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Abstract—Person re-identification is a very challenging image
retrieval task that aims to match the specific person images from
different camera views. Person re-identification model requires a
large amount of training data to improve its generalization ability,
however the current datasets of person re-identification are not
enough that tend to make the model overfit. Therefore, some
data augmentation methods are used to increase the amount of
training data to improve the generalization ability of the model.
Cutmix is a common data augmentation method in the field of
deep learning, but it is rarely used in person re-identification
task because the triple loss cannot handle the decimal similarity
label generated by cutmix. In order to put the cutmix method
for data augmentation in person re-identification, we extend the
triplet loss that is commonly used in person re-identification
to a form which can handle decimal similarity label from
the perspective of optimizing image similarity. In addition, we
propose Strip-Cutmix data augmentation method, which is more
suitable for person re-identification, and discuss the strategies
about using Strip-Cutmix in the field of person re-identification.
Extensive experiments show that our approach can prevent model
overfit and achieve impressive performance on DukeMTMC-
ReID, Market-1501 and MSMT17 benchmark datasets.

Index Terms—Person Re-Identification, Strip-Cutmix, Data
Augmentation

I. INTRODUCTION

Person re-identification is a very challenging image retrieval
task which the goal is to match images of the same person
in different camera views. Person re-identification models are
often implemented using deep neural networks, which require
a large amount of training data to ensure the generalization
ability of the model. Due to existing person re- identification
datasets are not large enough and are labor intensive to collect
and label the data, so data augmentation methods are often
used to augment the amount of training data. However, cur-
rently there are only few available data augmentation methods
for person re-identification task. For this reason, we adapt
triplet-loss [1] and cutmix [2] to apply the cutmix to the person
re-identification task. In addition, we propose a strip-cutmix
data augmentation method that is more suitable for person re-
identification task.

Cutmix [2] crops a part of an image and pastes it onto
another image to create a new combined image, which is
a common method of data augmentation in the field of
deep learning. However, cutmix is rarely used in person re-
identification task because the triplet loss commonly used
in person re-identification task cannot handle the decimal
similarity label generated by cutmix. The triplet loss play an

important role in the metric learning process for the person
re-identification task. The positive and negative sample pairs
of triple loss are determined according to the ground truth.
The current metric learning loss function cannot handle the
decimal similarity label generated by cutmix. We modify the
triplet loss so that it can handle decimal similarity label,
allowing the use of cutmix and triple loss together in person re-
identification task. Based on the target similarity of the model
output, we make two modifications to the triplet loss. First, the
optimization direction is determined dynamically. If the output
similarity of the network is higher than the target similarity,
the output similarity of the network needs to be reduced.
Otherwise, the output similarity needs to be increased. Second,
the decision-making conditions of the triplet loss are rewritten
from the original conditions related to the {0,1} label to
the conditions related to the target similarity label, and the
modified triplet loss is also compatible with the original
conditions.

One feature of person re-identification is that a whole
pedestrian is contained in a single image, which allows the
same class of features of the pedestrian to appear at the
approximately same location in the image. Based on this
feature, we propose Strip-Cutmix for person re-identification
task. Strip-Cutmix cuts the image into image blocks in a
horizontal manner, and we can assume that images of the
same person have similar features at the same image block
locations. Based on this assumption, we can treat cutmix
in terms of image block combinations, where the similarity
of any two images can be obtained by the corresponding
image block label. Strip-Cutmix has three advantages over
the original cutmix. First, it is possible to obtain a similarity
between the two mixed images, but cutmix cannot. Second,
strip-cutmix can be more efficient to exploit pedestrian image
features to generate better quality generated images. Third,
strip-cutmix can obtain better boundary conditions for triplet
loss based on the combination of image blocks. Our proposed
method can be used together with other proposed methods as
a data enhancement method to improve the performance of
the model.

Our contributes as follows:
• We propose a new method to extend loss function of

deep metric learning from which is only being able
to handle {0,1} label to being able to handle decimal
similarity label. This allows us to use cutmix and triplet
loss together in person re-identification task.
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• We propose Strip-Cutmux, which is more suitable for
person re-identification task. Strip-cutmix performs a cut-
mix from the perspective of image block combination, so
that similarity label can be obtained from any combined
image.

• We investigate which types of image pairs should be
included in the mini-batch for training under the person
re-identification task in order to form an optimal model,
and so attain the best strategy of strip-cutmix.

• Extensive experiments show that our method is signif-
icantly superior to other competitive methods and can
alleviate model overfitting

II. RELATED WORKS

A. Data augmentation for person re-identification

Most person re-identification models merely refers random
erasing [3] and random horizontal flip [4] as their data aug-
mentation methods. Huang et al. [5] augmented the training
data by generating occlusion sample images. Bak et al. [6]
generated virtual person images under different lighting con-
ditions. There are also approaches [7]–[9] to improve model
generalization by generating images using generative adversar-
ial networks (GAN). However, the quality of sample images
generated by these methods is not good enough. Cutmix and
mixup can generate high-quality images. However, cutmix [2]
and mixup [10] data augmentation methods are rarely used in
person re-identification task. This is because the loss of triplet
used in person re-identification task cannot handle the decimal
similarity label generated by cutmix. To exploit cutmix in the
person re-identification task, we extend the commonly used
metric learning function triplet loss to a form that can handle
decimal similarity labels. In addition, we design Strip-Cutmix,
which generates higher quality combine images, based on the
feature of person re-identification images.

B. Deep metric learning

Deep metric learning aims to make the similarity between
positive sample pairs higher and the similarity between nega-
tive sample pairs lower. Metric learning uses a neural network
to learn a non-linear mapping of the input image into a one-
dimensional vector, and then measures the similarity between
sample pairs in terms of cosine similarity or euclidean dis-
tance. The two types of metric learning loss are proxy loss
and pairwise loss. Proxy loss optimizes the similarity between
samples indirectly by optimizing the similarity between each
sample and its central identity. Its representative works include
Proxy NCA [11]], ProxyNCA++ [12], softmax loss, cosine
softmax loss [13] and so on. Pairwise loss optimises the sim-
ilarity between samples directly, and it is representative work
refer to triplet loss [1], quadruplet loss [14] and contrastive loss
[15]. There also remain a few loss functions that keep both
forms of proxy loss and pairwise loss, such as unified pairwise
loss [16] and circle loss [16]. However, these loss functions are
designed for 0,1 similarity labels and cannot handle decimal
similarity label. They cannot be used with the data enrichment
method like cutmix. Proxy loss is similar to the classification

function in that it produces multiple classes of similarity, so it
can be extended to a form that can handle decimal similarity
labels using a weighted approach to the multi-label problem.
However, pairwise loss cannot be handled in this simple way.
Both proxy loss and pairwise loss are generally used in person
re-identification task. Although the cutmix data augmentation
method can be used in conjunction with proxy loss, the model
only using proxy loss does not perform well comparing with
using both proxy loss and pairwise loss. As a result, cutmix is
rarely used in person re-identification task. To enable pairwise
loss to fit in conjunction together with cutmix for person re-
identification task and from the point of view of generating
target similarities, we modifiy the triplet loss to handle decimal
similarity labels and it also compatible with the original triplet
loss.

C. Partial models
The images for the person re-identification task are pedes-

trian kinds, thus some pedestrian features (such as clothing,
trousers or more) are highly correlated in terms of where they
appear in the image. Some person re-identification methods
exploit this property at the feature level by dividing the feature
map into several parts and then optimising the similarity of the
corresponding parts between images separately, such as PCB
[17], MGN [18] and Pyramid [19]. However, there are two
problems with the local model-based approach. Due to feature
misalignment and the fact that different people have the same
local features, the local feature-based methods is equivalent to
train model using labels with noise. To address this problem,
[17]–[19]proposed different methods of local feature segmen-
tation and the application of loss functions to local features.
PCB [17] and Aligned-ReID [20] also propose algorithms
for local feature alignment. Besides, the local feature-based
approach requires more computational effort comparing with
the global feature-based model during the inference phase.
Our proposed strip-cutmix also uses the characteristics of the
pedestrian image, but we exploit it not at the feature level
but at the pixel level. Comparing with models based on local
feature methods, our method does not have serious problems
about feature alignment as most sample pairs are clean-clean
and mixed-clean type. The final features of the network output
are global features and so our approach requires no additional
computational effort in the inference phase.

III. OUR METHOD

A. Extended Triplet Loss
Pairwise loss optimizes the similarity between sample pairs

of images. Given an anchor image xa ∈ RH×W×C , where
H, W, C denote its height, width and number of channels
respectively. The set of positive samples with the same identity
as which the anchor xa has is P (a), and the set of negative
samples with different identities from the anchor is N(a).
Pairwise loss requires that the positive sample pair similarity
sp should close to 1 and the negative sample pair similarity
sn should close to 0. A typical pairwise loss is triplet loss:

Ltriplet = [sn − sp +m]+ (1)
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Fig. 1. Overall framework of the proposed approach. It consists of Stride-Cutmix, Feature Extractor Module and Losses. Stride-Cutmix is used for data
augmentation to increase the amount of training data. Feature Extractor is used to extract features from an image, mapping the extracted features to a public
embedding space. The losses component is used to bring features of the same identity closer together in the embedding space and to push features of different
identities apart.

Where [x]+ = max(x, 0) denotes the standard hinge loss,
m is a margin. sp and sn denote the similarity of positive
and negative sample pairs respectively. Triplet loss contains
a relaxation condition that as long as sp − sn > m, i.e. the
positive sample similarity is higher than the negative sample
similarity by a margin m, it is acceptable and the set of sn and
sp will not be optimized further. The meaning of the relaxation
condition is that sn and sp do not need to both be 0 and 1
strictly as long as the positive and negative sample pairs are
all sufficiently distinguishable.

However, triplet loss cannot handle decimal similarity la-
bels, making it impossible to use together with cutmix. First
is that the optimizing direction of sample pair similarity is
determined by the positive and negative sample pairs, which
in turn depend on the 0,1 labels. The division of positive and
negative sample pairs is represented as follows:

y(a, i) ∈ {0, 1}, i = 1, 2, . . . ,M

P (a) = {xi, i = 1, 2, ...,M |y(a, i) = 1}
N(a) = {xi, i = 1, 2, ...,M |y(a, i) = 0}

(2)

where M denotes the total number of sample images and
y(a, i) denotes the similarity label of the anchor image and the
i-th image sample. If they have the same identity, y(a, i) = 1
means they are positive sample pair, otherwise y(a, i) = 0
means they are negative sample pair. The original triplet loss
does not give an idea for dividing positive and negative sample
pairs for decimal similarity labels. The second reason is that
the relaxation condition of triplet loss is designed on the basis
of that there only exist 0,1 labels. It causes positive sample
pairs to be distributed around 1 and for negative sample pairs
is around 0. If the distribution aggregation around 1 is more

compact, the distribution aggregation around 0 can be slightly
looser, and vice versa. However, if the target similarity label of
a sample is a decimal, such as 0.5, the corresponding similarity
we want to get is distributed around 0.5. This is impossible
for triplet loss.

In order to allow triplet loss to handle decimal similarity la-
bels in the interval [0,1], we make two improvements to triplet
loss. The first is to determine the direction of optimization of
the sample pair similarity dynamically in each mini-batch. If
the similarity of the network output is less than the similarity
label, the similarity needs to be increased to optimize in
the positive direction. Otherwise, it will be optimized in the
negative direction. If the output of the network yields a sample
pair that the similarity s(a, i) is greater than the sample pair
similarity label y(a, i), the sample pair is a negative one
and the similarity s(a, i) has to be optimised towards 0 to
reducing the similarity. If s(a, i) is less than or equal to
the sample pair similarity label y(a, i), then the sample pair
should be a positive one and the similarity s(a, i) has to be
optimised towards 1 to improve the similarity. So through this
method for decimal similarity labels, it is also possible to
divide positive and negative sample pairs for samples. Noted
that our triplet loss uses cosine similarity, so the resulting
similarity s(a, i) ∈ [−1, 1]. The two vectors are linearly
uncorrelated when the cosine similarity is 0, and negatively
correlated when the cosine similarity is -1. Therefore for a
sample pair with a similarity label of 0, the obtained similarity
s(a, i) ≤ 0 is acceptable. We set which meet the condition
y(a, i) = 0 as negative samples. While s(a, i) ≤ 0, there is no
requirement to improve its similarity, which is also in terms
of the compatibility with the original triplet loss. The dynamic
division of positive and negative sample pairs is as follows:

P (a) = {xi, i = 1, 2, ...,M |s(a, i) ≤ y(a, i) and y(a, i) ̸= 0}
N(a) = {xi, i = 1, 2, ...,M |s(a, i) > y(a, i) or y(a, i) = 0}

(3)
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Where P (a) is the set of positive sample pairs of anchor
image xa and N(a) is the set of negative sample pairs. M is
the total number of samples, and y(a, i) refers to the similarity
label of anchor image and the i-th image. s(a, i) denotes the
similarity between the anchor image a and the i-th image, and
we use the cosine similarity to calculate it.

We have also rewritten the relaxation condition for triplet
loss. Instead of only allowing the output similarity to be
distributed around 0 and 1, it has been modified to allow the
distribution being around the target similarity label. The new
form is as follows:

L̂triplet = [(sn −∆n)− (sp −∆p)]+

∆p = yp(1− m̂)

∆n = yn(1− m̂) + m̂

m̂ = 0.5− m

2

(4)

Where yp denotes positive sample pair similarity label and yn
denotes negative sample pair similarity label. When sn < ∆n

and sp > ∆p, it’s unnecessary to optimize this triplet. Since we
are dividing positive and negative sample pairs dynamically, a
sample pair may be either a positive or negative sample pair
in a iteration. We can obtain ∆p < s < ∆n, while ∆p and ∆n

are the lower and upper bounds respectively of the receptive
domain of s, which allows similarity s to be distributed around
the similarity label y. We set m̂ = 0.5 − 2

m so that when
yn = 0 and yp = 1, the relaxation condition is compatible
with the original triplet loss. The exact derivation process is
given in the next section. Our extended method can also be
applied with other triplet style losses, such as unified pairwise
loss [16], contrastive loss [15] and multi- similarity loss [33].
Unified pairwise loss can be called cosine pairwise loss and
we use it to train the model. It can be expressed as follows:

Luni =
1

M

M∑
a=1

log[1+∑
p∈P (a)

∑
n∈N(a)

exp(γ((sn −∆n)− (sp −∆p)))]
(5)

where γ is a scale factor. In addition, we also use cosine
softmax loss [13] to train our model. It can be expressed as
follows:

Lcos =
1

M

M∑
i=1

−log
eγ(S(WT

yi
,xi)−m)

eγ(S(WT
yi

,xi)−m) +
∑

j ̸=yi
eγS(WT

j ,xi)

(6)
where M is the number of sample,γ is a scale factor and m is a
margin term. S(x, y) computes the cosine similarity between
x and y. Wyi

is the weight vector of the yi-th class. The total
loss is expressed as follows:

Ltotal = Luni + Lcos (7)

Our model is jointly trained in an end-to-end manner. The
overall framework of our model is shown in figure 1.

Fig. 2. The overview of Strip-Cutmix and similarity label generation process.
We cut image block at the same location and generate similarity label of
sample pair according to image block at the same location in each mini-
batch.

B. Strip-Cutmix

The improved triplet loss can handle the decimal similarity
labels generated by cutmix, however the direct use of cutmix
does not work well enough. Cutmix does not make good use of
the pedestrian image’s characteristics that contain a complete
pedestrian shape and does not obtain the similarity label
between mixed images. The pedestrian image contains the
whole pedestrian structure information. Therefore, pedestrian
features are very much correlated with their position in the
image. Some methods [17]–[20] propose local feature based
methods according to this characteristic. We propose Strip-
Cutmix from the point of view of combining image blocks.

Strip-Cutmix starts by determining the position and the
shape of the cut in the image where we use random short-
strip. Short-strip means that we select 20% - 50% of the
image height for cutting. In each mini-batch, all the images
are cut horizontally at the same position and the cut image
blocks are shuffled and pasted back to the image. In this
way each image involved consists of two blocks respectively
from the original image and the pasted image. We record the
identity label to which each image block belongs, so that each
image can obtain two types of labels. One type of similarity
label is image itself, which is assigned according to the area
shares of each identity’s image block, the other is the inter-
image similarity label, which compares the identity labels of
image blocks at the same location of two images, and the
similarity label between them stands for the percentage of
the both image blocks with the same identity label. It is
worth mentioning that the mixed-mixed image pair remains
the problem of feature misalignment while comparing with the
clean-mixed image pair, so we have added an overlap factor
term to alleviate this issue. There are three differences between
our strip-cutmix and the original cutmix. The first is that strip-
cutmix emphasises that all images are cut and mixed on the
same location. The reason for doing so is to make use of the
characteristics of the pedestrian image. The second is that the
shape of our cut is a short-strip and the cutmix is a rectangle.
Because pedestrian features are vertically distributed, using
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON DUKEMTMC-REID, MARKET1501 AND MSMT17

DukeMTMC-ReID Market1501 MSMT17Backbone Method mAP R1 mAP R1 mAP R1
PCB [17] 66.1 81.8 77.4 92.3 - -

Auto-ReID [21] - - 85.1 94.5 52.5 78.2
BoT [22] 76.4 86.4 85.9 94.5 50.2 74.1
SFT [23] 79.6 90.0 87.5 94.1 58.3 79.0

AGW [24] 79.6 89.0 87.8 95.1 55.6 78.3
ABD-Net [25] 78.6 89.0 88.3 95.6 60.8 82.3
FastReID [26] 79.8 89.6 88.2 95.4 58.4 81.8

3D-SF [27] 76.1 88.2 87.3 95.0 - -
CDNet [28] 76.8 88.6 86.0 95.1 54.7 78.9
AD-SO [29] 74.9 87.4 87.7 94.8 - -
FA-Net [30] 77.0 88.7 84.6 95.0 51.0 76.8

ResNet50 [31]

ours 81.4 90.6 89.4 95.5 60.1 81.7
RegNetY-1.6GF [32] ours 83.6 92.0 90.8 96.0 67.6 85.8

strip generates a higher probability of cutting to the same type
of feature. Short-strip is used for that we consider that cutting
a large chunk of the image from the middle of the origin might
cut out the whole person’s features, and such cutting will not
achieve the purpose of mixing features. The third is that by
using strip-cutmix we can give a similarity label between any
two images, which is the vanilla cutmix cannot do. In figure 2,
we take two pedestrian images belonging to different identity
labels as an example to show our strip-cutmix and similarity
tag generation process.

In addition, we derive a better upper and lower bound for
triplet loss from an approach based on the combination of
image blocks. For two images of the same identity label, we
set its upper bound to 1 and lower bound to (1 − m̂). For
an image pair with a similarity label of 0,we set the upper
bound to m̂ and the lower bound to 0. If the similarity label
is y, the two images that have similar area share of y belong
to the identical person and the corresponding similar part is
considered as similar block. The image blocks with (1-y) area
proportion belong to different people, and they are recorded
as different blocks. We calculate the upper and lower bounds
value of each image block separately. Similar blocks have an
upper bound as y and a lower bound as y(1− m̂). The upper
bound of the different block sets as (1 − y)m̂ and the lower
bound sets as 0. We can form the upper and lower bounds
of these two images in the way of combining the upper and
lower bounds of these two blocks and the lower bound of the
image pair is y(1− m̂) and the upper bound is y(1− m̂)+ m̂.
At this stage, we complete the derivation of the new upper
and lower bounds, which can be shown in Eq 4s.

C. Scheme for the use of Strip-Cutmix

Different schemes could make significant impacts on Strip-
Cutmix. For a original image, there would form six sample
pairs when using strip-cutmix, which include clean-clean (
similarit label is 1), clean-clean (similarit label is 0), clean-
mixed (similarit label between 0 and 1), clean-mixed (similarit
label is 0), mixed-mixed(similarit label between 0 and 1) and
mixed-mixed(similarit label is 0). Clean is the original image,
mixed is the image obtained using strip-cutmix. In each mini-

batch, we use PK sampling strategy. P denotes the quantity
of pedestrian identities in each mini-batch and k denotes how
many images each person has. We developed 3 schemes based
on the proportion of the sample participation in strip-cutmix.
In the first scheme, all p and all k take part in strip-cutmix, so
that the sample pairs in each iteration are all of mixed-mixed
type. In the second scheme, half p and all k take part in strip-
cutmix and each iteration probably contains 25% clean-clean,
25% mixed-mixed and 50% clean-mixed sample pairs. In the
third scheme, all p and half k take part in strip-cutmix so that
each iteration probably contains a combination of 25% clean-
clean, 25% mixed-mixed, and 50% clean-mixed (similarit label
is 0) and clean-mixed (similarit label between 0 and 1) sample
pairs. After experimentation we choose the third scheme and
carry out strip-cutmix with a probability of P=0.8.

IV. EXPERIMENTS

A. Datasets and evaluation protocols

We evaluate the effectiveness of our proposed method on
three datasets:Market-1501 [34], DukeMTMC-ReID [35] and
MSMT17 [36]. Market-1501 contains 32668 images of a total
of 1501 persons. DukeMTMC-ReID contains a total of 36411
images of 1812 persons from 8 cameras. MSMT17 consists of
1041 persons with a total of 32621 training set images, 11659
query set images and 82161 gallery set images.

We use mean average precision (mAP) accuracy and stan-
dard cumulated matching characteristics (CMC) curve as eval-
uation protocols to assess the performance of our proposed
method.

B. Implementation details

We use ResNet-50 [31] pretrained on ImageNet as a back-
bone in our experiments. Each mini-batch is 64 in size, where
both P and K are set to 8. The training data are augmented
by means of random horizontal flipping, random cropping
and random erasing. We use Adam optimiser with a weight
decay of 1e−4. For ResNet-50 backbone, we set its initial
learning rate to 0.0006. We the cosine annealing lr scheduler
for learning rate tuning.

Authorized licensed use limited to: Universidade de Macau. Downloaded on September 03,2023 at 08:37:49 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
ABLATION STUDY OF EACH COMPONENT ON DUKEMTMC AND

MARKET1501

Component Market1501 DukeMTMC
R-1 mAP R-1 mAP

Baseline 85.3 72.1 82.6 68.1
+Ex-Tri 91.3 81.6 86.0 74.2

+Strip-Cutmix 93.0 83.9 87.4 76.6
+Cosine Softmax 95.2 88.7 89.7 80.3

+Erasing 95.5 89.4 90.6 81.4

C. Comparison with state-of-the-art methods

We compare our proposed method with state-of-the-
art methods on the DukeMTMC-ReID, Market1501 and
MSMT17 datasets and the results are shown in Table 1.
Our method is the best one when using ResNet-50 as our
backbone. The mAP of our method is higher than what of
ABD-Net for over 1%. After using the RegNetY-1.6GF as
the backbone network, the performance of our method can
be further improved. On the Market dataset, the mAP can
reach 90.8% while the Rank-1 can reach 96.0%. Our method is
state-of-the-art on convolutional neural networks. These results
greatly outperform comparing with all the other competing
methods, which further verifies the validity of our proposed
approach.

D. Ablation Studies

1) The effectiveness of each component: We carried incre-
mental validation of each component on DukeMTMC-ReID
and Market-1501 datasets, while the experimental results are
shown in Table 2. Baseline refers to only using cosine pairwise
loss. After adding our proposed extended triplet loss method
and using it together with cutmix, the mAP on the market-
1501 dataset reached 81.6%. Performance can be further
improved by replacing the cutmix with strip-cutmix. Cosine
Softmax refers to the use of cosine softmax loss. After adding
cosine softmax loss, the performance can be greatly improved.
Erasing refers to random erasing. Our strip-cutmix can be used
with random erasing to further improve the performance of the
model. These experimental results prove that each component
is effective.

TABLE III
THE RESULTS OF ABLATION EXPERIMENTS WITH DIFFERENT SCHEME

Scheme P Market1501
mAP R1

No - 72.1 85.3

A
0.2 79.2 90.4
0.5 77.5 88.8
0.8 78.0 90.4

B
0.2 75.4 87.0
0.5 75.7 87.2
0.8 75.8 87.7

C
0.2 79.5 89.3
0.5 83.0 92.2
0.8 83.9 93.0

Fig. 3. The influence of the number of overlap factor on market1501 and
dukemtmc dataset

2) Analysis of the strip-cutmix usage scheme: The proposed
scheme for the use of strip-cutmix is analysed and experi-
mented are shown in Table 3. No indicates strip-cutmix is not
used. Scheme A indicates all p and all k are involved in strip-
cutmix and scheme B indicates half p and all k are involved
in strip-cutmix, while scheme C indicates all p and half k are
involved in strip-cutmix. The performance obtained by using
the scheme is obviously better than that obtained by not using
the scheme. In addition, the probability P of participating in
strip-cutmix will also affect performance. Among the three
schemes, scheme C can achieve the best performance by
performing strip-cutmix with a probability of P = 0.8. So we
use scheme C to train the model.

3) Analysis of overlap factor parameters for mixed-mixed
sample pair: We have carried out ablation experiments on the
overlap factor parameter both in our proposed short-strip cut
manner settings. The experimental results are shown in Figure
3. The best results can be obtained when the overlap factor
sets to 0.3. In addition, the inclusion of mixed-mixed samples
significantly improves the generalisability of the model, which
demonstrates the effectiveness of the mixed-mixed sample
pair.

TABLE IV
THE RESULTS OF ABLATION EXPERIMENTS WITH ALLEVIATE

OVERFITTING

Backbone Schedule DukeMTMC Market1501
mAP R1 mAP R1

Regnety-1.6GF 1x 82.8 91.2 90.7 95.9
3x 83.6 92.0 90.8 96.0

Resnet-50 1x 80.5 90.2 88.8 94.9
3x 81.4 90.6 89.4 95.5

4) The results of ablation experiments with alleviate over-
fitting: Our strip-cutmix can train the model for a long time
without overfitting. We conducted experiments on regnety-
1.6gf and resnet-50 backbone networks. The experimental
results are shown in Table 4. 1x refers 6000 iterations and
3x refers 18000 iterations. The experimental results show that
when strip-cutmix is not used, long training will lead to over-
fitting and performance decline. When using strip-cutmix, long
time training can improve the performance of the model. The
effect of using strip-cutmix on both datasets is better than that
of not using strip-cutmix. When regNetY-1.6gf is used as the
backbone, it can reach the state of the art performance on pure
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convolutional network after a long time of training.

V. CONCLUSION

In this paper, in order to put the cutmix data augmentation
method in use of the field of person re-identification, we
have extended the triplet loss commonly used in person re-
identification to a form that is able to handle decimal similarity
labels. The extend triplet loss is not only compatible with the
original form but also can handle decimal similarity labels.
In addition, we propose strip-cutmix that is better suited to
the task of person re-identification. Finally, we study the use
schemeof strip-cutmix and obtain the optimal scheme. Com-
pared with other convolutional neural network-based person
re-identification models, the proposed method of our work
makes it possible to achieve the best performance on pure
convolutional network.
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