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Abstract—High-dimensional (HD) chaotic map has wide appli-
cations in various research fields such as neural networks and
secure communication. Designing HD chaotic maps with expected
dynamics and robust hyperchaotic behaviors is an interesting but
challenging topic. In this article, we propose an n-dimensional
hyperchaotic map (nD-HCM) generation method on the basis
of the Gershgorin-type theorem. First, the general form of the
proposed nD-HCM is built using n parametric polynomials. Then,
the entity and coefficient parameter matrices are configured
according to the Gershorin-type theorem. Theoretical analysis
shows that the generated nD-HCM has n positive Lyapunov
exponents and thus can show robust hyperchaotic behaviors.
Two examples of hyperchaotic map with specified equations are
provided and their properties are analyzed to show the avail-
ability of the proposed method. Performance evaluations display
that our nD-HCM possesses abundant properties and complex
behaviors, and it can outperform some representative HD chaotic
maps. Moreover, to show the application of our nD-HCM, we
apply it to a secure communication scheme and the experimen-
tal results exhibit that it shows much better performance than
these representative HD chaotic maps in resisting transmission
noise.

Index Terms—Chaos, hyperchaos, hyperchaotic behavior, non-
linear system, secure communication.
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I. INTRODUCTION

NONLINEAR system is a wide research subject [1], [2]
and it plays a very important role in various research

fields [3], [4], for example, artificial intelligence [5]. Chaotic
signal is a kind of nonlinear signals and it was first observed
in meteorology [6]. Since the 21st century, the chaotic sig-
nal attracts increasing attentions from the researchers of
artificial intelligence [7], [8]. A chaotic system is a kind
of nonlinear systems with initial state dependence, and it
possesses many unique characteristics such as initial value
sensitivity, randomness, ergodicity, and unpredictability [9].
With these properties, chaotic systems can be extensively
applied in almost all the research and engineering fields [10],
[11], [12], such as image encryption [13], [14] and secure
communication [15], [16].

According to the number of dimensions, all the chaotic
maps are classified into two categories: 1) low-dimensional
(LD) chaotic map and 2) high-dimensional (HD) chaotic
map [9], [17]. The LD chaotic maps have simple structures
and require small implementation cost. However, researchers
found that existing LD chaotic maps may have many prop-
erty limitations. First, the chaotic ranges of many LD chaotic
maps are discontinuous and this leads to weak ability to resist
chaos degradation [18]. The chaos degradation indicates that
the chaos properties of a chaotic map disappear in digit domain
because of the finite precision. With weak ability of resisting
chaos degradation, the LD chaotic maps have serious secu-
rity problems when being applied to many applications [19].
Besides, many existing LD chaotic maps cannot show hyper-
chaotic behaviors. The hyperchaotic behavior is a kind of more
complex behavior than the chaotic behavior, and a globally
bounded chaotic system with more than one positive Lyapunov
exponent (LE) exhibits hyperchaotic behavior.

To overcome the performance limitations of existing LD
chaotic maps, researchers improve the performance of existing
LD chaotic maps by perturbing the variables or parame-
ters [20], or directly construct new LD chaotic maps with
better performance [21], [22]. These works can well address
the problems of the LD chaotic maps in lacking discontinu-
ous chaotic intervals and hyperchaotic behaviors [21], [22].
However, since an LD chaotic map has a small dimen-
sion space, its behaviors are easier to be predicted using
some artificial intelligence techniques [23], [24] than the HD
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chaotic maps. If the signals of a chaotic map are accurately
predicted, the chaotic map will lose its unpredictability, and
this leads to the failures of the practical applications using
it [25]. Besides, the chaos properties of many new LD chaotic
maps lack theoretical guarantees [21], [22].

Compared with the LD chaotic maps, the HD chaotic maps
require more implementation cost and are more difficult to be
implemented in some hardware platforms. However, they have
large dimension space and their behaviors are unpredictable.
Besides, they usually have more parameters and variables
and thus show more complex behaviors than the LD chaotic
maps [26]. Up to now, researchers have constructed many HD
chaotic systems/maps [27], [28], [29]. For example, Lassoued
and Boubaker [30] proposed nine four-dimensional chaotic
systems that have two positive LEs by introducing a con-
troller to existing three-dimensional (3-D) chaotic systems.
This method can only construct HD chaotic systems with two
positive LEs, and cannot construct chaotic systems with more
positive LEs. According to the discussions in [31], the com-
plexity of an HD chaotic system/map is highly dependent of
its number of positive LEs. A chaotic system/map with very
high dimension cannot show complex behavior if it only has
a small number of positive LEs. Thus, the main purpose of
designing HD chaotic systems/maps is to obtain more positive
LEs while keeping the dimension as low as possible.

To design HD hyperchaotic systems/maps with a large
number of positive LEs, researchers have developed many
methods using different techniques [32], [33]. For exam-
ple, Shen et al. [33] developed an nD continuous chaotic
system generation method, which can generate chaotic systems
with �n − 1�/2 positive LEs. Wu et al. [34] proposed a
Laplace expansion method that can produce HD Cat maps
with multiple positive LEs and thus show complex behav-
iors. These generation methods are able to construct HD
hyperchaotic systems/maps with multiple and even maximum
number of positive LEs, which result in quite complex hyper-
chaotic behaviors [11], [31]. However, the effects of these
methods highly rely on the designer’s experience in debugging
parameters. When constructing hyperchaotic systems/maps
with desired property, one should try many potential parameter
values to determine the proper ones, which lacks of robust-
ness. Besides, the outputs of these hyperchaotic systems/maps
can only distribute on a small area of the phase space.
Thus, designing HD hyperchaotic systems/maps with expected
dynamics and robust hyperchaotic behaviors is a meaningful
but challenging topic.

To generate HD hyperchaotic maps (HCMs) with expected
dynamics and robust hyperchaotic behaviors, we propose an
n-dimensional HCM (nD-HCM) generation method. First, we
construct the general form of the proposed nD-HCM from n
parametric polynomials with arbitrary order. Then, we con-
figure the entity parameter matrix and coefficient parameter
matrix on the basis of the Gershgorin-type theorem. Using
different settings of the entity parameter matrix and coeffi-
cient parameter matrix, a large number of new nD-HCMs can
be generated. Theoretical analysis indicates that the produced
nD-HCMs possess n positive LEs and thus can show robust
hyperchaotic behaviors. To exhibit the effect of the proposed

Fig. 1. Demonstrations of the three real intervals in the 3 × 3 square matrix
shown in (1).

method, we generate two HCMs as examples including a
three-dimensional HCM (3D-HCM) and a nine-dimensional
HCM (9D-HCM). Property analysis shows the robust hyper-
chaotic behaviors of the 3D-HCM and 9D-HCM. Performance
evaluations and comparisons show that the generated nD-
HCMs have complex and robust hyperchaotic behaviors, and
show much better performance than some representative HD
chaotic maps. To further show the application of our nD-
HCM, we apply the nD-HCMs generated by our method to
the application of secure communication. Test results demon-
strate that they show better performance than the representative
HD chaotic maps in resisting channel noise.

The remainder of this article is organized as follows.
Section II presents the Gershgorin-type theorem as a back-
ground. Section III introduces the proposed nD-HCM gen-
eration method and theoretically analyzes its hyperchaotic
behaviors. Section IV provides two examples of nD-HCM and
analyzes their properties. Section V tests the performance of
the proposed nD-HCM. Section VI explores the effect of our
nD-HCM on secure communication. Section VII concludes
this article.

II. GERSHGORIN-TYPE THEOREM

This section introduces the Gershgorin-type theorem [35],
[36] and deduces a lemma using the theorem to explore the
properties of matrix.

A. Gershgorin-Type Theorem

First, we define the real interval in Definition 1 and review
the Gershgorin-type theorem in Theorem 1.

Definition 1: Let A = (akj)
n×n be a complex square matrix,

and Rk = ∑n
j=1
j �=k

|akj| and Ck = ∑n
j=1
j �=k

|ajk| be the sums of the

absolute values of the nondiagonal elements in the kth row
and column of A, respectively. A real interval Bk centered at
akk is defined as Bk = [(|akk| − sk)+, |akk| + sk], where sk is
the radius and sk = max{Rk, Ck}, and a+ = max{0, a}.

Suppose a square matrix A with size 3 × 3 is defined as

A =
⎛

⎝
3 0.2 −0.2
1 −6 0.4

0.2 0.5 −0.1

⎞

⎠. (1)

Its three real intervals can be obtained as

B1 = [
(3 − (1 + 0.2))+, 3 + (1 + 0.2)

] = [1.8, 4.2]

B2 = [
(6 − (1 + 0.4))+, 6 + (1 + 0.4)

] = [4.6, 7.4]

B3 = [
(0.1 − (0.2 + 0.5))+, 0.1 + (0.2 + 0.5)

] = [0, 0.8]

and their representations in the real axis can be shown in
Fig. 1. By defining the real intervals, one can estimate the
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singular values of a square matrix by the Gershgorin-type
theorem which is defined in Theorem 1.

Theorem 1 [35]: The n singular values of an n × n square
matrix A are all within the corresponding real intervals of A.

For example, the three singular values of matrix A in (1)
are σ1 = 3.0210, σ2 = 7.2948, and σ3 = 0.1978, which all
locate into their related real intervals.

From the Gerschgorin-type theorem, it is obvious that the n
singular values of an n×n square matrix are within its related
n real intervals. Using this principle, the lower bound of the n
singular values of an n × n square matrix can be determined
by presetting the real intervals using the matrix elements.

B. Properties of Matrix

According to the Gershgorin-type theorem presented in
Theorem 1, we can deduce Lemma 1 that describes the lower
bound of the n singular values in an n × n square matrix.

Lemma 1: Let 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σn be the n singular
values of the square matrix A = (aij)n×n and δ is an arbitrary
positive constant. There exists

σk > δ (2)

if A satisfies that

|akk| > sk + δ (3)

where sk = max{Rk, Ck} denotes the radius of the ith real
interval, Rk = ∑n

j=1
j �=k

|akj| and Ck = ∑n
j=1
j �=k

|ajk|.
Proof: Because the principal diagonal elements of the square

matrix A satisfy |akk| > sk + δ, one can get

|akk| − sk > δ > 0. (4)

From Definition 1, the n real intervals of A are

Bk = [
(|akk| − sk)+, |akk| + sk

]

where k = 1, 2, . . . , n. Let ζ = min{(|a11| − s1)+, (|a22| −
s2)+, . . . , (|ann|−sn)+} be the lower bound of the real intervals
Bk. From (4), one can obtain

ζ > δ > 0. (5)

According to the Gershgorin-type theorem in Theorem 1,
for k = 1, 2, . . . , n, we can obtain that the each singular value
of A satisfies

σk ≥ ζ. (6)

Combining inequalities (5) and (6), we can get σk > δ. So
does the proof.

Lemma 1 displays that all singular values of an nD matrix
can be greater than any given positive values when some con-
ditions between its main diagonal and nondiagonal elements
are satisfied. For an nD matrix, its eigenvalues are related to its
singular values. Moreover, the chaotic behaviors of a nonlinear
system can be indicated by its LEs that is related to the eigen-
values of its parameter matrix. Therefore, using Lemma 1,
one can configure the parameter matrix of an nD chaotic
map, ensuring that the chaotic map shows robust hyperchaotic
behaviors.

III. n-DIMENSIONAL HYPERCHAOTIC

MAP GENERATION METHOD

This section first presents the general form of our nD-HCM,
and then introduces a methodology to configure its parameter
matrices. Finally, this section studies the hyerchaotic behaviors
of the proposed nD-HCM.

A. General Form of the Proposed nD-HCM

The nD-HCM is built using n parametric polynomials. First,
initialize n parametric polynomials with any order, and the
general form is described as

x(i + 1) = G(x(i)) mod N (7)

where x(i) = {x1(i), x2(i), . . . , xn(i)}T ∈ R
n×1 is the state

vector at observation time i, N is an integer that acts as the
modular coefficient, G(x) : In → In is a vector function and
its detailed equations are expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(i + 1) = a11x1(i) + a12x2(i)c12 + · · · + a1nxn(i)c1n

x2(i + 1) = a21x1(i)c21 + a22x2(i) + · · · + a2nxn(i)c2n

...

xn(i + 1) = an1x1(i)cn1 + an2x2(i)cn2 + · · · + annxn(i).

(8)

It is obvious that all the control parameters in the nD-HCM
can be classified into two categories: 1) entity parameters and
2) coefficient parameters. The entity parameters are to linearly
change the iteration states while the coefficient parameters
change the iteration states in nonlinear ways. All the entity
parameters and coefficient parameters in the nD-HCM can be
represented as

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠

(9)

and

C =

⎛

⎜
⎜
⎜
⎝

1 c12 · · · c1n

c21 1 · · · c2n
...

...
. . .

...

cn1 cn2 · · · 1

⎞

⎟
⎟
⎟
⎠

(10)

respectively. Thus, the properties of the nD-HCM are deter-
mined by its entity parameter matrix A and coefficient param-
eter matrix C. By setting A and C as proper values, the
nD-HCM can achieve hyperchaotic behaviors and desired
dynamics.

B. Methodology of Configuring A and C

The Jacobian matrix J(x(i)) of the general form of the
nD-HCM with respect to the observation state x(i) =
{x1(i), x2(i), . . . , xn(i)}T ∈ R

n×1 can be described as follows:

J(x(i))

=

⎛

⎜
⎜
⎜
⎝

a11 a12c12x2(i)c12−1 · · · a1nc1nxn(i)c1n−1

a21c21x1(i)c21−1 a22 · · · a2nc2nxn(i)c2n−1

...
...

. . .
...

an1cn1x1(i)cn1−1 an2cn2x2(i)cn2−1 · · · ann

⎞

⎟
⎟
⎟
⎠

.

(11)
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Suppose σ
x(i)
1 is the minimum singular value of the Jacobian

matrix J(x(i)) and δ is a given positive number. According to
Lemma 1, we can get

σ
x(i)
1 > δ (12)

if

|akk| > sk + δ (13)

where sk = max{Rk, Ck}, and Rk = ∑n
j=1
j �=k

|akjckjxk(i)ckj−1| and

Ck = ∑n
j=1
j �=k

|ajkcjkxk(i)cjk−1|. From the definition of the nD-

HCM, the observation state xk(i) satisfies that 0 ≤ xk(i) < N.
Thus

sk + δ < max

⎧
⎪⎨

⎪⎩

n∑

j=1
j �=k

∣
∣
∣akjckjN

ckj−1
∣
∣
∣,

n∑

j=1
j �=k

∣
∣
∣ajkcjkNcjk−1

∣
∣
∣

⎫
⎪⎬

⎪⎭
+ δ.

Then, we can get that

σ
x(i)
1 > δ (14)

if

|akk| > max

⎧
⎪⎨

⎪⎩

n∑

j=1
j �=k

∣
∣
∣akjckjN

ckj−1
∣
∣
∣,

n∑

j=1
j �=k

∣
∣
∣ajkcjkNcjk−1

∣
∣
∣

⎫
⎪⎬

⎪⎭
+ δ.

(15)

Because σ
x(i)
1 is the minimum singular value of the Jacobian

matrix J(x(i)), we can deduce that its n singular values are
all greater than δ when the corresponding elements of the
two parameter matrices A and C satisfy (15). Using this prin-
ciple, one can construct these two parameter matrices. The
detailed construction procedures for A and C with size n × n
are described as follows.

1) Step 1: Set k = 1. Specify the value of the modular coef-
ficient N and the lower bound of the n singular values
for the Jacobian matrix of the nD-HCM, namely, δ.

2) Step 2: Set all off-diagonal elements in the kth row of
matrix C to some random values.

3) Step 3: Set all off-diagonal elements in the kth row of
matrix A to some random values.

4) Step 4: Set the absolute value of the kth principal diago-
nal element of A not smaller than max{Rk, Ck}+δ, where
Rk = ∑n

j=1
j �=k

|akjckjNckj−1| and Ck = ∑n
j=1
j �=k

|ajkcjkNcjk−1|.
5) Step 5: Repeat steps 1–4 for k = 2, 3, . . . , n.
Algorithm 1 shows the pseudocode of the aforementioned

procedures for configuring A and C using inputs δ, a, c, and N,
where a = {ai}n·(n−1)

i=1 and c = {ci}n·(n−1)
i=1 are the off-diagonal

elements of A and C, δ is the lower bound of the n singular
values of Jacobian matrix, and N is the modular coefficient of
the chaotic map. The entity parameter matrix A and coefficient
parameter matrix C configured using Algorithm 1 can make
the generated nD-HCMs show expected dynamics and robust
hyperchaotic behaviors.

Algorithm 1 Algorithm for Configuring the Parameter
Matrices A and C

Input: a = {ai}n·(n−1)
i=1 , c = {ci}n·(n−1)

i=1 and δ, where ai and ci

are pseudo-random values, δ is a user-specified positive
value.

1: Initialize A = 0n×n;
2: Initialize C = 0n×n;
3: for k = 1 to n do
4: C(k, k) = 1;
5: C(k, 1:(k − 1)) = {ci}(k−1)·n

i=(k−1)·(n−1)+1;

6: C(k, (k + 1):n) = {ci}k·(n−1)
i=(k−1)·n+1;

7: A(k, 1:(k − 1)) = {ai}(k−1)·n
i=(k−1)·(n−1)+1;

8: A(k, (k + 1):n) = {ai}k·(n−1)
i=(k−1)·n+1;

9: A(k, k) = max{Rk, Ck} + δ + θ , where θ can
any positive value and is set to 1 in this
paper, Rk = ∑n

j=1
j �=k

|A(kj)C(kj)NC(kj)−1| and

Ck = ∑n
j=1
j �=k

|A(ji)C(kj)NC(jk)−1|;
10: end for
Output: the nD entity parameter matrix A and coefficient

parameter matrix C.

C. Hyperchaotic Behavior Analysis

The chaotic behavior is a kind of disordered and irregular
behaviors and it is highly sensitive to initial states, while the
hyperchaotic behavior is a considerably more complex kind
of behavior than the chaotic behavior. Many techniques have
been developed to measure the existence of the chaos and
hyperchaos. Among these techniques, the LE is a widely used
and convinced criterion [37]. Here, we use it to study the
dynamics of the proposed nD-HCM. A positive LE implies
that the two close trajectories exponentially separate in each
unit time and will result to be completely different behaviors
eventually. An nD dynamic system has n LEs, and it will
diverge in several directions with more than one positive LE.
Thus, the dynamic properties of an nD dynamic system can be
indicated by its number of positive LEs and their values [11].
The chaos in the sense of LE is described as Definition 2 [11].

Definition 2: For a dynamic system with globally bounded
phase space, it has chaotic behavior if it has one positive
LE and it has hyperchaotic behavior if it has more than one
positive LE.

One can use Definition 2 to judge whether a dynamic system
is chaotic or hyperchaotic. For an nD discrete chaotic map with
initial value x0, the n LEs of the system are calculated as

LEk = lim
t→∞

1

t
ln(λk), k = 1, 2, . . . , n (16)

where λk is the kth eigenvalue of the matrix Jt, and Jt is the
multiplications of the Jacobian matrix of the dynamic map at
each iteration time, namely, Jt = J(x0)J(x1) · · · J(xt−1).

Before analyzing the hyperchaotic behavior of the generated
nD-HCM, we present Theorem 2 that describes the relation-
ship between the singular values of the multiplication result
of matrices with the singular values of every matrix.
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Theorem 2 [38]: Let 0 ≤ σ
(1)
1 ≤ σ

(1)
2 ≤ · · · ≤ σ

(1)
n , 0 ≤

σ
(2)
1 ≤ σ

(2)
2 ≤ · · · ≤ σ

(2)
n , · · · , 0 ≤ σ

(t)
1 ≤ σ

(t)
2 ≤ · · · ≤

σ
(t)
n be the n singular values of the matrix P1, P2, . . . , Pt ∈

R
n×n, respectively. The n singular values of the matrix Q =

P1P2 · · · Pt, σ1, σ2, · · · , σn, satisfy that

σk ≥ σ
(1)
1 σ

(2)
1 , . . . σ

(t)
1 (17)

and

σk ≤ σ (1)
n σ (2)

n , . . . σ (t)
n (18)

where k = 1, 2, . . . , n.
Proposition 1 states that the proposed nD-HCM has hyper-

chaotic behaviors when its parameters satisfy some require-
ments.

Proposition 1: The nD-HCM in (7) with nD parameter
matrices A and C configured by Algorithm 1 has hyperchaotic
behavior if the parameter δ ≥ 1.

Proof: Because the modular operation is a bounded operator,
the phase space of the nD-HCM in (7) is always globally
bounded. That is, the first condition of Definition 2 is satisfied.

The multiplication of the Jacobian matrices of the nD-HCM
in (7) from iteration time 0 to iteration time t − 1 can be
written by

Jt = J(x0)J(x1) · · · J(xt−1). (19)

Suppose 0 ≤ σ
x(i)
1 ≤ σ

x(i)
2 ≤ · · · ≤ σ

x(i)
n are the n singular

values of J(xi), and 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σn are the n
singular values of Jt. Because the parameter matrices A and C
are configured by Algorithm 1 following the constraint of (15),
the minimum singular value of the Jacobian matrix J(x(i))
satisfying (14), that is, σ

x(i)
1 > δ.

From (17) of Theorem 2, one can get that

σk ≥ σ
x(0)
1 σ

x(1)
1 · · · σ x(t−1)

1 > δt

where k = 1, 2, . . . , n. Thus, the minimum singular value σ1
of the matrix Jt is larger than δt.

According to the preliminaries in linear algebra, the rela-
tionship between the singular values and eigenvalues of an
square matrix D ∈ R

n×n satisfies the following inequality:

σ1(D) ≤ |λk(D)| ≤ σn(D) (20)

where k = 1, 2, . . . , n, σ1(D) and σn(D) denote the minimum
and maximum singular values of D, respectively, and λk(D)

is the kth eigenvalue.
Since the minimum singular value of the matrix Jt is larger

than δt, we can get that

|λk| > δt, k = 1, 2, . . . , n (21)

where λk denotes the kth eigenvalue of Jt. From (16), the n
LEs of the nD-HCM in (7) are estimated as

LEk > lim
t→∞

1

t
ln

(
δt) = ln(δ) (22)

where k = 1, 2, . . . , n. It is worth noting that if the eigenvalue
λk < 0, the calculated LE is a complex number and the final
LE value is the real part of the complex number [39].

Because the parameter δ ≥ 1, LEk > 0 for k = 1, 2, . . . , n,
the generated nD-HCM has n positive LEs. Therefore, the
generated nD-HCM can exhibit chaotic behavior when the
dimension n is greater than or equal to 1, and exhibit
hyperchaotic behavior when n is greater than or equal to 2.

Proposition 1 tells the constraint conditions of the generated
nD-HCM in showing hyperchaotic behavior. By specifying an
arbitrary positive δ in configuring the parameter matrices A and
C, one can limit the lower bound of all the LEs of the gen-
erated nD-HCM, and ensure that it shows expected properties
and robust hyperchaotic behaviors.

IV. ILLUSTRATIVE EXAMPLES

Two examples of nD-HCM are generated to verify the effect
of the proposed method: 1) a 3D-HCM and 2) a 9D-HCM.
According to Proposition 1 and the parameter configuring pro-
cedure in Algorithm 1, the elements in sequences a and c can
be set as any values and δ should be not smaller than 1. In our
examples, the elements in a are randomly fetched from data
set {1, 2, . . . , 10}, the elements in c are randomly fetched from
data set {1, 2, . . . , 5}, the δ is set to δ = 1, and the modular
coefficient is set to N = 1. One has great flexibility to specify
those parameters as other values.

A. 3D-HCM

When generating a 3D-HCM, a 3-D entity parameter
matrix A and a 3-D coefficient parameter matrix C should
be configured. The sequences a and c should have six ele-
ments. Suppose these randomly generated parameters are
a = {1, 3, 10, 4, 5, 3} and c = {2, 5, 4, 5, 3, 3}, and set δ = 1.
According to Algorithm 1, the matrices A and C can be
generated as

A =
⎛

⎝
57 1 3
10 62 4
5 3 37

⎞

⎠ and C =
⎛

⎝
1 2 5
4 1 5
3 3 1

⎞

⎠ (23)

respectively. Setting the modular coefficient as one, a 3D-
HCM can be generated as

⎧
⎨

⎩

x1(i + 1) = 57x1(i) + x2(i)2 + 3x3(i)5 mod 1
x2(i + 1) = 10x1(i)4 + 62x2(i) + 4x3(i)5 mod 1
x3(i + 1) = 5x1(i)3 + 3x2(i)3 + 37x3(i) mod 1.

(24)

Since the singular values of its Jacobian matrix at each
iteration time are all larger than one, according to Theorem 2,
all the eigenvalues of the multiplication of these Jacobian
matrices are larger than one. This ensures that all the LEs
of the 3D-HCM are positive. Using the well-known Wolf’s
algorithm, we can calculate out that the three LEs of the 3D-
HCM are LE1 = 4.1707, LE2 = 4.0138, and LE3 = 3.5799.
This experimentally indicates that the generated 3D-HCM has
three positive LEs and thus shows hyperchaotic behaviors.

Chaos is studied in the mathematical domain with infi-
nite precision. When a chaotic system is implemented in
digital platforms with finite precision, its chaotic behavior
will degrade to regular behavior due to the precision trun-
cation [40]. Since all the researches and applications about
chaos are performed on digital platforms, it is important to
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(a) (b)

(c)

(d)

Fig. 2. State mapping networks of the 3D-HCM with various fixed precisions.
(a) m = 3. (b) m = 4. (c) m = 5. (d) m = 6.

study the properties of a chaotic system in the digital domain.
Here, we apply the state-mapping network [40], [41] to ana-
lyze the properties of the 3D-HCM in the fixed-point domain.
Since the inputs and outputs of the 3D-HCM are all within
the range [0, 1), we set the arithmetic precision as 1/m, and
the fixed points in the interval [0, 1) can be represented as
{0, 1/m, . . . , (m − 1)/m}. Thus, each dimension has m possi-
ble states, and each observation state of the 3D-HCM has m3

possible states. To facilitate the generation of a state-mapping
network, we convert each observation state x = [x1, x2, x3] to
be an integer j using the following formula:

j = F(x) = R(mx1) + R(mx2) × m + R(mx3) × m2 (25)

where R(·) is the round quantization function. Obviously,
j ∈ {0, 1, . . . , m3 − 1}. Suppose that x′ denotes the output
of the 3D-HCM with input x, j = F(x), and k = F(x′), then
a directed line can be drawn from the node j to node k. After
connecting all the m3 input nodes with their corresponding out-
put nodes using directed lines, the state-mapping network can
be generated. Fig. 2 depicts the state-mapping networks of the
3D-HCM under various fixed precisions m = {3, 4, 5, 6}. As
can be seen, these state-mapping networks have some obvious
characteristics.

1) All the nodes are weakly connected. The largest sub-
graphs contain a path, which is linked to two arbitrary
nodes k and j in the underlying undirected version of
the subgraph.

2) Each weakly linked node has only one out-degree or
self-loop, and the node with value zero is always self-
looping.

3) The sizes of the largest subgraph can occupy more than
half of the whole networks, and their sizes sharply grow
as the precision increases.

These phenomena show the complex dynamic properties of
the 3D-HCM in the digital domain.

B. 9D-HCM

When n = 9, a 9-D entity parameter matrix A and a
9-D coefficient parameter matrix C should be configured.
The parameters are generated using the same method with
them in the 3D-HCM. Then, two data sequences a = {ai}72

i=1
and c = {ci}72

i=1 are randomly generated, where ai are ran-
domly fetched from data set {1, 2, . . . , 10} and ci are randomly
fetched from data set {1, 2, . . . , 5}. δ is set to δ = 1. Using
Algorithm 1, the parameter matrices A and C of the 9D-HCM
can be produced as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

175 5 10 1 2 3 10 1 6
5 177 1 3 5 10 8 5 7
5 5 123 4 2 6 8 8 5

10 8 2 128 6 5 1 6 8
4 4 1 9 104 3 4 2 7
6 9 9 10 8 155 10 2 1
6 8 6 6 7 10 191 10 8
4 9 6 9 6 9 4 162 3

10 3 2 9 2 9 6 8 193

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(26)

and

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 4 4 1 3 4 5 1 4
3 1 1 4 1 1 3 1 2
4 1 1 1 4 1 4 2 5
1 4 1 1 2 2 5 2 3
2 2 1 5 1 3 5 2 1
5 4 3 1 3 1 2 2 2
5 4 2 3 3 2 1 4 2
5 3 5 3 2 3 2 1 3
4 5 4 1 5 5 4 5 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

respectively. When setting the modular coefficient N = 1 in
(7), a 9D-HCM can be generated. By calculation, the nine
LEs of the 9D-HCM are LE1 = 5.3882, LE2 = 5.2191,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Hyperchaotic trajectories of the generated 9D-HCM with 2000 states in various 3-D phase spaces. (a) x1 − x2 − x3 space. (b) x2 − x3 − x4 space.
(c) x3 − x4 − x5 space. (d) x4 − x5 − x6 space. (e) x5 − x6 − x7 space. (f) x6 − x7 − x8 space. (g) x7 − x8 − x9 space. (h) x8 − x9 − x1 space.

LE3 = 5.1514, LE4 = 5.1304, LE5 = 5.0805, LE6 = 5.0137,
LE7 = 4.8382, LE8 = 4.7964, and LE9 = 4.6336. Obviously,
the nine LEs of the 9D-HCM are all positive, indicating that
it owns hyperchaotic behaviors.

To test the randomness of the 9D-HCM, we generate its tra-
jectory by setting the number of states as 2000 and initial state
as x(0) = 0.19×1. Fig. 3 plots the distributions of its trajectory
when being projected in various 3-D phase spaces. It is clear
that the outputted trajectory of the 9D-HCM is uniformly dis-
tributed in each 3-D phase space, which demonstrates that the
9D-HCM’s outputs have good randomness.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
nD-HCM using the indicators of LE, correlation dimen-
sion [42], joint entropy [43], and time complexity. For our
proposed nD-HCM, when generating the parameter matrices
A and C in Algorithm 1, all elements of date sequences a
and c are randomly fetched from integer sets {1, 2, . . . , 10}
and {1, 2, . . . , 5}, respectively. To show the superiority of
the proposed method, this section compares it with sev-
eral HD chaotic map generation methods, including Shen’s
method [33], Chen’s method [11], Zhang’s method [44], and
Natiq’s method [45], and several 3-D chaotic maps, including
Saljoughi’s map [27], Filali’s map [28], Lai’s system [29], and
Li’s map [46].

In the comparison experiments, a large number of HD
chaotic maps with different dimensions are required. However,
for some of these competing HD chaotic map generation
methods, the literatures only provide several examples of
HD chaotic maps with certain dimensions. When generat-
ing chaotic maps with different dimensions, these provided
parameters cannot achieve the properties expected in litera-
tures, and thus their values should be adjusted. To obtain a

fair comparison result, the experiments set the parameters in all
the HD chaotic map generation methods following the below
rules.

1) If the parameter values provided in the literatures can
obtain arbitrary dimensional chaotic map with expected
properties, we directly apply these parameter values.

2) If the provided parameter values hardly obtain HD
chaotic maps with expected properties for some dimen-
sions, we adjust their parameters to make sure that the
produced HD chaotic maps can exhibit the properties
reported in the original literature.

3) Under the condition that the produced HD chaotic maps
can show the properties reported in the original litera-
ture, we adjust the parameter values to the same level
as the proposed method in all chaotic map generation
methods.

As a consequence, the parameter values in Shen’s method
are set to a = −0.1 and ε ∈ [1, 10], in Chen’s method are
set to ε ∈ [4, 10] and σ = 0.01, in Zhang’s method are set to
b ∈ (0, 6], and in Natiq’s method are set to β = 5, σ = 1.5π ,
and μ ∈ [1, 10]. When generating an nD chaotic map, the
parameters in these generation methods are randomly fetched
from their respective intervals. For the competing 3-D chaotic
maps, their parameters are set the same as those in the original
literature.

A. Lyapunov Exponent

From Definition 2, a nonlinear system with global bound
shows chaotic behavior if it possesses one positive LE and
it shows hyperchaotic behavior if it possesses more than
one positive LE. Because the LE characterizes the separa-
tion rate of two trajectories of a nonlinear system beginning
from extremely near initial values, the chaos complexity of a
nonlinear system can be indicated by its largest LE (LgtLE)
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TABLE I
LES OF DIFFERENT 3-D CHAOTIC MAPS

(a) (b)

Fig. 4. LEs of 100 nD chaotic maps produced by various methods under
various dimensions n ∈ {4, 5, . . . , 13}. (a) Mean number of positive LEs.
(b) Mean LgtLEs.

and the number of positive LEs, according to the discussions
in [31].

Two sets of experiments are designed to evaluate the
performance of different chaotic maps using LE. The first
set measures the LEs of 3-D chaotic maps. For each chaotic
map generation method, we randomly generate 100 3-D
chaotic maps and calculate the mean number of positive LEs.
The three LEs of different 3-D chaotic maps are listed in
Table I. Because the 3-D chaotic maps generated by Natiq’s
method [45] have different numbers of positive LEs, the mean
number is decimal. Saljoughi’s chaotic map [27] and the
3-D chaotic maps produced by Chen’s method [11], Zhang’s
method [44] and our method can achieve three positive LEs.
Nevertheless, the three LEs of 3-D chaotic maps produced by
the proposed method are all greater than the LEs of other 3-D
chaotic maps.

The second set of experiments tests the LEs of the five HD
chaotic map generation methods under different map dimen-
sions n ∈ {4, 5, . . . , 13}. For each generation method in each
dimension, we randomly generate 100 nD chaotic maps and
calculate the mean numbers of positive LEs and mean LgtLEs.
Fig. 4 shows the LEs of the nD chaotic maps produced by
each method under various dimensions. As shown in Fig. 4(a),
the nD chaotic maps produced by our method and Chen’s
method [11] have n positive LEs, which reach the maxi-
mum number. In contrast, the nD chaotic systems produced
by Shen’s method [33] have �n − 1�/2 positive LEs, and pro-
duced by Zhang’s method [44] and Natiq’s method [45] have
changeable numbers of positive LEs. From Fig. 4(b), we can
see that although our method and Chen’s method [11] produce
nD chaotic maps with the same number of positive LEs, the

TABLE II
CDS OF DIFFERENT 3-D CHAOTIC MAPS

Fig. 5. Mean CDs of nD chaotic maps produced by various methods under
different dimensions n ∈ {4, 5, . . . , 13}.

chaotic maps produced by our proposed method have much
larger LgtLEs than the chaotic maps produced by the existing
methods. This demonstrates that the HCMs produced by our
method have complex dynamic behaviors.

B. Correlation Dimension

The CD is a kind of fractal dimension that tests the space
dimensionality occupied by a chaotic sequence. A nonlinear
system has strange attractors if it has a positive CD and a
larger CD means occupying a larger space dimensionality,
which further implies the higher strangeness of the strange
attractor.

The experiment settings are the same as in the LE experi-
ment. First, the CDs of the three time series generated from
different 3-D chaotic maps are calculated and listed in Table II.
One can see that the 3-D chaotic map produced by our
method owns the biggest CDs. Besides, we test the CDs of
the five chaotic map generation methods under map dimen-
sions n ∈ {4, 5, . . . , 13}. To get a stable result, 100 nD chaotic
maps are randomly produced by each method and the final CD
denotes the mean value of the n CDs for n chaotic sequences.
Fig. 5 depicts the mean CDs of the chaotic maps produced
by each method under different dimensions. One can see that
our method produces HD chaotic maps with the largest mean
CDs. This indicates that our method can produce HD chaotic
maps with higher strange attractors.

C. Joint Entropy

The JE is used to characterize the uncertainty and ran-
domness of a set of signals. Since the state space of an
nD chaotic system has n dimensions, namely, x(i) = {x1(i),
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TABLE III
MAXIMUM JES OF 100 3-D CHAOTIC MAPS PRODUCED BY VARIOUS CHAOTIC MAP

GENERATION METHODS WITH VARIOUS NUMBERS OF INTERVALS I

(a) (b)

Fig. 6. JE results of different chaotic maps. (a) JEs of four 3-D chaotic
maps and the mean JEs of 100 3-D chaotic maps produced by five generation
methods under various number of intervals I ∈ {3, 5, . . . , 27}. (b) Mean JEs
of 100 nD chaotic maps under different map dimensions n ∈ {4, 5, . . . , 13}
by setting the number of intervals I = 3.

x2(i), . . . , xn(i)}T ∈ Rn×1, the system has n signals, namely,
x1, x2, · · · , xn, where xj = {xj(1), xj(2), . . . , xj(i), . . . , }. When
uniformly separating each signal into I intervals, the JE of the
n signals of an nD chaotic system is defined as

JE = −
I∑

k1

I∑

k2

. . .

I∑

kn

P
(
bk1 bk2 . . . bkn

)

log2 P
(
bk1 bk2 . . . bkn

)
(27)

where P(bk1 bk2 . . . bkn) denotes the joint probability of the k1th
state in the first interval, k2th state in the second interval, · · · ,
knth state in the nth interval. Obviously, the JE takes a
positive value, and its theoretical maximum score can be
obtained when the n signals are complete uncertainty, namely,
P(bk1 bk2 . . . bkn) = P(bk1)P(bk2) · · · P(bkn) and P(bk1) =
P(bk2) = · · · = P(bkn) = 1/I. Thus, the maximum JE is
calculated as

JEmax = n log2(I). (28)

Thus, an actual JE satisfies that 0 ≤ JE ≤ n log2(I), and a
higher JE shows better uncertainty of the n signals.

Two groups of experiments are applied to compute the JEs
of the outputted signals generated by various chaotic maps.
The first group fixes the dimension n = 3 and tests the JEs
under the number of intervals I ∈ {3, 5, . . . , 27}. The three
signals of each 3-D chaotic map with length I5 are generated
and their JEs are calculated. For each nD chaotic map genera-
tion method, randomly generate 100 3-D chaotic maps and the
mean value of these 3-D chaotic maps is calculated. Fig. 6(a)
plots the JEs of four 3-D chaotic maps and the mean JEs of

TABLE IV
MAXIMUM JES OF 100 nD CHAOTIC MAPS PRODUCED BY EACH

METHOD UNDER MAP DIMENSIONS n ∈ {4, 5, . . . , 13}
BY SETTING THE NUMBER OF INTERVALS I = 3

the 3-D chaotic maps produced by each generation method.
As shown that the 3-D chaotic map produced by our method
owns the largest mean JEs. Table III lists the maximum JEs of
the 100 3D chaotic maps produced by each generation method
under various numbers of intervals. It is clear that our method
can produce 3-D chaotic maps with the largest JEs, and their
maximum JEs approach to the theoretical maximum ones.

The other group of experiments is performed to analyze the
JEs under various dimensions n ∈ {4, 5, . . . , 13} by setting the
number of intervals I = 3. For each chaotic map generation
method under various dimensions n, we randomly generate
100 nD chaotic maps. Then the n signals with length 3n+1 are
generated by each nD chaotic map and their JE is calculated.
Fig. 6(b) shows the mean JEs of these 100 nD chaotic maps
generated by each method. It can be observed that the nD
chaotic maps produced by our method achieve larger mean
JEs than the nD chaotic maps produced by other methods.
The maximum JEs of the 100 nD chaotic maps are listed in
Table IV. One can see that the maximum JEs of the chaotic
maps generated by our method are also conspicuously greater
than that of the chaotic maps generated by the existing meth-
ods, and are extremely approach to the theoretical maximum
values. This demonstrates that our method can produce HD
chaotic maps with high uncertainty and randomness.

D. Complexity Analysis

The time complexity is an important indicator to evaluate
the ability of an nD chaotic map in practical applications.
The chaotic maps generated by all the competing and our
methods involve the following operations: addition, multipli-
cation, division, modular, and trigonometric function. For our
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TABLE V
NUMBERS OF DIFFERENT OPERATIONS THAT REQUIRED BY DIFFERENT

nD CHAOTIC MAPS IN ONE-TIME ITERATION AND THE ACTUAL TIME

COSTS (SECOND) OF GENERATING CHAOTIC SEQUENCES WITH LENGTH

108 BY EACH nD CHAOTIC MAP USING C PROGRAMMING LANGUAGE

method, the nondiagonal elements of the parameter matrix C
can be any positive integer and we set them as 2 for simplicity.
Since the chaotic systems generated by Shen’s [33] method
are continuous, we should first discretize these systems and
use the fourth-order Runge–Kutta algorithm to discretize the
continuous systems.

Table V lists the numbers of different operations that are
required by different nD chaotic maps in one-time iteration.
As can be seen, Chen’s [11] and our methods have the O(n2)

degree of basic operations (e.g., addition, multiplication, divi-
sion, and modular), while Shen’s [33], Zhang’s [44], and
Natiq’s [45] methods have the O(n) degree of basic opera-
tions. However, Shen’s [33], Zhang’s [44], and Natiq’s [45]
methods have O(n) degree of time-consuming trigonometric
operation, while Chen’s [11] and our methods do not have.
Table V also lists the actual time costs of generating chaotic
sequences with length 108 by each nD chaotic map using C
programming language. As shown that the time costs of all the
chaotic maps have the same order of magnitude. As a result,
the nD chaotic maps generated by our method have the same
magnitude of time costs with that generated by state-of-the-art
methods. However, they can show much better performance
indicators.

VI. SECURE COMMUNICATION

The differential chaos shift keying (DCSK) is a typical kind
of chaos-based secure communication scheme, and it can well
balance the tradeoff between the bit error ratio (BER) and
implementation cost [47]. When a chaotic system is used to
transmit data, the distribution of its trajectory can signifi-
cantly affect the performance of the communication system
to resist channel noise. Because our nD-HCMs can pro-
duce more uniformly distributed chaotic outputs than existing
chaotic maps, they can show better performance in resisting
channel noise. This section develops a new DCSK to eval-
uate the performance of various chaotic maps in the secure
communication application.

Fig. 7. Transmitted signal in the proposed DCSK.

Fig. 8. Transmitter of the proposed DCSK.

A. Communication Scheme

The proposed DCSK includes two components: 1) transmit-
ter and 2) receiver. The following contents detail the structures
of the transmitter and receiver.

1) Transmitter: The transmitted signal can be generated by
coding the transmitted data with the chaotic sequences and its
structure is shown in Fig. 7. Each frame in the signal includes
a reference signal and an information signal. For the kth frame,
the reference signal Xk is an M-length chaotic sequence, where
Xk = {xi|2kM < i ≤ (2k + 1)M} and M denotes a spreading
factor. The information signal is the sum of two parts, where
the first part is the multiplication of Xk with data bit b2k, and
the other part is the multiplication of the modified reference
signal Xk

∗ with data bit b2k+1. The modified reference signal
Xk

∗ is generated from the reference signal Xk, where its former
M/2 elements are the elements in the odd positions of Xk, and
its latter M/2 elements are the elements in the even positions
of Xk. The modified reference signal Xk

∗ in the k-frame can
be written as

Xi
∗ =

{
X2(i−kM)−1, 2kM < i ≤ 2kM + M/2
X2(i−kM−M/2), 2kM + M/2 < i ≤ (2k + 1)M.

(29)

Fig. 8 plots the block diagram of the transmitter structure
in the proposed DCSK. When generating the kth frame of the
transmitted signal, a chaotic sequence Xk with length M is
produced by a chaotic map. After the time delay block, the
system has two branches in the second time slot of the kth
frame. The first data bit b2k is modulated by the delayed ref-
erence signal Xi−M in the first branch, and the second data bit
b2k+1 is modulated with the modified reference signal X∗

i−M ,
which is generated by the modifier component. Then, the kth
frame in the transmitted signal si can be expressed by

si =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi, 2kM < i ≤ (2k + 1)M(
b2kxi−M + b2k+1x2(i−kM−M)−1

)
/
√

2
(2k + 1)M < i ≤ 2kM + 3/2M(

b2kxi−M + b2k+1x2(i−kM−3/2M)

)
/
√

2
2kM + 3/2M < i ≤ 2(k + 1)M.
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Fig. 9. Receiver of the proposed DCSK.

2) Receiver: When receiving the transmitted signal, the
receiver demodulates the signal and its structure is depicted
in Fig. 9. Due to the transmission noise, the received signal ri

is different from the transmitted signal si and it undergoes a
delay block unit and modifier block unit. The modifier com-
ponent is to change the signal ri into signal ri

∗ by performing
the same operation as in (29). The two branches in the receiver
can concurrently demodulate the two data bits in each frame.

To exact the data bits, the received signal ri is multiplied
with its delay versions ri−M and ri−M

∗ on the two branches.
Thus, the correlators for the two bits b2k and b2k+1 are

Z2k =
2(k+1)M∑

i=(2k+1)M+1

riri−M (30)

Z2k+1 =
2(k+1)M∑

i=(2k+1)M+1

rir
∗
i−M (31)

respectively. Because of the transmission noise, the received
signal can be presented as ri = xi + ξi, where ξi denotes the
added noise. Then, the correlators for the data bits b2k and
b2k+1 can be calculated as

Z2k =
√

2

2

2(k+1)M∑

i=(2k+1)M+1

b2kx2
i−M + � (32)

Z2k+1 =
√

2

2

2(k+1)M∑

i=(2k+1)M+1

b2k+1x2
i−M + � (33)

respectively, where � and � are the noise parts. The detailed
representations of � and � can be referred to the Appendix.
Because the energy of the noise is far less than the energy of
the information bits, the signs of Z2k and Z2k+1 are determined
by the signs of the data bits b2k and b2k+1, respectively. Thus,
regardless of the influences of the noise, the data bits can be
demodulated according to the rule as follows:

bn =
{

1, for Zj > 0
−1, for Zj < 0.

B. Performance Evaluation

In this section, we evaluate the ability of the proposed
DCSK in resisting transmission noise when using different
chaotic maps as the chaotic generator. To provide a clear
comparison, all the control parameters for the competing 3-D
chaotic maps are set as the same settings as them in Section V.
Because the addition white Gaussian noise (AWGN) is one of
the most common occurrence noises in different transmission
channels, we test the BERs of the proposed DCSK in the
AWGN channel against various levels of noise and various
spread factors M.

(a) (b)

Fig. 10. BERs of the proposed DCSK using different 3-D chaotic maps
when (a) transmission noise levels SNR ∈ {1, 2, . . . , 23} with spread factor
M = 30, and (b) spread factors M ∈ {10, 20, . . . , 90} with transmission noise
level SNR = 13 dB.

Two sets of experiments are designed to evaluate the BERs
of the proposed DCSK using various 3-D chaotic maps as the
chaotic generator. The first set measures the BERs under var-
ious noise levels when setting the spread factor M = 30. For
all the chaotic maps, we first randomly generate a 100 000-
length bit binary as the transmitted data, and then generate
a chaotic sequence with a randomly selected parameter set-
ting, and finally calculate the BERs between the recovered
bits and the original data bits under different signal-to-noise-
ratios (SNRs) SNR ∈ {1, 2, . . . , 23}. To provide a stable result,
100 experiments are performed and the mean BERs are calcu-
lated and plotted in Fig. 10(a). The results display that when
using the chaotic maps produced by our generation method,
the proposed DCSK obtains smaller BERs than using other
chaotic maps under various levels of AWGN.

The second set of experiments tests the BERs under differ-
ent spread factors M when fixing the noise level as SNR = 13
dB. The experiments for each chaotic map are set the same
as in the first set of experiments and the mean BERs of
100 experiments are calculated against spread factors M ∈
{10, 20, . . . , 90}. Fig. 10(b) depicts the mean BERs of the
proposed DCSK applying various chaotic maps as the chaotic
generator. As can be seen, with different spread factors, the
DCSK using the chaotic maps generated by our method also
obtain much smaller BERs than using other chaotic maps.
These indicate that when being applied to secure communi-
cation, the chaotic maps produced by our method can show
good performance in resisting transmission noise, and thus are
suitable for this application.

VII. CONCLUSION

In this article, we proposed an n-dimensional hyperchaotic
map (nD-HCM) generation method that can generate HD
chaotic maps with expected dynamics and robust hyperchaotic
behaviors. First, a general form of the proposed nD-HCM is
constructed using n parametric polynomials. Then, the entity
and coefficient parameter matrices of the proposed nD-HCM
are configured according to the Gershgorin-type theorem.
Theoretical analysis indicates that the constructed nD-HCM
has n positive LEs and thus can achieve robust hyperchaotic
behaviors. Two examples are generated and their properties
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are analyzed to manifest the effectiveness of the proposed
method. Performance evaluations display that the HD chaotic
maps generated by the proposed method can obtain better
performance than many representative HD chaotic maps. To
exhibit the practical application of the proposed nD-HCMs,
we applied them to the secure communication. Experimental
results show that the secure communication scheme using the
nD-HCMs generated by our method has significantly better
performance than it using other chaotic maps. Since the newly
constructed HCMs have high-performance indicators, they can
be applied to many chaos-based engineering applications. Our
future work will study the application of these maps in image
security application.

APPENDIX

The detailed descriptions of (32) and (33) are as shown
in (34) and (35), as shown at the top of the page, respectively.
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