuckle-print images. To ensure that the categories and
sample sizes in this multimodal database are consistent, we se-
lected the first 500 classes and 6 images of each class to setup
the used SD-PolyU database.

USM-PolyU database consists of two publicly available uni-
modal finger databases, FV-USM [50] and PolyU-fkp [10].
FV-USM database involves 492 classes from 123 volunteers
comprising of 83 males and 40 females. Every subject provided
four fingers and each finger was captured six times in one ses-
sion. Each individual participated in two sessions, separated by
more than two weeks. For these two unimodal finger databases,
the first 400 subjects and twelve samples each subject were se-
lected to setup the USM-PolyU database.

Fig. 4 shows some ROI images selected from the three
multimodal finger databases. From Fig. 4, we can clearly see
that these finger images have obvious intra-class variations
in illumination, rotation, and translation, especially in the
SD-PolyU and USM-PolyU databases. In order to perform
the following feature learning, the ROI of the finger images
need to be cropped. In this paper, we uniformly resized the
finger images into 45×100 pixels in the Data-multi database,
55×110 pixels in the SD-PolyU database, and 50×150 pixels
in the USM-PolyU database, respectively.

B. Evaluation Metrics and Baselines

Two common identification performance metrics, average
accuracy (AVE) and standard deviation (STD) are adopted here.
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Given a list of accuracy results, its AVE and STD are defined
as follows:

AV E =
1

T

T∑
t=1

(ACC)t (14)

STD =

√√√√ 1

T

T∑
t=1

(xi − x)2 (15)

with

ACC =
number of correctly classified samples

total number of samples
(16)

where xi denotes the i-th test accuracy and x is the average
test accuracy. T represents the total number of tests, in this
paper, T is set to 10. Clearly, the larger the AVE is, the greater
the recognition result. Also, the smaller the STD is, the better
the stability. Furthermore, we also employed two other types
of verification performance metrics including equal error rate
(EER), and the running time of feature extraction indicating the
computational efficiency. Generally speaking, a smaller EER
and time cost represent a better verification performance.

To evaluate the performance of the proposed SDMFC, we
compared it with several competitors: binary features-based
methods (LBP [18], Compcode [45], and GSLGS [38]), sparse
representation-based method (E-SRC [30]), deep learning-based
methods (VGGNet [22] and ResNet [23]), multimodal finger
recognition methods (Compcode [45] and Graph_fusion [47]),
as well as the state-of-the-art methods (and DDBPD [41],
JDFL [12], and JDSC [13]). LBP is a typical binary features
descriptor to express the texture features of an image. E-SRC
and DDBPD are two recent feature learning methods for palm-
print recognition. VGGNet and ResNet are two popular deep
learning models that are widely used in image classification and
biometric recognition tasks. In this paper, we utilized these meth-
ods to extract the multimodal finger features, separately, before
concatenating them at the feature-level for multimodal recogni-
tion. Compcode, GLGS, Graph_fusion, JDFL, and JDSC were
originally proposed for multimodal finger recognition. For the
comparison methods, we implemented them and selected the
optimal parameters to obtain the best results. For the proposed
SDMFC, we empirically set λ1 = 1, λ2 = 10, and λ3 = 0.01. We
present an empirical analysis of the parameter sensitivity, which
verifies that SDMFC can achieve the best performance under a
suitable parameter setting. Section IV-E details the analysis of
the parameters setting for the proposed SDMFC.

C. Results and Analysis

1) Finger Identification: In the following experiments, we
randomly selected one sample from each modality of each class
for training, and used the remaining samples for testing. Ta-
ble II depicts the identification results (average accuracy ± stan-
dard deviation) of all methods on the three multimodal finger
databases. According to the experimental results, we can observe
that the proposed SDMFC obtains a much better performance
even in case that a training sample is used. Specifically, the aver-
age accuracy of SDMFC achieves 99.8763% on the Data-multi

TABLE II
THE AVE AND STD RESULTS (%) OF DIFFERENT METHODS ON THE THREE

MULTIMODAL DATABASES

database, 97.4240% on the SD-PolyU database, and 97.7205%
on the USM-PolyU database. It is worth noting that the proposed
SDMFC outperforms most comparison methods, while obtain-
ing a comparative performance with the state-of-the-art method
of JDSC. This result is mainly due to the fact that SDMFC can au-
tomatically learn more discriminative multimodal features than
the hand-crafted methods as well as fully utilize the specific and
common information among multiple modalities. In addition,
we tested the effect of different neighborhood radius sizes (R
= 2, 3, or 4) for identification. From Table II, we can clearly
see that the identification accuracy of SDMFC can be further
improved when the neighboring radius are set as 4. Further-
more, the accuracy improvement of the proposed SDMFC on
the SD-PolyU and USM-PolyU databases is much greater than
that of the Data-multi database. The main reason is that these
finger images in the Data-multi database are well-aligned with
small illumination changes and rotation variations. This further
implies that SDMFC is effective and robust on these databases
with obvious illumination and rotation changes.

2) Finger Verification: Furthermore, we followed the afore-
mentioned methods and conducted multimodal finger verifica-
tion experiments to evaluate the proposed SDMFC. In this sub-
section, we compared each sample with all other samples and
calculated the FAR and FRR of each pair of samples based on
the similarity of two matched samples. Fig. 5 shows the re-
ceiver operating characteristic (ROC) curves of all methods on
the three multimodal finger databases, respectively. From these
curves one can find that our SDMFC consistently achieves the
lowest EER than the LBP-like descriptor and the state-of-the-art
multimodal finger recognition methods. Although the identifi-
cation performance of the proposed method is slightly inferior
to JDSC, its verification performance outperforms JDSC. This is
mainly due to the power of the sparse constraint, which makes the
learned projection features more sparse and discriminative. This
further shows that the proposed SDMFC can fully represent the
available information to improve the recognition performance
and has the merits of extensive generalization.

D. Computational Efficiency Comparison

The proposed SDMFC optimization problem can be solved
by iteratively updating the variableA, where the raw multimodal
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Fig. 5. The ROC curves of different methods on the three multimodal finger databases. (a) Data-multi. (b) SD-PolyU. (c) USM-PolyU.

TABLE III
THE FEATURE EXTRACTION TIME (S) OF DIFFERENT METHODS ON THE THREE

MULTIMODAL DATABASES

features are encoded into binary features by the pre-learned pro-
jection matrix. The coding process only involves matrix calcula-
tion and is very fast. Therefore, the computational complexity of
SDMFC mainly depends on the learning of the projection matrix
A. Given the iteration number I , the computational complexity
of updating A is O(Ik3).

To further test the computational efficiency of our proposed
method, we compared the feature extraction time on the three
multimodal finger databases. Table III shows the running time
of one sample for feature extraction. From Table III, we can
find that VGGNet requires the most time for feature learning.
More remarkable, the binary features-based approaches, includ-
ing LBP and JDFL, have higher computational efficiency than
the other compared methods. This is because these types of
methods transform the raw features into binary features, which
can effectively reduce the computation time compared with oth-
ers. Moreover, SDMFC achieves a much better computational
efficiency than the other hand-crafted methods of Compcode and
GSLGS. We believe this to be the case since the projection func-
tions of the proposed method are first learned and saved through
the training samples, and then directly used to extract the fea-
tures of the testing samples, thereby greatly reducing the time
cost. In addition, the proposed SDMFC jointly learns the multi-
modal features and projects it into discriminant binary codes by
feature mapping, which can significantly improve the computa-
tional efficiency. Therefore, the proposed SDMFC possesses a
competitive computational speed as well as a better recognition
accuracy compared with the other methods.

E. Parameters Sensitivity Analysis

λ1, λ2 and λ3 are three trade-off parameters (refer to (4)
of the proposed SDMFC that leverage the importance of each

TABLE IV
THE AVERAGE IDENTIFICATION ACCURACY (%) VERSUS PARAMETERS λ1

WHEN λ2 AND λ3 ARE FIXED

constraint. To select the suitable parameters of SDMFC, we
evaluated the effect of these variables on the three multimodal
finger databases and compared the AVE results by setting dif-
ferent parameters. The analysis of the parameters is conducted
by varying one variable value at a time and fixing the value
of the other variables. Specifically, we firstly fixed λ2 = 10,
λ3=0.01, and parameterized λ1 by a discrete set [0.0001, 0.001,
0.01, 0.1, 1, 10, 100, 1000, 10000]. Then, we fixed λ1=1,
λ3=0.01, and parameterized λ2. Lastly, we fixed λ1=1, λ2=10,
and parameterized λ3. Table IV reports the corresponding iden-
tification accuracy versus parameter λ1 on the three multimodal
finger databases. It can be seen from Table IV that SDMFC
conformably achieves a best identification performance when
λ1=1. In the Data-multi database, the identification accuracy
rate varies slightly with the change of variable λ1. In the
SD-PolyU and USM-PolyU databases, the identification accu-
racy accelerates with the increasing values of λ1 until λ1=1, at
which point there is no more increase. The main reason is due to
the fact that the small values of λ1 limit the contribution of the
sparse constraint term in SDMFC. Consequently, the projection
matrix has a low discriminative capacity. As the value of λ1

increases, the sparse constraint term has more power, thereby
bringing a better identification accuracy.

The parameters λ2 and λ3 of SDMFC are used to balance
the two constraints of the intra-modality discriminant term and
the inter-modality correlation term. Fig. 6 illustrates the effect
of different λ2 and λ3 for SDMFC, respectively. By observ-
ing these identification results from Fig. 6(a), we can see that
SDMFC achieves a stable identification accuracy when λ2 is
chosen between [0.01, 10]. The value of λ2 that is too large or too
small will degrade the identification performance of SDMFC.
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Fig. 6. The average identification accuracy versus parameters λ2 and λ3. (a)
Different λ2 values. (b) Different λ3 values.

Fig. 7. The ROCs curves of different division block sizes on the (a) SD-PolyU
and (b) USM-PolyU.

This demonstrates that the intra-modality complementary learn-
ing can improve the performance of SDMFC. From Fig. 6(b),
we can find that the recognition performance is relatively sta-
ble on the Data-multi database when λ3 is located in the range
of [0.0001, 10000]. As for the SD-PolyU and USM-PolyU
databases, as λ3 increases, the average accuracy of SDMFC
slightly increases as well at first before a decrease in accuracy
when λ3 >0.01. One possible reason is that the finger images in
the Data-multi database have smaller within-class changes than
the other databases, making the recognition accuracy insensitive
to changes in the variables.

In the Section III-D, the learned feature maps are uniformly
divided into non-overlapping sub-blocks. Hence, the size of divi-
sion blocks also affects the recognition performance of the pro-
posed method. To choose the appropriate division block sizes,
we compared the EERs of different block sizes in the feature
maps. Fig. 7 depicts the ROC curves of different division block
sizes on the SD-PolyU and USM-PolyU databases, respectively.
From Fig. 7, we can observe that the division block with a size
of 16×16 obtains the lowest EER on the two multimodal finger
databases.

F. Ablation Study

For the proposed SDMFC, we combined the sparse constraint
term, intra-modality discriminative term, and inter-modality
correlation term for multimodal feature learning. To compre-
hensively evaluate the discriminative ability of SDMFC, we
performed an ablation study for the three constraints on the
SD-PolyU and USM-PolyU databases. In this subsection, the
experiment is carried out by setting the parameters λ1, λ2, and λ3

to 0, respectively. Table V lists the average identification accu-
racy resulting from different constraints. It can be clearly seen

TABLE V
INFLUENCES OF THREE CONSTRAINTS ON THE SD-POLYU AND USM-POLYU

DATABASES

TABLE VI
THE IDENTIFICATION RESULTS (%) OF THE PROPOSED METHOD ON THE FIVE

UNI-MODAL DATABASES

from Table V that without any of these three constraints, the iden-
tification performance degrades. This result demonstrates that
the three constraint terms of SDMFC contribute to improving
the identification performance. Significantly, the relative contri-
butions of different constraints are different. In detail, the ac-
curacy of SDMFC without inter-modality constraint (λ3=0) is
lower than that of without intra-modality constraint (λ2=0). This
indicates that the inter-modality correlation term has more in-
fluence than the intra-modality discriminant term overall on the
identification performance of SDMFC.

In addition, to verify the effectiveness of multimodal features
in SDMFC, we conducted an ablation study on uni-modal and
multimodal finger recognition. We set λ1=1, λ2=10, and λ3=0
to learn the finger features of a single modality. Table VI lists
the identification results on the five uni-modal finger databases.
From Table VI, we can find that the identification accuracy of
SDMFC still achieves 99.2199% on Data-fv and 98.3514% on
Data-fkp, respectively. This verifies the superior feature repre-
sentation ability of the proposed method. Moreover, by com-
paring uni-modal and multimodal recognition results, we can
observe that the multimodal finger recognition always achieves
a better accuracy than uni-modal finger recognition. The main
reason is that multimodal recognition can fully take into ac-
count the discrimination and latent relationships among different
modalities. This further demonstrates the feature representation
capability of multimodal recognition in SDMFC.

V. CONCLUSION

In this paper, we explored a sparsity and discriminant fea-
ture codes learning approach and applied it for multimodal fin-
ger recognition. Different from most conventional multimodal
biometrics technologies that focused on extracting information
from multiple modalities equally and independently, our pro-
posed SDMFC jointly learned the specific and common infor-
mation among the inter-modality and intra-modality samples.
More importantly, our proposed SDMFC adaptively learned a
bank of collective mapping functions to project different modal-
ities data into a latent common subspace. For the procedure of
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SDMFC, we first established a local difference matrix to de-
scribe the rich texture information of the given finger images.
Then, we projected the multimodal features into sparse and dis-
criminative binary codes by the pre-trained mapping functions.
Lastly, we developed a SDMFC-based block-wise histogram
descriptor for feature representation. Extensive experimental re-
sults on three multimodal finger databases demonstrated that the
proposed SDMFC achieved a state-of-the-art recognition per-
formance for multimodal finger recognition. The results further
show the effectiveness of the binary code learning-based meth-
ods in multimodal biometric recognition.

In future work, we will explore the application of SDMFC
in other modalities, including face, iris, fingerprint, and palm
vein, etc. Furthermore, we will explore a non-negative low-rank
feature learning approach for multimodal biometric recognition.
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