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Abstract— Due to the physical nature of color images,
color image processing such as denoising and inpainting has
shown extensive and versatile possibilities over grayscale image
processing. The monochromatic and the concatenation model
have been widely used to process color images by processing
each color channel independently or concatenating three color
channels as one unified one and then used existing grayscale
image processing methods directly without specific operations.
These above schemes, however, have some limitations: (1) they
would destroy the inherent correlation among three color
channels since they cannot represent color images holistically;
(2) they usually focus on one specific handcrafted prior such
as smoothness, low-rankness, or even deep prior and thus
failing to fuse deep and handcrafted priors of color images
flexibly. To conquer these limitations, we propose one unified
model to integrate deep prior and low-rank quaternion prior
(DLRQP) for color image processing under the plug-and-play
(PnP) framework. Specifically, the quaternion representation with
low-rank constraint is introduced to denote the color image in
a holistic way and one advanced denoiser is adopted to explore
the deep prior in an iterative process. To tightly approximate
the quaternion rank, one nonconvex penalty function is further
utilized. We derive an alternate iterative approach to tackle the
proposed model. We empirically demonstrate that our model
can achieve superior performance over existing methods on both
color image denoising and inpainting tasks.

Index Terms— Low-rank quaternion representation, deep
prior, plug-and-play, color image denoising, color image
inpainting.
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I. INTRODUCTION

CAPTURING three color channels and enriching faithful
representation of real scenes, color image processing

has been widely applied in varied fields, such as color face
recognition [1], color image encryption [2], color image
denoising [3], [4], color image inpainting [5], [6], [7]. During
the acquisition of color images, the image may contain mixed
noise or miss some pixels due to the acquisition equipment
or various other factors inevitably. In this paper, we mainly
focus on two low-level color image processing tasks: color
image denoising and color image inpainting, i.e., recovering
the latent color image from its noisy observation or incomplete
one.

In previous studies, low-rank matrix approximation
(LRMA) has been applied in numerous image processing
applications [8], [9], [10], [11], [12], [13]. Its general process
is to transform the image pixels of one spatial dimension in
images as one column vector of the matrix and then utilize
the low-rank attribute by an optimization algorithm to restore a
clean image. Zhang et al. [10] proposed a modified Schatten- p
norm minimization for accelerated matrix completion problem.
Using non-local self-similarity, the low-rank matrix-based
image restoration framework [12] was proposed. The multi-
matrices low-rank decomposition model was developed for
challenging image recovery problem [13]. Based on nonconvex
nonsmooth rank (NNR), the work in [14] introduced a novel
weighted NNR relaxation. In addition, Wang et al. [15]
proposed the group sparse representation based on nonconvex
weighted �p minimization. LRMA generally works well in
some grayscale image-based applications [16], while the
results based on LRMA methods may plummet when dealing
with color images. The reason is that these LRMA methods
tackle each color channel separately or concatenate three color
channels and would destroy the strong correlation among three
color channels [5]. In Fig. 1(a), we show how LRMA splits
the three channels of a color image.

As an extension of two-dimensional matrix, tensor structure
has gained keen attention in color images and higher-order
data applications due to its capacity to preserve information
in three dimensions simultaneously [17], [18], [19], [20].
For color images, the pixel values of three RGB color
channels can be represented as three frontal slices of a tensor,
as shown in Fig. 1(b). That is, one color image would
be expressed as a three-order tensor. Most low-rank tensor
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Fig. 1. The comparison among low-rank matrix approximation, quaternion
representation and tensor representation.

approximation (LRTA)-based means can be summarized into
two groups: 1) tensor decomposition-based methods; 2) tensor
rank minimization-based methods. In the first one, a higher-
order tensor can be decomposed into the product of two or
more smaller ones, reducing the computational cost in this
way [17], [21], [22]. The classic examples are the CANDE-
COMP/PARAFAC (CP) decomposition based methods [23]
and the Tucker decomposition based methods [24]. Recently,
Zhao et al. proposed to use tensor train decomposition [25]
and denoisers to achieve tensor completion [26]. The second
way is generally implemented by the regularization term of
the tensor rank approximation, such as the tensor nuclear
norm (TNN) [18], [20]. This is because minimizing the tensor
rank is an NP-hard problem, and the TNN can be utilized
as a compact convex substitution of the tensor rank. Tensor
completion methods based on TNN [27], [28] have been
extensively studied. Nevertheless, methods of the first type are
inevitable to pre-define the tensor rank, but how to determine
an accurate rank in practice is still a challenging problem [29].
Methods of the second category overcome the above method,
yet with high computational bottleneck.

Another promising way to express color images is the
recently popular quaternion representation [30], in which
quaternion, as extension of imaginary number, includes one
real component and three imaginary components. To seam-
lessly denote the color images, quaternion representation
(QR) uses one pure quaternion number with three imaginary
components to store three color channels [31]. In Fig. 1,
we show the comparison among low-rank matrix approxi-
mation, tensor representation, and quaternion representation.
Thus, the main advantage of QR is that the three color
channels simultaneously are treated by QR representation,
which can well keep the connection between image colors
and achieve superior performance in color image processing
applications [1], [30], [32], [33], [34], [35], [36], [37]. For
example, Xu et al. proposed a novel approach based on
quaternion-based dictionary learning model to restore color
image [34]. Zou et al. used quaternion collaborative and sparse

representation to preserve the color structures [1]. Besides,
a new quaternion based sparse regression algorithm was put
forward to enhance robustness for two-dimensional quaternion
principle component analysis [35]. Compared to tensor
representation-based methods, QR-based methods can not only
fully utilize color information, but preserve the orthogonal
character for the coefficients of three channels, which attains
a structured representation [34]. Although current QR-based
color image processing methods could represent color images
well, they still incorporate some other prior knowledge. The
studies in [5], [33], [38], and [39] extended the popular
LRMA variants, such as matrix factorization, Geman function,
weighted nuclear norm into quaternion representation. Huang
et al. [40] proposed the quaternion extension of dictionary
learning algorithm and total variation to recovery color image.

Owing to the powerful representation learning capability
of deep learning, deep convolutional neural network (CNN)-
based grayscale and color image methods have been developed
and achieved promising performance [3], [37], [41], [42].
While much of the research into color image denoising and
inpainting usually focuses on one specific handcrafted prior
such as smoothness [43], low-rankness [32], sparsity [44] or
even deep prior [41] but unfortunately fails to fuse deep and
handcrafted priors of color images flexibly and simultaneously.

Thus, we consider the possibility to develop one uni-
fied method combining two popular color image priors.
Meanwhile, the matrix representation for the color image
destroys the inherent structural information. Compared to
tensor representation, QR is considered to be integrated
into this framework since QR preserves the orthogonal
character for the coefficients of three channels, which
attains a structured representation while preserving structural
information. Therefore, we consider introducing quaternion
representation to provide a novel way to model color images
while using a unified framework of low-rank and deep priors.
To achieve this goal, we intend to propose a novel low-
rank quaternion representation method with a deep image
prior (DLRQP) for color image denoising and inpainting,
which integrates low-rank quaternion prior and deep prior into
one unified framework. In DLRQP, the low-rank quaternion
and deep priors are explored in a mutual promotion manner.
Consequently, DLRQP inherits the good interpretability of
low-rank prior, powerful structure retention of quaternion
representation, and strong learning capability of deep prior.
Specifically, DLRQP utilizes the flexible plug-and-play (PnP)
framework to incorporate an advanced denoiser and low-
rank quaternion representation in an iterative process. Besides,
DLRQP also exploits a nonconvex function to obtain a better
approximation of the quaternion rank. The contributions of
this work mainly include as follows:

• We propose the synchronous integrated deep prior and
low-rank quaternion prior method (DLRQP) for color
image processing, which probes the global property
and local characterization of color images deeply and
simultaneously.

• Different from existing QR-based methods that only
focus on low-rank property or utilize deep conventional
prior, DLRQP integrates a deep learning-based denoiser
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and low-rank quaternion representation under the PnP
framework. A flexible and efficient solver based on the
alternating direction method of multipliers (ADMM) is
also developed.

• Concretely speaking, we further extend DLRQP to
deal with color image denoising and inpainting tasks.
Experiments on color images are carried out and the
results clearly confirm that the proposed DLRQP is
superior to several competing methods on these two tasks.

The rest parts of this paper are organized as follows.
We review several notations and preliminary knowledge
in Section II. Section III provides the proposed DLRQP
model, extends DLRQP for color image denoising and color
image inpating and devises the ADMM-based algorithms.
Section IV conducts experiments to verify the effectiveness of
the proposed DLRQP method on color image denoising and
inpainting tasks. Finally, this article is concluded in Section V.

II. NOTATIONS AND PRELIMINARIES

In this section, we briefly give several notations and
preliminary knowledge about quaternion algebra and plug-and-
play framework used in our paper.

A. Notations and Quaternion Algebra

We summarize several necessary notations and real number
algebra in Table I. Quaternion space H, an extension of real
and complex spaces, is a mathematical concept invented by
Hamilton in 1843 [45]. Given a quaternion number ȧ, we can
express it in the form of one real part and three imaginary
parts, i.e.,

ȧ = a0 + a1i + a2j + a3k, (1)

where ai ∈ R (i = 0, 1, 2, 3) are real numbers and i, j,
k denotes three imaginary units. In particular, if a0 is equal
to zero, ȧ is called a pure quaternion. Similar to complex
numbers, quaternion addition or subtraction simply add or
subtract components, i.e.,

ȧ ± ḃ = (a0 ± b0) + (a1 ± b1) i + (a2 ± b2) j + (a3 ± b3) k.

(2)

It should be noted that in general, the product of quaternions
does not satisfy the commutative law, i.e., ȧḃ �= ḃȧ.

Given a quaternion ȧ = a0 + a1i + a2j + a3k, its conjugate
and modulus are expressed as ȧ∗ = a0 − a1i − a2j − a3k and

|ȧ| =
√

a2
0+a2

1+a2
2+a2

3. ȧ−1 represents the inverse of ȧ, and

ȧ−1ȧ = ȧȧ−1 = 1.
Analogously, given a quaternion matrix Ȧ = A0 + A1i +

A2j + A3k, where Ai ∈ RM×N (i = 0, 1, 2, 3), its conjugate,
transpose and conjugate transpose are defined as Ȧ∗ = (ȧ∗

i, j ),
ȦT = (ȧ j,i), ȦH = (ȧ∗

j,i), respectively, where 1 ≤ i ≤ M ,
1 ≤ j ≤ N . The Frobenius norm of Ȧ is denoted as

�Ȧ�F =
√∑M

i=1
∑N

j=1 |ȧi, j |2.
Quaternion matrices are widely employed to transform them

from the quaternion domain into the complex adjoint form, i.e.,
Ȧ = Ax + Ayj [46] where Ax , Ay ∈ CM×N . We use P to

TABLE I

BASIC NOTATIONS

denote the operation of converting the quaternion form into
the complex form, then the complex representation form of
Ȧ ∈ R

M×N is expressed as

PȦ =
[

Ax Ay

−A∗
y A∗

x

]
∈ C

2M×2N . (3)

For more details on quaternion algebra, one can refer to [46]
and [47].

Following the quaternion singular value decomposition
(QSVD) [46], the definitions of quaternion rank and quaternion
nuclear norm can be given:

Definition 1 (Quaternion Rank): [5]: For a quaternion matrix
ȦȦ ∈ H

M×N , the number n of nonzero singular values is
represented as the rank, where n < min{M, N}.

Definition 2 (Quaternion Nuclear Norm (QNN)): [5]:
QNN of a quaternion matrix Ȧ ∈ HM×N , expressed as
�Ȧ�QNN, is the sum of all nonzero singular values, i.e.,
�Ȧ�QNN = ∑

i σi (Ȧ).
Similar to the nuclear norm in the real domain, the

quaternion nuclear norm is also the convex substitution of
the quaternion rank [5]. To tackle such convex optimization
problem on quaternions, we introduce the following theorem:

Theorem 1 (Quaternion Singular Value Thresholding
(QSVT)): [5]: Given an arbitrary quaternion matrix Ȧ ∈ HM×N

and a positive real number λ, the QSVT method can be
expressed as follows:

ˆ̇B = U̇Sλ(�)V̇H , (4)

where U̇,�, V̇ are from the QSVD of the quaternion
matrix Ȧ, and Sλ(�) ∈ RM×N is denoted as Sλ(�) =
diag(max{σi (ȦȦ) − λ, 0}).

B. Low-Rank Matrix Approximation

The main aim of the LRMA is to recover a high-quality
image X from the noisy observation A, and the optimization
problem can be formulated as:

min
X

λ ∗ Rank (X) + 1

2
�X − A�2

F , (5)

where Rank(·) is the rank function, and λ > 0 is a
regularization parameter. The first term named regularization
term is to impose the low-rank property of the image to
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constrain the model. The second term, i.e., data fidelity term
constrains the discrepancy between X and A to be as small as
possible.

Since the rank minimization problem in Eq. (5) is usually
NP-hard, the nuclear norm was put forward to approximate
the matrix rank, which proved that the nuclear norm is the
tightest convex relaxation [48]. Various heuristic convex and
nonconvex surrogates were proposed [11], [49], [50].

C. Plug-and-Play Framework

The PnP framework was first discovered in [51], which
utilized advanced denoising algorithms as implicit priors
plugged into the forward model, providing a flexible and
efficient way to deal with various inverse problems. Under
the ADMM framework, all variables could be decoupled into
several subproblems. Therefore, the solution process of the
ADMM framework has a modular structure, in which the
subproblem utilized to deal with the prior regularization term
can be written as:

x = arg min
x

� (x) + 1

2σ 2
�x − y�2, (6)

where � (x) represents the prior term; y can be regarded
as a noisy image. Eq. (6) can be expressed as a denoising
problem. Therefore, this denoising module can be replaced
with the off-the-shelf denoising algorithm. The PnP framework
has shown excellent reconstruction capability in numerous
applications, including deblurring [52], restoration [53], [54],
super-resolution [55] and demosaicing [56].

III. THE PROPOSED DEEP AND LOW-RANK

QUATERNION PRIORS (DLRQP) MODEL

We first propose the DLRQP model based on deep and
nonconvex low-rank quaternion priors. Then, we extend the
proposed model into two classic color image processing tasks,
namely color image denoising and color image inpainting, and
propose the ADMM-based algorithms.

A. The Proposed DLRQP Model

When handling color image processing tasks, previous
LRMA method in Eq. (5) usually exploited either mono-
chromatic model or the concatenation model. That is, the
former model processes each color channel of color images
independently while the second model concatenates three
color channels as one unified one and finally they used
existing grayscale image processing methods directly without
specific operations. However, they would destroy the inherent
correlation among three color channels since they cannot
represent color images holistically. Although the improvement
has been made by the recently proposed low-rank quaternion
approximation [11] and CNN-based methods [41], these
methods focus on one specific prior knowledge such as
smoothness [43], low-rankness [32], or even deep prior [41],
but unfortunately fail to fuse deep and handcrafted priors of
color images flexibly.

Meanwhile, we consider utilizing the prior knowledge,
which is obtained from deep learning-based ways and low-
rank quaternion representation. Inspired by the huge success of

Convolutional Neural Networks (CNNs) in image restoration,
we consider incorporating the powerful strength of CNNs to
capture details as a compensation for restoring underlying
images. In this paper, we intend to integrate the strengths
between low-rank priors based on quaternion representation
and deep learning-based image priors. As a consequence, our
DLRQP model can be expressed as follows:

min
Ẋ

Ȧλ ∗ Rank
(
Ẋ

) + α�(X ) + 1

2
�Ẋ − Ȧ�2

F , (7)

where α > 0 is a regularization parameter, and X ∈ R
M×N×3

represents the tensor form of the recovered color image.
Ẋ ∈ HM×N and Ȧ ∈ HM×N represent the constructed
quaternion matrix and the observed quaternion matrix,
respectively. The tensor X and the quaternion matrix Ẋ are
different representations of the same color image. We can
define an operator h̄ : RM×N×3 �→ HM×N , which enables the
conversion between tensor and quaternion, i.e., Ẋ = h̄(X ) and
X = h̄−1(Ẋ). h̄−1 is the inverse of h̄. Specifically, this operator
can be expressed as Ẋ = X (:, :, 1)i +X (:, :, 2)j +X (:, :, 3)k.
Rank(·) denotes the quaternion rank function. �(X ) denotes
an implicit regularizer, and we can plug an advanced denoiser
as deep image prior. Instead of using CNNs to build network
structures and perform end-to-end training, a denoising CNN
trained on a large number of natural images as the implicit
prior is plugged in existing model directly. In summary, our
model is more flexible and economical to deal with different
application scenarios.

To tackle the NP-hard issue, we adopt the Laplace function
as the nonconvex rank function to better approximate the
quaternion rank and further formulate Eq. (7) as

min
Ẋ

λ ∗ �Ẋ�γ,QNN + α�(X ) + 1

2
�Ẋ − Ȧ�2

F , (8)

where γ > 0 is a constant, which is the Laplace parameter.
Specifically, the Laplace function in QNN can be expressed
as follows:

�Ẋ�γ,QNN =
∑

i

φ(σi (Ẋ), γ )

=
∑

i

φ(1 − e−σi (Ẋ)/γ ), (9)

where φ(x) = 1 − ex/γ denotes the Laplace function, and
σi (·) denotes the i -th singular value of the quaternion rank.
Next, we discuss the concrete representation of the proposed
DLRQP model in specific color image processing tasks.

B. DLRQP for Color Image Denoising

We first use the proposed DLRQP model to solve the
color image denoising task, whose main aim is to estimate
the original color image X by restraining the noise 
 from
the observed color image A. The corresponding model is
expressed as:

A = X + 
. (10)

In generally, 
 is the additive white Gaussian noise, and
its mean is zero and the variance is τ 2. Since this type
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of inversion problem is ill-posed, some priors should be
explored as regularization terms in the solution model to obtain
satisfactory denoising performance. In this part, we propose a
novel denoising model, which simultaneously considers local,
nonlocal, and global prior information of color images.

In the proposed model, we employ nonlocal self-similarity
(NSS) to characterize the nonlocal information of color
images. NSS is widely utilized in image processing problems
by clustering similar patches into a group [57], [58]. Zha et al.
further proposed to combine NSS and group sparsity residual
constraint to deal with various image processing tasks [59].
Xie et al. utilized pixel weighting strategy and NSS to explore
the global and nonlocal information of the image [60]. In this
subsection, we consider quaternion representation combined
with NSS to construct nonlocal priors for images. Specifically,
the original color image is divided into many small patches
with size of n1 × n2 × 3. By using the operator h̄, we
represent each patch as a quaternion matrix and stretch it
into a column vector, i.e., ȧi ∈ Hn1n2 , and its similar patch
group is constructed by searching for the m closest image
patches within a given searching window. It is worth noting
that the m similar patches contain ȧi . A quaternion matrix,
Ȧi = [ȧ1i , ȧi2, · · · , ȧim ] ∈ Hn1n2×m , is utilized to store these
similar patches.

Global correlation is characterized by the low-rankness of
similar patch groups. NSS follows the assumption that there
exist many image patches similar to the exemplar patch in
the natural image. Based on this, we also assume that the
quaternion matrix Ȧi we constructed as aforementioned is of
low rank. Meanwhile, we utilize an implicit regularization
term on the whole image to plug a denoising CNN to
preserve local details. By formulating a novel color image
denoising framework in the quaternion domain that can use
these local, nonlocal, and global priors simultaneously, we give
the following optimization

min
Ẋ

�Ẋ�γ,QNN + α�(X ) + 1

τ 2 �Ẋ − Ȧ�2
F , (11)

where �Ẋ − Ȧ�2
F is the data fidelity term utilized to constrain

the model to conform to the image degradation process
in Eq. (10). Different from Eq. (7), here Ẋ ∈ Hn1n2∗m

represents a quaternion matrix composed of similar patches.
In addition, the l2-norm has a good performance in suppressing
Gaussian noise. �(X ) is an implicit regularization term,
which is tackled by the denoising CNN under the PnP
framework. Different from existing denoising methods, our
proposed model is based on quaternion representation, which
can better characterize the structural information of color
images. Then we explore three different types of priors
that simultaneously leverage the model so that they can
benefit from each other. Moreover, we introduce the deep
learning-based denoiser under the PnP framework, which has
greater flexibility and generalization ability applied to different
scenarios and applications than directly designing a network
structure. The proposed DLRQP model in (11) imposes the
low-rank constraint on the similar patch group Ẋ to explore
the NSS property while the deep prior is investigated on the
whole image X .

Then, we utilize ADMM and PnP framework to solve
the problem (11). An auxiliary variable Z ∈ R

M×N×3

is introduced, and the minimization problem (11) can be
rewritten as

min
Ẋ,Z

�Ẋ�γ,QNN + α�(Z) + 1

τ 2 �Ẋ − Ȧ�2
F ,

s.t . Z = X . (12)

The relevant augmented Lagrangian function of Eq. (12) is
expressed as

Lμ(Ẋ,Z; �) = �Ẋ�γ,QNN + α�(Z) + 1

τ 2 �Ẋ − Ȧ�2
F

+ μ

2
�X − Z + �

μ
�2

F , (13)

where � ∈ RM×N×3 and μ are the Lagrangian multiplier
and the penalty parameter, respectively. Then, Eq. (13) can be
tackled by updating all variables iteratively.

Ẋ sub-problem: The Ẋ at k-th iteration is updated by

Ẋk+1 = arg min
Ẋ

�Ẋ�γ,QNN + 1

τ 2 �Ẋ − Ȧ�2
F

+ μ

2
�X − Zk + �k

μk
�2

F , (14)

where Ẋ ∈ Hn1n2×m represents a quaternion matrix composed
of nonlocal similar patches of the exemplar patch, and
X ∈ RM×N×3 is the full-sized color image. For ease of
calculation, when updating Ẋ, we also take the nonlocal
similar pathes with the same position and number for X , Z , �,
to construct a quaternion matrix, then Eq. (14) can be rewritten
as

Ẋk+1 = arg min
Ẋ

�Ẋ�γ,QNN + 1

τ 2 �Ẋ − Ȧ�2
F

+ μ

2
�Ẋ − Żk + �̇k

μk
�2

F

= arg min
Ẋ

�Ẋ�γ,QNN

+ β�Ẋ − (μkŻk − �̇k)τ 2 + 2Ȧ
2 + μτ 2 �2

F , (15)

where β = 2+μτ 2

2τ 2 . To tackle the issue, Chen et al. [5]
introduced the difference of convex algorithm (DCA) for the
following nonconvex optimization:

min
Ẋ

λ ∗ �Ẋ�γ,QNN + 1

2
�Ẋ − Ḃ�2

F . (16)

Then, we introduce the following Theorem to give the solution
to the above optimization.

Theorem 2: [5]: Given a quaternion matrix Ḃ ∈ HM×N , its
QSVD is defined as Ḃ = U̇SV̇H and S = diag(σḂ). The

global optimal solution of Eq. (16) is ˆ̇X = U̇ŜV̇H , where

Ŝ = diag(σ̂ ). The σ̂ can be acquired by

σ̂ = arg min
σ≥0

λ ∗ φ(σ, γ ) + 1

2
�σ − σḂ�2

2. (17)

Since φ(·) is the nonconvex function, which is continuous,
differentiable, monotonically nondecreasing on [0,+∞), and
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concave with respect to σ , it is not easy to tackle the
problem (17) directly. The DCA aims to iteratively optimize
the difference of two convex functions by linearizing the
concave term, which is transformed from the original non-
convex function. Heuristically, we utilize the DCA to tackle
Eq. (17) and in the (k +1)-th iteration we obtain the following
formula:

σ k+1 = arg min
σ≥0

λ ∗ ∇φ(σ k)T σ + 1

2
�σ − σḂ�2

2, (18)

where ∇φ(σ k)T denotes the gradient of φ(·) at σ k . We can
get the following closed-form solution of Eq. (18)

σ k+1 = (σȦ − λ ∗ ∇φ(σ t ))+. (19)

After repetitious iterations, DCA will eventually converge to σ̂

which is the local optimal point, and then ˆ̇X = U̇diag(σ̂ )V̇H .
The entire procedure of handling the Eq. (16) is summarized
in Algorithm 1.

Algorithm 1 Solving Problem (16) Using DCA

Input: The quaternion matrix Ḃ ∈ HM×N , parameter λ > 0.
Initialization: k = 0, σ = 0.
1: repeat
2: Calculate the gradient of φ(·);
3: Update σ k+1 via Eq. (19);
4: until converge

Output: The reconstructed tensor X .

Z sub-problem: After Eq. (15) is updated, we get a clean
pacth group Ẋ and then convert Ẋ, Ż, �̇ into real number
matrices, and concatenate all the patches to obtain X , Z , �
with the same size of the original image, respectively. Fixing
the rest variables, Z is updated by addressing the subproblem

Zk+1 = arg min
Z

α�(Z) + μ

2
�Z −

(
X k+1 + �k

μ

)
�2

F .

(20)

Then, a flexible denoising CNN, i.e., FFDNet [41], is utilized
as a deep denoiser. Taking X k+1 + �k/μ as the input of
FFDNet, the solution of Eq. (20) can be obtained as

Zk+1 = FFDNet(X k+1 + �k

μk
, β), (21)

where β = √
α/μ. Under the PnP framework, X k+1 + �k/μ

is taken as the noisy image, and the denoising result Z is
obtained by the plugged prior.

Update � and μ: For the multiplier �, it is updated by

�k+1 = �k + μk(X k+1 − Zk+1). (22)

And the parameter μ can be updated by

μk+1 = min{ρ ∗ μk, Max}, (23)

where ρ denotes an adjustable parameters, and Max denotes
the maximum value of the μ. Inspired by [49] and [32],
the iterative regularization scheme is introduced, which is
expressed as

Ak+1 = X k + θ(A − X k), (24)

where k is the iteration number, and θ denotes the
relaxation parameter. Finally, the whole algorithm procedure
is summarized in Algorithm 2.

Algorithm 2 DLRQP for Color Image Denoising

Input: The noisy image A ∈ R
M×N×3, the parameter μ, α,

relaxation parameter θ , noise level τ .
Initialization: X 0 = Z0 = A, �0 = zeros(M × N × 3),

A0 = A, μ0 = 0.001, ρ = 1.1.
1: for k = 0 : K do
2: Iterative regularization via Eq. (24);
3: for ai in Ak do
4: Build similar patch group Ai , Zi , �i and convert
5: them to quaternion matrices Ȧi , Żi , P�i ;
6: Update Ẋi via Eq. (15);
7: Convert Ẋi , Żi , P�i into real matrices Xi , Zi , �i ;
8: end for
9: Aggregate {Xi }, {Zi }, {�i } to construct the

10: complete images X k , Zk , and the multiplier �k ;
11: Update Zk+1 via Eq. (21);
12: Update �k+1 via Eq. (22);
13: Update μk+1 via Eq. (23);
14: end for
Output: The denoised image X k .

C. DLRQP for Color Image Inpainting

As aforementioned, another classic image processing task is
color image inpainting, whose aim is to reconstruct a complete
image from observation with missing pixels. Adopting the
proposed low-rank quaternion representation incorporated with
deep image prior, our color image inpainting model is written
as follows

min
Ẋ

�Ẋ�γ,QNN + λ�(X ),

s.t . P�(Ẋ) = P�(̇O), (25)

where Ẋ ∈ H
M×N indicates the reconstructed image, and Ȯ

denotes the incomplete observation. � denotes the index set
of the observed elements. The operation P�(·) denotes the
projection function, which retains the elements in � consistent,
while the rest be zeros. X is the tensor representation of the
color image, and �(X ) is an implicit regularizer to plug a deep
denoiser. This model combines the superior global information
construction capability of quaternion representation with the
advantages of advanced deep denoisers for capturing local
details. Due to missing pixels, the NSS property cannot be
guaranteed. Thus, the low-rank restriction is imposed on the
whole color image.

To facilitate computation, we introduce the auxiliary
variable Z ∈ RM×N×3 and one auxiliary quaternion matrix
variable Ė ∈ HM×N , and the Eq. (25) is reformulated as

min
Ẋ,Ė,Z

�Ẋ�γ,QNN + λ�(Z),

s.t . Z = X , Ẋ + Ė = Ȯ, P�(Ė) = 0̇. (26)
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The corresponding augmented Lagrangian function of the
problem (26) is

L(Ẋ, Ė,Z; Ṁ,Y)

= �Ẋ�γ,QNN + λ�(Z)

+ μ

2
�Ȯ − Ẋ − Ė + Ṁ

μ
�2

F + μ

2
�X − Z + Y

μ
�2

F , (27)

where Ṁ and Y indicates the Lagrangian multipliers.
μ denotes a parameter. Then, an ADMM-based solution
procedure is developed to solve the minimization problem
under the PnP framework. We solve the above problem by
update each variable alternately as follows:

Ẋk+1 = arg min
Ẋ

�Ẋ�γ,QNN + μk

2
�Ȯ − Ẋ − Ėk + Ṁk

μk
�2

F

+ μ

2
�Ẋ − Żk + Ẏk

μk
�2

F , (28)

Ėk+1 = arg min
P�(Ė)=0̇

�Ȯ − Ẋk+1 − Ė + Ṁk

μk
�2

F , (29)

Zk+1 = arg min
Z

λ�(Z) + μ

2
�X − Z + Y

μ
�2

F , (30)

Ṁk+1 = Ṁk + μk(Ȯ − Ẋk+1 − Ėk+1), (31)

Yk+1 = Yk + μk(X k+1 − Zk+1), (32)

μk+1 = min{ρ ∗ μk, Max}. (33)

Specifically, for the Ẋ subproblem in (28), the preprocessing
step here is to convert the tensors X , Z , and A into quaternion
representations using the h̄ operator. Then, the Ẋ subproblem
can be rewirten as

Ẋk+1 = arg min
Ẋ

�Ẋ�γ,QNN

+ μ�Ẋ − Ȯ − Ėk + Ṁk/μk + Żk − Ẏk/μk

2
�2

F .

(34)

The closed-form solution of Eq. (34) is obtained by
Algorithm 1. The subproblem in (29) can be tackled by
Ȯ − Ẋk+1 + Ṁk/μk . Meanwhile, we utilize the constraint
P�(Ė) = 0̇ throughout the iteration to ensure that the observed
pixels will not be changed. The Z subproblem in (30) can be
solved by

Zk+1 = FFDNet(X k+1 + Yk

μk
,

√
λ/μk). (35)

The details about the proposed DLRQP for color image
inpainting are outlined in Algorithm 3.

D. Differences From Existing Methods

In this subsection, we aim to discuss the differences among
our proposed approach and five closely related methods
abbreviated as PNMM [12], SSLRDM [13], DSRDP [44],
GLON [26] and DP3LRTC [27].

A common shortcoming of the PNNM and SSLRDM
methods is that both of them use matrix to represent image
data. The color image needs to be concatenated or sliced

Algorithm 3 DLRQP for Color Image Inpainting
Input: The observation O, the indexes of observed pixels �,

convergence criteria ξ .
Initialization: Ẋ(0) = Ė(0) = Ṁ(0) = 0̇, Z(0) = O, X (0) =

Y(0) = 0, k = 0, μ0 = 0.001, ρ = 1.1.
1: repeat
2: Ẋ = h̄(X ), Ż = h̄(Z), Ẏ = h̄(Y);
3: Update Ẋk+1 by Eq. (34) (Algorithm 1);
4: Update Ėk+1 by Eq. (29);
5: X = h̄−1(Ẋ), Z = h̄−1(Ż), Y = h̄−1(Ẏ);
6: Update Zk+1 by Eq. (35);
7: Update Ṁk+1 by Eq. (31);
8: Update Yk+1 by Eq. (32);
9: Update μk+1 by Eq. (33);

10: until
�Ȯ−Ẋk+1−Ėk+1�2

F
�Ȯ�2

F
≤ ξ

Output: The reconstructed tensor X .

into matrix, and then input into the models. This way
of processing three color channels separately will cause
structure information loss. The CNN-based DSRDP method
is inevitable to use a large number of images to train the
model first. The tensor representation is used to reconstruct
the tensor data in GLON and DP3LRTC. However, these
approaches are not general enough to deal with color image
denoising task.

Instead of tensor representation, our proposed DLRQP
method integrates low-rank quaternion representation and
deep prior into one unified framework without training for
color image denoising and inpainting. Compared with matrix
representation, the quaternion representation can process three
color channels of the color image at the same time, which
realizes the preservation of the inherent structural information
of the color image. Compared with tensor representation,
QR preserves the orthogonal character for the coefficients of
three channels, which attains a structured representation [34].
Meanwhile, the low-rank quaternion and deep denoiser in
the unified framework provide global and local priors to
complement each other. Compared with only using traditional
priors or deep priors, our proposed method can deal with
complex scenarios more flexibly without pre-training. In short,
the proposed DLRQP significantly differs from the above
related methods.

E. Computational Complexity

In this section, we discuss the computational complexity
of the proposed DLRQP model. For color image denois-
ing, the time for computing subproblem Ẋ is mainly
consumed by quaternion SVD, and the complexity is
O(pmin(n1n2

2, n2
1n2)), where p denotes the number of

patches; the complexity of computing subproblem Z is
O(n1n2nln f nk), where nl , n f , and nk denotes the number
of layers, features, and kernel pixels; the computational
complexity of the multiplier � is O(n1n2). Thus, the
total cost of DLRQP for color image denoising is
O(pmin(n1n2

2, n2
1n2)+n1n2nln f nk +n1n2). Analogously, the
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TABLE II

DENOISING ASSESSMENT ( PSNR/SSIM ) OF THE PROPOSED AND COMPETING METHODS

main computational cost of DLRQP for color image inpainting
is O(min(n1n2

2, n2
1n2) + n1n2nln f nk + n1n2).

However, the convergence proof of the framework incor-
porating deep denoisers is still an open issue. But the
effectiveness and superiority of deep denoisers are remarkable,
which should be explored more deeply and extensively by
more researchers [26]. More recently, Ryu et al. theoretically
established the convergence of PnP-ADMM and proposed
that the PnP-ADMM would converge to a fixed point
if the deep learning denoiser is properly trained [61].
Thus, the theoretical proof is beyond the research focus of
this work.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To illustrate the superiority of the proposed DLRQP model,
we carry out several experiments on two typical color
image processing tasks: color image denoising and inpainting.
We implement all experiments on the platform of Windows
10 running on a desktop with an Intel(R) Core (TM) i9-10900
CPU at 3.70GHz and 64GB RAM.

A. Quantitative Assessment

The performance of the DLRQP is quantitatively evaluated
by two evaluation indicators, i.e., peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM) [62].

In general, the larger the values of PSNR and SSIM, the
better the performance of the algorithm.

B. Artificial Noisy Color Image Denoising

1) Color Image Data: The proposed algorithm is first
evaluated on 12 natural RGB color images with the resolution
of 256 × 256 as shown in Fig. 2, all of which are added with
the additive Gaussian noise with mean zero and variance τ 2 as
simulated noise. Here we test the case where the noise levels
τ are equal to 10, 30, and 50, respectively.

2) Compared Methods: We compare our proposed DLRQP
with the following seven denoising methods, including
LSCD [63], KQSVD [34], WNNM [64], LRQA [5],
FFDNet [41], TLRSR [65], GSHOSVD [66]. Specifically,
KQSVD and LRQA are both quaternion-based denoising
methods, where LRQA represents weighted Schatten norm-
based LRQA methods with the best denoising perfor-
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Fig. 2. The 12 RGB color images used in our denoising experiment. The
images are named Img1 to Img12 from left to right.

mance in [5]. LSCD and WNNM are LRMA-based
denoising methods. FFDNet is the deep learning-based
method. TLRSR and GSHOSVD are tensor-based denoising
methods.

3) Parameter Settings: For all comparison methods, we use
the recommended parameter settings. In our proposed
Algorithm 2, parameters that need to be considered include
the patch size p, the number of similar patch groups m, the
number of iterations K , and the iterative relaxation coefficient
θ . In the case of τ=10, 30, 50, p is set to 6 × 6, 7 × 7, 8 × 8,
and we set m to 70, 90, and 120, respectively. K and θ are
fixed at 4 and 0.1, respectively.

Table II summarizes the PSNR and SSIM values of different
denoising approaches under different noise levels. We use bold
font to emphasize the best results and underline the second-
best ones. Moreover, we calculate the average PSNR values
for all methods at different noise levels. Some of experimental
results in the Table II are quoted from [5]. It can be observed
that our proposed DLRQP acquires the optimal performance
in most cases. DLRQP has achieved 0.127dB, 0.149dB, and
0.112dB improvement over the runner-up FFDNet with respect
to τ = 10, 30, 50, respectively. This directly demonstrates
the advantage of the proposed DLRQP for color image
denoising. It can be found that FFDNet outperforms most
traditional denoising methods. The reason is that FFDNet has
powerful representation learning ability due to its complex
network structure. The tensor-based methods TLRSR and
GSHOSVD cannot outperform the quaternion-based method,
we guess because tensor-based methods do not exploit
nonlocal information. Besides, compared with the other two
quaternion-based denoising methods, our method improves the
average PSNR value about 2dB over KQSVD and about 1dB
over LRQA. The above observation confirms the effectiveness
of our proposed DLRQP. The main reason is that we adopt the
quaternion representation and build a framework for unifying
local, non-local, and global information, which improves the
denoising performance.

Moreover, the visual results of color image denoising for
all methods at noise level τ = 50 are shown in Fig. 3. From
the enlarged regions, we can observe that there is still obvious
unexpected noise in the recovered images by LSCD, TLRSR
and GSHOSVD. WNNM and LRQA denoise better, but still
lose some details and textures. Compared with FFDNet, our
method recovers more details in some regions with low pixel
values and obtains higher PSNR values. In terms of visual
effects, the proposed DLRQP outperforms other competing
methods.

Fig. 3. Denoising results of all methods on the images “Sailboat” and “Bear”
with τ = 50.

Fig. 4. Denoising results on real-world noisy images “Frog” and “Pattern”.

C. Real Noisy Color Image Denoising

We evaluate the proposed DLRQP on real images for the
denoising task. We selected two images from real-world noisy
dataset RNI15 [67], namely Frog and Pattern. We compare
the proposed DLRQP method with MCWNNM [32], FFD-
Net [41], LRQA [5]. We need to estimate the noise level on
the real image first. Here we adopt the noise estimation method
in [68] for each color channel. According to the best settings
given in the FFDNet, we set the input noise to 15 for Frog
and 40 for Pattern, respectively. For MCWNNM and LRQA,
we set the patch size p is set to 6, the number of nonlocal
similar patches m is set to 70, and the searching window is
set to 20 × 20.

Since the ground truth cannot be obtained for real noisy
images experiments, we only report the comparison of visual
restoration results in Fig. 4. It can be observed that all
methods recover clean images. However, the images denoised
by MCWNNM and LRQA still exist some blur and noise,
while the denoising results of our proposed method are clearer
than that of other methods. Meanwhile, our method has fewer
staircase artifacts on details than FFDNet.

D. Color Image Inpainting

In this section, we conduct color image inpainting experi-
ments to evaluate the performance of the proposed DLRQP.
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TABLE III

INPAINTING ASSESSMENT (PSNR/SSIM) OF THE PROPOSED AND COMPETING METHODS

Fig. 5. The 12 RGB color images used in our inpainting experiment. The
images are named Img1 to Img12 from left to right.

The selected 12 color images are shown in Fig 5. The image
inpainting methods chosen for comparison include LRMA-
based LMaFit [69], TNNR [8], WNNM [49], MC-NC [70],
D-N [71], quaternion-based LRQA [5], LRQMC [33], and
plug-and-play-based PnP-DIP [72]. Among them, LRQA
in [5] represents the LRQA model using the Laplace function,
which achieves relatively optimal performance in the color
image inpainting task.

Quantitative evaluations of inpainting performance from all
methods are presented in Table III. We test three missing rate
(MR) cases, namely MR = 0.5, 0.75, 0.85. It is observed

that the proposed DLRQP achieves the best performance in
most cases. Compared with the quaternion-based inpainting
methods LRQA and LRQMC, DLRQP improves the average
PSNR at least 2.5dB since DLRQP also takes the deep prior
of color images into consideration. In addition, we find that
the performance of the LRMA-based method MC-NC drops
sharply as the missing rate increases. In contrast, the proposed
DLRQP has better stability. Driven by the powerful structure
retention of quaternion representation, DLRQP has surpassed
the PnP-based color image inpainting method PnP-DIP, by a
large margin. The corresponding improvement is at least
2.6dB. It is worth noting that the improvement of DLRQP
on color image inpainting is much obvious than that on color
image denoising. We attribute this to the use of nonlocal
self-similarity, which may bring the loss of some structural
information of color images.

Fig. 6 shows the comparison of visual effects of all methods
with MR = 0.85. As we can see, LMaFit and D-N have poor
recovery performance at high missing rates. TNNR, WNNM,
MC-NC, and LRQMC recover rough structures, but the
images still exist obvious missing pixels. LRQA and PnP-DIP
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Fig. 6. Inpainting visual effects of all methods on the Img4 and Img10 with
MR = 0.85.

Fig. 7. PSNR and SSIM values of DLRQP with respect to γ and α on Img9
for color image denoising.

recover better results, but also have some loss of details.
The results of PnP-DIP are over-smooth. In comparison,
the proposed DLRQP achieves the most visually desirable
results with pleasing image details and neat textures. This also
confirms the effectiveness of the proposed model combining
nonconvex low-rank approximation and FFDNet denoiser in
the quaternion domain.

E. Discussion

1) Parameter Selection: We test the influence of the
parameters γ and α in our proposed DLRQP. In the proposed
model, γ and α control the weights of the low-rank prior and
deep prior, respectively. If γ is not suitable for the proposed
model, it will affect the integrality of the restored image. If α is
too large or too small, it will compromise the local smoothness
and details of the image. Based on this, we conduct related
experiments on color image denoising with τ = 50. We set
γ to [0.1, 1] with an increment of 0.1, and set α from 2E+3
to 3E+3 with an increment of 1E+2. Fig. 7 shows the effect
of different γ and α on PSNR and SSIM for color image
denoising. It can be found that the adjustment of parameter α
has a greater impact on the results. Satisfactory experimental
results can be obtained when α = [2.4E+3, 2.6E+3] for color
image denoising. Our DLRQP is insensitive to parameter γ ,
which shows the robustness of the nonconvex low-rank prior.

Fig. 8. The denoising performance of BM3D [73], CBM3D [74], DIP [75],
and FFDNet [41] on images “Airplane” and “Baboon” with noise level
τ = 30. The values below each image are the corresponding PSNR and SSIM.

Fig. 9. The inpainting performance of LRMC [48], HaLRTC [24],
LRQA [5], LRQA+BM3D, LRQA+CBM3D, and DLRQP on two images with
MR = 0.85. The values below each image are the corresponding PSNR and
SSIM.

2) Choice of Denoiser for DLRQP: To investigate the
effect of different denoisers for our method, we compare the
denoising performance of BM3D [73], CBM3D [74], DIP [75],
and FFDNet [41] on two images with noise level τ = 30.
Visual and numerical results are shown in Fig. 8. We can see
that the images recovered by BM3D are over smooth, and
CBM3D and DIP methods suffer from blurring in details.
Note that the SSIM values of DIP is higher than that of
FFDNet. We attribute this to that the particular generator
network structure in DIP is beneficial to the reconstruction
of the structural information of the image. FFDNet can retain
more details, and whose PSNR is also higher than that of other
methods, which verifies the advantages of the used FFDNet
in improving the image restoration performance.

3) Ablation Experiments: To illustrate the effectiveness of
the different terms of the proposed method, we discuss the
contributions of low-rank quaternion prior and FFDNet for
color image inpainting with the MR=0.85 in Fig. 9. It can be
seen that the matrix-based LRMC [48] and the Tucker-based
HaLRTC [24] are slightly inferior to the quaternion-based
LRQA [5]. Besides, compared with LRQA, the inpainting
performance combined with the plug-and-play denoiser is
significantly improved. The proposed DLRQP outperforms
BM3D+LRQA and CBM3D+LRQA and is closer to the
ground truth. As a whole, we can conclude that the unified
framework of quaternion combined with deep denoiser prior
is effective, and the FFDNet we utilized in the framework can
achieve promising performance.
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TABLE IV

AVERAGE RUNNING TIME (IN SECONDS) OF THE
PROPOSED AND COMPETING METHODS

Fig. 10. The convergence curves about relative error and iterations
on Img1-Img12.

4) Running Time: We further report the average running
time of all approaches on all images for color image denoising
and inpainting as shown in Table IV. For color image
inpainting, LMaFit has the shortest running time since it is
based on matrix factorization without computationally time-
consuming SVD. For color image denoising, the shortest time-
consuming method is FFDNet, because FFDNet has been
pre-trained and uses GPU-accelerated operations. Overall, the
runtime of the proposed is comparable.

5) Convergence Behaviors: Fig. 10 illustrates the numerical
convergence of our algorithm under MR = 0.85 on all images.
It can be seen that the relative error decreases as the number of
iterations increasing. During the period, the proposed DLRQP
method has some fluctuations in the curve at the beginning of
the iteration. The reason for the fluctuations may be that the
deep denoiser incorporated in the proposed framework makes
the solution of model unstable. Ultimately, the model still
tends to converge.

V. CONCLUSION

In this paper, we exploited the complementary advantages
of deep plug-and-play prior and quaternion representation
and proposed a novel color image processing model,
termed as plug-and-play prior regularized low-rank quaternion
representation. Unlike existing matrix-based and tensor-based
methods, our DLRQP model was not only able to process three
channels simultaneously and holistically by the quaternion
representation, but also preserved the structural features of
color images by pursuing the deep prior. Under the leverage
of plugged deep denoiser, more image details could be
preserved. Then, we applied the proposed DLRQP model
to solve two color image processing applications, i.e., color

image denoising and color image inpainting, and proposed
optimization procedures, respectively. The results of numerical
experiments illustrated the superiority of the proposed DLRQP
model compared to other competing methods. The potential
research direction is how to extend the proposed DLRQP into
other color image tasks, such as color image deblurring, color
image recognition, color image super-resolution and so on.
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