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Abstract— Copy-move forgery can be used for hiding certain
objects or duplicating meaningful objects in images. Although
copy-move forgery detection has been studied extensively in
recent years, it is still a challenging task to distinguish between
the source and the target regions in copy-move forgery images.
In this paper, a convolutional neural network-transformer based
generative adversarial network (CNN-T GAN) is proposed to
distinguish the source and target regions in a copy-move forged
image. A generator is first utilized to generate a mask that
is similar to the groundtruth mask. Then, a discriminator is
trained to discriminate the true image pairs from the false ones.
When the discriminator cannot discriminate the true/false image
pairs accurately, the generator can be used to obtain the final
localization maps of copy-move forgery. In the generator, convo-
lutional neural network (CNN) and transformer are exploited to
extract the local features and global representations in copy-move
forgery images, respectively. In addition, feature coupling layers
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are designed to integrate the features in CNN branch and
transformer branch in an interactive way. Finally, a new Pearson
correlation layer is introduced to match the similarity features in
source and target regions, which can improve the performance
of copy-move forgery localization, especially the localization
performance on source regions. To the best of our knowledge,
this is the first work to utilize transformer for feature extraction
in copy-move forgery localization. The proposed method can not
only detect the copy-move regions, but also distinguish the source
and target regions. Extensive experimental results on several
commonly used copy-move datasets have shown that the proposed
method outperforms the state-of-the-art methods for copy-move
detection.

Index Terms— Image forensics, copy-move source/target dis-
tinguishment, convolutional neural network, transformer.

I. INTRODUCTION

NOWADAYS, digital images on the Internet are increasing
rapidly as social media becomes more diverse. Digital

images can be easily manipulated due to the high availability
of image editing tools such as Photoshop, Meitu, and GIMP.
Copy-move forgery is one of the most commonly and easily
used image tampering techniques, in which a region (called the
source region) in an image is duplicated, then preprocessed
with scaling, rotating, or color adjusting, and finally pasted
to another region (called the target region) in the same image.
Copy-move forgery can be used to hide or duplicate objects in
an image for malicious purposes. For example, fake news with
copy-move forgery images in politics will confuse the public
and cause political biases. If malicious manipulations are
made on evidence in court or reported experimental results in
academic papers, this may lead to serious judicial injustice or
academic misconduct. Hence, it is important to develop image
forensic methods for copy-move forgery detection. Moreover,
in some cases, it is of great significance to distinguish between
the source and target regions. For example, in an image used as
evidence in court, two guys have the same gun in their hands,
one of which is generated by copy-move forgery. In this case,
we wonder which gun is the original one. The original and the
clone guns can be distinguished from each other with the help
of the technique of copy-move source/target distinguishment
(CMSTD).

In the past few years, a number of studies including
traditional and deep learning based methods have been pro-
posed for the detection of copy-move forgery. The traditional
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methods can be classified into the block-based methods [1],
[2], [3], [4] and the keypoint-based methods [5], [6], [7], [8],
[9], [10]. The block-based methods first divide images into
overlapping or non-overlapping blocks, then extract features
from these blocks, and finally perform feature matching.
The feature extraction algorithms of the block-based methods
can be implemented by principal component analysis [11],
discrete cosine transform [4], local binary pattern [12], discrete
wavelet transform [13], Fourier transform [14], and so on.
The keypoint-based methods have a similar procedure with the
block-based methods, but these methods select image features
from high entropy regions to determine the local extreme
points. Scale-invariant feature transform [5], [9] and speeded
up robust features (SURF) [6] are two commonly-used local
features in the keypoint-based algorithms due to their geomet-
ric scale invariance. The keypoint-based methods turned out to
be more efficient than the block-based methods for the reason
that the former focuses on the sparse extreme points. Other
works [8], [10] integrate the block-based and the keypoint-
based methods simultaneously. Pun et al. [8] proposed to
segment images adaptively and then extract the block features
by feature point matching so as to indicate the forgery regions.
Manu et al. [10] proposed a copy-move forgery detection
method by first segmenting an image into blocks and then
exploiting SURF to extract features. In general, these tradi-
tional methods that extract features manually may have some
serious shortcomings. For example, the block-based methods
cannot detect the region with large-scaling distortion, and the
keypoint-based methods have difficulty in dealing with the
smoothing forgery regions.

In recent years, with the explosive progress of deep learning
in computer vision [15], [16], some deep learning based
methods have been proposed for image forgery detection [17],
[18], [19], [20], [21] and copy-move forgery localization
(CMFL) [22], [23], [24], [25]. To suppress the effect of image
contents and extract artifacts introduced by copy-move forgery,
Rao et al. [22] proposed a convolutional neural network
(CNN) to detect whether an image is copy-moved or not by
utilizing high-pass filters as the initialized layer. To extract
block features and the self-correlation between feature pixels,
Wu et al. [23] proposed an end-to-end deep neural network
to obtain the similar regions in copy-move forgery images.
Later, Wu et al. [24] proposed a novel long short-term
memory (LSTM) network to detect local anomalies left by
385 image manipulation types including copy-move forgery.
It may fail in images that are intentionally contaminated with
highly correlated noise. To localize the copy-move regions,
Zhong et al. [25] proposed a dense-inception network consist-
ing of pyramid feature extractors, correlation matching blocks
and hierarchical post-processing modules. Liu et al. [26] pro-
posed a CMFL method with a self-deep matching network
and Proposal SuperGlue. Then, post-processing operations,
including integrated score map generation and refinement
methods are designed to obtain better localization results.

As far as we know, the existing traditional methods and the
above-mentioned deep learning based methods can only detect
and localize the copy-move forgery, but cannot distinguish
between the source and the target regions. These methods

focus only on localizing the duplicated regions in images.
However, it is of great importance to distinguish between the
source and the target regions in copy-move forgery images.
Wu et al. [27] proposed a network named BusterNet to distin-
guish between the source and the target regions in copy-move
forgery images for the first time. BusterNet consists of two
parallel branches: one is the similarity detection branch, the
other is the manipulation detection branch. The similarity
detection branch relies on VGG16 [28] and Pearson correlation
coefficient to detect similar regions in images. The manipula-
tion detection branch exploits VGG16 and BN-Inception layers
to detect the traces of manipulations. These features extracted
by the similarity detection branch in BusterNet are single-level
and of low resolution. Moreover, to obtain the final localization
maps correctly, both of the two branches should localize
the target regions correctly. In order to improve BusterNet,
Chen et al. [29] proposed a cascaded network consisting of
two subnetworks, i.e., a copy-move similarity detection net-
work (CMSDNet) and a source/target region distinguishment
network (STRDNet). The authors introduce the double-level
self-correlation, atrous spatial pyramid pooling, and attention
mechanism to extract multi-scale features. Due to that the
STRDNet utilizes the detection map of the CMSDNet, the
whole network should be trained separately. Islam et al. [30]
proposed a dual-order attentive generative adversarial network
(DOA-GAN) for CMSTD. DOA-GAN utilizes a dual-order
attention module to extract location-aware and co-occurrence
features, and then extracts the global features with the atrous
spatial pyramid pooling blocks. DOA-GAN may not perform
well when the scale of the target regions is changed signif-
icantly. Barni et al. [31] designed a multi-branch CNN to
differentiate the source and target regions between two nearly
duplicated regions with a hypothesis testing framework given
the binary localization mask (i.e., the similar regions in a
copy-move forgery image). This method relies on the known
binary localization mask; it just identifies which region is the
forged one. In the end-to-end scenario, the authors adopted
the method in [2] to obtain the binary localization map.

In conclusion, most of the prior works were proposed to
solve CMFL tasks, and only a few works [27], [29], [30], [31]
focused on CMSTD. CMSTD is a very challenging task since
the source and the target regions are difficult to distinguish.
The existing methods cannot obtain satisfactory localization
results due to the following reasons: first, if the size of the
target regions is significantly different from that the source
regions, the source and target regions are difficult to co-
localize; second, since the inconsistencies between the target
regions and their neighbor regions are too weak to detect, it is
a hard task to identify the target regions as forged regions,
which leads to the difficulty of distinguishing the target from
the source regions.

To solve the above issues, we propose a CNN-transformer
based generative adversarial network (CNN-T GAN) for
CMSTD. The generator of the proposed GAN consists of
a transformer branch and a CNN branch. The transformer
branch is designed to extract the global features. The extraction
of global features can improve the co-localization of the
source/target regions in the whole image. The CNN branch
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is designed to extract the local features from edge neighbor-
hoods, which is good for the detection of the inconsistencies
between the forged regions and their neighbor regions. Note
that local features refer to the details extracted in local image
neighborhoods; whereas global features include, but are not
limited to, contour representations, shape descriptors, and
object typologies at long distance [32], [33], [34]. Besides,
feature coupling layers (FCLs) are introduced to fuse the
global features from the transformer branch and the local
features from the CNN branch. FCLs can enhance the global
representation of the CNN branch and the local representation
of the transformer branch. The main contributions of this work
are as follows:

1) We propose an end-to-end CNN-transformer based
generative adversarial network for copy-move forgery
detection. In the proposed GAN, the generator is used
to produce a three classified mask according to the
copy-move forgery image; then, a discriminator is uti-
lized to identify if the image pairs are real or fake.
Once the generator can confuse the discriminator, the
generator can be used to obtain the localization map of
the copy-move forgery.

2) Transformer is introduced to the forensics of copy-move
forgery for the first time. CNN and transformer are used
to extract the local and the global features in images,
respectively. The feature coupling layers are utilized to
integrate the global features in the transformer branch
and the local feature in the CNN branch in an interactive
way. In this way, the representation in global feature and
local feature are strengthened.

3) A similarity loss and a mask loss are introduced to
the copy-move forgery detection, which can improve
the capability of source and target distinguishment.
To better obtain the final CMSTD localization maps,
a new Pearson correlation layer is introduced to extract
the similarity feature from images.

The remaining part of this paper proceeds as follows:
Section II discusses the preliminaries about CMFL and
CMSTD. Section III proposes a CNN-T GAN based net-
work for copy-move source/target distinguishment. Section IV
describes the experimental settings and then analyzes the
experimental results. Finally, Section V concludes this work.

II. PRELIMINARIES

A. Copy-Move Forgery Localization

Copy-move forgery is a commonly used and easily imple-
mented image tampering method. Fig. 1 shows two examples
of copy-move forgery. The first row shows the hiding of a dark
purple flower; and the second row shows the duplications of
a flying seagull. CMFL attempts to determine whether there
are cloned regions in a query image and localize the forged
regions. Traditional CMFL methods have a similar frame-
work, including a feature extraction block, a feature matching
block, and a refining block. By extracting the patch-based
or keypoint-based features and designing feature matching
algorithms, the works in [23], [24], and [27] only detect the
similar regions in images as shown in the third column in

Fig. 1. Two examples of copy-move forgery.

Fig. 1, where we cannot distinguish the source and target
regions.

B. Copy-Move Source/Target Distinguishment

The objective of CMSTD is to obtain the source/target
masks, as shown in the fourth column of Fig. 1. The meth-
ods [24], [25] learned the traces of image manipulations
by CNNs. Since the source regions (shown in green) of
copy-move forgery images are not forged at all, it is more
challenging to localize these source regions. Moreover, the
CNNs [27], [29], [30] that can distinguish the source/target
regions utilize only the local features extracted by the CNNs,
while the global features are neglected for feature extraction.

C. CNN and Transformer

CNN is a kind of feed-forward neural network with deep
structure and convolutional computation, and is one of the
classical algorithms of deep learning. Various CNNs have been
proposed for vision tasks, such as image classification [34],
[35] and semantic segmentation [15], [36]. CNNs are good at
extracting local features, but have difficulty in learning global
representations. In CNNs, the global features can be extracted
by enlarging the receptive field, compared with the case of
local feature extraction, which would require more pooling
operations [37], [38], [39] and lower the spatial resolution of
features. Besides, the global attention mechanisms [40], [41]
can also be used to capture the long-distance dependencies.
However, if the convolutional operations are not properly fused
with the attention mechanisms, the representation of the local
features may be deteriorated.

Transformer is an encoder-decoder network with global
self-attention, and can extract the global representation of
an image. Vision transformers aggregate global representa-
tions among the compressed patch embeddings by the cas-
caded self-attention modules. Transformers are based solely
on attention mechanisms, and dispense with recurrence and
convolutions [42]. The original transformer [42] is pro-
posed for natural language processing. Then, transformer
blocks are introduced to CNNs for vision tasks [33], [43].
Dosovitskiy et al. [44] applied the standard transformers to
images by splitting images into patches and providing the
linear embeddings into transformer. By using self-attention
mechanism and multi-layer perception structure, the vision
transformer can achieve better results compared to the state-
of-the-art CNNs [33], [45], [46]. However, the local and global
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Fig. 2. Framework of CNN-T GAN.

features cannot be embedded into each other well. Hence,
it is critical to develop a method to fuse the local and global
features.

In this paper, to extract more discriminative features for
CMSTD, CNN and transformer are used to extract the local
and global features, respectively. The local features extracted
by CNN and global representations extracted from transformer
are fused in an interactive way. In this way, the proposed
network can not only inherits the structure advantages of
both CNN and transformer, but also retains the representation
capability of local and global features to the maximum extent.

D. Evaluation Metrics

The pixel-level metrics, including precision, recall, and
F1-score, are exploited to report the performance on the
CMFL task of the proposed method. Both the source and
the target regions are regarded as the forged regions. The
pixel-level metrics including precision, recall, F1-score in
the source, target, and pristine regions are utilized to report the
performance in CMSTD task. In addition, the overall accuracy
is also used to evaluate the CMSTD performance. For a test
image, precision, recall, F1-score, and accuracy can be
obtained by

precision = T P

T P + F P
, (1)

recall = T P

T P + F N
, (2)

F1-score = 2 × precision × recall

precision + recall
, (3)

and

accuracy = T P + T N

T P + F N + F P + T N
, (4)

respectively, where T P , F P , F N , and T N are the true
positive, false positive, false negative, and true negative,
respectively.

III. PROPOSED METHOD

A. Overview of CNN-T GAN

To overcome the shortcomings of the existing CMSTD
methods mentioned in Section I, a GAN with CNN-
transformer (called CNN-T GAN) is proposed for source-
target distinguishment of copy-move forgery. The overall
framework of CNN-T GAN is shown in Fig. 2. In CNN-T

Fig. 3. Architecture of the generator in CNN-T GAN.

Fig. 4. Connection between the transformer branch and CNN branch.

GAN, the generator is utilized to generate a binary mask and
an RGB mask by extracting both local and global features. The
discriminator is used to discriminate whether the generated
image pairs are real or fake. When the discriminator cannot
differentiate the generated image pairs from the real image
pairs, the generator can be used to obtain the localization maps
from copy-move forgery images.

In the following, we will introduce the structures of the
generator and the discriminator of the proposed CNN-T GAN
in Sections III-B and III-C, respectively. Finally, Section III-D
describes the loss function.

B. Generator in CNN-T GAN

The generator is composed of a pre-processing block,
a transformer branch that extracts local features, a CNN branch
that extracts global features, and feature coupling layers that
interact with the transformer branch and the CNN branch. The
architecture of the generator is shown in Fig. 3.

The pre-processing block first reshapes the images into
the size of 256 × 256 × 3, and then filters the images with
a convolutional layer with kernel size of 7 × 7 and stride
of 2, followed by a batch normalization (BN) layer and a
rectified linear units (ReLU) layer. Finally, a max pooling layer
with stride 2 is used to halve the size of the output feature.
The size of the output feature of the pre-processing block is
64 × 64 × 64. Then, the extracted initial local features are put
into the transformer branch and the CNN branch separately.
The architectures of the transformer block and CNN block are
shown in Fig. 4.
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Fig. 5. Architecture of multi-heads self-attention block.

In the following, we briefly introduce the design of the
transformer branch and CNN branch.

1) Transformer Branch: The main architecture of the trans-
former branch is designed as done in [44], and is composed
of Ntb transformer blocks. In this paper, we set Ntb = 3.
As shown in the upper half part of Fig. 4, the features output
from the pre-processing block are first put into a convolutional
layer with kernel size of 4×4 and stride 4. Then four pairs of
multi-heads self-attention (MHSA) [42] blocks and multilayer
perceptron (MLP) layers are followed to extract the global
features. A layernorm layer is added before the MHSA blocks
and the MLP layers to normalize the feature maps. Residual
connections are added in both the self-attention layer and MLP
layers.

An attention function maps a query Q and a set of key-value
pairs (K , V ) to an output. The output is calculated by

Attention(Q, K , V ) = so f tmax(
QK T
√

dk
)V , (5)

where so f tmax denotes the activation function implemented
by softmax, the query Q, key K is of dimension dk , and
value V is of dimension dv .

Then MHSA blocks are utilized to attend information from
different representation subspaces jointly. The MHSA blocks
have N attention layers running in parallel which can linearly
project the queries, keys, and values for N times with different
linear projections to dk , dk , and dv dimensions, respectively.
The architecture of MHSA is shown in Fig. 5.

The output of the MHSA can be obtained by

MultiHeads(Q,K ,V )=Concat(head1, . . . , headi , . . . , headN ),

(6)

where headi = Attention(QW Q
i , K W K

i ,V W V
i ), i ∈ [1, N],

W Q
i ∈ R

dmodel×dk , W K
i ∈ R

dmodel×dk , W V
i ∈ R

dmodel×dv , and
W Q ∈ R

hdv×dmodel . In this work, N is set to 12, dmodel = 768,
dk = dv = dmodel/N = 64.

The MLP layers introduce one or more hidden layers based
on the basic network. The output of the hidden layers are
transformed by activation functions. An MLP layer consists
of an up-projection fully connected layer, a Gaussian error
leaky unit (GELU) layer [47], a down-projection layer, and a
dropout layer. The output size of the first transformer block is
257×768. The second transformer block is similar to the first
one, which also consists of four pairs of MHSA blocks and

MLP layers. The third block consists of three pairs of MHSA
blocks and MLP layers. The output sizes of all features from
these three blocks are 257 × 768.

2) CNN Branch: As shown in the bottom half of Fig. 3, the
CNN branch in our proposed method also consists of 3 blocks.
The CNN branch has a feature pyramid structure [48], in which
the size of feature maps decreases with the depth of the
network increases. As shown in Fig. 4, the first convolutional
block is composed of 7 bottlenecks. Each bottleneck consists
of a 1 ×1 down-projection convolutional layer, a 3 ×3 spatial
convolutional layer, and a 1 × 1 up-projection convolutional
layer, each convolutional layer is followed by a BN layer and
a ReLU layer. A residual connection is added between the
input and the output of the bottleneck. Except for the first
bottleneck, the following 6 bottlenecks can be divided into
3 pairs, each pair corresponds to a stage in Trans block1 in
transformer branch. The output feature size of the first Con
block is 256 × 64 × 64. The second Conv block consists
of 8 bottlenecks, where 2 sequential bottlenecks constitute a
stage. The output feature size of the second Conv block is
512×32×32. The third Conv block consists of 6 bottlenecks,
where 2 sequential bottlenecks constitute a stage. The output
feature size of the second Conv block is 1024 × 16 × 16.

The features from the CNN branch and the transformer
branch interact with each other through feature coupling layers
(FCLs), which will be introduced in Section III-B.3. The FCLs
provide the possibility to preserve fine-detailed features. In this
way, the CNN branch consecutively provides local feature
details for the transformer branch. Finally, the feature maps
from the Conv block1, Conv block2, and Conv block3 are
up-sampled to the input image size 256×256 and then fused by
concatenation. Then, the fused feature maps are put into a tanh
activation function. With a mean squared error (MSE) loss and
a Lmask loss function, the final source-target distinguishment
maps can be obtained. The feature maps of Conv block2 and
Conv block3 are put into a Pearson correlation layer (PCL)
to obtain the similarity information in the copy-move forgery
images. Taking the feature maps from Conv block3 as an
example, we describe the process of feature matching. The size
of the feature map from Conv block3 is 1024×16×16, which
can be regarded as 1024 patch-like features of size 16 × 16,
i.e.,

F X =

⎡
⎢⎢⎣

f X (0, 0) f X (0, 1) . . . f X (0, ic)

f X (1, 0) f X (1, 1) . . . f X (1, ic)
. . . . . . . . . . . .

f X (ir , 0) f X (ir , 1) . . . f X (ir , ic)

⎤
⎥⎥⎦ , (7)

where ir , ic ∈ [0, 15], the patch-like feature has 1024 dimen-
sions. Then we compute the feature similarity score with
self-correlation to extract the useful information and decide
the matched similar regions, which may be the potential copy-
move regions. With F X , the Pearson correlation coefficient p
is exploited to quantify the similarity between two patch-like
features f X [i ] and f X [ j ], where i = (ir , ic) and j = ( jr , jc).
First, the feature maps are normalized by

f̃ X [i ] = ( f X [i ] − μX [i ])/σ X [i ], (8)
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where μX [i ] and σ X [i ] are the mean and the standard devia-
tion of X , respectively. Then, p can be obtained by

p(i, j) = ( f̃ X [i ])T f̃ X [ j ]/1024, (9)

where (·)T denotes the transpose operator. For a given location
i = (ir , ic), we calculate the Pearson correlation coefficient
for all possible j = ( jr , jc), the similarity between f X [i ] and
f X [ j ] can be measured by a score vector SX [i, j ], i.e.,

SX [i ][ j ] = [p(i, 0), . . . , p(i, j), . . . , p(i, 255)]. (10)

If the feature map f X [i ] is matched, the score
SX [i ][ j ]( j �= i) should be significantly greater than other
scores SX [i ][k](k /∈ {i, j}). So the scores are sorted in a
descending order, which is shown as

S
� X [i ][ j ] = sort(SX [i ][ j ]). (11)

The sorted vector of scores contains sufficient information
for selecting the matched feature. Regardless the length L of
the sorted vector of scores, the top K scores are picked to
form a new pooled score vector

P X [i ][k] = S
� X [i ][k �], (12)

where k ∈ [0, K − 1], and k � is the index of raw sorted vector
S

� X . Finally, the patches corresponding to the top-K maximal
correlation scores are utilized to localize the similar regions
in copy-move forgery images. For the features output from
the Conv block2, the same method is used to calculate the
pooled score vector. The features from these two PCLs are
fused by concatenation, and finally a binary cross-entropy loss
is utilized to acquire the similar regions in images. Through
the PCLs, the proposed network can obtain the potential copy-
move maps.

3) Feature Coupling Layer: The features from the CNN
branch are of size C × H × W , where C , H , and W represent
the channels, height, and width of the features, respectively;
while the features from the transformer branch are of size
(K + 1) × E , where K and E denote the number of image
patches and the embedding dimension, respectively. In other
words, the local features from the CNN branch and the global
features from the transformer branch are inconsistent. Hence,
it is necessary to design FCLs to eliminate the misalignment
between these two features. We perform the feature fusion
using a feature pyramid network (FPN) architecture [48]. FCLs
are inserted into every block to consecutively eliminate the
semantic gap between the transformer branch and the CNN
branch. The architecture of FPN can take full advantages of
the features of different scales. The structures of FCLs are
shown in Fig. 6, Figs. 6 (a) and (b) are the structures of
feature coupling down-sampling layer and feature coupling
up-sampling layer, respectively.

On the one hand, in order to feed the global features
from the transformer branch to the CNN branch, a feature
coupling up-sampling layer is built between the MLP layers
in transformer branch and the 3 × 3 convolutional layers in
the CNN branch. The patch embeddings are first arranged by
the localization information of the patch to align the spatial
scale S × S × E , where S × S = E . Then, the channel

Fig. 6. Structures of feature coupling layers.

dimension is aligned with that of CNN feature maps through
a 1 × 1 convolutional layer. Finally, up-sampling is performed
on these features to align with those from the CNN branch.
Meanwhile, batch normalization and LayerNorm are used to
regularize features. In this way, the dimension of the features
from the transformer branch can be aligned with that of the
features from the CNN branch.

On the other hand, to align the dimension of the features
from the CNN branch with that from the transformer branch,
a feature coupling down-sampling layer is designed after the
3 convolutional residual blocks in the CNN branch and the
MHSA blocks in the transformer branch. The feature maps
from the CNN branch are first put into a 1 × 1 convolutional
layer to align the channel numbers of the patch embeddings.
Then down-sampling is implemented to complete the spatial
dimension alignment through an average pooling layer with
stride 4. The features are regularized by LayerNorm and GeLU
layer. In this way, the dimension of the features from the CNN
branch is aligned with that of the features from the transformer
branch.

The feature coupling layers can not only reinforce the global
representations in CNN branch, but also enrich the local details
of the transformer branch.

C. Discriminator in CNN-T GAN

The generator is used to generate a mask that can distinguish
the source and target regions in copy-move forgery images.
The generated mask and the copy-move forgery image com-
pose an image pair, the ground-truth mask and the copy-move
forgery image compose another image pair. Then a discrimina-
tor is designed to predict whether these image pairs are real or
fake, while the specially designed generator tries to fool the
discriminator. Until the discriminator cannot distinguish the
fake image pairs from the real image pairs, the generator can
be utilized to obtain the final localization maps. The structure
of the discriminator is designed based on the discriminator of
Patch-GAN [49], as shown in Fig. 7.

From Fig. 7, it can be observed that the discriminator
consists of 4 convolutional blocks and a fully connected layer.
Each convolutional layer is followed by a BN layer and a
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Fig. 7. Architecture of the discriminator in CNN-T GAN.

LeakyReLU layer. The kernel sizes of all former 4 convo-
lutional blocks are 5 × 5. Except that the last convolutional
layer is of stride of 1, the former 3 convolutional layers are of
a stride of 2. The output channels of the 4 convolutional layers
are 64, 128, 256, and 512, respectively. The output channel of
the linear layer is 1. Finally, a sigmoid activation function and
BCE loss are followed to predict whether the image pair is
real or fake.

D. Loss Function

Considering the task of copy-move source-target distin-
guishment, the total loss function, which consists of the
adversarial learning loss, minimal square error (MSE) loss,
mask loss, and similarity loss, is formulated with

Ltotal(G, D) = Ladv( G, D ) + λ1LMSE + λ2Lmask + λ3Lsimi ,

(13)

where λ1, λ2, and λ3 are the weights on LMSE, Lmask, and
Lsimi , respectively. In our experiments, we find that the values
of LMSE, Lmask, and Lsimi are much smaller than that of Ladv

when the training converges. To ensure the four losses have
the same order of magnitude, we empirically set λ1 = 100,
λ2 = 50, and λ3 = 20.

1) Adversarial Loss: The adversarial loss Ladv is defined
as:
Ladv (G, D) = E(X,Y )[log D(X, Y ) + log(1 − D(X, G(X)))],

(14)

where G and D represent the generator and the discriminator,
respectively. E denotes the expectation of a specified distri-
bution, X denotes the input image to be queried, Y denotes
the ground-truth mask, D(X, Y ) denotes the probability that
the discriminator predict the real image pairs as real, and
D(X, G(X)) denotes the probability that the discriminator
predict the generated image pairs as real.

2) MSE Loss: To obtain a more precise localization map
from the copy-move forgery images, the generated mask
should be as close to the ground-truth mask as possible. So the
MSE loss, i.e., the L2 distance between the ground-truth mask
and the generate mask, is calculated by

LMSE = E(Y,G(X))[(Y − G(X))2], (15)

where Y denotes the ground-truth mask that corresponds to
the source and target regions, G(X) is the image generated
by G.

3) Mask Loss: To make the network pay more attention
to the copy-move forgery regions, i.e., the red and green
regions shown in Fig. 1, we reweight the MSE loss LMSE
in Subsection III-D.2 with mask = [0, 1, 1]. The first, second
and third channels of mask correspond to the B , G, and R
channels of the RGB mask, respectively. That is to say, only
the channels G and R are taken into consideration. Hence, the
mask loss Lmask is obtained by

Lmask = LMSE � mask, (16)

where � denotes the matrix multiplication. The reweighting
on color channels can gain more attention on source and
target regions of copy-move forged images, which improves
the performance on CMSTD.

4) Similarity Loss: The similarity loss is exploited to mea-
sure the similarity between the predicted binary mask and the
binary ground-truth mask, which is calculated by

Lsimi = −
W�

j=1

H�
i=1

Si, j log(Pi, j )+(1−Si, j ) log(1− Pi, j ), (17)

where W and H denote the width and the height of the
input images, respectively; S = [Si, j ] represents the predicted
copy-move forgery regions, and pixel (i, j) has undergone
copy-move forgery when Si, j = 1; in other words, the pixel
(i, j) is the pristine region when Si, j = 0. Pi, j represents the
possibility that the pixel (i, j) has been modified by copy-
move forgery. The Lsimi loss is applied in the CNN branch
following the PCLs introduced in Section III-B.2. The features
output from the PCLs contain lots of similarity information,
so the Lsimi loss can be used to localize the similar regions
that are suspected as the copy-move forged regions.

During training, the proposed network attempts to maximize
the loss of the discriminator and minimize the loss of the
generator. Hence, the training for the proposed network can
be described as

(G∗, D∗) = arg min
G

max
D

Ltotal(G, D), (18)

where G∗ and D∗ are the optimized solutions of G and D,
respectively.

IV. EXPERIMENTS

A. Experimental Setup

The experiments are implemented with the Pytorch frame-
work on NVIDIA GeForce RTX 2080 Ti GPU. During
training, the adaptive moment estimation optimizer [50] is
adopted to optimize the generator and discriminator. To further
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improve the performance of the generator, the discriminator
and the generator are trained alternatively. In an iteration, the
discriminator is updated once and then the generator is updated
twice. The learning rates of the generator and the discriminator
are set to 1 × 10−4 and 1 × 10−5, respectively. The batch size
is set to 24, and the network is trained for 100 epochs. The
model with the highest F1-score on test data is selected for
evaluation.

1) Datasets: The number of samples in the existing publicly
available datasets is small for copy-move forgery detection.
The authors in [27] collected a synthetic CMFD dataset1

called USCISI. USCISI dataset contains 100k samples, each
of which has a binary mask for copy-move forgery detecion,
and a three-class mask that can distinguish the source and
target regions for copy-move source-target distinguishment.
In our experiments, 80k, 10k, and 10k samples are randomly
selected from the USCUSI dataset for training, validation,
and testing, respectively. Then two commonly used datasets
for copy-move forgery detection, i.e., the CASIA2.0 dataset2

and the CoMoFoD dataset3 [51], are used to evaluate the
generalization of the proposed network. The CASIA2.0 dataset
contains 1,313 copy-move forgery images; and the CoMoFoD
dataset contains 200 basic copy-move forged images and
some augmented forged images that are generated by six
distortion methods including JPEG compression (JC), noise
adding (NA), image blurring (IB), brightness change (BC),
color reduction (CR), and contrast adjustments (CA), summing
to 5k samples.

For the robustness analysis, the distortion methods men-
tioned in [51] are applied to the test data in USCISI
dataset. The quality factor (QF) of JC is set to QF ∈
{70, 80, 90, 100}, the standard deviation σ of Gaussian noise
in NA is set to σ ∈ {0.1, 0.2, 0.3, 0.4}, the size W
of Gaussian filter is set to W ∈ {3 × 3, 5 × 5, 7 ×
7} for IB, the intensity S_bc of BC is set to S_bc ∈
{0.8, 0.9, 1.1, 1.2}, the intensity S_cr of CR is set to S_cr ∈
{8, 16, 32, 64}, and the lower bound B_lower and upper
bound B_upper of CA are set to (B_lower, B_upper) ∈
{(0.01, 0.95), (0.01, 0.9), (0.01, 0.85), (0.01, 0.8)}.

2) Compared Methods: The performance of the proposed
method is validated on CMFL and CMSTD. The goal of
CMFL is to localize the copy-move regions in images without
distinguishing the source and target regions. To evaluate the
performance on CMFL task, some advanced methods on
CMFL are considered for comparison: (1) BusterNet [27];
(2) DenseInceptionNet [25]; (3) Mantra-Net [24]; (4) DOA-
GAN [30]; (5) CMSD_STRD [29]; (6) DenseFCN [18];
and (7) CMFD_FMPS [26]. The CMSTD methods can not
only localize the copy-move regions, but also can distin-
guish the source/target regions. For the CMSTD task, several
existing methods are considered for comparison: (1) Buster-
Net [27]; (2) CMSD_STRD [29]; (3) DOA-GAN [30]; and
(4) Multi-branch CMSTD [31].

1https://github.com/isi-vista/BusterNet/tree/master/Data/USCISI-CMFD-
Small

2http://forensics.idealtest.org/casiav2
3https://www.vcl.fer.hr/comofod/comofod.html

B. Experimental Results

In this subsection, we study the effectiveness of the pro-
posed CNN-T GAN on three benchmark datasets. The experi-
mental results of the proposed method on CMFL and CMSTD
are compared with those of the state-of-the-art methods. Then,
several ablation experiments on the backbone network, feature
selection, and loss functions are studied. Finally, the robustness
against several post-processing operations is analyzed.

1) Comparisons With the State-of-the-Art CMFL Methods:
For the comparisons on CMFL, the released codes
and pre-trained models of BusterNet,4 Mantra-Net,5

CMSD_STRD,6 and DOA-GAN7 are utilized for testing
with our test data. Note that for CMSD_STRD [29], the
pre-trained single-channel CMSDNet is used for CMSD task.
For Dense-FCN [18], the network is retrained based on the
model released in DenseFCN.8 For DenseInceptionNet [25],
the training and testing are implemented based on the
model.9 For CMFD_FMPS [26], the results attained by
SelfDM-SA-MobileNetV3+PS+CRF reported in [26] are
used for comparison.

For the CMFL task, similar copy-move regions are both
considered as the forged regions. The precision, recall, and
F1-score are first calculated for each image in pixel level.
Then, the average precision, recall, and F1-score on the whole
dataset are calculated. The comparative CMFL results on three
benchmark datasets, i.e., USCISI dataset, CASIA2 dataset, and
CoMoFoD dataset, are shown in Table I.

From Table I, it can be found that the proposed CNN-T
GAN obtains the highest precision and F1-score on USCISI
dataset. The Mantra-Net [24] obtains higher recall than the
proposed method. On CASIA2 dataset, Mantra-Net achieves
the highest performance in both precision and recall. Since
the threshold for Mantra-Net is set to a very small value
(threshold=0.02), most of the positive regions can be correctly
localized, which leads to a high true positive (TP) rate. Hence,
true positive samples account for a high proportion of the
predicted positive samples, and this gives a high precision
value. In this situation, Mantra-Net obtains a higher precision
than the proposed method. However, the low threshold value
tends to result in misclassifying negative pixels as positive
pixels. Therefore, by a more comprehensive performance
metric, i.e., F1-score, the proposed method achieves better
results than Mantra-Net. On CoMoFoD dataset, the proposed
method achieves the highest precision and F1-score, the
Mantra-Net obtains the best recall. The high recall achieved by
Mantra-Net on three datasets may be due to that Mantra-Net
rarely misidentified the positive samples as negative, i.e., the
Mantra-Net has a lower false negative rate. The comprehensive
metrics, i.e., F1-scores, of the proposed method are 6.88%,
0.62%, and 6.0% higher than those of the second best method

4https://github.com/isi-vista/BusterNet
5https://github.com/ISICV/ManTraNet
6https://github.com/imagecbj/A-serial-image-copy-move-forgery-

localization-scheme-with-source-target-distinguishment
7https://github.com/asrafulashiq/doagan_clean
8https://github.com/ZhuangPeiyu/Dense-FCN-for-tampering-localization
9https://github.com/HilbertXu/CMFD-Dense-InceptionNet
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TABLE I

CMFL RESULTS OF PRECISION, RECALL, AND F1-SCORE (%) WITH
COMPARED METHODS ON DIFFERENT DATASETS; THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 8. CMFL localization maps of compared methods. The first column
is the copy-move forged images; the second to eighth columns represent
the localization maps obtained by BusterNet [27], DenseInceptionNet [25],
Mantra-Net [24], DOA-GAN [30], CMSD_STRD [29], DenseFCN [18], and
the proposed method, respectively; the last column is the corresponding
ground-truth masks of the first column.

on USCISI dataset, CASIA2 dataset, and CoMoFoD dataset,
respectively.

Fig. 8 shows some CMFL maps of the compared methods.
In Fig. 8, (a0)-(b0) are from CoMoFoD dataset, (c0)-(g0) are

from USCISI dataset, and (h0) is from CASIA2 dataset. From
the second column of Fig. 8, it can be seen that BusterNet
can localize some of the similar regions, whereas, most of
the duplicated regions cannot be recognized. The fourth col-
umn shows that MantraNet cannot detect complete objects in
images. DenseInceptionNet, DOA-GAN, CMSD_STRD, and
DenseFCN can roughly obtain similar regions in copy-move
forgery images with almost complete outlines. However, the
details of the edges of the targets cannot be well localized,
for example, the legs of the zebras in the sixth row of Fig. 8.
Our proposed method can localize the similar regions with
more texture details. This may be due to that the proposed
CNN-T GAN extracts both the global structure features and
the local texture features in images. In Section IV-B.3, we will
validate the effectiveness of the integration of the CNN and
transformer.

2) Comparisons With the State-of-the-Art CMSTD Meth-
ods: For the comparisons on CMSTD, the released codes
and pre-trained models of BusterNet, CMSD_STRD, and
DOA-GAN are adopted for testing. For CMSD_STRD, we first
utilize the pre-trained CMSDNet to localize the copy-move
regions, and then utilize the pre-trained STRDNet to distin-
guish the source and the target regions. Since the Multi-branch
CMSTD is designed for source-target disambiguation on the
condition that the copy-move regions are known, the authors
recommend that the method DeseInceptionNet [25] is first
utilized to obtain the copy-move regions; then, the pre-trained
model of Multi-branch CMSTD10 is used to obtain the
CMSTD maps.

Table II shows the comparative CMSTD results on three
benchmark datasets. Since the pristine regions account for a
large amount of the images, the evaluation metrics in pristine
region will be a relatively large number even though a method
cannot correctly detect the copy-move regions. Therefore, the
metrics in the source and target regions are more significant
in evaluating the performance of CMSTD. Table II shows that
the proposed CNN-T GAN obtains the best results on all the
evaluation metrics on USCISI dataset. The overall F1-scores
of the proposed method are 1.46%, 24.16%, and 11.57%
higher than those of the second best method, i.e., DOA-
GAN, on pristine, source, and target regions, respectively.
Except for the precision and the recall on pristine regions
on CASIA2 dataset, the proposed method obtained the best
metrics on CASIA2 dataset. The overall F1-scores of CNN-T
GAN are 0.97%, 14.74%, and 22.69% higher than those of the
second best method, i.e., CMSD_STRD, on pristine, source,
and target regions, respectively. On CoMoFoD dataset, the
proposed method obtains the best metrics except the recall in
pristine regions. The F1-scores of CNN-T GAN are 0.73%,
33.22%, and 33.28% higher than those of the second best
method, i.e., CMSD_STRD, on pristine, source, and target
regions, respectively. The proposed method has achieved great
improvement in localization performance on source and target
regions.

10https://github.com/andreacos/MultiBranch_CNNCopyMove_Disamb-
iguation
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TABLE II

CMSTD RESULTS OF PRECISION, RECALL, F1-SCORE (%) ON PRISTINE, SOURCE, AND TARGET REGIONS OF COMPARED
METHODS ON DIFFERENT DATASETS; THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 9. CMSTD localization maps of compared methods. The first column
is the copy-move forged images; the second to the fifth columns represent
the localization maps obtained by BusterNet [27], CMSD_STRD [29], DOA-
GAN [30], Multi-branch CMSTD [31], and the proposed method, respectively;
the last column is the corresponding ground-truth masks of the first column.

Fig. 9 shows the CMSTD localization maps of the com-
pared methods. In Fig. 9, (a0)-(b0) are from CoMoFoD
dataset, (c0)-(e0) are from USCISI dataset, and (f0)-(h0)
are from CASIA2 dataset. From Fig. 9, it can be seen
that the proposed CNN-T GAN can not only localize the
copy-move regions in images, but also can distinguish the

source and the target regions well. BusterNet obtains rough
localization maps of the copy-move forged regions, but cannot
distinguish the source and target regions. CMSD_STRD can
obtain accurate copy-move regions, but has difficulty in distin-
guishing the soure/target regions. DOA-GAN can distinguish
the source/target regions, but the localization maps are too
rough to show the edge details on copy-move regions. Multi-
branch CMSTD distinguishes the soure/target regions based
on the binary mask obtained by DenseInceptionNet [25]. The
accuracy on source/target distinguishment is dependent on
the performance of DenseInceptionNet. Sometimes, Multi-
branch CMSTD incorrectly discriminates the source and target
regions even when DenseInceptionNet obtains proper copy-
move regions, as shown in Figs. 9(g4) and (h4). The proposed
method can obtain satisfactory source/target localization maps
with accurate edge information, as shown in Figs. 9(f5), (h5).
In addition, the proposed method can distinguish the multi-
target duplications, as shown in Fig. 9(g5).

3) Ablation Study: We first investigate the performance
of different backbones of the generator in GAN. The
U-Net [15], Deeplab-V3 [16] and the proposed CNN-T net-
work are considered to generate the three-class masks. The dis-
criminators of the three networks are identical to that described
in Section III-C. Table III shows the CMSTD performance
of these backbones on USCISI copy-move dataset. From
Table III, it can be observed that Deeplab-V3 obtains better
CMSTD results than U-Net. This is due to that Deeplab-
V3 exploits the atrous convolution and the atrous spatial
pyramid pooling modules to extract multi-scale features. Our
proposed CNN-T Network can further improve the CMSTD
performance due to that the CNN-T Network extracts both
the global and the local features. It also can be found that
all these three backbones obtain better localization results on
the target regions than on the source regions. This is due to
that the target regions are the actually forged regions, in which
the duplicated traces may be left on the edges. Meanwhile, the
source regions are not forged at all, thus, it is more challenging
to localize the source regions.
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TABLE III

CMSTD RESULTS OF PRECISION, RECALL, AND F1-SCORE (%) ON PRISTINE, SOURCE, AND TARGET REGIONS WITH DIFFERENT
BACKBONES ON USCISI COPY-MOVE DATASET; THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Then, ablation studies are conducted to validate the
effectiveness of the design of feature coupling layers. These
ablation studies are performed in five cases: 1) only the
CNN branch is used as the generator; 2) only the transformer
branch is used as the generator; 3) the CNN-transformer
only with the feature coupling down-sampling layers is used
as the generator; 4) the CNN-transformer only with the
feature coupling up-sampling layers is used as the genera-
tor; 5) the CNN-transformer with both the feature coupling
down-sampling layers and up-sampling layers is used as
the generator. “Our-CNN”, “Our-transformer”, “CNN-T with
FCLdown”, “CNN-T with FCLup”, and “Proposed” denotes
the above five cases, respectively. The experimental results
are shown in Table IV.

From the fourth and fifth rows in Table IV, it can be found
that the feature coupling down-sampling layers can improve
the CMSTD performance of transformer a bit. Comparing the
third and sixth rows in Table IV, we see that the feature
coupling up-sampling layers can improve the CMSTD perfor-
mance of CNN a lot, especially for the source/target regions.
The CNN-T with both FCLup and FCLdown obtains the best
performance compared with the other schemes. The reason for
these results may be explained as follows. On the one hand, the
feature coupling down-sampling layers can supply the trans-
former with local features, and thus enrich the local details
of the transformer. On the other hand, the feature coupling
up-sampling layers can transmit global representations from
the transformer branch to the CNN branch, which reinforces
the global perception capability of the CNN branch. The
CNN-transformer GAN can not only maintain the advantages
of both CNN and transformer, but also retain the representation
capability of local and global features to a large extent.

In the following, we discuss the effects of feature selection
and loss function. We denote the feature from the Trans-
block1 and Convblock1 as f1 ∈ �256×64×64, the feature
from the Transblock2 and Convblock2 as f2 ∈ �256×32×32,
and the feature from the Transblock3 and Convblock3 as
f3 ∈ �256×16×16. Each of these three level features can be
used alone to predict. Moreover, the four components of Ltotal
are investigated. Thus, six schemes shown in Table V are
tested.

The following observations can be obtained from Table V:

• Feature Level Selection. Schemes 1, 2, and 3 are designed
to validate the selection of feature levels, and are all
trained with Ladv +LMSE +Lmask. Comparing the three
schemes, it can be found that multi-level features can
improve the localization performance on pristine, source

Fig. 10. CMSTD results of different schemes (F1-scores on source/target
regions (%)). The first column is copy-move forged images; the second to
the seventh columns represent the localization maps obtained by Scheme 1,
Scheme 2, Scheme 3, Scheme 4, Scheme 5, and the proposed method,
respectively; the last column corresponds to the ground-truth mask of the
first column. The best results are highlighted in bold.

and target regions dramatically. This is due to that all
of f1, f2, and f3 can supply features of different scales,
which is beneficial to the localization of objects in all
sizes.

• Loss Function. The results of Scheme 4 given in Table V
show that the network could not obtain satisfactory
results on CMSTD when only using Ladv loss. With
using LMSE, Scheme 5 can greatly improve the per-
formance of source/target distinguishment. By adding
Lmask, Scheme 3 can further improve the localization
accuracy of the soure/target regions. This is due to that
Lmask loss focuses on the green and red regions that
correspond to the source and target regions, respectively.
Finally, compared with Scheme 3, the use of Lsimi in
the proposed scheme can further improve the CMSTD
results, especially the localization results of the source
regions. The Lsimi loss improves the detection perfor-
mance of source regions by taking the similarity between
the predicted binary mask and the binary ground-truth
mask into consideration.

Fig. 10 further presents several CMSTD maps with the
above-mentioned six schemes. It can be seen from Fig. 10
that the schemes with f2 and f3 can obtain better localization
results than those only with f1. The Scheme 4 only with Ladv

could hardly localize the target regions. The LMSE loss can
distinguish the source and target regions with extra false posi-
tive rates. The Lmask loss concentrates on the source and target
regions, and obtains better performance. Finally, the Lsimi loss
takes advantages of the similarity in source and target regions,
and improves the localization results in source regions.

4) Robustness Analysis: The copy-move forged images
may undergo some post-processing operations mentioned in
Section IV-A.1, such as JC, NA, IB, BC, CR, and CA.
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TABLE IV

ABLATION STUDIES ON TRANSFORMER NETWORK AND FEATURE COUPLING. THE CMSTD RESULTS ARE EVALUATED BY PRECISION,
RECALL, AND F1-SCORE (%) ON PRISTINE, SOURCE, AND TARGET REGIONS ON USCISI COPY-MOVE

DATASET; THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE V

EFFECT OF FEATURE SELECTION AND LOSS FUNCTION ON
F1-SCORES (%) OF CMSTD ON USCISI DATASET; THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD

TABLE VI

F1-SCORES (%) ON PRISTINE, SOURCE, AND TARGET REGIONS AGAINST

DIFFERENT POST-PROCESSING OPERATIONS ON USCISI COPY-MOVE

DATASET; THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

An image forensic method should be robust against commonly
used post-processing operations. In this subsection, we validate
the robustness against several post-processing operations of the
proposed method.

Table VI shows the F1-scores obtained by the proposed
method against several post-processing operations. From
Table VI, it can be seen that the proposed method is less
robust against NA and IB. The reasons are as follows: first,
NA will add noise in images, which may cause interference
for GAN; second, IB will lead to loss of textures in images
when blurring the entire image. In addition, even though the
performance on CMSTD of the proposed method decreases to
some degree, the proposed method is more robust against JC,
BC, CR, and CA than against NA and IB. This is due to that
JC, BC, CR, and CA change the intensity of the images, but do
not change the contents of images. It should be noted that for
BC, when S_bc < 1, i.e., the images are weighted towards
brighter outputs, the performance can even be improved by
BC. This may be due to that brighting images properly can
improve the saliency of objects in images, which is beneficial
to object detection.

V. CONCLUSION

In this paper, a novel CNN-T GAN is proposed for
copy-move forgery localization and source/target distinguish-
ment. The generator consists of a CNN branch, a transformer
branch, and several feature coupling layers. The CNN branch
and transformer branch extract local features and global rep-
resentations of the copy-move regions, respectively. Feature
coupling layers are designed to integrate the features in
these two branches. To enhance the performance of generator,
the generator and the discriminator are alternatively trained,
and the training will not stop until the discriminator cannot
discriminate the generated masks correctly. Moreover, a new
Pearson correlation layer is introduced to extract the similarity
in copy-move forgery images. Finally, a mask loss and a
similarity loss are designed to focus on the source and target
regions. Ablation experiments have verified the effectiveness
of the designing of network architecture, the feature selection,
and loss function. Extensive experimental results have shown
that the proposed method outperforms the state-of-the-art
methods in both CMFL and CMSTD on three commonly used
copy-move forgery datasets.
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