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Abstract— Decoupled Few-shot learning (FSL) is an effective
methodology that deals with the problem of data-scarce. Its
standard paradigm includes two phases: (1) Pre-train. Generating
a CNN-based feature extraction model (FEM) via base data.
(2) Meta-test. Employing the frozen FEM to obtain the novel
data features, then classifying them. Obviously, one crucial factor,
the category gap, prevents the development of FSL, i.e., it is
challenging for the pre-trained FEM to adapt to the novel class
flawlessly. Inspired by a common-sense theory: the FEMs based
on different strategies focus on different priorities, we attempt to
address this problem from the multi-view feature collaboration
(MVFC) perspective. Specifically, we first denoise the multi-view
features by subspace learning method, then design three attention
blocks (loss-attention block, self-attention block and graph-
attention block) to balance the representation between different
views. The proposed method is evaluated on four benchmark
datasets and achieves significant improvements of 0.9%-5.6%
compared with SOTAs.

Index Terms— Decoupled few-shot learning, feature extraction
model, loss-attention block, self-attention block.

I. INTRODUCTION

RECENTLY, machine learning has achieved satisfactory
results and shown great potential in addressing computer

vision tasks, whether in the field of person re-identification [1],

Manuscript received 28 July 2022; revised 16 October 2022 and
25 October 2022; accepted 16 November 2022. Date of publication 21 Novem-
ber 2022; date of current version 5 May 2023. This work was supported by
the National Natural Science Foundation of China under Grant 62072468; in
part by the Natural Science Foundation of Shandong Province, China, under
Grant ZR2019MF073; in part by the Fundamental Research Funds for the
Central Universities, China University of Petroleum (East China), under Grant
20CX05001A; in part by the Major Scientific and Technological Projects
of CNPC under Grant ZD2019-183-008; in part by the Creative Research
Team of Young Scholars at Universities in Shandong Province under Grant
2019KJN019; and in part by the State Key Laboratory of Shale Oil and Gas
Enrichment Mechanisms and Effective Development under Grant 33550000-
22-ZC0613-0243. This article was recommended by Associates Editor
Y. Wu. (Shuai Shao and Lei Xing are co-first authors.) (Corresponding
authors: Yanjiang Wang; Baodi Liu.)

Shuai Shao is with the College of Control Science and Engineering, China
University of Petroleum (East China), Qingdao 266580, China, and also
with the Zhejiang Laboratory, Research Center for Applied Mathematics and
Machine Intelligence, Research Institute of Basic Theories, Hangzhou 311100,
China.

Lei Xing is with the College of Oceanography and Space Informatics, China
University of Petroleum (East China), Qingdao 266580, China.

Yanjiang Wang, Baodi Liu, and Weifeng Liu are with the Col-
lege of Control Science and Engineering, China University of Petro-
leum (East China), Qingdao 266580, China (e-mail: yjwang@upc.edu.cn;
thu.liubaodi@gmail.com).

Yicong Zhou is with the Department of Computer and Information Science,
Faculty of Science and Technology, University of Macau, Macau, China.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TCSVT.2022.3224003.

Digital Object Identifier 10.1109/TCSVT.2022.3224003

[2], [3], or image classification [4], [5], [6], [7], [8], image
segmentation [9], [10], [11], [12], [13] it has reached or even
exceeded the level of human beings. Its success attributes to
many factors, and the most indispensable one is a general
assumption: we have enough labeled training data. Without
it, the performance will drastically decline. However, this
assumption often goes against the real application scenario,
that is, collecting a large number of labeled samples is
time-consuming or even impossible. Therefore, few-shot learn-
ing (FSL) [14], [15], [16], [17], [18], [19], [20] and zero-shot
learning (ZSL) [21], [22], [23], [24], [25], [26], [27] as the
pioneer methods to address the lack of labeled samples for
each category have aroused widespread concerns. In this paper,
we mainly focus on the few-shot learning.

In popular FSL-based classification tasks, the framework
consists of two phases: (1) Pre-train. Using the base data
to train a convolutional neural network (CNN) based feature
extraction model (FEM). (2) Meta-test. Applying the FEM
to extract the feature of novel data (with extremely limited
labeled samples), then designing a classifier for recognizing
them. It is worth noting that novel data categories are entirely
different from the base data.

Through the above description, we conclude that one of
the crucial problems preventing the development of FSL is
the category gap between base and novel data. It seems that
fine-tuning the FEM in the meta-test phase will solve the
problem. But in fact, due to the scarcity of labeled data,
fine-tuning can negatively affect the results (demonstrated
in [28] and [29]). Therefore instead of the fine-tuning strategy,
researchers prefer decoupling the FSL framework, that is,
freezing the parameters of FEM after pre-training and directly
using it to extract novel features in the meta-test phase. How to
improve the cross-category representation ability in decoupled
FSL (under decoupling constraints) is an urgent problem that
needs to be solved at present.

Recent efforts on addressing this challenge focus on
constructing a more robust and adaptive FEM that can
directly generate better features for novel data, including
self-supervision based FEMs [30], [31]; knowledge distillation
based FEMs [32], [33]; meta-learning based FEMs [34], [35],
etc. While the approaches mentioned above, merely weaken
the negative influence to a certain extent, and the FSL commu-
nity requires some dedicated methodologies for this specific
problem.

We believe that: different feature extraction models (FEMs)
possess distinct feature priorities, leading to that the feature
distribution of the same data under different views has a certain
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TABLE I

SOME IMPORTANT ABBREVIATIONS AND NOTATIONS

Fig. 1. Feature distribution of the same data under different views.

deviation, as shown in Figure 1. It’s not hard to infer that
we can obtain a better representation if we conduct multiple
views of features collaboration. An example is illustrated in
Figure 3. However, two main obstacles hinder the idea of
multi-view feature collaboration (MVFC): (1) Considering that
the multi-view features extracted from different independent
FEMs are in separated spaces, they have noises when fusing
these features. Therefore, the first obstacle is how to find an
appropriate way to denoise the multi-view features. (2) During
the fusion process, the importance of different features will
be different. Therefore, the second obstacle lies in how to
reasonably assign effective joint weights to multi-view features
to maximize their representation capabilities.

To alleviate the first obstacle, we introduce a subspace learn-
ing strategy, which can transform the initial multi-view fea-
tures into an integrated space to reconstruct the denoised and
low-dimensional representation (see Section IV-B). To address
the second obstacle, we design three different attention blocks
for each view of the feature, which could automatically
update the weights of the combination. To be more specific,
the first one is the Loss-Attention block, which uses each
view’s objective function loss to achieve the corresponding
weights (see Section IV-C.1), and we dub the Loss-Attention
based Multi-View Feature Collaboration as LA-MVFC; The
second one is the Self-Attention block, referring to [36] to
get the weights through finding the views’ relations (see

Section IV-C.2), and the corresponding Self-Attention based
Multi-View Feature Collaboration is called SA-MVFC. And
the third one is the Graph-Attention block, inspired by [37],
we regard the different views as different connected nodes and
compute their weights (see Section IV-C.3), which is called
Graph-Attention based Multi-View Feature Collaboration as
GA-MVFC; The flowchart is illustrated in Figure 2.

Additionally, in the classifier designing process, researchers
classify the FSL-based algorithms to two categories according
to the adoption of data: (1) supervised few-shot learning and
(2) semi-supervised few-shot learning. This paper extends the
proposed method to the two settings (see Section IV-E). For
convenience, we list some critical abbreviations and notations
in Table I.

A. Contributions

We summarize our contributions as: (1) We propose three
kinds of multi-view feature collaboration methods for solving
the cross-category challenge in decoupled few-shot learn-
ing (FSL). They are separately called Loss-Attention based
Multi-View Feature Collaboration (LA-MVFC),Self-Attention
based Multi-View Feature Collaboration (SA-MVFC), and
Graph-Attention based Multi-View Feature Collaboration
(GA-MVFC).

(2) Compared with traditional FSL methods that focus on
tuning the network, our proposed strategy is more straight-
forward and effective, which can directly fuse multi-view
features extracted from the existing FEMs (for more details,
please see Section IV-F). Moreover, benefiting from the robust
feature representation, this method has shown satisfactory
performance in dealing with extremely few sample situations.
Therefore, we consider that this paper has important practical
significance.

(3) The proposed method is evaluated on four bench-
mark datasets, including mini-ImageNet, tiered-ImageNet,
CIFAR-FS, and FC100. Compared with other SOTAs, our
methods achieve significant 0.9%-5.6% improvements.
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Fig. 2. The structure of Multi-View Feature Collaboration (MVFC). There are two views of feature extraction models (FEMs), i.e., M(v)
θ , where v = [1, 2]

indicates the vth view. The various features correspond to different colors. There are 4 steps in total. (1) Inputting images to FEMs and obtain the support
features X(v)

s and query feature x(v)
q . (2) Transferring multi-view features to a unified space to obtain the aligned and low-dimensional features P(v)

s , p(v)
q . (3)

Completing feature collaboration through different attention mechanisms. We dub the Loss-Attention based Multi-View Feature Collaboration as LA-MVFC,
the Self-Attention based Multi-View Feature Collaboration as SA-MVFC, and the Graph-Attention based Multi-View Feature Collaboration as GA-MVFC.
(4) Constructing a classifier by the collaborative support features and recognizing query samples. For more details, please see Section IV.

B. Extensions

A preliminary version of this work was published in
the 29th ACM International Conference on Multimedia
(ACMMM) [38] in 2021. This paper extends the conference
version as follows:

(1) In the theoretical perspective, [38] only proposed the
LA-MVFC, while this article provides SA-MVFC and GA-
MVFC, which provides more opportunities for applying this
multi-view feature collaboration thought to reality.

(2) From the experimental perspective, this article supple-
ments a large number of experiments. Specifically, besides
comparing with more SOTAs, we decompose the complete
job into 5 different components (baseline, self-train, self-
supervision, denoising, attention block) and carefully analyze
their efficiencies.

II. RELATED WORK

A. Few-Shot Learning

To solve the problem of insufficient samples, FSL [14], [15],
[16], [17], [18], [19], [20] and ZSL [21], [22], [23], [24],
[25], [26], [27] paradigms are proposed. The goal of the FSL
hopes that the machine can achieve effective computer vision
tasks when we only have a small number of labeled samples.
The ZSL is a more difficult task than the FSL, and hopes
that the machine can achieve the above target without labeled
samples. This paper only focuses on the FSL paradigm. There
are various classical algorithms proposed to deal with this
problem. We introduce the two most representative methods.
The first is the meta-learning based methods, which focus on
obtaining a unified model that rapidly adapts to new tasks. The
several popular methods are as follow, [18], [19], [34], [39],

[40], and [41]. The second is Metric learning-based methods,
which concentrate on searching an ideal distance metrics to
enhance the robustness of the model, containing [35], [42],
[43] et al. Furthermore, these approaches can be categorized
according to other classification criteria, i.e., supervised FSL,
and semi-supervised FSL. For example, [30], [34], [43] et al.
follow the supervised setting; and LST [31], [44], [45], [46]
et al. are explored in the semi-supervised setting.

B. Multi-View Few-Shot Learning

As there are two sides to every coin, it is boundedness to
define objects from a single point of view. Multi-view learning
as an effective strategy has attracted extensive attention in
the past decade. In FSL, some similar methods have been
proposed, such as: DenseCls [47] divide the feature map
into various blocks, and predict the corresponding labels;
MDFM [5] integrates multi-view classifiers and comprehen-
sively considers the final decisions; DivCoop [28] trains the
FEMs on various datasets and integrates them into a multi-
domain representation; URT [48] is an improved method com-
pared with DivCoop [28], which proposes a transformer layer
to help the network employ various datasets; DWC [29] intro-
duces a cooperate strategy on a designed ensemble model to
integrate multiple information. Although the above-mentioned
approaches are based on multi-view learning, they are limited
by the fused FEMs and classifiers. In other words, these
methods lose scalability, but ours is not. This article conducts
multi-view learning from the perspective of features, aiming
to obtain better representations for solving the cross-category
problem in decoupled FSL.
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C. Subspace Learning

Subspace learning is a transfer strategy that can transform
the samples into the other expression. It is an effective
dimensionality reduction methodology. Here, we illustrate
several classical subspace learning approaches employed in
our method. The first is the Locally Linear Embedding
(LLE) [49]. It can maintain local distance by referring to
searching the projection of data in low-dimensional. The next
is the Laplacian Eigenmap (LE) [50], which employs the
spectral decomposition of the graph Laplacian method to map
the initial data to a low-dimensional portrayal. The last is the
Principal Component Analysis (PCA) [51]. It reduces the ini-
tial features to lower-dimensional space through singular value
decomposition. All of the above-mentioned methods contribute
to our approach, and we will illustrate the experimental results
in Section V-E.3.

III. PROBLEM FORMULATION

This section introduces our procedure thoroughly. It con-
tains two stages which are pre-train and meta-test. (1)
In pre-train stage, we define the base data as Dbase =
{(x(i), y(i))| y(i) ∈ Cbase}Nbase

i=1 , where x represents the sam-
ple and y denotes its label. Nbase indicates the number of
base data. Cbase denotes the base category set. We train the
CNN-based FEM Mθ (·) on Dbase, where θ illustrates the
parameters in CNN. We employ various FEMs to extract
features from different perspectives in this paper, and we
define the FEM on the vth view as M(v)

θ (·), where v =
1, 2, · · · , V . (2) In the meta-test stage, we define the novel
data as Dnovel = {(x( j ), y( j ))| y( j ) ∈ Cnovel}Nnovel

j=1 , where Cnovel

indicates the novel category set, Nnovel is the number of novel
data. Cbase ∩ Cnovel = ∅. Dnovel consists of three components,
e.g., Dnovel = {S,U,Q}, where S, U and Q illustrate support,
unlabeled and query sets, repectively. S ∩ U = ∅, S ∩ Q = ∅,
Q ∩ U = ∅. In this process, we freeze the pre-trained FEM
and use it to extract the feature of Dnovel . After that, we design
the classifier to classify Q.

In our paper, according to whether using the unlabeled data,
we split the FSL into two settings: supervised setting and
semi-supervised setting. Specifically, defining the feature of
Dnovel on the vth view as X(v)

novel = [X(v)
s , X(v)

u , X(v)
q ], where

X(v)
s = M(v)

θ (S), X(v)
u = M(v)

θ (U), and X(v)
q = M(v)

θ (Q)
represent the features of support, unlabeled, and query data on
the vth view, respectively. Besides, we follow the standared
C-way-N-shot per episode as [45] for classification task,
where C-way indicates C classes, and N-shot denotes N
samples per class.

IV. METHODOLOGY

In this section, the linear regression classifier is briefly
reviewed first. Then, we align the multi-view features
and propose the Multi-View Feature Collaboration (MVFC)
method. To balance the multi-view features, we design the
Loss-Attention block and Self-Attention block. Next, we intro-
duce how to use the re-constructed features to design classi-
fiers and extend our method to different FSL settings. Finally,
we introduce the employed multi-view FEMs. The complete
flowchart is shown in Figure 2.

A. Review of Linear Regression Classifier

In decoupled FSL, researchers usually re-construct machine
learning based classifiers in meta-test phase, e.g., logistic
regression, linear regression, support vector machine. Here,
we employ the regularized linear regression method as the
example to introduce our complete model in detail. Given
labeled samples’ feature matrix X and their one-hot label
matrix Y, the objective function can be formulated as:

arg min
W

F = �Y−WX�2F + μ �W�2F (1)

where �·�F is (·)’s Frobenius-norm. μ represents the hyper-
parameter. X ∈ R

dim1×N , Y ∈ R
C×N ; dim1 denotes labeled

samples dimension, and N denotes the number of labeled
samples. C indicates the number of categories. W ∈ R

C×dim1

denotes the to-be-learned classifier. After simply optimization,
we achieve the solution as:

W = YXT
(

XXT + μI
)−1

(2)

where I denotes the identity matrix. And now, given a testing
sample embedding xt s ∈ R

dim1, we can classify it by:
A(xt s) = idmax{Wxt s} (3)

where idmax represents an operator that obtains the index of
the max value.

B. Multi-View Feature Denoising

This section attempts to denoise the to-be-fused fea-
turesthrough the conventional subspace learning algorithms
(indicated as J (·)), such as LE [50] PCA [51], LLE [49].
These strategies can transfer the initial features to a uni-
fied space with reconstructed low-dimensional representation.
Specifically, assume that there are V views in total. Each
view corresponds to one kind of feature X(v), where v =
1, 2, · · · , V . We treat one-sample’s-V-views-features as V -
samples’-features, and represent the features of the expanded
dataset as X = [X(1), X(2), · · · , X(V )] ∈ R

dim1×(N×V ).
We design subspace learning operation as J (X) and obtain
the novel features P = [P(1), P(2), · · · , P(V )] ∈ R

dim2×(N×V ),
where P(v) ∈ R

dim2×N denotes the feature on the vth view
after feature denoising. dim2 denotes the novel dimension.

C. Multi-View Feature Collaboration

To balance the representation between different views, we
design the Loss-Attention block, the Self-Attention block and
the Graph-Attention block, to automatically update combina-
tion weights and encourage these features to have different
effects on the final decision. An algorithm is conducted in
Algorithm 1.

1) Loss-Attention Based Multi-View Feature Collaboration:
We first introduce our Loss-Attention based Multi-View Fea-
ture Collaboration (LA-MVFC) method. This strategy com-
putes the combination weights through each view’s loss func-
tion. Specifically, defining the combination weights as � =
[�(1), �(2), . . . , �(V )]T , where � denotes a weight vector,
�(v)(v = 1, 2, · · · , V ) is the vth element in �. Our loss-
attention block includes 3 steps:
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Algorithm 1 Attention-Based Multi-View Feature Collab-
oration

Input: Base set Dbase, Novel set Dnovel
Output: Query label

1 Designing the multi-view feature extraction model Mv
θ (·)

through Dbase, and obtaining novel data’ embedding by
Mv

θ (Dnovel ).
2 Transforming the novel data’s embedding to an unified space

and obtaining aligned features.
3 if Loss-Attention then
4 Training a basic classifier W(v) by Equation (4).
5 Calculating the objective function’s loss by Equation (5).
6 Computing the combination weights by Equation (6),(7),(8).
7 Obtaining the collaborative feature by Equation (9).

8 else if Self-Attention then
9 Computing the self-attention weight matrix by

Equation (10).
10 Getting self-attention feature matrix by Equation (11).
11 Obtaining the collaborative feature by Equation (12).

12 else if Graph-Attention then
13 Taking the vth view as the central node, and calculate its

weight with other views by Equation (13).
14 Achieving the unified weight for each view by

Equation (14).
15 Obtaining the collaborative feature by Equation (15).

(i) Employing the aligned feature Pv to substitute Xv and
obtain a classifier W(v) ∈ R

C×dim2 by Equation (2), where
W(v) represents the trained novel classifier on the vth view:

W(v) = YP(v)T
(

P(v)P(v)T + μI
)−1

(4)

(ii) Using P(v) and W(v) to re-calculate the loss of objective
function on the vth view F (v) by Equation (1):

F (v) =
∥∥∥Y−W(v)P(v)

∥∥∥2

F
+ μ

∥∥∥W(v)
∥∥∥2

F
(5)

(iii) Exploiting the F (v) to compute the combination
weights. The objective function is:

arg min
�

G =
V∑

v=1

(
�(v)F (v)

)
+ η ���22

s.t.
V∑

v=1

�(v) = 1, �(v) ≥ 0 (6)

where �(v) represents the weight of vth view. �·�2 denotes
(·)’s �2-norm. η as the parameter. The Lagrangian is applied
to deal with the problem, the Equation (6) can be rewritten as:

arg min
�,ζ,�

G =
V∑

v=1

(
�(v)F (v)

)
+ η ���22

− ζ

(
V∑

v=1

�(v) − 1

)
−�T � (7)

where ζ denotes a constant, � = [�(1),�(2), . . . ,�(V )]T
indicates a vector. Assuming that �̂, ζ̂ , �̂ are the optimal

solutions, this problem can be solved as:

�̂(v) = 1

2η
max

{∑V
v=1 F (v)

V
+ 2η

V
− F (v) − �̂avg, 0

}
(8)

where �̂avg is a constant, indicates the average of �̂. For the
detailed optimization procedure, please refer to Appendix A.

After completing the loss-attention process, we give multi-
view features the combination weights and obtain the final
collaborative feature Z = [z(1), z(2), · · · , z(N)] ∈ R

dim3×N by:
Z← z(n) = Concat

(
�̂(1) p(1)

(n), �̂
(2) p(2)

(n), · · · , �̂(V ) p(V )
(n)

)
(9)

where p(v)
(n), z(n)(n = 1, 2, · · · , N) denote the nth vector of

P(v) and Z.
2) Self-Attention Based Multi-View Feature Collaboration:

In this section, we introduce our Self-Attention based Multi-
View Feature Collaboration (SA-MVFC). Different from loss-
attention block, relying on the corresponding loss function
to calculate the combination weights, this block introduces a
self-attention mechanism [36] to obtain the weights through
finding the views’ relations. Notably, most of the methods
use self-attention to capture the relations among different
samples, but this paper employs it to reflect the relations
among different views.

Specifically, the aligned novel feature is P =
[P(1), P(2), · · · , P(V )] ∈ R

dim2×(N×V ). We reshape it to
Ptmp ∈ R

(dim2×N)×V . The complete self-attention block
includes 2 steps:

(i) We compute the view self-attention weight matrix T ∈
R

V×V by:
T = so f tmax

(
Ptmp

T Ptmp

)
(10)

where sof tmax is the operation to compute the probability.
(ii) Following, we can get the self-attention feature matrix

Psa ∈ R
(dim2×N)×V by:

Psa = PtmpT (11)

where Psa = [P1
sa, P2

sa, · · · , PV
sa].

After that, we concatenate the self-attention feature
matrix and obtain the final collaborative feature Z =
[z(1), z(2), · · · , z(N)] ∈ R

dim3×N by:
Z← z(n) = Concat

(
psa

(1)
(n), psa

(2)
(n), · · · , psa

(V )
(n)

)
(12)

where psa
(v)
(n), z(n)(n = 1, 2, · · · , N) denote the nth vector of

P(v) and Z.
3) Graph-Attention Based Multi-View Feature Collabora-

tion: Furthermore, inspired by [37], we introduce a novel
Graph-Attention based Multi-View Feature Collaboration
(GA-MVFC) method. The classical graph-attention aims to
compute the weights among different connected nodes. In our
task, the node corresponds to the view, and we purpose
to focus on the relations among different views. Accord-
ing to reshape the aligned novel feature, we obtain the
Ptmp = [p(1)

tmp, p(2)
tmp, · · · , p(v)

tmp, · · · , p(V )
tmp] ∈ R

(dim2×N)×V ,
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where p(v)
tmp ∈ R

(dim2×N)×1. Then we formulate the graph-
attention block, which includes 3 steps:

(i) We take the vth view as the central node, and calculate
its weight with other views as:

α(v)( j ) = ex p
(
e(v)( j )

)
∑

k∈V ex p
(
e(v)(k)

) (13)

where α(v)( j ) denotes the weight between vth view and jth

view, j = 1, 2 · · · , v, · · · , V ; e(v)( j ) = Sim(p(v)
tmp, p( j )

tmp)
denotes the similarity between vth view and jth view, here
we use the cosine similarity.

(ii) Notably, taking any view as the central node, we can get
the corresponding weights. In this paper, we average them to
get an unified weight for each view, which can be formulated
as:

α(v) = 1

V

V∑
j=1

α(v)( j ) (14)

(iii) After that, we assign the weights to the corresponding
features and fuse them by:

Z← z(n) = Concat
(
α(1) p(1)

(n), α
(2) p(2)

(n), · · · , α(V ) p(V )
(n)

)
(15)

where p(v)
(n), z(n)(n = 1, 2, · · · , N) denote the nth vector of

P(v) and Z.
4) Discussion About Different Attention Mechanisms: All

the three attention mechanisms have their cons and pros.
To be more specific: (1) The loss-attention is based on the
loss obtained by the classifier, and its consideration is more
about the coordination between the feature and the classifier.
It is more purposeful compared with other attention strategies
and can obtain more accurate classification accuracy, which is
suitable for the case of known features and classifiers.

(2) The self-attention is more concerned with the internal
connection among features. It is more universal and only
depends on features. Although it loses a certain accuracy
compared to the loss-attention, it improves flexibility and
reduces computational consumption.

(3) The graph-attention has the same insight as the self-
attention, i.e., also pays attention on the feature’s relations.
The difference between them is that: graph-attention will first
send diverse features into the graph space for encoding, so it
can represent a higher-order relationship among samples. This
good property makes the graph-attention strategy suitable for
cases where the features have high similarity.

D. Classification

After obtaining the collaborative feature Z through Equa-
tion (9) or (12), we utilize it to replace X and obtain the final
collaborative classifier Wz ∈ R

C×dim3:

Wz = YZT
(

ZZT + μI
)−1

(16)

Finally, given a testing sample feature x(v)
t s , (v =

1, 2, · · · , V ). Through the above descriptions, we can obtain

the collaborative feature zt s ∈ R
dim3, and then predict its label

by:
A(zt s) = max {Wzzt s} (17)

E. Multi-View Feature Collaboration for Few-Shot Learning

The feature of
(

X(v)
novel

)
after denoising can be formulated

as P(v)
novel = [P(v)

s , P(v)
u , P(v)

q ]. Compared with traditional clas-
sification task, the support data equals to the labeled training
data, the unlabeled data equals to the unlabeled training data,
and the query data equals to the testing data. Depending
on whether to use unlabeled samples when constructing the
classifier, the FSL can be split into supervised setting (not
use) and unsupervised setting (use). Notably, in our paper,
we assume that the query data’s feature is given in advance,
i.e., our supervised setting is transductive.

In order to design more robust classifier, we introduce a
standard self-training strategy [52]. In semi-supervised case,
(1) we first design classifier by Equation (16); (2) then predict
the category of unlabeled data by Equation (17); (3) next
select one most confidence sample from the unlabeled data
according to the prediction and add it to the support data
without putting back; (4) finally repeat the process until
the classifier is stable and use it classify the query data.
In supervised case, we just need to replace the unlabeled
data with query data in (1)(2)(3) steps, and finally classify
the query data.

F. Multi-View Feature Extraction Model

All adopted multi-view features come from different, existed
FEMs. As examples: (1) Standard-feature (Std-Fea) [45]. The
FEM is based on a classical CNN-based classification struc-
ture. (2) Meta-feature (Meta-Fea), which is similar to [35],
integrates the meta-learning strategy to the algorithm. (3) Self-
supervised-feature (SS-Fea) [30]. The FEM introduces the
auxiliary loss to cooperate with traditional CNN to enhance the
network’s robustness. The experimental results of all stacking
ways are discussed in Section V-E.5.

For convenience, we fuse two categories of SS-Feas for
most experiments. For the first category, the FEM is designed
by introducing standard classification loss Lc and auxiliary
rotation loss Lr . Lc can be formulated as:

Lc = −
∑

c

y(c,x)log(p(c,x)) (18)

The probabilities of the the truth label is indicated as y(c,x),
and predicted label is denoted as p(c,x), which represents the
xth sample belongs to the cth class. Then, each sample is
rotated to r degree and r ∈ CR = {0◦, 90◦, 180◦, 270◦}.
We define rotation loss as:

Lr = −
∑

r

y(r,x)log(p(r,x)) (19)

where y(r,x) denotes probabilities of the truth label, and p(r,x)

denotes the probabilities of predicted label, which represents
the xth sample belongs to the rth class. Therefore, the first loss
function is formulated as Lc+Lr , and the feature based on this
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Fig. 3. t-SNE visualization of features on mini-ImageNet. SS-R-Fea and SS-M-Fea represent two categories of different single-view features (see Section IV-F).
Fuse-Fea denotes the fusion feature with loss-attention.

kind of FEM is dubbed SS-R-Fea. We extract another category
from self-supervised FEM as the second feature, named as
SS-M-Fea. Specifically, in order to predict image mirrors, this
FEM adds the loss Lc and auxiliary mirror loss Lm to the
neural network. Assume that there are m ways and m ∈ CM =
{ver tically, hori zontally, diagonally}, we define the mirror
loss as:

Lm = −
∑

m

y(m,x)log(p(m,x)) (20)

where y(m,x) denotes the probabilities that the truth label, and
p(m,x) illustrates the probabilities of the predicted label of xth

sample belongs to the mth class. Next, the loss function can
be summarized as Lc + Lm .

V. EXPERIMENTS

A. Datasets

Our experiments are carried out on four benchmark
datasets, including mini-ImageNet [70], tiered-ImageNet [68],
CIFAR-FS [59], FC100 [43], and CUB [71]. mini-ImageNet
and tiered-ImageNet are selected from the ImageNet
dataset [72] and as the subsets. mini-ImageNet consists of
100 classes with 600 images per class, and tiered-ImageNet
has 608 classes and each class contains 1, 281 images on
average. Both of them resize the image to 84× 84. Following
the standard split way as [45], for mini-ImageNet, the base
set contains 64 selected classes, the validation is composed of
16 classes, and the novel set includes 20 classes. Similarly,
for tiered-ImageNet, the base set includes 351 classes, the
validation set contains 97 classes, and 160 classes are prepared
for the novel set. The CIFAR-FS and FC100 are the subsets
of the CIFAR-100 dataset [73], which includes 100 classes.
According to the split introduced in [59], CIFAR-FS is divided
into 64 classes, and it can be seen as the base set, the validation
set consists of 16 classes, and the novel set includes 20 classes.
And for FC100, we divided it into 60 classes as the base
set, the validation set contains 20 classes, and the novel set
includes 20 classes. The image size of CIFAR-FS and FC100
datasets are set to 32× 32.

B. Implementation Details

All the FEMs on various views in this paper utilize
ResNet12 as the backbone network. ResNet12 contains four
residual blocks, four 2 × 2 max-pooling layers, and four
dropout layers. The optimizer is stochastic gradient descent

with Nesterov momentum (0.9). For the parameter η in Equa-
tion (6), we define it to 1.4 for convenience and discuss more
choices in Figure 5. The training epoch is 120, and we evaluate
600 episodes with 15 query samples per class for all the mod-
els. Additionally, all the selected subspace learning approaches
refer to the scikit-learn [74] default implementation. This paper
excludes the fine-tuning process for the novel data classifica-
tion task. Other experimental settings follow the ICI [45].

C. Experimental Results

We compare our proposed LA-MVFC, SA-MVFC, and
GA-MVFC (only fuse SS-R-Fea and SS-M-Fea) with sev-
eral SOTAs. The supervised comparison results are listed in
Table II, III. And the semi-supervised comparison results are
reported in Table IV. Here, we list several observations.

(1) First, we discuss the supervised results from Table II, III.
Obviously, our LA-MVFC and SA-MVFC have far surpassed
other approaches. To be more specific, in mini-ImageNet, our
methods can exceed others at least 2.6% on 5-way 1-shot case,
2.2% on 5-way 5-shot case; in tiered-ImageNet, our methods
can exceed others at least 3.6% on 5-way 1-shot case, 0.9%
on 5-way 5-shot case; in CIFAR-FS, our methods can exceed
others at least 5.6% on 5-way 1-shot case, 3.1% on 5-way
5-shot case; in FC100, our methods can exceed others at least
3.9% on 5-way 1-shot case, 5.0% on 5-way 5-shot case.

(2) Then, we observe the semi-supervised results from
Table IV. Our reported results are based on 100 unlabeled sam-
ples. About the influence of the number of unlabeled samples,
please refer to Figure 6. Specifically, in mini-ImageNet, our
methods can exceed others at least 4.4% on 5-way 1-shot case,
3.6% on 5-way 5-shot case; in tiered-ImageNet, our methods
can exceed others at least 2.1% on 5-way 1-shot case, 2.8%
on 5-way 5-shot case.

(3) Next, we compare our LA-MVFC, SA-MVFC, and
GA-MVFC with other advanced multi-view based meth-
ods, containing DenseCls [47], DWC [29], DivCoop [28],
URT [48]. In mini-ImageNet, our methods can outperform
others at least 2.6% on 5-way 1-shot case, 2.2% on 5-way
5-shot case; in tiered-ImageNet, our methods can outperform
others at least 4.1% on 5-way 1-shot case, 2.2% on 5-way
5-shot case.

(4) Finally, just looking at the comparison results with
ResNet12 backbone. In mini-ImageNet, our methods can
outperform others at least 2.6% on 5-way 1-shot case, 2.2%
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TABLE II

THE 5-WAY SUPERVISED FEW-SHOT CLASSIFICATION ACCURACIES ON MINI-IMAGENET AND TIERED-IMAGENET WITH
95% CONFIDENCE INTERVALS OVER 600 EPISODES

TABLE III

THE 5-WAY SUPERVISED FEW-SHOT CLASSIFICATION ACCURACIES ON CIFAR-FS AND FC100 WITH 95% CONFIDENCE INTERVALS OVER 600 EPISODES

TABLE IV

THE 5-WAY SEMI-SUPERVISED FEW-SHOT CLASSIFICATION ACCURACIES ON MINI-IMAGENET AND TIERED-IMAGENET WITH 95% CONFIDENCE

INTERVALS OVER 600 EPISODES. WE USE 100 UNLABELED SAMPLES
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TABLE V

ABLATION STUDIES OF OUR METHOD IN 5-WAY SUPERVISED FEW-SHOT CASE. SS-R AND SS-M DENOTE THAT THE FEATURE EXTRACTION MODEL
(FEM) ADOPTS ROTATION-BASED SEMI-SUPERVISION AND MIRROR-BASED SEMI-SUPERVISION. (SEE SECTION IV-F). LA, SA, GA DENOTE

LOSS-ATTENTION, SELF-ATTENTION AND GRAPH ATTENTION STRATEGIES

Fig. 4. Comparison results of supervised case with different feature denoising strategies.

on 5-way 5-shot case; in tiered-ImageNet, our methods can
outperform others at least 3.6% on 5-way 1-shot case, 2.1% on
5-way 5-shot case; in CIFAR-FS, our methods can outperform
others at least 6.6% on 5-way 1-shot case, 3.1% on 5-way
5-shot case; in FC100, our methods can outperform others at
least 5.0% on 5-way 1-shot case, 5.0% on 5-way 5-shot case.

D. t-SNE Visualization

Here, we look at the changes brought about by our method
intuitively from t-SNE visualization [75]. We show the
t-SNE results in Figure 3 to observe the feature distribution.
SS-R-Fea and SS-M-Fea represent two categories of different
single-view features (see Section IV-F).Fuse-Fea denotes
the fusion feature with loss-attention. The reported data is
randomly selected from the mini-ImageNet. We observe that
our fusion feature distribution is more discriminative than the
single-view feature, which is more helpful for classification
tasks.

E. Ablation Studies

We design ablation studies in mini-ImageNet and tiered-
ImageNet to analyze the efficiency of our methods block by
block, including self-supervision, multi-view feature fusion,
multi-view feature denoising, attention strategy, view number,

and self-training. The detailed results are listed in Table V. The
baseline denotes using ICI [45] based FEM and logistic regres-
sion classifier. Besides, we only adopt two kinds of features
when completing the feature fusion process for convenience,
and please see Table VI for more kinds of fusion results.

1) Influence of Self-Supervision: Seeing Table V, SS-R
and SS-M denote the rotation based semi-supervision and
mirror based semi-supervision (see Section IV-F). Comparison
② with ③, and ② with ④, we observe that different kinds
of self-supervision strategies help a lot for the method, can
improve the results 0.1%-5.9% on different cases.

2) Influence of Multi-View Feature Fusion: Looking at the
comparison results of ③, ④, ⑤ in Table V. We observe that
merely using the fusion strategy seems to have little improve-
ments for the final performance or even negative effects. Not
because this method is inadvisable, it just need some extra
tricks, which are discussed in the following sections.

3) Influence of Multi-View Feature Denoising: The first
trick is our designed feature denoising, which transforms the
different features into a unified space through subspace learn-
ing. See the Table V, comparing ⑤ with ⑥, we find that the
performances have significant improvements of 0.7%-3.9%.
It has demonstrated the efficiency of this strategy. While there
exist some subspace learning approaches, such as LE [50]
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Fig. 5. Comparison results of LA-MVFC with different η.

Fig. 6. Comparison results of semi-supervised LA-MVFC with varied unlabeled samples.

PCA [51], LLE [49], and it is interesting to know the influ-
ences of different ways. Here, we test three kinds of subspace
learning methods, the results are shown in Figure 4. Based on
the above analysis, we find that all the strategies are helpful
to our method, and LE is the most.

4) Influence of Attention Strategy: The next trick is the
attention mechanism. We designed two kinds of strategies,
including loss-attention (LA) and self-attention (SA). See
Table V. Comparing ⑥ with ⑦, ⑥ with ⑧, and ⑥ with ⑨

we observe that the attention blocks improve the original
performances of 0.6%-2.0%. To further evaluate the attention
blocks, we compare the attention-based results with fixed
weights, which is demonstrated in Table VII. The experimental
results illustrate that the updated weight is more reasonable.
Moreover, from Equation (6), it is evident that η is a parameter

that influences the to-be-learned weights in LA-MVFC. For
fairness and convenience, we froze the η to 1.4 for all the
experiments. Here, we show the experimental results with
other values in Figure 5 and find that our LA-MVFC is not
sensitive to this parameter.

5) Influence of View Numbers: As the description above,
Table V only fuse two views of features. Besides SS-R-Fea and
SS-M-Fea, we introduce Std-Fea and Meat-Fea (described in
Section IV-F) to evaluate the proposed method further. We list
the performance on mini-ImageNet in Table VI. All the results
are based on the supervised setting with a 5-way 1-shot case.
We find that whether in LA-MVFC, SA-MVFC or GA-MVFC,
the more features are fused, the better the results are obtained.
The reason is that: the designed attention mechanisms for
fusing features can automatically adjust the impact of distinct
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TABLE VI

COMPARISON RESULTS OF FUSING MULTIPLE VIEWS OF FEATURES WITH THE SUPERVISED SETTING ON MINI-IMAGENET

TABLE VII

COMPARISON RESULTS WITH FIXED WEIGHTS ON 5-WAY SUPERVISED

FEW-SHOT CASE. (A, B) INDICATES THAT THE SS-R-FEA’S WEIGHT

IS “A”, AND SS-M-FEA’S WEIGHT IS “B”. LA-MVFC, SA-
MVFC AND GA-MVFC EMPLOY THE LOSS-ATTENTION, SELF-

ATTENTION AND GRAPH-ATTENTION BLOCKS TO UPDATE

THE WEIGHTS AUTOMATICALLY FOR EACH EPISODE

features on the results and ensures that the fusion result is not
worse than that of a single one. Besides, we conclude that if
the to-be-fused features have similar performances, the final
stacking result may significantly improve.

6) Influence of Self-Training: From Table V, we observe
that it can improve the performance of 0.9%-9.4%. Besides,
self-training can extend the standard supervised FSL to the
semi-supervised case. Here, we take LA-MVFC as an example
to observe the impact of the number of unlabeled samples on
the results, which is listed in Figure 6. The performance of the
proposed method increases with the unlabeled instances. And
the results become saturation after 100 unlabeled samples.

VI. CONCLUSION

There is a fundamental problem in decoupled FSL: the
pre-trained feature extraction model (FEM) is challenging
to adapt to the novel class in the cross-category setting.
To address this challenge, we propose Loss-Attention Feature
Collaboration (LA-MVFC), Self-Attention Feature Collabora-
tion (SA-MVFC) and Graph-Attention Feature Collaboration
(GA-MVFC), which fuses multi-view features to achieve col-
laboratively represent samples. It benefits from enhancing the
efficiency and robustness of the FSL-based model. LA-MVFC,
SA-MVFC, GA-MVFC are simple non-parametric methods
that exploit the existing FEMs in a direct way. Experimental
results have evaluated their effectiveness. In future work,
on the one hand, we will focus more on attention-based few-
shot learning methods, and it is interesting to complete the fea-
ture collaboration in the pre-training phase; on the other hand,
we will discuss in depth whether the current FSL paradigm is

suitable for real application scenarios, and strive to define a
new FSL paradigm to make it closer to real applications.
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