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Abstract— Real-time semantic segmentation is widely used
in autonomous driving and robotics. Most previous networks
achieved great accuracy based on a complicated model involving
mass computing. The existing lightweight networks generally
reduce the parameter sizes by sacrificing the segmentation
accuracy. It is critical to balance the parameters and accuracy
for real-time semantic segmentation. In this article, we pro-
pose a lightweight multiscale-feature-fusion network (LMFFNet)
mainly composed of three types of components: split-extract-
merge bottleneck (SEM-B) block, feature fusion module (FFM),
and multiscale attention decoder (MAD), where the SEM-B
block extracts sufficient features with fewer parameters. FFMs
fuse multiscale semantic features to effectively improve the
segmentation accuracy and the MAD well recovers the details
of the input images through the attention mechanism. Without
pretraining, LMFFNet-3-8 achieves 75.1% mean intersection over
union (mIoU) with 1.4 M parameters at 118.9 frames/s using
RTX 3090 GPU. More experiments are investigated extensively
on various resolutions on other three datasets of CamVid,
KITTI, and WildDash2. The experiments verify that the proposed
LMFFNet model makes a decent tradeoff between segmentation
accuracy and inference speed for real-time tasks. The source code
is publicly available at https://github.com/Greak-1124/LMFFNet.

Index Terms— Fast semantic segmentation, lightweight net-
work, multiscale attention decoder (MAD), multiscale feature
fusion, split-extract-merge bottleneck (SEM-B).

I. INTRODUCTION

EDGE computing on mobile phones, automotive systems,
wearable devices, the Internet of Things (IoT) devices,

and so on evolves to be a new computing paradigm and
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becomes more reliable and practical for real-time tasks exe-
cuted with extremely low transmission latency based on local
data sources. Nevertheless, restricted computing resources and
battery capacity of edge devices bring new challenges to
real-time applications as well. Lightweight network archi-
tecture with an appropriate tradeoff between accuracy and
inference speed becomes a challenging task for real-time
application scenarios, especially the semantic segmentation
tasks that receive significant attention on many important
applications such as autonomous driving and robotics in the
current decade.

The deployment of artificial neural networks (ANNs) for
real-time semantic image segmentation is mostly constrained
by: 1) accuracy; 2) model size; and 3) inference speed. Never-
theless, ANNs are generally built toward a primary trend for
achieving higher accuracy by employing deeper convolutional
layers and larger feature channels. The high-quality results
largely rely on sophisticated models that involve mass comput-
ing operations. Most previous deep neural networks (DNNs)
mainly focused on improving the model accuracy regardless
of computational efficiency. For example, in semantic seg-
mentation, PSPNet [1] introduced a pyramid pooling mod-
ule (PPM) achieving 80.2% mean intersection over union
(mIoU) with 65.7 million parameters on Cityscapes [2] test
set. DeepLabV3+ [3] achieved a better performance of 82.1%
mIoU with 54.6 million parameters resulting mainly from
the “atrous convolution.” DRANet [4] introduced both spatial
attention and channel attention in the network, which reached
82.9% mIoU, while the reasoning speed was far less than the
real-time standard. Besides, to capture more spatial details,
high-resolution images are employed in various tasks based
on DNNs, which brings higher computational cost.

Therefore, accurate networks built by existing approaches
usually request support from powerful computing platforms
with rich hardware resources since the large model sizes
always involve enormous parameters and computing oper-
ations. In other words, most DNN models that only con-
cern accuracy are unlikely to enable practical tasks on
resource-constrained edge devices such as mobile phones. The
requirements, such as timing, power consumption, and relia-
bility, are also extremely important to practical applications,
especially to the autonomous driving scene.

Many lightweight-oriented technologies are developed cur-
rently to reduce the model size and improve the inference
speed. Li et al. [39] provided an overview of impressive
achievements made by various CNN models and surveyed
some methods to refine CNNs for consuming fewer computing
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Fig. 1. Architecture of the proposed LMFFNet. M and N denote the number of SEM-B in SEM-B Block1 and SEM-B Block2, respectively. C1 and C2
represent the number of output channels of FFM-B1 and FFM-B2 after 1 × 1 convolution operation, respectively. C denotes the number of categories. PMCA:
partition-merge channel attention module. (a) Initial block. (b) FFM-A1. (c) SEM-B block1. (d) FFM-B1. (e) SEM-B block2. (f) FFM-B2. (g) MAD (decoder).

resources, such as low-rank approximation, network pruning,
and network quantization. Pooling technology can attain fast
processing speed for the high-resolution input images by
cutting down the resolution of feature maps. However, the
pooling operation generally leads to the loss of image spatial
information. Thus, many existing approaches [3], [5], [6] tried
to replace the later pooling layers by dilated convolutions,
obtaining a larger receptive field with less loss of spatial
information.

Besides, convolution factorization [7], depthwise separable
convolution (ds-Conv) [8], and attention mechanism [9]–[12]
are often used to reduce the parameter number of seman-
tic segmentation networks. For instance, BiSeNet [12], [40]
introduced channel attention into the attention refinement
module (ARM) to aggregate the feature maps, and CGNet
[9] used the same attention technology to construct context-
guided (CG) block for feature extraction. LRNNet [10] used a
self-attention mechanism to construct a lightweight decoder to
reduce the model parameters. In this work, we propose a novel
semantic segmentation structure called lightweight multiscale-
feature-fusion network (LMFFNet) whose overall architecture
is shown in Fig. 1. Compared with the existing methods, our
main contributions are summarized as follows.

1) A novel module of split-extract-merge bottleneck
(SEM-B), which combines standard convolution with
ds-Conv, is exploited in an efficient way for building
a lightweight backbone.

2) A novel channel attention module with partition-merge
channel attention (PMCA) mechanism is proposed for
improving the feature fusion ability of the feature fusion
module (FFM) module.

3) FFMs are further developed and inserted in the back-
bone to capture multiscale features, fusing the context
information between feature maps of adjacent layers
and combining multiscale semantic information from
different depths.

4) A lightweight multiscale attention decoder (MAD) con-
structed on an attention mechanism using only 0.09 M

parameters is introduced to process multiscale features
and recover the spatial details efficiently.

5) The SEM-Bs and FFMs in the backbone are united in
the encoder phase, while the MAD dominates in the
decoder phase for constructing the overall architecture
of LMFFNet based on the encoder–decoder strategy,
achieving an adequate tradeoff between accuracy and
efficiency for edge computing.

Extensive ablation experiments are implemented progres-
sively to investigate the impacts of each core component of the
LMFFNet model on the accuracy–efficiency tradeoff (AET) in
this article.

The rest of this article is organized as follows. Section II
gives an overview of related work for real-time semantic
segmentation. Section III introduces the key components and
the overall architecture of the proposed semantic segmentation
model of LMFFNet in detail. A series of ablation experiments
is implemented to verify the effectiveness of our networks in
Section IV. Finally, Section V concludes this article.

II. RELATED WORK

In this section, we summarize related methods for real-time
semantic segmentation based on the encoder–decoder archi-
tecture. To improve the accuracy of semantic segmentation,
the encoder usually needs to make full use of the context
information to improve the classification accuracy, while the
decoder needs to effectively recover the spatial information to
improve the segmentation accuracy.

A. Existing Methods for Encoder

The current design of the real-time semantic segmenta-
tion encoder can be divided into two streams. The first
one introduces the multibranch structure or connects the
shallow features and deep features based on the existing
backbone networks (e.g., ResNet [13] and Xception [14]).
For example, SwiftNet [15] modified ResNet and intro-
duced a light-aggregation encoder deploying reversed sub-
pixel and showcased a pixel-adaptive memory strategy for
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real-time semisupervised video object segmentation, achiev-
ing 70 frames/s and state-of-the-art accuracy on the DAVIS
2017 validation dataset with pretraining. ICNet [16] proposed
a multipath cascade structure based on ResNet, which captured
more context information and thus greatly improved the clas-
sification accuracy. Yoltrack [17] built a segmentation network
applied to the field of autopilot based on ShuffleNet v2 [18]
as the backbone network. The C-DCNN [19] used VGG16
[20] as the backbone network to improve the accuracy by
introducing depth image information to generate high-order
features. Nevertheless, although the encoders based on the
existing backbone networks gain strong feature extraction
ability, it always includes large network parameters and thus is
generally unaffordable for mobile scenarios using edge devices
with limited computational resources.

The second one proposes lightweight modules to build an
efficient backbone. ENet [21] is one remarkable lightweight
network for real-time semantic segmentation applied in practi-
cal scenarios. To make an available tradeoff between accuracy
and efficiency, ENet constructed a lightweight bottleneck by
employing asymmetric convolution. Referring to the bottle-
neck of ResNet, ERFNet [22] employed factorized convolu-
tions (1 × 3, 3 × 1) to replace the 3 × 3 convolution and
proposed nonbottleneck-1D (Non-bt-1D), greatly reducing the
number of parameters. LEDNet [23] proposed a split-shuffle-
nonbottleneck that introduced split-shuffle operations to reduce
the number of parameters and improved the accuracy. Convo-
lution factorization was also employed in [23], improving the
accuracy with a few parameters. ESNet [24] adopted three
branches in a parallel factorized convolution unit (PFCU).
Each branch in [24] corresponds to a convolution with dif-
ferent dilated rates, which aggregated multiscale context infor-
mation. The above networks are usually lighter in weight (i.e.,
fewer model parameters), but the achieved accuracy is not
satisfactory compared with the former approaches employed
by existing backbone networks. In this article, our LMFFNet
can keep high accuracy, but the parameters of its backbone
network constructed by SEM-Bs are much smaller than those
based on existing networks, such as ResNet and Xception.

B. Existing Methods for Decoder

The decoder could be divided into two types: symmetric
decoder and asymmetric decoder. SegNet [25] introduced the
pooling indices to build the upsampling module to construct
the symmetric decoder. ERFNet [22] and ESNet [24] used
Non-bt-1D and PFCU to build symmetric decoders, respec-
tively. The symmetric decoder could recover spatial informa-
tion finely and then improve the model accuracy. However,
it usually includes multiple feature extractions and upsampling
steps due to the symmetry between encoder and decoder,
leading to complex computation and slow inference speed.
In other words, the symmetric encoder–decoder-based archi-
tectures typically cannot provide a decent tradeoff between
inference speed and accuracy.

The asymmetric decoder is frequently used in recent works
since the asymmetric decoder is more suitable for real-time
semantic segmentation due to its better tradeoff between
accuracy and computing efficiency with fewer parameters

and faster inference speed. DFANet [26] designed a simple
asymmetric decoding module that aggregated the feature infor-
mation of each layer of the encoder and efficiently recovered
the spatial information. DABNet [11] and LRNNet [10] pro-
posed the efficient reduced nonlocal module and pointwise
aggregation decoder (PAD) based on the attention mechanism
to achieve better spatial information recovery with smaller
parameters. AGLNet [45] with 1.12 M parameters employed
two types of attention mechanisms subsequently in the decoder
to upsample feature maps to match input resolution and
achieved maximal 71.3% mIoU. Peng et al. [46] developed
a lightweight decoder using bilateral spatial–channel attention
to combine the high- and low-level feature maps without
changing of backbone network, obtaining 75.9% mIoU and
38.5-frames/s inference speed on the Cityscapes test dataset
and 72.9% mIoU and 254.7-frames/s speed on the CamVid
test dataset. However, its parameter amount and FLOPs were
unrevealed. MSCFNet [47] employed a two-step decoder that
is asymmetrical relative to the encoder by using a ×4 upsam-
pling and a final ×2 deconvolution operation to restore the
image size, resulting in 1.15 M parameters. Likewise, LRDNet
[48] proposed a refined dual-attention decoder to reduce the
complexity of the model and improve the semantic segmen-
tation accuracy, resulting in 0.66 M parameters. Inspired by
these works, we explore a new attention mechanism to build an
ultralightweight decoder and recover spatial details efficiently
in our proposed LMFFNet.

C. Real-Time Semantic Segmentation Networks

There are fast-growing network models designed for the
real-time semantic segmentation task in practical application
scenarios in recent years. The core issue for real-time semantic
segmentation task turns into how to strike a good tradeoff
between accuracy and inference speed.

It is a primary trend to design a lightweight and efficient net-
work for real-time applications. For this purpose, Sem2Ins [41]
leveraged a lightweight generator based on conditional gener-
ative adversarial networks (cGANs), least-squares loss, deep
supervision, and weighted fusion, reaching up to 40-frames/s
inference speed. However, the accuracy and inference speed
for the instance segmentation task combined the Sem2Ins with
other modules leaved much to be desired. WFDCNet [43]
introduced a front-end network and designed a lightweight
encoder, which is mainly composed of a full-dimensional
continuous separation (FCS) convolution module and lateral
asymmetric pyramid fusion (LAPF) module, resulting in 0.5 M
parameters. STDC network [42] proposed an efficient light-
weight backbone to provide scalable receptive field and set a
single path decoder using detail information guidance to learn
the low-level details. A satisfactory result of 250.4-frames/s
inference speed and 71.9% mIoU, concerning the results of
Cityscapes dataset, was presented in the STDC network [42].
A patchwise hypernetwork named HyperSeg [44] was con-
structed by an encoder with a nested U-Net [54] and a decoder
consisted of dynamic blocks with spatially varying weights.

In the last two years, more lightweight networks were
designed and achieved better performance in terms of the
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tradeoff between inference speed and accuracy. MSCFNet [47]
applied a simple deconvolution in the decoder and explored
an efficient asymmetric residual (EAR) module in the encoder,
achieving 71.9% mIoU and 50 frames/s on the Cityscapes test-
ing set. Zhuang et al. [48] proposed an asymmetric and refined
encoder–decoder model named LRDNet, which improved the
feature extraction efficiency and reduced the boundary loss
with low parameters by adopting decomposition convolution,
deep convolution, and dual-attention mechanism, obtaining
up to 77 frames/s and 70.1% mIoU on the Cityscapes test
set. EFRNet [49] adopted a single branch strategy, which
combined feature fusion for multistage features with a light-
weight channel attention refinement, achieving 70.02% mIoU
and 50.2 frames/s with 0.48 M parameters on CamVid. The
LAANet [50] solved the intraclass inconsistency and inter-
class indistinction problems and achieved 73.6% mIoU and
95.8 frames/s on the Cityscapes.

To enable the feature extraction capability and detail recov-
ery capability of high-resolution remote sensing images in the
land cover segmentation algorithm, Pang et al. [51] proposed
a semantic-guided bottleneck network (SGBNet) to balance
accuracy and reasoning speed using a two-branch architecture.
Zhang et al. [52] proposed an asymmetric network called
LEANet, which only consumed 0.74 M parameters. LEANet
[51] could process images at 98.6 frames/s inference speed
and achieved the accuracy of 67.5% mIoU on the CamVid
test set, while 71.9% mIoU and 77.3 frames/s were gained
on the Cityscapes test set. Likewise, Liu et al. [53] tried to
extract both local and contextual information by building up
a RELAXNet with 1.9 M parameters, using residual mod-
ules combined of depthwise convolution, dilated convolution,
factorized convolution, and channel shuffle. RELAXNet [52]
achieved 74.8%-mIoU and 64-frames/s inference speed on the
Cityscapes dataset and 71.2%-mIoU and 79-frames/s speed on
the CamVid dataset. Note that the inference speeds of different
models are closely related to the size of testing images and
the employed GPU types.

For achieving real-time performance with a decent tradeoff
between accuracy and inference speed, we dedicate to explore
an elaborate encoder–decoder architecture for semantic seg-
mentation tasks with around 1 M parameters by employing
a lightweight encoder based on an efficient backbone and an
asymmetric decoder with a relatively small size in this work.

III. LMFFNET

Based on the asymmetric encoder–decoder strategy,
we elaborately design an LMFFNet for real-time semantic
segmentation. SEM-B and FFM are two main types of com-
ponents that compose the LMFFNet backbone. The SEM-B
block consists of a variable number of SEM-Bs in different
layers of the LMFFNet architecture. Moreover, a lightweight
decoder, namely MAD, is developed in this work, consuming
only 0.09 M parameters. The overall architecture of LMFFNet
is shown in Fig. 1 and listed in Table I.

A. Split-Extract-Merge Bottleneck

Multiple successful instances of lightweight residual layers
have been witnessed in recent years. ResNet [13] proposes

TABLE I

OVERALL ARCHITECTURE OF LMFFNET

Fig. 2. Comparison of different bottleneck structures. (a) ResNet bottleneck.
(b) SS-nbt of LEDNet. (c) Our SEM-B. Note that “Conv” denotes the standard
convolution, “Conv(d)” denotes dilated convolution with “d,” and “DConv(d)”
indicates depthwise dilated convolution with dilated “d.” “N” refers to the
number of feature channels.

a widely used residual structure as shown in Fig. 2(a) for
real-time semantic segmentation. LEDNet [23] introduces
split-shuffle-nonbottleneck (SS-nbt) [Fig. 2(b)], which adopts
the split-transform-merge strategy. In the SS-nbt, convolution
factorization is employed in two feature extraction branches.
However, the factorized convolution is not conductive enough
to the GPU parallel processing, which leads to a slow inference
speed of the model under the same computational budget.
Similar works in [10], [11], and [24] use the split-transform-
merge strategy to build a feature extraction module as well.

Inspired by the above residual structures, we propose
a new bottleneck referred to SEM-B in our LMFFNet,
as shown in Fig. 2(c). To improve the computing efficiency,
we build up our bottleneck with both standard convolution
and ds-Conv. Besides, the activation function scheme is very
important to convolution operation. PReLU and batch nor-
malization (BN) are both applied in this work before every
convolution operation in the SEM-B because the PReLU
normally performs better than ReLU in lightweight networks
[27] and BN helps to increase the convergence speed of the
model [28].

At the beginning of each SEM-B, a standard 3 × 3 convo-
lution is employed to generate features and halves the number
of input channels. The convolutional output is then split into
two branches, where each one has 1/4 channels of the input.
To avoid convolution factorization, the transformation is per-
formed in the two branches, individually using depthwise con-
volution and depthwise dilated convolution. The convolutional
outputs of the two branches are merged through concatenation
so as to obtain multiscale feature information and restore the
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Fig. 3. Comparison of different FFMs. (a) Skip connection of ESPNet. (b) Proposed FFM-A. (c) Proposed FFM-B. Note that “ESP” is the efficient spatial
pyramid module, and “α” represents the number of ESP modules or SEM-Bs. The SEM-B block bounded in the dashed box in (c) is composed of (α + 1)
SEM-Bs, where the input feature maps of the FFM-B are concatenated to the output of the (α + 1) SEM-Bs and a downsampled raw image through the
PMCA module.

number of channels to half of the input channels. Then, another
standard 3 × 3 convolution is employed to integrate the feature
maps of different scales and finally restore the number of
channels that are consistent with the number of input channels.
Besides, the convolutional output with restored channels is
further added up with the input by another branch for identity
mapping.

The merits of SEM-B can be summarized as follows. First,
the standard 3 × 3 convolution is used in the head and tail of
each SEM-B, which enlarges the receptive field of the model
and makes the model get more context information. Second,
in each SEM-B, split operation enables a lower computational
complexity for the overall architecture. Meanwhile, the con-
catenation of multiscale convolutional results provides abun-
dant feature information. Therefore, SEM-B greatly improves
the feature extraction efficiency with a few parameters, which
is verified with extensive experiments in Section IV.

B. SEM-B Block

In CNN networks, shallow features usually contain more
detailed information, while deep features contain more abstract
information. Therefore, we stack up two SEM-B blocks in
different depths for extracting both shallow features by the
former SEM-B block and deep features by the latter one
in the LMFFNet. The first SEM-B block, which is com-
posed of M (M > 0) SEM-Bs, is primarily used to extract
shallow features, while the second one, which consists of
N (N > 0) SEM-Bs, dedicates to unite with the front
SEM-B block to extract deep features. The more detailed
architectures of these two SEM-B blocks of LMFFNet are
shown in Fig. 1(c) and (e).

The SEM-B block that consists of a number of consecutive
SEM-Bs is the key component of FFM-B. There are (α + 1)
SEM-Bs sequentially connected if the depth of an SEM-B
block is supposed to be α + 1. As the depth (α + 1) of
the SEM-B block in FFM-B determines the feature level
of the spatial information, it has a great impact on the
accuracy of the LMFFNet, while the feature fusion strategy
is implemented by the skip connection within the FFM-B
modules. Since the lightweight-oriented model asks for fewer
model parameters, the LMFFNet should not employ too many
SEM-B blocks, and the depth of each SEM-B block can
be determined by a finite number of experiments within a
narrow range. Nevertheless, we further adopt an automatic

screening method based on the Bayesian optimization [58]
for searching the best depth (α + 1) during the training phase
for the SEM-B block. We have introduced a new metric for
performance evaluation of neural network in (9) and make
the training phase as an iteration to achieve a sufficiently
good value calculated according to new metric based on the
Bayesian optimization. We carried out extensive experiments
as described in Section IV to choose the most appropriate
depth of the SEM-B block.

C. Feature Fusion Module

The skip-connection and shortcut connection strategies are
found to be effective for various vision tasks in many models,
such as ResNet [13], ESPNet [29], EFRNet [49], U-net [54],
FCN [55], and DenseNet [56], for reusing or fusing features
in different levels. The skip-connection strategy to connect the
output layer to all of the hidden units as well as the input layers
to fuse multistage features has been investigated and achieved
very competitive accuracy based on a solid theoretical analysis
in AdaNet [57]. AdaNet [57] derived a theoretical framework
for networks with cross-layer connections and constructed an
automatically learn network structure, balancing model com-
plexity with empirical risk minimization. Likewise, DenseNet
[56] reported a dense connection that the feature maps of all
preceding layers were used as inputs for each layer, while
its own output feature maps were used as inputs into all
subsequent layers. Many state-of-the-art works exhibited the
advantages of skip connection between layers close to the
input and those close to the output to build up a more accurate
and efficient convolution network for semantic segmentation
[56]. Specifically, ESPNet [29] adopted a skip-connection
strategy that concatenated the downsampled image with prior
ESP module, as shown in Fig. 3(a).

Motivated by the above skip-connection strategies,
we design two types of FFMs for fusing multiscale features,
as shown in Fig. 3(b) and (c). Specifically, FFM-A directly
integrates the downsampled image with the convolutional
result of the initial block in the input stage. By contrast,
FFM-B not only establishes a long-range skip connection
to concatenate the downsampled image from the input but
also establishes a short-range skip connection to fuse the
convolution results of the first SEM-B and the last SEM-B
in the SEM-B block bounded in the dashed box, as shown in
Fig. 3(c).
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Fig. 4. Architecture of the proposed PMCA module.

Different from the ESP module as shown in Fig. 3(a),
a pointwise convolution (Conv 1 × 1) is employed to make
further integration in FFM-A and FFM-B in order to extract
more useful information with fewer model parameters. FFM-A
fuses the downsampled image information and the convolu-
tional result of the initial block and efficiently avoids too much
loss of useful information for further processing. Besides, the
skip connection in FFM-B with a dilated convolution branch
can learn both global and local features that capture long- and
short-range spatial relationships between pixels. Through the
use of skip connections where feature maps from the final
layers of the model are downsampled and fused with feature
maps of earlier layers in each FFM-B, the LMFFNet combines
appearance information from fine layers with shallow features
and semantic information from coarse layers with deep fea-
tures by stacking a number of FFM-B modules.

Although the initial skip-connection strategy is not first
launched in LMFFNet, our FFM-Bs not only integrate the
downsampled image information but also introduce the infor-
mation of SEM-B. In addition, instead of using the identity
mapping with shortcut connection to directly fuse the input
feature to the output of block as many existing methods do,
we introduce a novel PMCA mechanism to focus on the
features in important channels while connecting the input
and output of the SEM-B block in an FFM-B. However,
as a lightweight-oriented model, it is an inadvisable choice
to stack too many SEM-Bs in FFM-B considering the model
size. As a lightweight network, the LMFFNet would prefer
to stack finite several FFM-Bs to build up the network archi-
tecture. Thus, simple enumeration can also be employed to
train the LMFFNet. Eventually, we apply three FFMs (i.e.,
FFM-A1, FFM-B1, and FFM-B2) to construct the backbone
of LMFFNet, as shown in Table I and Fig. 1.

D. Partition-Merge Channel Attention

We introduce the PMCA during the skip connection
between the input and output of the SEM-B block. As shown
in Fig. 4, the input feature maps are partitioned to a number
of regions. Specifically, the regional global average pooling
layer in PMCA can apply four partitioned regions of the
input feature maps to obtain four groups of regional average
pooling values in parallel. Then, each branch can adaptively
and respectively learn the weights of four groups of regional
pooling values through the neural network. Finally, a set of
final pooled values is obtained by the weighted sum to achieve
more detailed attention to specific channels. To pay attention
to the specific feature channels and capture the important
information, the PMCA obtains a set of pooled values after

global average pooling and then learns the channel weights
through several layers of neural networks. More regions can be
partitioned in the input feature maps, but more computational
operations are needed for a slight improvement of accuracy
due to the similarity of adjacent regions according to our
investigation in extensive experiments.

E. Multiscale Attention Decoder

In an encoder–decoder-based semantic segmentation archi-
tecture, the encoder produces dense feature maps, while the
decoder upsamples the feature maps to match the original input
resolution. A well-designed decoder can effectively recover
the spatial details and improve the segmentation accuracy
performance based on a small parameter size.

To improve the model performance with fewer parameters,
a PAD [11] shown in Fig. 5(a) achieves generally good
accuracy. The main idea of PAD is to transform the 1/4
feature map into an attention map, guides the 1/8 feature
map to recover the detail information, and finally recovers
more spatial information by pixel-level addition with the 1/2
feature map. However, in PAD, only 1/4 feature map is used to
generate an attention map that it is difficult for PAD to extract
multiscale spatial details for accurate semantic segmentation.
Therefore, we design a new decoder named MAD shown in
Fig. 5(b), combining two-scale features in one stage to refine
and generate more accurate attention maps for our LMFFNet.

First, the output feature map of FFM-B1 F11 is transformed
to F12 with C1 channels by

F12 = f1×1Conv(F11) (1)

where f1×1Conv represents the 1 × 1 convolution operation.
By contrast, the output feature map F21 of FFM-B2 is trans-
formed to F22 with C2 channels by an individual 1 × 1 point-
wise convolution. We further apply the upsampling operation
to double the size of feature map F21–F23, which can be
expressed as

F23 = fup

(
f1×1conv

(
F21

))
(2)

where fup is the upsampling function implemented by bilinear
interpolation.

Second, the converted feature maps of F12 and F23 are
fused together through a concatenation operation. Finally,
a depthwise separable 3 × 3 convolution is followed by the
concatenation operation to get FDwconv as

FDwconv = fDwconv

(
W3×3, fconcat

(
F12, F23

))
(3)

where fconcat refers to the concatenation operation, fDwConv

represents the depthwise convolution, and W3×3 is a depthwise
convolutional kernel, i.e., a parameter matrix in size of 3 × 3.

Then, a sigmoid activation function is utilized to generate
a multiscale attention map Mmam according to

Mmam = β

(
f1×1conv

(
σ
(

fnor
(
FDwConv

))))
(4)

where fnor means the BN, σ indicates the PReLU activation,
and β denotes the sigmoid activation.
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Fig. 5. Comparison of different decoders. (a) PAD. (b) MAD. Note that “1/n feature map” represents the feature map in different sizes in the feature
extraction phase. “Conv” is the standard convolution, “DConv” denotes depthwise convolution, and “DsConv” indicates ds-Conv. “C” is the number of predict
classes. “C1” and “C2” are the number of feature channels of the 1/4 feature map and 1/8 feature map, respectively.

In addition, the input 1/8 feature map from the FFM-B2 is
applied to both the depthwise convolution and another branch
for upsampling in MAD. The updated feature map F33 can be
calculated by

F33 = fup

(
σ

(
fnor

(
fDwConv

(
W3×3, F31

))))
(5)

which is further utilized for a pointwise multiplication with the
attention map Mmam calculated by the aforementioned sigmoid
activation operation.

Finally, another upsampling operation is utilized to restore
the feature map to its original size. Thus, the final output of
the MAD can be computed by

fout = Mmam � F33 (6)

where � is a pointwise multiplication.
Although we employ an asymmetry encoder–decoder archi-

tecture for efficient networks, multilevel feature information
is still critical for improving accuracy performance. Thus,
we apply multiple branches to gather multilevel features.
Different from the PAD strategy that only uses a single scale
of the 1/4 feature map for generating attention maps, the 1/4
feature map and 1/8 feature map are fused to capture more
multiscale spatial information and achieve better recovery of
the original image objects in our MAD. Corresponding to
the two FFM-Bs in the encoder with fast downsampling,
MAD aims to recover the input information by gathering low-
and high-level features with less computational complexity,
to achieve fast inference speed. Since we employ the attention
mechanism to each branch of the MAD, each branch focuses
on learning different information and considers it as much
important features for restoration. As a result, it is possible
to get worse accuracy performance even though more levels
of features from the encoder are used in MAD. Based on
the investigation with extensive experiments, we found that
the attention map with fused features has already contained
sufficient information to recover the spatial information of the

input image with significant accuracy. The 1/2 feature map
as in PAD causes more unnecessary computation that it is
removed in our work for reducing the information weight of
the attention map. Besides, we discard all pixel-level addition
operations in MAD. Consequently, the lightweight decoder
with a multiscale attention mechanism can well recover the
spatial details of the feature map with only 0.09 M parameters.

F. Overview of LMFFNet Architecture

The overall architecture of LMFFNet based on the asym-
metric encoder–decoder scheme is shown in Fig. 1.

An initial block is employed at the beginning of the
real-time segmentation network LMFFNet to change the size
of the original input image and remove its redundant infor-
mation. In the initial block, first, we use a 3 × 3 standard
convolution module with a stride of “2” to reduce the original
input image size by half and expand the channel number of
the feature map to 32. Then, two 3 × 3 standard convolutions
are adopted for extracting rich context information. Besides,
we use a downsampling module in LMFFNet to increase the
receptive field. The downsampling module consists of two
parallel components: a 3 × 3 standard convolution with stride
“2” and a 2 × 2 maximum pooling layer. Then, a concatenation
operation is performed to the outputs of the above two parallel
components. The combination of 3 × 3 convolution and
maximum pooling layer can retain more spatial information
in a larger receptive field and alleviate the problem of spatial
information loss.

Consequently, in the encoder phase in our LMFFNet model,
the initial block captures more useful information at the begin-
ning of the network, the downsampling operation enlarges the
receptive field of the model, the SEM-B block extracts more
context information, and the FFM fuses multiscale features.
In the decoder phase, the MAD introduces the attention
mechanism and efficiently restores the spatial details with a
more accurate output.
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate our LMFFNet on four bench-
marks: Cityscapes [2], CamVid [30], KITTI [59], and Wild-
Dash2 [60]. We first introduce brief information about these
four datasets. Then, we implement a series of ablation exper-
iments on the Cityscapes and CamVid datasets to prove the
effectiveness of the proposed network. We report the model
performance in terms of parameter size, accuracy (mIoU), and
inference speed and compare them with many existing models
for real-time semantic segmentation. All the architectures were
trained with PyTorch on an RTX 2080Ti GPU, while inference
evaluations are performed on a single RTX 3090 GPU if
without special statement.

A. Implementation Protocol

All the training experiments are conducted with one 2080Ti
GPU, CUDA 10.0, and cuDNN V8 on the PyTorch plat-
form. Mini-batch stochastic gradient descent (SGD) [31] is
employed in our optimization strategy, where we set the batch
size to 8, the momentum to 0.9, and the weight decay to 1e−4.
Besides, the learning rate decay policy we use is “poly” [6]
and we set its initial learning rate to 4.5e−2 with a power of
0.9. The formula can be expressed as follows:

lr = lrinit ×
(

1 − iter

max_iter

)power

(7)

where lr refers to the current iter learning rate, lrinit indicates
the initial learning rate, iter means the iteration, and max_iter
is the maximum iteration.

We set the maximum epochs to 1000 when training on
Cityscapes and CamVid. Also, the techniques of random scale,
mean subtraction, and horizontal flip are all employed in the
training phase. We set the random parameters as 0.75, 1.0,
1.25, 1.5, 1.75, and 2.0 to transform the training images to
different scales. For the Cityscapes dataset, we randomly crop
the training images into 512 × 1024 resolution in the training
phase due to the limitation of GPU memory size. For the
CamVid dataset, we estimate two resolutions of 720 × 960 and
360 × 480 for ablation experiments. Finally, the online-hard-
example-mining (OHEM) loss is employed on Cityscapes and
the class weighting scheme is used on CamVid to handle the
category imbalance problem. The class weight Wclass can be
calculated as follows:

Wclass = 1

ln(c + Pclass)
(8)

where c is a hyperparameter that is set to 1.10 and Pclass is
the distribution of class samples.

The depth of LMFFNet can be automatically determined by
the Bayesian algorithm [58]. Therefore, we define a Bayesian
optimization method for designating the depth of SEM-B
block while introducing a new evaluation index Iauto as

Iauto = w × (mi − mb) + ( fi − fb)

ln(pi + d)
(9)

where mi , fi , and pi are mIoU, frames per second, and
parameter corresponding to the model in the i th iteration of
Bayesian optimization algorithm, respectively. w is the weight
coefficient of mIoU, d denotes the suppression coefficient of

sensitivity to parameter quantity, mb represents the baseline of
mIoU, and fb is the baseline of frames per second. mb and
fb are used to measure the lowest tolerable mIoU and frames
per second in the search process, respectively. We set w as 20,
mb and fb as 65, and d as 20 in our experiments. In addition,
referring to LEANet [51], we propose the index Ii to weigh
the mIoU, frames per second, and parameter of lightweight
network, which is expressed as follows:

Ii = mnorm
i + f norm

i

1 + ln
(

pnorm
i + 1

) (10)

where mnorm
i = ((mi − mb)/(mmax − mb)), f norm

i =
( fi/ fmax), pnorm

i = (pi/pmax), and mmax, fmax, and pmax

are the maximal mIoU, frames per second, and parameter,
respectively, within all compared networks.

B. Datasets

1) Cityscapes: The Cityscapes dataset is a large urban
street scene dataset that contains 5000 fine annotated images
and 20 000 coarse annotated images with a resolution of
1024 × 2048, 19 semantic categories. The fine annotated
images are split into three sets: a train set of 2975 images,
a validation set of 500 images, and a test set of 1525 images.

2) CamVid: The CamVid dataset contains a total of
701 images, which is another street scene dataset and has
a resolution of 720 × 960. We also divide it into three
sets: 367 images for training, 101 images for validation,
and 233 images for testing. Following the general setting,
we annotated the ground truth to 11 semantic categories before
starting the experiments.

3) KITTI: KITTI is an automatic driving dataset collected
in the rural areas of a certain city in Germany, which con-
tains 200 annotated images, and the semantic categories are
compatible with Cityscapes. To verify the robustness of our
semantic segmentation network, the model LMFFNet trained
on Cityscapes is applied to evaluate its performance on KITTI.

4) WildDash2: WildDash2 is another dataset that cov-
ers road scenes under different environmental conditions,
such as night and rainy days. It contains 4256 annotated
images and 19 semantic categories. Similarly, we use the
model trained on Cityscapes to evaluate the performance of
LMFFNet.

C. Ablation Studies

In this section, we design a series of ablation experiments to
evaluate the effectiveness of each component of our proposed
LMFFNet. All the experiments in this section are evaluated
on the Cityscapes validation set and the inference speed is
evaluated at an input resolution of 512 × 1024.

1) Influence of SEM-B Block Depth: Two parameters of M
and N are used for indicating the number of SEM-B inside
the SEM-B Block1 and the SEM-B Block2 in LMFFNet,
as shown in Fig. 1, respectively. We did a series of ablation
experiments by changing the values of M and N manually
or automatically to measure the model performance with
respect to segmentation accuracy (mIoU), inference speed
(frames/s), and model size (parameters amount). Extensive
experimental results on the Cityscapes validation set are listed
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Fig. 6. Comparison of segmentation effectiveness of the proposed network LMFFNet-3-8 with four other models using the Cityscapes validation set.

TABLE II

RESULTS OF USING DIFFERENT M AND N IN SEM-B BLOCK ON THE

CITYSCAPES VALIDATION SET

in Table II. We have investigated the network performance
if LMFFNet only uses the FFM-B1 or FFM-B2 individually,
i.e., either (FFM-A1 and FFM-B1) or (FFM-A1 and FFM-B2)
pair is used in LMFFNet. Besides, we evaluate the impact of
SEM-B block depth if there are two FFM-B modules in our
model. As shown in Table II, the accuracy tends to be better,
while the depth of SEM-B block increases. However, the
accuracy can be only slightly improved by simply increasing
the SEM-B block depth. Note that the experimental results
listed in Table II were trained in 200 epochs, while the other
results were obtained in 1000 epochs. Up to 75.1% mIoU with
1000 epochs can be achieved by combining two FFM-B mod-
ules for LMFFNet-3-8. As the SEM-B block depth increases,
LMFFNet can achieve better accuracy at the cost of a slower
inference speed and a larger model size. Besides, the Bayesian
optimization [58] is employed to automatically determine the
optimal network depth M and N for SEM-B Block1 and
SEM-B Block2, respectively. The depth of SEM-B in FFM-
B1 and FFM-B2 always affects the overall performance of
the network. We set the parameter α to control the number
of SEM-B in FFM-B1 and FFM-B2, as shown in Table III.
For making an appropriate tradeoff between parameters and
accuracy, we set M = 3 and N = 8 to construct the backbone
of LMFFNet-3-8.

2) Model Performance Analysis With SEM-B Block: To
evaluate the effectiveness of our SEM-B, we apply four

TABLE III

EXPERIMENTAL RESULTS OF ABLATION STUDY WITH FFM-B ON THE

CITYSCAPES VALIDATION SET

TABLE IV

RESULTS OF USING DIFFERENT BOTTLENECKS ON THE

CITYSCAPES VALIDATION SET

different bottlenecks, i.e., ResNet bottleneck [13], Non-bt-
1D [22], SS-nbt [23], and depthwise asymmetric bottleneck
(DAB) [11], to replace the SEM-B in LMFFNet to build four
segmentation networks. The comparative experimental results
are listed in Table IV. The ResNet bottleneck results in the
smallest number of parameters and the fastest inference speed
for the segmentation network at the expense of significant
accuracy loss. The network with Non-bt-1D achieves consid-
erable accuracy of 74.3% mIoU but with the largest number
of parameters. Compared to the other four bottlenecks, our
SEM-B achieves the best accuracy of 74.9% mIoU at a high
inference speed at 118.9 frames/s with only 1.35 M model
parameters, creating an increasing tradeoff between the seg-
mentation accuracy, inference speed, and model parameters.

3) Model Performance Analysis With FFM: We find that
adding one or more short-, middle-, and long-rang con-
nections to FFM-B greatly improved the accuracy of the
model. At the same time, the model connecting short- and
long-range features reached 74.9% mIoU in the Cityscapes
validation set, while adding middle-range connection on this
basis reduced the mIoU of the model by 1.2%. It demon-
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TABLE V

EXPERIMENTAL RESULTS OF ABLATION STUDY WITH ATTENTION
MODULES OF FFM-B ON THE CITYSCAPES VALIDATION SET

TABLE VI

EXPERIMENTAL RESULTS OF ABLATION STUDY WITH FFM-B ON THE

CITYSCAPES VALIDATION SET

TABLE VII

EXPERIMENTAL RESULTS OF ABLATION STUDY WITH THE NUMBER OF

FFM-B ON THE CITYSCAPES VALIDATION SET

strates that FFM-B achieves better performance by fusing
the shallow feature from the short-range connection and the
downsampled original image from the long-range connection.
The feature of the middle connection is close to the output
feature map of SEM-B block, resulting in the similarity of
the scales of the two feature maps. Therefore, FFM-B has
disadvantages when using the middle-range connection for
multiscale fusion. To prove the effectiveness of our proposed
PMCA, we insert different attention modules into FFM to
evaluate its parameter performance, as shown in Table V.
It can be seen that the PMCA is 0.7% higher than the channel
attention proposed by SENet with little loss of inference
speed. This shows that our proposed attention module can
replace the channel attention module proposed by SENet in
real-time application scenarios. Since the context information
impacts significantly on the accuracy of the model, the FFM
is applied to fuse multiscale context information in seman-
tic segmentation tasks. To verify the effectiveness of FFM,
we conduct a series of ablation experiments and summarize the
comparative results in Tables V–VII based on the Cityscapes
dataset.

4) Model Performance Analysis With MAD: To explore
the impact of merging different depth features to generate
attention feature maps on the performance of the decoder,
we fuse different depth features to generate attention feature
maps, as shown in Table VIII. To verify the effectiveness of
MAD and FFM, we set up a series of experiments. First,
we build the “Base” network for the LMFFNet with a variable
number of SEM-B blocks. Then, the FFM to the “Base”
network is to build up the LMFFNet backbone. MAD, PAD
[11], and ERFD [22] are individually added to the LMFFNet
backbone for further observation of the performance variation
of the LMFFNet. The comparative experimental results are
concluded in Table IX. We find that the accuracy is get-
ting better when the FFM is combined with the networks.

TABLE VIII

EXPERIMENTAL RESULTS OF ABLATION STUDY WITH MAD ON THE
CITYSCAPES VALIDATION SET

TABLE IX

RESULTS OF INCLUDING DIFFERENT FUNCTION MODULES FOR ABLATION

ON THE CITYSCAPES VALIDATION SET

When adding FFM to the “Base” network, it can improve by
approximately 1.1% mIoU at a cost of more model parameters
and lower inference speed. The combined network “Base +
FFM + PAD” achieves about 74.0% mIoU, while another
combined network “Base + FFM + ERFD” obtains 74.3%
mIoU. The “Base + FFM + MAD” network achieves the best
accuracy performance of 74.9% mIoU, which has increased by
1.3% mIoU to the “Base + FFM” network. It demonstrates
the significant effect of the combination of FFM and MAD
for improving the segmentation accuracy with an affordable
increment of model size for real-time segmentation tasks. The
LMFFNet constructed by FFM and MAD achieves a better
tradeoff among the accuracy, inference speed, and model size
for the segmentation network when compared to the PAD or
ERFD. Finally, to explore the impact of the number of FFM-B
on the network, different numbers of FFM-B modules are
employed in LMFFNet and evaluate its performance, as shown
in Table VII. With the increase of the number of SEM-B,
the mIoU of the model increased continuously. However,
when the number of FFM-B increased to 4, the mIoU began
to decline. The possible reason is that the increase of the
number of FFM-B leads to more downsampling of the model,
which affects the recovery of spatial information and damage
accuracy. Besides, it is noteworthy that with the increase of the
number of FFM-B, the amount of model parameters increases
rapidly, which is not conducive to lightweight application
scenarios. Therefore, we set the FFM-B number to 2 to build
the real-time network.

D. Comparison With the State-of-the-Art Approaches

We compare the performance of our LMFFNet with
the state-of-prior-art segmentation models on the Cityscapes
dataset, CamVid dataset, KITTI dataset, and WildDash2
dataset. LMFFNet-3-8 is estimated on the same Cityscapes
validation and test set without pretraining.

First, the individual category results of different mod-
els on the Cityscapes test set are estimated in this article,
which is summarized in Table X. We find that LMFFNet-3-8
achieves outstanding segmentation accuracy performance on
the Cityscapes dataset compared to existing methods. In par-
ticular, our LMFFNet-3-8 performs better on small objects
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TABLE X

PRECLASS RESULTS (%) OF DIFFERENT SEGMENTATION MODELS ON CITYSCAPES TEST SET

TABLE XI

PERFORMANCE COMPARISON OF LMFFNET AGAINST STATE-OF-THE-ART SEMANTIC SEGMENTATION NETWORKS
ESTIMATED ON THE CITYSCAPES DATASET

TABLE XII

PERFORMANCE COMPARISON OF OUR METHOD AGAINST STATE-OF-THE-ART SEMANTIC SEGMENTATION NETWORKS ON THE CAMVID TEST SET

TABLE XIII

RECALL, PRECISION, AND F1-SCORE PERFORMANCE COMPARISON OF LMFFNET AND STATE-OF-THE-ART SEMANTIC SEGMENTATION NETWORKS ON

THE CITYSCAPES AND CAMVID VALIDATION SETS ON RTX 3090 GPU

such as traffic lights and traffic signs and segment uncer-
tain shape objects such as terrain and vegetation excellently
compared to most of the other networks. Note that the

metric GFLOPs@1024 in Tables XI–XV represents the nor-
malized GFLOPs of the model when the input resolution is
1024 × 1024.
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TABLE XIV

PERFORMANCE COMPARISON OF LMFFNET AGAINST STATE-OF-THE-ART SEMANTIC SEGMENTATION NETWORKS ON
THE KITTI DATASET ON RTX 3090 GPU

TABLE XV

PERFORMANCE COMPARISON OF LMFFNET AGAINST STATE-OF-THE-ART SEMANTIC SEGMENTATION NETWORKS

ON THE WILDDASH2 DATASET ON RTX 3090 GPU

In addition, we give the visualized comparison of segmen-
tation results of our model against other four state-of-the-art
models, as shown in Fig. 6. We could find that LMFFNet-3-8
can achieve comparable visual segmentation results to other
networks. In particular, LMFFNet-3-8 appears to segment the
images a little bit more precisely than the LMFFNet-3-6
(M = 3 and N = 6) with fewer parameters in encoder. Thus,
we conclude that LMFFNet-3-8 is suitable to be applied for
segmentation tasks in the field of automatic driving in complex
urban road scenes based on high-resolution images such as the
samples in the Cityscapes dataset. Similarly, we give the visual
effect of CamVid, as shown in Fig. 7. It can be seen that our
segmentation effect on the CamVid dataset is also more refined
than several other segmentation networks.

Table XI shows the quantitative experimental results of
the LMFFNets compared to other 23 existing segmentation
models on the Cityscapes dataset. Approximately 75.1% mIoU
can be achieved LMFFNet-3-8. Compared to other high-
quality real-time semantic segmentation networks, such as
BiSeNetV1_ResNet18 [12], SwiftNet [15], and ShelfNet [37],
our achieves a decent accuracy without employing any pre-
training. BiSeNetV1_ResNet18 achieves 74.7% mIoU with
as many as 49.0 M parameters. The proposed LMFFNet-3-8
achieves a higher accuracy on a slightly smaller image resolu-
tion but yields extremely fewer parameters, i.e., approximately
44× fewer parameters than BiSeNetV1_ResNet18. SwiftNet
reports a better segmentation accuracy on the Cityscapes val-
idation and test set, while pretraining is employed. However,
SwiftNet [15] only achieves a smaller accuracy of 70.4%
mIoU without pretraining on the Cityscapes validation set and
the model size in terms of parameters of SwiftNet is more
than ten times to our LMFFNet-3-8 network. Nevertheless,
to obtain stronger feature extraction ability, more previous
accurate networks usually adopt the existing backbones such
as ResNet18 [13] and Xception [14], which leads to lots of
model parameters.

Table XI also presents the results of inference speed and
GFLOPs for each model. For a fair comparison of speed,

we evaluate the inference speed for all networks on the
PyTorch platform with the same 3090 cards. In other words,
the LMFFNets meet the speed requirement of real-time
tasks for high-resolution input images. Besides, we set
GFLOPs@1024 to represent the GFLOPs of each model when
all input image resolutions are normalized to 1024 × 1024 for
a fair comparison. Obviously, LMFFNets have a compara-
tively small number of operations in terms of GFLOPs@1024
compared with many other high-accuracy networks such as
SwiftNet [15], ESNet [24], and BiSeNetV1_ResNet18 [12].

Furthermore, we estimate the model performance on images
with lower resolutions on the CamVid dataset. Since the cur-
rent receptive field of the LMFFNets is a little bit large for the
CamVid dataset, it may lead to loss of local information that an
appropriate receptive field has been adjusted for LMFFNet-3-8
when they are estimated based on the CamVid dataset. Dilated
convolution turns to be unnecessary for experiments using the
CamVid dataset. The experimental results performing on the
CamVid dataset are summarized in Table XII. Specifically, our
models are estimated at two resolutions using the CamVid
dataset. Besides, LMFFNet-3-8 is better than in terms of
accuracy, achieving 69.1% and 72.0% mIoU, respectively, for
360 × 480 and 720 × 960 images. Nevertheless, the inference
speeds of the LMFFNet-3-8 are yet sufficient enough for
real-time segmentation tasks.

In addition, to verify the robustness of our network, we also
evaluated it on KITTI and WildDash2 datasets. We employ
the model trained in Cityscapes to make predictions on the
KITTI dataset and WildDash2 dataset. The results are shown
in Tables XIV and XV. In the KITTI dataset, the mIoU of
LMFFNet-3-8 is as high as 49.3%, which is 6.4% higher than
that of ERFNet, and the best tradeoff indicated by the index Ii .
In the WildDash2 dataset, LMFFNet-3-8 achieves the highest
accuracy and the fastest inference speed, and the tradeoff
index Ii also achieves the best. Finally, we conclude the
performance of the proposed LMFFNet model intuitively in
Fig. 8 using the Cityscapes dataset. Our two networks achieve
significantly high accuracy and keep a decent inference speed
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Fig. 7. Segmentation effectiveness using the CamVid test set.

Fig. 8. Comparison with state-of-the-art neural networks in terms of tradeoff between accuracy and computing efficiency on the Cityscapes dataset evaluated
on GeForce RTX 3090 GPU. (a) Results of segmentation accuracy versus inference speed. (b) Results of segmentation accuracy versus parameters amount.

for real-time segmentation tasks compared to the state-of-
prior-art frameworks, as shown in Fig. 8(a). Besides, Fig. 8(b)
shows that our models gain an adequate tradeoff between
accuracy and parameter size for edge computing platforms
equipped with limited hardware resources.

V. CONCLUSION AND FUTURE WORK

In this article, we propose an LMFFNet for real-time seman-
tic segmentation. It is composed of three types of components:
SEM-B blocks, FFMs, and MAD. The SEM-B blocks extract
contextual features efficiently and the FFMs are applied to fuse
the long-range features and the short-range features to generate
multiscale local features. The MAD aggregates multiscale
features and introduces a new attention mechanism to gain
a better recovery of spatial details. Then, a series of ablation
studies on Cityscapes and CamVid datasets is performed to
estimate the influence of each component of the LMFFNet
and demonstrate the effectiveness of our proposed network
for real-time semantic segmentation. Two networks combined
with different components are verified with significant seg-
mentation performance based on the LMFFNet model without
pretraining. Compared with the existing semantic segmenta-
tion networks, our proposed network LMFFNet-3-8 achieves
state-of-the-art tradeoffs among accuracy, parameter size, and
inference speed for real-time segmentation tasks.

Nevertheless, there are still many tough issues for us to
solve in the near future. The existing lightweight models for
semantic segmentation lost much useful information that the
model sizes were obtained at the cost of significant accuracy
loss. The segmentation accuracy is still unsatisfactory. Atten-
tion mechanism is frequently used to channel transformation
or spatial transformation currently, but there is very little
room for accuracy improvement. In addition, the inference
speed is not yet satisfactory to process high-resolution images.
Besides, the power consumption of the semantic segmentation
networks, which is extremely important for edge devices, does
not achieve enough attention in existing research. Therefore,
we dedicate to explore a novel architecture for semantic
segmentation to gain a better tradeoff between inference speed,
accuracy, and power consumption in the future.
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