
7066 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 11, NOVEMBER 2023
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Abstract— Image steganographic methods based on encoder-
decoder model with end-to-end network architecture recently
have been proposed. However, in steganographic applications,
the feature map (called stego matrix) generated by the encoder
needs to be rounded as a real stego image for the receiver. The
loss of precision by rounding stego matrix leads to the decline
in the accuracy of extracted secret messages. The challenge
of using end-to-end network to preserve robustness against
rounding operation is that it is non-differentiable. In this paper,
we propose an anti-rounding image steganography method with
separable fine-tuning network architecture which includes the
joint training stage (JT-stage) and the separable fine-tuning stage
(SF-stage). Firstly, in JT-stage, an embedded generator and a
stego matrix extractor are jointly learned without rounding oper-
ation. Utilizing concatenation in embedded generator can realis-
tically fuse cover image and secret messages. And the multi-scale
fusion block and residual dense block in stego matrix extractor
can make secret messages more correctly decoded. Moreover,
the discriminator is constructed by generative adversarial nets
(GAN) in JT-stage to effectively improve the authenticity and
steganalysis security. Then, in SF-stage, the embedded generator
is frozen, and the stego matrix is obtained and rounded as a stego
image. A stego image extractor is constructed by fine-tuning the
layers of the stego matrix extractor to improve the accuracy
of message extraction. As the loss will not backpropagate in
the embedded generator, the non-differentiability of rounding
operation can be offset. Experiments show that the proposed
separation fine-tuning network is robust to rounding operation,
and effectively reduces the degradation of the image quality and
steganalysis performance.
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I. INTRODUCTION

IMAGE steganography is an art of covert communication
to reveal the suspicious trace for the existence of secret

messages in stego images. It plays an important role in infor-
mation security and data communication, which is of great
significance to ensure data security. Steganography algorithms
improve the statistical security against steganalysis methods.
In order to resist the high dimensional statistical character-
ization, the traditional content-adaptive steganography meth-
ods [1], [2], [3], [4], [5], [6], [7] are proposed to embed secret
messages by slightly modifying the high complex textures,
so as to improve the concealment of steganography. The
steganography distortion cost function is designed to measure
the embedding cost of each pixel, so as to find the appro-
priate embedding position and minimize the steganography
distortion.

With the rapid development of deep learning (DL)
technology, many DL-based steganalysis methods have been
proposed [8], [9], [10], and the traditional content-adaptive
steganography methods are gradually difficult to resist detec-
tions. Because of the strong ability of feature learning in DL,
inspiredly, DL-based steganography methods [11], [12], [13],
[14], [15], [16] are proposed rather than manually designed
embedding. The embedding location and the embedding mode
can be learned independently through the network.

There are three typical categories of DL-based image
steganography [17]. The first one is the cover image acqui-
sition technology based on generative adversarial network
(GAN) [18], [19] and adversarial samples [20]. The second
one is based on learning the steganographic distortion design.
In [21] and [22], steganographic distortion costs are designed
based on GAN. In adversarial training, the embedding prob-
ability of each pixel is learned, and then it is transformed
into a modification map. In this way, the stego image is
generated by adding a cover image with the modification map.
However, it takes time for the network to learn the embedding
probability. In [23], Tang et al. proposed the steganographic
distortion cost based on adversarial examples to determine
the modification direction. To mislead the steganalyzer, stego
images with the features of adversarial examples are generated.

The third category is based on encoder-decoder model
with end-to-end network, which is the technology we focus
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Fig. 1. The general training procedure for image steganography based on
one-stage encoder-decoder model.

on in this paper. The encoder-decoder models are widely
used to hide information in images. As a branch of data
hiding, digital watermarking is the technology to robustly
encode secret messages. In [24], in order to improve the
robustness, HiDDeN (Hiding Data with Deep Networks) is
proposed to add the noise layer in training to simulate the
noise attack. In [25], ABDH (Attention Based Data Hiding)
proposes two generative models and two discriminative models
for both images and secret payload. In [26], a two-stage blind
watermarking network is proposed to train the decoder with
arbitrary noise to improve the robustness of the watermark.
Different from digital watermarking, steganography is the
technology for secret communication. The encoder-decoder-
based methods of stego images generation are included hiding
texts within images (bit-level information) and hiding images
within images (image-level information). In texts hiding meth-
ods, the secret messages are encoded to meet with the input
of networks. In [27], the adversarial training technique named
HayesGAN is proposed for the discriminative task of learning
a steganographic algorithm. In [28], Zhang et al. proposed
the SteganoGAN (Steganography with Generative Adversarial
Networks) to optimize the perceptual quality, and it achieves
great embedding payloads. In [29], CHAT-GAN (Channel
Attention Mechanisms based on GAN) proposes a channel
attention module to learn the channel interdependencies, which
improves the accuracy of message extraction. In images hiding
methods, the secret image is preprocessed to be embedded
into cover image by the encoder, and reconstructed from
the stego image by the decoder. In [30], the secret image
can be realistically restore by utilized the upsampling and
downsampling with connection operation based on U-Net.
ISGAN (Invisible Steganography via Generative Adversarial
Networks) [31] embeds the secret image in the Y channel and
proposes a SSIM-based mixed loss function to improve the
quality of the restored secret image. In a word, steganography
based on encoder-decoder model can embed and extract the
secret messages without the prior knowledge of images when
owning the encoder network and decoder network.

The existing steganographic one-stage encoder-decoder net-
works [25], [27], [28], [29] do not describe in detail the impact
of precision loss caused by the rounding operation on the
accuracy performance of steganography. In these networks,
the generator, the extractor, and the discriminator are jointly
trained, as shown in Fig. 1. When the samples are tested in
the trained model, the general testing procedure for image

Fig. 2. The general testing procedure for image steganography based on
one-stage encoder-decoder model.

steganography based on one-stage encoder-decoder model is
shown in Fig. 2. The applicable steps are listed as followed:

1) The sender will input the cover image and message into
the trained generator, and the feature map stego matrix
will be outputted.

2) The feature map stego matrix will be rounded and saved
as a stego image.

3) The stego image will be sent to the receiver.
4) The receiver will input the stego image into the trained

extractor, and the extracted message can be obtained.
In the encoder-decoder model, the output feature map gen-
erated by the CNN-based encoder is usually stored as the
floating-point number, which we call it stego matrix. Floating-
point arithmetic provides a larger range of values and higher
precision, which are favored in CNN weights to handle real
numbers [32]. However, in steganographic applications, a real
stego image is needed for the receiver. It can be seen that the
significant difference is the input of the extractor in different
procedures. The input of the extractor in the training procedure
is the stego matrix, and the input of the trained extractor
in the testing procedure is the stego image. It means that
the generated stego matrix must be saved as a stego image
by rounding operation. When the stego image is input into
the trained decoder of the receiver, the loss of precision will
lead to a sharp decline in the accuracy of message extraction.
It requires the joint training of the encoder and the decoder
can resist the loss of precision. Nevertheless, the rounding
operation is non-differentiable for backpropagation. It cannot
simulate the saving process of stego image by directly round-
ing the stego matrix when training the encoder and decoder.
In this way, the gradient will not be obtained, so the parameters
of the network model cannot be updated. We believe that a
careful and delicate design of the network architecture to offset
the non-differentiability of rounding operation is a non-trivial
work.

Some existing robust watermarking methods deal with
the precision loss caused by the non-differentiability prob-
lem, mainly through derivative approximation methods.
In [24], the non-differentiability problem of quantization in
JPEG compression is solved by two differentiable approx-
imations: JPEG-Mask and JPEG-Drop, which zeros the
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high-frequency coefficients. In the field of image compres-
sion, the non-differentiability of rounding (the rounding is
discontinuous and its derivative is zero or infinite anywhere)
has attracted attention. The most common methods are ran-
domized approximation [33], [34] and smooth approxima-
tion [35]. However, these methods add global differentiable
functions to compensate for the precision loss caused by
rounding. In real rounding applications, the accuracy of the
extractor in steganography can still be improved. Therefore,
we propose a two-stage separable training method to solve
the non-differentiable problem and precision loss caused by
the real rounding operation.

In this paper, a separable fine-tuned network (SFTN) archi-
tecture is proposed which is robust to rounding operation in
steganographic applications. The proposed SFTN architecture
includes the joint training stage (JT-stage) and the separa-
ble fine-tuning stage (SF-stage). In JT-stage, a stego matrix
extractor is trained to correctly extract secret messages while
an embedded generator is jointly trained to ensure the image
quality. A discriminator is constructed by GAN to effectively
improve the authenticity and steganalysis security of stego
image. In SF-stage, all layers of the embedded generator are
copied and kept frozen during training. The stego matrix is
rounded as a stego image. By retraining the stego matrix
extractor and fine tuning the layers, a stego image extractor
is constructed to increase the accuracy of message extraction.
In two extractors, the multi-scale fusion block and residual
dense block are utilized to fuse cover image and secret
messages. The main contributions of this paper are as follows:

1) The proposed SFTN architecture can offset the
non-differentiability of rounding operation.

2) The concatenations can realistically fuse cover image
and secret messages. In addition, the multi-scale fusion
block and residual dense block are utilized to improve
the accuracy of message extraction.

3) Based on GAN, the discriminator is constructed to
evaluate the authenticity of stego in the joint training
stage, so as to effectively improve the quality of stego
image and the security of steganalysis.

The remainder of this paper is organized as follows.
In Section II, we discuss the challenges of precision loss and
rounding operation in the existing steganographic one-stage
encoder-decoder networks. In Section III, we introduce the
proposed anti-rounding image steganography with separable
fine-tuned network. It includes the discussion about the overall
model architecture, and the details about the JT-stage and the
SF-stage, as well as the design of the loss functions. Section IV
analyzes the impact of the proposed separable fine-tuned net-
work. Andthe experimental verifications are discussed. Finally,
the conclusion is presented in Section V.

II. NON-DERIVABLE ROUNDING IN ONE-STAGE
ENCODER-DECODER MODEL

In Fig. 1, the general procedure for image steganography
based on one-stage encoder-decoder model is presented. There
are general three components including the generator G with
parameters θG , extractor E with parameters θE , and the

discriminator D with parameters θD . The CNN-based embed-
ding generator G is utilized to fuse the cover image IC and
secret messages M0, and the floating-point feature map called
stego matrix X is output. Floating-point arithmetic provides a
larger range of values and higher precision, which are favored
in CNN weights to handle real numbers [32]. The embedding
process and extraction process of existing one-stage encoder-
decoder steganographic network architecture [24], [28], [29]
are presented as:

X = G(M0, IC ; θG),

M1 = E(X; θE ) (1)

where M1 is the extracted messages. The discriminator D is
utilized to determine the authenticity of the stego matrix X .
Through joint training, a high accuracy of message extraction
can be obtained by extracting from the floating-point stego
matrix X .

In steganographic applications, secret messages are imper-
ceptibly embedded into cover image, and then the stego image
with high visual quality is transmitted through the public
channel. Using the encoder-decoder model, it is inevitable to
transfer the floating-point stego matrix X into the stego image
IS by using the rounding operation. The embedding process
and extraction process of steganographic practical applications
are presented as:

X = G(M0, IC ; θG),

IS = ⌊X⌉,

M1 = E(IS; θE ) (2)

where ⌊·⌉ is the rounding operation. After receiving the stego
image IS , the extractor E is utilized to extract the secret
messages M1. The precision loss between the stego matrix X
and the stego image IS brings the challenge of the robustness
in the trained extractor. Thus, the precision loss caused by
the rounding operation lead to a decline of the accuracy of
message extraction.

In order to fully consider the rounding operation, the
joint training of the generator and extractor need to resist
the precision loss. However, the rounding operation is non-
derivable [36]. The stego image IS has derivative 0 nearly
everywhere, which is not compatible with the gradient-based
methods. Assume a joint training of encoder-decoder model by
directly rounding the stego matrix X to stego image IS , shown
in Fig. 3. Denote the differences between message M0 and the
extracted message M1 as the message loss Lm . The differences
between cover image IC and the stego matrix X are denoted
as the image quality loss Lq and adversarial loss Ld . The
training objective is to minimize:

L = λm Lm + λq Lq + λd Ld (3)

where L is the overall loss, and λm , λq , λd control the relative
weight of each item. By jointly training three components,
a set of parameters is searched to minimize the overall loss
L , so as to construct the generator which ensures the visual
quality of stego and security performance. The gradients of
G are utilized to optimize the parameters of the generator G.
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Fig. 3. The joint training of encoder-decoder model by directly rounding the stego matrix X to stego image IS . The failure of the generator G parameter
optimization is caused by the rounding operation.

Fig. 4. The model architecture of the proposed anti-rounding image steganography with separable fine-tuned network.

The gradient of generator G is denoted as:

△θG =
∂Lm

∂G
+

∂Lq

∂G
+

∂Ld

∂G

=
∂Lm

∂ IS
·
∂ IS

∂ X
·
∂ X
∂G

+
∂Lq

∂ X
·
∂ X
∂G

+
∂Ld

∂ X
·
∂ X
∂G

(4)

Since the rounding operation is non-differentiable, ∂ IS
∂ X =

∂⌊X⌉

∂ X
does not exist. The gradient of G will not be backpropagated
to update the parameters of the generator G. It leads to the
failure of the training of the generator G.

When focusing on extractor E in the one-stage encoder-
decoder network, the gradient of extractor E is denoted as:

△θE =
∂Lm

∂ E
(5)

Since △θE does not contain ∂ IS
∂ X , the rounding operation does

not affect the optimization of the extractor E . However, in the
one-stage joint training, due to the failure of the parameter
optimization of the generator G, the better embedding method
will no longer be learned. The optimization of the extractor

E is worthless. In a word, the joint training of one-stage
encoder-decoder model by directly rounding the stego matrix
X to stego image IS shown in Fig. 3 is unreasonable. It is a
non-trivial work to design the network architecture to offset the
non-differentiability of rounding operation and the precision
loss.

III. PROPOSED METHOD

To resist the rounding operation and the precision loss, the
anti-rounding image steganography with separable fine-tuned
network (SFTN) is proposed. The SFTN architecture is pre-
sented in Fig. 4, including the joint training stage (JT-stage)
and the separable fine-tuning stage (SF-stage). Without round-
ing the stego matrix X , the main purpose of JT-stage is to
ensure the end-to-end training is differentiable. In SF-stage,
all layers of the embedded generator G are copied and kept
frozen during training. The stego matrix X is generated from
the frozen embedded generator G and rounded as a stego
image IS . By fine tuning the layers of the trained stego matrix
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Fig. 5. The model of the embedding generator G using concatenations
between multi-layer CNN cover image features and message.

extractor EM in JS-stage, the stego image extractor E I needs
to be retrained to increase the accuracy of message extraction.
The main purpose of SF-stage is to prevent the losses from
propagating back to the embedding generator. By separating
the training of the stego image extractor E I and embedded
generator G, the non-differentiability of the rounding operation
can be offset. The separable training can further improve
the robustness of the stego image extractor E I against the
precision loss so that enhance the message extraction ability
from stego image IS .

A. Model Architecture

Three components constitute the whole model in JT-stage,
including the embedding generator G with parameters θG , the
stego matrix extractor extractor EM with parameters θEM , and
the Discriminator D with parameters θD .

1) Embedding Generator: The model of the embedding
generator G is presented in Fig. 5. As input with C channels
and H × W size, the cover image IC ∈ PC×H×W with is
denoted, where P ∈ {0, 1, . . . , 255} is the pixel values in
spatial domain. The message M0 ∈ {0, 1}

C×H×W is also input
in G, which is a randomized binary stream with the same size
as the cover image IC . The embedding process combining
cover image IC and message M0 in the embedding generator
G can be denoted as:

X = G(M0, IC ; θG) (6)

where the output X is the stego matrix with C × H × W size.
A basic CNN component called BasicConV is constructed
by a convolution layer (Conv3 × 3), a Batch Normalization
layer (BatchNorm), and the Leaky Rectified Linear Unit
(LeakyReLU). The Conv3 × 3 is with a kernel size of 3 × 3,
a padding of 1, and a stride of 1. The BatchNorm provides
the predictive and stable behavior of gradients for faster
training [37]. The LeakyReLU with a negative slope of 0.1 is
the activation function that assigns a non-zero slope.

Utilizing multiple CNNs can capture diverse information
in image [38]. The channel numbers of the cover image
can be enlarged by using a CNN with multiple convolution
filters, so that richer embeddable features can be captured.
Compared with a single CNN, concatenation of multi-layer
CNN feature maps integrates the embeddable position from
different-layer CNNs together to obtain the fusion between
IC and M0 with a high visual quality. In embedding generator

G, we design the embedding process to obtain the stego matrix
X by using concatenation between multi-layer CNN cover
image features and message. Referring to the concatenation
in [29], the channel attention module is not adopted in the
proposed method, but deepens the model of extractors to
improve the accuracy of message extraction. The embedding
generator G consists of three BasicConV with 32 filters and a
Conv3 × 3 with C filters. Firstly, the cover image IC is input
in the first BasicConV to capture the first residual features
I 1
C in 32 channels. After that, the input is constructed by the

concatenation with the current residual features, all preceding
residual features, and the message M0. For example, the
concatenation (I 1

C , M0) with (32+C) channels is input in the
second BasicConV to capture the second residual features I 2

C .
The concatenation (I 1

C , M0) with (32+C) channels is input in
the second BasicConV to capture the second residual features
I 2
C . Similarly, the concatenation (I 1

C , I 2
C , M0) with (64 + C)

channels is input in the third BasicConV to capture the third
residual features I 3

C . Then, the concatenation (I 1
C , I 2

C , I 3
C , M0)

with (96 + C) channels is input in the Conv3 × 3 capture the
final residual features I 4

C . The final residual features I 4
C can be

regarded as the modification map. The modification map is the
result learned by the multi-layer BasicConV. The modification
map is the embedding noise that determines the modification
direction and the magnitude of pixel values. In this way, the
stego matrix X ∈ PC×H×W can be obtained by adding I 4

C to
the cover image IC . Through the concatenation and residual
learning, the embedding generator G effectively fuses the
message M0 and cover image IC , and the modification of the
cover image can be reduced.

2) Stego Matrix Extractor: The model of the stego matrix
extractor EM is presented in Fig. 6. The output stego matrix
X from the embedding generator G is usually stored as the
floating-point number. It is directly input in the stego matrix
extractor EM . The extraction process can be denoted as:

M1 = EM (X; θEM ) (7)

where M1 is the extracted message. Two blocks are utilized
to fully capture the features of stego matrix X to generate the
extracted message M1:

1) Multi-scale fusion block (MFB): Using different padding
standards on different spatial scales, the integrated
features are obtained by fusing different convolution
features [39]. The preceding feature map is input in
three convolution layers with padding of 1, 2, and 3,
respectively. The multi-scale features are concatenated,
and then the integrated features are processed in a
BasicConV (shown in Fig. 5) to obtain more detailed
spatial context information.

2) Residual dense block (RDB): The RDB consists dense
connected layers and local feature fusion [40]. It inte-
grates the residual block and the dense block. The
contiguous memory (CM) mechanism is constructed
by utilizing all layers with local dense connections.
Each convolution layer in RDB passes on the retained
extraction information to all subsequent layers. The local
feature fusion concatenated the current residual dense
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Fig. 6. The model of the stego matrix extractor EM and stego image extractor E I using MFB and RDB with layers concatenation.

layer with all preceding layers, and then input in a
convolution layer with a kernel size 1 × 1 to extract
local dense features.

Firstly, the BasicConV is used to enlarge the number of
channels of the stego matrix to capture richer modification
features. Then, an MFB is used to make full use of hierarchical
complementary features to obtain the embedding position
information. The hierarchical complementary features is input
in an RDB to further learn the local modification features.
The embedding position and the direction of pixel modification
can be accurately obtained. The deep modification features are
captured through two BasicConV and a convolution layer. The
precision of learning is increased by concatenating the feature
maps using the MFB and the RDB with the deep modification
features learned by BasicConV. Finally, the deep modification
features are normalized to the range from 0 to 1 by using
Sigmoid as activation, which are regarded as the extracted
message M1.

3) Discriminator: The discriminator is constructed by gen-
erative adversarial nets (GAN) in JT-stage. The discriminator
is used to classify the authenticity of the stego matrix to effec-
tively improve the authenticity and steganalysis security [41].
The key to image steganalysis is to judge the existence of
weak image steganographic signals. It is critical to extract
effective steganographic signal features in digital image ste-
ganalysis. In the proposed method, the discriminator is similar
to steganalysis to explore whether secret messages are hidden
in the generated stego matrix. Therefore, the discriminator
needs to capture the steganographic noise residual effectively.
Generally, by utilizing simple designed multi-layer CNN and
fully-connected layers, the ability to extract the steganographic
features is limited. Therefore, we choose XuNet [42] which
is a specific steganalysis network as the discriminator. XuNet
employs the absolute value layer and hyperbolic tangent at
the early stages of the networks, batch normalization, and
1 × 1 convolutions to reduce the strength of the model, which
provides better detection.

4) Stego Image Extractor: Through the training of the
JT-stage, the embedded generator is obtained which ensures

the minimal differences of cover image IC and stego matrix
X . In SF-stage, the central issue is further training of extraction
ability. All layers and parameters of the embedded generator
G are copied and kept frozen during training. Using the fixed
embedded generator G, the stego matrix X is generated, and
then it is rounded as a stego image IS . The stego image
extractor E I keeps the same model as the stego matrix
extractor EM . The extraction process of stego image extractor
E I is denoted as:

M2 = E I (IS; θE I ) (8)

By fixing the embedded generator G, the message loss Lm2
only propagates back only through the stego image extractor
E I . So the parameter θE I of the stego image extractor E I can
be optimized. In summary, the non-differentiability of round-
ing operation can be offset by using the proposed separable
fine-tuned network. And the decline of the message extraction
accuracy caused by precision loss can be compensated.

B. Loss Function

In JT-stage, the discriminator D is optimized alternately
with the embedding generator G and stego matrix extractor
EM . The discriminator D aims to classify the cover image
IC and the stego matrix X . Thus, the difference between the
prediction scores of IC and the prediction scores of X can
be used to update the discriminator D. We use XuNet as the
steganalyzer to predict IC and X . The details of discriminator
D refer to [29]. The adversary loss Ld is denoted as:

Ld = |D(IC ; θD) − D(X; θD)|. (9)

By jointly training, the embedding generator G ensures slight
differences between IC and X . So that the stego image IS
generated by rounding X can own a better objective visual
quality. Thus, the image quality loss Lq is calculated by mean
square error (MSE), defined as:

Lq = M SE(IC , X)

=
1

C H W

C H W∑
j=1

(ic j − x j )
2 (10)
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where ic j and x j are the pixel value elements of the cover
image IC and the stego matrix X , respectively. After the
stego matrix X is input in the stego matrix extractor EM ,
the floating-point extracted messages M1 in range of [0, 1] is
obtained. We hope the stego matrix extractor EM is optimized
to minimize the distance between the extracted messages
M1 and the original message M . The message loss Lm1 is
calculated by the binary cross entropy (BCE) loss, denoted
as:

Lm1 = BC E(M, M1)

=
1

C H W

C H W∑
j=1

−m j log(m1 j ) − (1 − m j ) log(1 − m1 j )

(11)

where m j and m1 j are the 0 and 1 elements of the original
messages M and the extracted messages M1, respectively.
Thus, the training objective of the JT-stage is to minimize
the overall loss L J T , denoted as:

(θD, θG , θES ) = arg max
θD,θG ,θES

L J T

= arg max
θD,θG ,θES

(λd Ld + λq Lq + λm1Lm1) (12)

where the λd , λq , and λm1 are the hyperparameters to control
the relative weight of each item.

In SF-stage, the layers of the discriminator D and the
embedding generator G are frozen. The stego image extractor
E I is optimized to minimize the distance between the extracted
messages M2 and the original message M . The overall loss
L ST is constructed only by the message loss Lm2, which is
calculated by BCE loss as well, denoted as:

L ST = Lm2 = BC E(M, M2)

=
1

C H W

C H W∑
j=1

−m j log(m2 j )−(1−m j ) log(1−m2 j )

(13)

where m j and m2 j are the 0 and 1 elements of the original
messages M and the extracted messages M2, respectively.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setting

The experiments are conducted on the BossBase-1.01 image
database [43]. To enrich the database, all images in
BossBase-1.01 are compressed with quality factors (QF)
50, 70, 90. Then, the spatial pixel values are saved as
the lossless PNG images to construct 3 cover databases
(called ‘QF50’, ‘QF70’, and ‘QF90’ in the following) con-
taining 10000 images, respectively. In each cover database,
9000 images are used for training while 1000 images are
utilized for testing. The proposed network models are imple-
mented by PyTorch and executed on NVIDIA GeForce
RTX 2080 Ti. All images are gray-scale of size C × H ×W =

1 × 512 × 512. In order to remain good image quality, the
embedding rate in the proposed method is kept at 1 bpp.
The length of message M0 is also of size C × H × W =

1 × 512 × 512, which is randomly generated following the
Bernoulli distribution with a 0.5 probability. A better trade-off
between image quality and the accuracy of message extraction
in JT-stage can be obtain by setting the weight factors λd = 1,
λq = 1, and λm1 = 100. The 3 components in JT-stage and the
stego image extractor E I are optimized by the Adam [44] opti-
mizer with default hyperparameters. The learning rate decay
process is utilized in the training of embedding generator
G and 2 extractors. The initial learning rate is 10−3 for G,
EM , and E I , which is decayed by 0.1 every 10 epochs. The
learning rate for the discriminator is 10−4. The 3 components
in JT-stage are trained for 10 epochs with a batch of size 8.
And the stego image extractor E I in SF-stage is trained for
40 epoches with a batch of size 8.

The accuracy is denoted as Nacc
C×H×W , where Nacc denotes

the number of the corrected extracted messages. The secure
performances are measured by the steganalyzers using the
ensemble classifier for training and testing to obtain the
average classification error rate. The steganalysis methods
used to evaluate statistical security are the SPAM (Subtractive
Pixel Adjacency Matrix) [45] and SRNet [46]. To further
evaluate the visual quality of stego images, two objective
visual quality measures are employed, including the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM).
PSNR measures the modification between the cover image and
the stego image. SSIM measures the luminance, contrast, and
structure between 2 images. A high PSNR and a high SSIM
mean better imperceptivity, and the stego image is perceived
more similar to the cover image.

B. Ablation Study

1) Impact of Rounding Operation: As mentioned in
Section II, the precision loss brought by rounding the stego
matrix X to the stego image IS leads to the decline of
the accuracy of message extraction. Firstly, we focus on
the JT-stage to verify whether the accuracy performances
of message extraction without rounding (inputting the stego
matrix X ) and that with rounding (inputting the stego image
IS) are different, so as to illustrate the robust challenge
against the rounding operation of the trained extractor. The
training performances of JT-stage in 3 different databases are
shown in Fig. 7. In Fig. 7(a), starting from epoch 1, the
accuracy of message extraction can reach more than 98%
in 3 databases. And the accuracy plots are converged from
epoch 5, which are greater than 99.3%. In Fig. 7(b) and
Fig. 7(c), on the premise of maintaining high accuracy, PSNR
and SSIM are gradually improved from epoch 1. It means that
taking long training time, the accuracy performances and the
visual qualities can be effectively increased in JT-stage. It also
verifies the feasibility of the encoder-decoder steganographic
network architecture [24], [28], [29] in the training.

When testing the trained models in JT-stage, it can be seen
that the accuracy performances are decreased to 90% to 95%
even without rounding operation in Fig. 8. Moreover, when
the stego matrix X generated by the embedding generator G
is rounding as the stego image IS , and then the IS are input into
the trained stego matrix extractor EM , the accuracy decreases
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Fig. 7. The training performances of JT-stage in 3 different databases. (a) Accuracy of message extraction. (b) PSNR. (c) SSIM.

Fig. 8. The accuracy performances of message extraction in JT-stage without rounding and with rounding. Test in (a) QF50, (b) QF70, (c) QF90.

significantly. It shows that the robustness of the stego matrix
extractor EM to offset the precision loss needs to be improved.
In addition, without rounding, epoch 2 and epoch 8 can
achieve high 95% accuracy. However, the decline of accuracy
in epoch 8 is significant after rounding. The red line in Fig. 8
represents the differences between the accuracy with rounding
and the accuracy without rounding. With the increment of
training, the differences are increasing, which shows that the
longer-time training in JT-stage often makes the stego matrix
extractor EM more dependent on the precision. Thus, the
accuracy performances with rounding are decreased greatly
in longer-time trained models. Therefore, although the higher
accuracy can be obtained using the stego matrix X in the stego
matrix extractor EM in JT-stage, the overfitting unfortunately
reduces the robustness of the stego matrix extractor EM against
rounding operation. Experimentally, in the later SF-stage train-
ing, we fixed the embedding generator G and training stego
image extractor E I with better anti-rounding ability in shorter-
time trained models.

2) Impact of Different Structure: As shown in Fig. 5 and
Fig. 6, different structures are designed between the generator
(encoder) and the extractor (decoder). For some tasks such
as image generation and image compression, the decoder is
a reverse component for the encoder to assist the training
of encoder. Generally, the parameters of the decoder are the
inverse function for the parameters of the encoder. In this way,
the structures of encoder and decoder are generally similar,
while the parameters are opposite. In steganography, the
senders use encoder, so-called generator, to embed messages

into the cover image and generate the stego image. The
receivers use decoder, so-called extractor, to extract messages
from the stego image. Therefore, the tasks of the generator and
the extractor are completely different. The task of the generator
is to realistically fuse cover image and secret messages. The
task of the extractor is to accurately extract the messages.
It is noted that relying on image visual redundancy, a shallow
CNN-based network can achieve the fusion task with good
visual quality. However, the input of the extractor is only a
stego image. In order to improve the accuracy of the extracted
message, the design of the extractor with a deeper network
structure is necessary.

In this section, the accuracy impact of the different structure
in the proposed method on the accuracy of message extraction
is discussed. To conduct the confirmatory experiments, the
same structures of the embedding generator and the stego
matrix/image extractor are presented Fig. 9(a). All other
experimental settings are kept the same as the proposed model.
The accuracy performances of Structure A in the QF50 test
database are shown in Table II. Compared with the proposed
method, Structure A achieves lower accuracy performances
below 90% in testing in JT-stage with rounding. After training
the SF-stage, the accuracy performances are improved, but
they are obviously not as good as that of the proposed method.
It is verified that the extractor, which keeps the same structure
as the generator, cannot precisely capture the steganographic
noise from the stego image.

3) Impact of Concatenation: As shown in Fig. 5, the
concatenations are used to fuse the cover image IC and
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Fig. 9. Three structures are conducted for ablation study. (a) Structure A: keeping the same structure between generator and extractor. (b) Structure B:
without the concatenation in the embedding generator G. (c) Structure C: without the MFB and RDB in stego matrix extractor EM and stego image
extractor E I .

messages M0 in the embedding generator G. Similarly, the
concatenations are utilized to obtain the extracted messages
in the 2 extractors. In [24] and [29], the experimental results
are verified that the concatenations in the designed models can
realistically fuse cover image IC and messages M0, and the
distances between the generated stego matrix X and the cover
image IC are effectively reduced. In this section, the accu-
racy impact of the concatenations in the proposed separable
fine-tuned network on the accuracy of message extraction is
discussed.

The detailed structures of the embedding generator and the
stego matrix/image extractor with concatenations and without
concatenations are presented in Table I and Fig. 9(b). Except
that the concatenations input of layers are different, all other
experimental settings are kept the same as the proposed model.
The accuracy performances of Structure B in the QF50 test
database are shown in Table II. When training the models,
the accuracy in JT-stage is trained to over 99%. When testing
in JT-stage without rounding, the accuracy performances of
the model without concatenations are declined to about 92%.
However, in JT-stage with rounding, the accuracy perfor-
mances of the model without concatenations are decreased
significantly. Moreover, as shown in Table II, the test results
using the model without concatenations are reduced compared
with the test results using the proposed model. It means that
the robustness of the model to offset the rounding operation
is weakened when the concatenations are removed. As men-
tioned in Section IV-B.1, the shorter-time trained models

TABLE I
THE DETAILED STRUCTURES OF THE EMBEDDING GENERATOR AND THE

STEGO MATRIX/IMAGE EXTRACTOR WITH CONCATENATIONS AND
WITHOUT CONCATENATIONS

without concatenations are utilized in SF-stage. The test results
in SF-stage are improved compared with that in JT-stage,
manifesting that the accuracy performances are effectively
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TABLE II
ABLATION STUDY OF THE MESSAGE EXTRACTION ACCURACY COMPARED WITH STRUCTURE A (KEEPING THE SAME STRUCTURE) SHOWN IN FIG. 9(A),

STRUCTURE B (WITHOUT CONCATENATIONS) SHOWN IN FIG. 9(B), STRUCTURE C (WITHOUT MFB AND RDB)
SHOWN IN FIG. 9(C) IN QF50 TEST DATABASE

improved to 92.1%. Although the embedding generator is
frozen in SF-stage, the removed concatenations will not lead
to the failure of the separably training of stego image extractor.
It is verified that the separable fine-tuned network can be
applied to different designs of encoder-decoder models and
markedly compensate for the precision loss caused by round-
ing operation. However, removing the concatenations, the
accuracy performances are not as good as that of the proposed
models. It can be seen that the concatenations can improve the
ability of the separately-trained stego image extractor to obtain
the most dominant features which can resist the precision loss.
Therefore, the proposed model with the concatenations can
significantly improve the accuracy performances.

4) Impact of MFB and RDB: In Fig. 6, an MFB and
an RDB are utilized to fully capture the features of stego
matrix X and stego image IS to generate the extracted message
M1 and M2. The accuracy impact of these 2 blocks needs to
be discussed. Shown in Fig. 9(c), we replace the MFB and
RDB with 2 convolution layers with a kernel size of 3 × 3,
a padding of 1, and a stride of 1. All other experimental
settings are kept the same as the proposed model, including the
concatenations in G, EM , and E I . The accuracy performances
of Structure C in the QF50 test database are also shown in
Table II. The accuracy in JT-stage is also trained to over
99% when training the models. The results in JT-stage with
rounding show that based on the joint training, the precision
loss also affects the stego matrix extractor EM . The accuracy
performances are greater than that of the proposed models with
MFB and RDB, which are up to 90%. The MFB is utilized
to capture the multi-scale features, while the RDB is used to
capture local density features by the residual dense layer. The
use of these two blocks undoubtedly deepens the model of
stego matrix extractor. It is verified that even if the simple
short and shallow network is designed in the JT-stage (one-
stage), the extractor is less dependent on the precision with
the effects of concatenations. However, in the SF-stage, the
accuracy performances are just slightly improved which are
92.9%. The accuracy performances of the proposed models
are significantly improved to 94%, which are also greater than
that of the models without MFB and RDB in the JT-stage with
rounding. With the network deepening, when the stego image
extractor E I is fine-tuned and trained separately, the MFB and

RDB can effectively capture the anti-rounding features. In this
way, the stego image extractor E I can enhance the robustness
to resist the precision loss.

C. Comparative Experiments

In this section, to discuss the robustness of the proposed
anti-rounding separable fine-tuned network, we conduct the
comparative experiments with the one-stage encoder-decoder
model. CHAT-GAN [29] proposes an encoder for data embed-
ding, a discriminator for steganalysis, and a decoder for
data extractor. A novel channel attention module has been
designed to obtain a stronger representation ability for stego
generation or message recovery. ABDH [25] is a watermark-
ing and steganographic scheme, including a target image
generative model and a secret image generative model. The
attention mechanism is designed to aware of the spotlights
and the inconspicuous areas of cover images. The pro-
posed SFTN network is compared with CHAT-GAN [29] and
ABDH [25] on the accuracy of message extraction, visual
quality, and the steganalysis security. The train database and
test database are kept the same, as well as the size of secret
messages.

The comparisons between the proposed SFTN and these
two different one-stage encoder-decoder models are shown
in Table III. First, we focus on whether the precision loss
will lead to the failure of these encoder-decoder networks.
Since the JT-stage of the proposed SFTN does not conduct
the rounding operation when training the models, it can be
regarded as a one-stage encoder-decoder network. Therefore,
in Table III, the ‘Accuracy of JT-stage (Without rounding)’
represents the test results which inputs the generated stego
matrix to the decoder, while the ‘Accuracy of JT-stage (With
rounding)’ represents the test results which rounds the stego
matrix as the stego image, and inputs the stego image to
the decoder. The accuracy performances of three methods
are trained to over 99%. By this way, the test results in
JT-stage without rounding of the proposed SFTN outperform
the other two networks in 3 databases. Both the accuracy
performances of CHAT-GAN [29] and those of ABDH [25] are
over 91%. Then we simulate the real steganography scenario
to obtain the accuracy of JT-stage with rounding. Both the
sender and the receiver share the trained encoder and the
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TABLE III
COMPARISONS BETWEEN THE PROPOSED SFTN AND DIFFERENT STEGANOGRAPHIC METHODS USING SEPARABLE FINE-TUNED ARCHITECTURE

trained decoder. The stego matrix generated by the encoder
is saved as a PNG-format stego image, and then we send
it to the receiver. The receiver extracts the secret messages
using the shared trained decoder. The accuracy results of
JT-stage with rounding are actually the test results of the one-
stage encoder-decoder methods. However, the test results of
ABDH [25] are significantly decreased. ABDH proposes an
implicit attention mask to build a localizable representation
to imitate the human attention mechanism. We find that the
attention mask plays a crucial role to understand the sensitivity
of cover image and generate a stego matrix (called target image
in [25]). The sensitive details provided by the attention mask
are destroyed after the stego matrix is rounding, which makes
it difficult for the trained decoder to effectively extract the
secret messages. Except for QF50 test database, the accuracy
performances of the proposed SFTN are better than that of
CHAT-GAN [29].

To further verify that the separable fine-tuned network can
be applied to different designs of encoder-decoder models,
we tried to utilize the SF-stage training for CHAT-GAN [29]
and ABDH [25]. The stego image extractors in SF-stage
have kept the same designs as their own decoder models.
All layers of the trained embedding generator are copied
and kept frozen during SF-stage. The attention model in
ABDH [25] is also frozen while only the stego image extractor
(called secret image generative model in [25]) is retrained
in SF-stage. Then, the sender and the receiver share the
frozen embedding generator and the stego image extractor.
Similarly, the generated stego matrices are saved as the
PNG-format stego images. The test results are presented
in ‘Accuracy of SF-stage’ in Table III. Compared with the
results in JT-stage with rounding, the accuracy performances of
three methods are evidently improved. Moreover, the accuracy
performances of CHAT-GAN [29] and the proposed SFTN
are close to that of JT-stage without rounding. It is veri-
fied that the proposed SFTN can markedly compensate for
the precision loss caused by rounding operation. The test
results of the proposed SFTN are better than the other two
methods using SF-stage, which shows that the model design
of the proposed SFTN can achieve significant anti-rounding
robustness.

The embedding generator of CHAT-GAN [29] and the
proposed SFTN can obtain the residual features regarded as
the modification map to determine the modification direction
and the magnitude of pixel values. In traditional steganography
methods, the messages are encoded by minimizing the distor-
tion function. The modification map is calculated to guide the
pixels to be added by 1 or subtracted by 1. In the proposed
method, the modification map is truncated. The stego image
IS is defined as:

IS = ⌊T runc255
0 [T runc10

−10(I 4
C ) + IC ]⌉ (14)

where T runcba is the truncation function to range value from
a to b. If modification maps are truncated to -1, 0, and
1 just like the modification of the traditional steganography
methods, it is disadvantageous for the deep learning methods
which are sensitive to precision. The rounding and truncation
⌊T runc255

0 [T runc1
−1(I 4

C ) + IC ]⌉ ≈ I 4
C . Once the stego matrix

is rounded, the precision of residual features will be almost
destroyed. To achieve a trade-off between visual quality and
accuracy, the modification maps are truncated by the factor
10, so the modification range of the pixels is from -10 to 10.
The truncation with a factor 10 can convert some floating-point
residual features into integers, so as to resist the precision loss
caused by rounding.

However, facing the great changes of pixels, the security
is still a challenge to resist the steganalysis methods which
are based on feature statistics. The steganalyzers are trained
on the three Bossbase-1.01 databases and then the test images
are tested on the trained steganalyzers. The results show that
the detection error rate of the three methods is less than 0.05.
Since the labels of cover images and stego images cannot be
obtained in the real scenario, the security of steganalysis still
needs to be improved.

When concerning the visual qualities, the stego images of
CHAT-GAN [29] and the proposed SFTN own PSNR results
over 40 dB, while the SSIM results are greater than 0.96.
Different from the design of the encoder in ABDH [25], the
concatenations of multi-layer CNN feature maps are used in
the embedding generator in CHAT-GAN [29] and the proposed
SFTN. The deeper network design of the stego matrix /
image extractor also ensures the reasonable selection of the
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TABLE IV
THE CROSS-DATABASE COMPARISONS BETWEEN THE PROPOSED SFTN AND DIFFERENT STEGANOGRAPHIC METHODS

USING SEPARABLE FINE-TUNED ARCHITECTURE

embedding positions, which improves the visual quality of the
stego image. Therefore, the proposed SFTN can achieve better
visual quality results compared with the other 2 methods.

The cross-database experiments are conducted. The models
are trained on 9000 images in Bossbase-1.01 database, while
1000 images in BOWS2 [47] are tested on the trained models.
The cross-database comparisons between the proposed SFTN
and these two different one-stage encoder-decoder models
are shown in Table IV. The accuracy performances of three
methods are trained to over 99% in Bossbase-1.01 database.
The test results in JT-stage without rounding show that
ABDH [25] performs better. The implicit attention mask
effectively improves the accuracy when the rounding operation
is ignored. Focusing on the accuracy of JT-stage with rounding
and SF-stage, the proposed method can markedly resist and
compensate for the precision loss in the cross-database tests.
Similarly, the stego images in the proposed method maintain
PSNR results about 40 dB and SSIM results about 0.97, which
are considered as good objective image quality.

V. CONCLUSION

In this paper, we discussed the problem that the pre-
cision loss caused by rounding operation to generate the
stego image in DL-based steganographic applications. And
an anti-rounding image steganography method with separable
fine-tuning network architecture is proposed. In JT-stage, the
embedded generator and stego matrix extractor are trained
without rounding operation to ensure the accuracy of message
extraction. In SF-stage, the pretrained embedded generator is
frozen, and the loss will not backpropagate in the embedded
generator. In this way, the non-differentiability of rounding
operation can be offset. Inside the design of models, the
concatenations are utilized to enhance the authenticity of the
stego image, and MFB and RDB are used to effectively
extract the embedding features. In addition, based on GAN, the
discriminator is constructed to ensure the steganalysis security.
The separable fine-tuned network can be applied to different
designs of one-stage encoder-decoder models. Experiments
show that the proposed SFTN can markedly compensate
for the precision loss caused by rounding operation, and
achieve better image visual quality compared with the existing

one-stage steganography method. In the near future, we will
push forward the steganography framework based on deep
learning, and further research the robustness in steganography
applications. The trade-off between the message extraction
accuracy, visual quality of stego images, and the security is
still challenging.
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