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ExS-GAN: Synthesizing Anti-Forensics
Images via Extra Supervised GAN

Feng Ding™, Zhangyi Shen™, Guopu Zhu
Yicong Zhou

Abstract—So far, researchers have proposed many foren-
sics tools to protect the authenticity and integrity of digital
information. However, with the explosive development of machine
learning, existing forensics tools may compromise against new
attacks anytime. Hence, it is always necessary to investigate anti-
forensics to expose the vulnerabilities of forensics tools. It is
beneficial for forensics researchers to develop new tools as coun-
termeasures. To date, one of the potential threats is the generative
adversarial networks (GANs), which could be employed for fab-
ricating or forging falsified data to attack forensics detectors.
In this article, we investigate the anti-forensics performance of
GANs by proposing a novel model, the ExS-GAN, which fea-
tures an extra supervision system. After training, the proposed
model could launch anti-forensics attacks on various manipulated
images. Evaluated by experiments, the proposed method could
achieve high anti-forensics performance while preserving satisfy-
ing image quality. We also justify the proposed extra supervision
via an ablation study.

Index Terms—Anti-forensics, digital forensics,
adversarial network (GAN), machine learning.
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I. INTRODUCTION

HERE there is sunshine, there is also shadow. For
W images, there are many manipulations that can be used
to attack images in different ways; nevertheless, there are
also numerous forensics tools designed to defend images from
all possible attacks [1]. Many digital forensics researchers
are dedicated to creating algorithms [2], [3], [4] to secure
images as reliable channels for communication. In the past,
researchers have built mathematical models to trace the alter-
ation of image statistics. In addition, many forensics tools have
been developed based on designing handcrafted features to be
classified by linear classifiers for a variety of forensics pur-
poses, such as identifying source devices [5], [6], detecting
manipulations [7], [8], [9], and exposing forgeries [10], [11].

In recent years, deep learning has made colossal progress.
As the most well-known neural network, convolutional neural
networks (CNNs) [12], [13], [14], [15] and recurrent neural
networks (RNNs) [16], [17] are widely applied in various
research fields to analyze data in different forms. In image
forensics, it is quite common to adopt CNNs as classifiers
to perform detection tasks [18], [19]. The feedforward struc-
ture and learning ability enabled by backward propagation
make neural networks ideal forensic detectors. CNNs can learn
high-dimensional features that cannot be comprehended by the
human brain. These features are highly efficient for detection.
It has been shown in many publications that well-trained CNN
models achieve remarkable detection performance against var-
ious image editing manipulations and thoroughly outperform
traditional methods [20], [21], [22], [23]. To the best of our
knowledge, nearly all possible image editing manipulations
can be precisely identified by deep neural networks with
properly labeled training [24].

Whereas deep learning has been justified frequently as
the perfect image forensics tool, with the more sophisticated
architectures developed in recent years, new challenges have
also appeared. Unlike the most commonly proposed mod-
els focusing on classification, generative adversarial networks
(GANSs) [25] are designed for creation. GANs are composed
of multiple neural networks. A typical GAN model consists of
two neural networks: one network functions as a discriminator,
and the other network serves as a generator. Both the discrim-
inator and generator simultaneously learn during training to
enhance their designated ability to compete with each other
in a game. In most cases, after training, GANs are capable of
generating images that are similar to the input samples. Note

2168-2267 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universidade de Macau. Downloaded on October 19,2023 at 02:35:37 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-3069-8337
https://orcid.org/0000-0003-3317-6080
https://orcid.org/0000-0001-7956-5343
https://orcid.org/0000-0001-7484-7261
https://orcid.org/0000-0002-4487-6384
https://orcid.org/0000-0002-0992-685X

DING et al.: ExS-GAN: SYNTHESIZING ANTI-FORENSICS IMAGES VIA EXTRA SUPERVISED GAN

that “similar” here can be measured in many different ways.
For instance, it could be objects of a homogeneous category,
the same species, shapes with identical textures and colors,
and analogous styles.

Because the images are generated by GANs without any
natural information, they could be used by attackers to delib-
erately deliver false information. Usually, these images can
easily deceive the human eyes. In addition, it is impossi-
ble for humans to process tremendous amounts of images.
Thus, we rely on forensics algorithms to verify the authentic-
ity of images. If these GAN-synthesized images are capable
of defeating existing forensics tools, they may become huge
threats to our community. In addition, most anti-forensics
algorithms proposed in the past rely on specialists with the
expertise to build corresponding anti-forensics models for dif-
ferent manipulations. However, unlike traditional approaches,
this process is now significantly simplified in that ordinary
people without any professional training can easily build their
own attacks based on GANSs by collecting the proper data. This
makes GANs more dangerous than any anti-forensics methods
previous.

Therefore, in this article, we would like to investigate
the anti-forensics performance [26] of the GAN model to
enlighten research on image forensics [27]. We propose our
ExS-GAN model as a universal anti-forensics tool that features
the extra supervision. The proposed GAN model can generate
images that are capable of subtly hiding fingerprints of a vari-
ety of common image editing manipulations without altering
the original image contents. Generally, these fingerprints are
widely employed by forensics detectors to identify manipu-
lations. By removing these fingerprints, the generated images
are assumed to impede the forensics tools to make incorrect
judgments.

To summarize the above, the main contributions of this
article are as follows.

1) A GAN model is proposed as an anti-forensics tool
for various common image editing manipulations to
investigate the anti-forensics performance of GANs. The
main novelty of the model is the enhanced supervision
system. Justified by an ablation study, it can boost the
anti-forensics performance for the proposed model.

2) Alternative GAN structures and generative networks
are considered and studied to refine the proposed
GAN model for achieving significant anti-forensics
performance with ease of sacrifice for image qual-
ity. Evaluated by experiments, the proposed ExS-GAN
could outperform the state-of-the-art method for counter
forensics.

The remainder of this article is organized as follows.
In Section II, we briefly introduce GANs. In Section III,
we introduce several novel works on anti-forensics. The
proposed model is described in Section IV. The assessment
of the proposed model based on experiments is discussed in
Section V. Finally, the conclusion is presented.

II. GENERATIVE ADVERSARIAL NETWORKS

A GAN is a concept defined by Goodfellow et al. [25].
It is actually a class of machine learning systems consisting
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of generative networks and discriminative networks. In this
system, given training samples, both the generative network
and discriminative network are trained simultaneously for
different purposes. The generative network generates new
data to be evaluated by a discriminative network. The dis-
criminative network is trained to discriminate the synthetic
data from the training samples. Meanwhile, the generator
learns from the discrimination procedure to generate new
data with closer statistics to the training samples to fool the
discriminator. Generally, this system can be regarded as a
competition between two networks. Through backpropagation
during training, both networks are optimized and become more
intelligent. Typically, the new data synthesized by genera-
tors have attracted the most attention from researchers. They
have been widely studied and applied in a variety of areas
[28], [29], [30].

Many GAN models have been proposed, being driven by
different motivations. Among all the GANSs, the conditional
GAN (cGAN) is a special category with fully supervised learn-
ing that concentrates on minimizing the process of setting the
generating process conditions. Unlike many other GANs that
only focus on generating vivid images, cGANs can generate
vivid images with different characteristics. With proper super-
vision, cGANs are capable of delivering desired new data to
satisfy different purposes. Because of this feature, cGAN is
the preferred option to translate images from one style to
another [31], [32].

In image processing, many image editing manipulations
leave unique traces in images producing particular visual
effects. These visual effects can also be regarded as image
styles. For example, sharpening can enhance the contrast of
edges, which leads to sharp silhouettes as a visual feature.
Taking a step further, theoretically, images without certain
manipulation can also be considered as a style, that is, an
untouched style. Therefore, given that cGANs can translate
image styles, they are also assumed to be capable of trans-
forming images from other styles into untouched styles. In
other words, the fingerprints left by a variety of manipula-
tions can be removed by cGANs such that the image may
appear untouched by these manipulations. In image forensics,
such operations could lead to the possibility of manipulations
being applied to images becoming more difficult to detect.
Thus, cGANs may serve as anti-forensics tools.

III. ANTI-FORENSICS

Within digital forensics, anti-forensics, also known as coun-
terforensics, is a branch that has raised much debate and
discussion. Anti-forensics is a set of techniques that are used
to combat digital forensics. Generally, anti-forensics tools
are designed for malicious purposes. However, for scientific
research, anti-forensics tools can also serve as countermea-
sures to forensics algorithms. By exposing the weaknesses of
current forensics tools, anti-forensics helps researchers further
develop powerful forensics tools for the future to guarantee
that the collected data are authentic and dependable.

Anti-forensics falls into several subcategories, such as data
hiding, artifact wiping, and trail obfuscation. In this arti-
cle, as discussed in the previous section, we examine the
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anti-forensics performance of GANs from the perspective of
artifact wiping to deceive forensics tools. In particular, we
focus on wiping the traces of common signal processing
manipulations that are widely studied in conventional image
forensics works.

Although many anti-forensics works on erasing manipulated
fingerprints have been reported, most of them focus on tack-
ling anti-forensics problems for a single manipulation, that
is, either JPEG compression or median filtering. The two
manipulations are ideal counter-forensics targets because lim-
iting data size and denoising are fundamental needs for image
processing.

Among all the JPEG anti-forensics works conducted by dif-
ferent groups, it is recognized by most forensics researchers
that Stamm et al. made the considerable contribution to this
topic to date. They initiated related research for JPEG com-
pression anti-forensics [33], [34]. Their works were followed
by other groups [35], [36], where a variety of JPEG anti-
forensics models were later proposed to enhance the JPEG
anti-forensics performance under different circumstances. The
majority of related work hides the compression trails by build-
ing anti-forensics models to tamper with the image statistics. A
similar phenomenon also occurs in the history of median filter
anti-forensics. After Fontani and Barni started counterforensics
research on the median filter in 2012 [37], this topic has made
considerable progress, with more median filter anti-forensics
models being proposed [38], [39]. Most of them also achieve
the anti-forensics effect by attacking the image statistics.

In addition to building anti-forensics models as described
above, a few anti-forensics works based on adversarial
networks have been proposed in recent years. By employ-
ing GANs for anti-forensics, researchers no longer need to
analyze the image statistics or tamper with any specific finger-
prints because GANs are capable of self-learning to achieve
anti-forensics objectives automatically [40]. With supervised
training, GANs can synthesize images that preserve exactly the
same content as the attacked images. In addition, the manipu-
lated fingerprints, once employed as clues for forensics detec-
tors, are removed in synthesized images, that is, the GANs
can serve as anti-forensics tools. Kim et al. [42] employed
GAN:Ss to restore images [41] processed by median filters. The
images reconstructed via their GAN can outperform images
processed by other anti-forensics methods with higher unde-
tectability, as reported in their paper. Luo et al. [43] proposed
a GAN model that can reach acceptable undetectability with
eased image quality degradation. Although there is no doubt
that both works are brilliant efforts involving new methods of
GAN:S, they are similar to other anti-forensics works that have
contributed to improving anti-forensics performance for single
manipulation.

For image manipulation anti-forensics, note that, other than
the undetectability, the image quality is the other metric for
evaluation. In most cases, the image quality must be sacri-
ficed to enhance the undetectability. Thus, most anti-forensics
works have made great efforts to achieve a tradeoff between
undetectability and image quality. This is extremely important
for our research, as a notional successful anti-forensics attack
should be capable of deceiving forensic detectors and humans
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simultaneously. In summary, in this article, we concentrate
on investigating the anti-forensics performance of GANs by
proposing a GAN model that serves as an anti-forensics
tool that targets multiple common image manipulations. The
proposed method can remove traces of different manipulations
while avoiding distortions or artifacts being introduced to the
images. The entire procedure is depicted in Fig. 1.

IV. PROPOSED METHOD
A. Prototype GAN Model

As mentioned above, both the discriminator and generator
are important components in GANs. One of the most typ-
ical and fundamental GAN models, the deep convolutional
GAN (DCGAN), consists of a single classification network
as the discriminator and a single generative network as the
generator. This GAN generates new images from random
noise. However, the image content and texture generated in
the DCGAN cannot be well supervised. Thus, in most appli-
cation scenarios of GANSs, the structures have to be refined
and optimized. Thus, to function as an anti-forensics tool, we
employ the prototype GAN model as illustrated in Fig. 2.

The only input to the GAN model is the untouched image
dataset. Since our objective is to remove the manipulated
fingerprints while keeping the image content untouched, we
would like to have the image content be generated under
strict supervision. This objective can be satisfied by inputting
paired images to enhance the supervision of the image content.
Hence, there must be two parallel input channels for feeding
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image pairs into the generator as source signals and target
signals.

As observed from Fig. 1, the manipulating module in
our model contains optional image manipulations that could
be chosen to convert the untouched images to manipulated
images. The manipulated images are source signals for the
generator to synthesize new images. The output of the gener-
ator can be employed in association with untouched images
to train the discriminator. In other words, the discriminator is
trained to discriminate the untouched images and synthesized
images. Note that for anti-forensics, our objective is to pro-
duce images that can deceive forensic detectors. Hence, we
expect that the images synthesized from the generator will
be close to their original manipulation-free version and that
the discriminator fails to classify them. For this reason, the
untouched images here can be regarded as the target signals.
As a result of this arrangement, the source signals and target
signals share the same image content, and the generation pro-
cedure for the image content is fully supervised. This is an
advantage for the proposed GAN structure in that it ensures
that the synthesized images from the generator preserve the
same content. Thus, we only need to focus on transferring the
image style for anti-forensics purposes.

G, the generator, is a vital part of the GAN model for
generating images of the untouched style. Unlike most other
GAN:S, the input to the generator is manipulated images. The
anti-forensics effect can be achieved by removing the traces
of manipulations in manipulated images. Behind the genera-
tor, the discriminator D is introduced to act as a supervisor.
The weights learned in the discriminator are assumed to be
backpropagated to the generator during training. Thus, the
discriminator is arranged to concatenate to the generator. We
would like to investigate the architecture of the generator and
discriminator in detail later.

The architecture and networks introduced above are those
of the proposed prototype GAN model. The loss of G and
D would gradually stabilize after training with sufficient iter-
ations. Subsequently, the G will be capable of synthesizing
images with undetectability.

B. Extra Supervision and Loss Function

As discussed above, our prototype GAN model is only
supervised by a single discriminator to distinguish untouched
images from synthesized images. Except for the synchronized
image content, this strategy restrains the generated images
from only one aspect, that is, the synthesized images should
be close to the untouched images in terms of high-level pat-
terns and statistics. Thus, the loss function can be designed
with the following formula:

L(G, D) = E[logD(, G(In, n))] (1)

where I, is the manipulated images that are employed as
inputs to the generative network, / is the untouched images,
which also represent target signals that supervise the genera-
tion procedure, and n is the noise that should also be fed to
the generator. Note that here for our anti-forensics purpose,
we define the n as the inverse residual of the manipulation
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fingerprints. If it is applied to the manipulated images, the
synthesized images could be images without any manipulated
fingerprints. n can be represented as

n=1-—1,. ()
Consequently, the synthesized image I, is
I, = G, n). 3)

Since our objective is to introduce noise to the manipulated
images to reconstruct the images I, that are close to untouched
images I, the loss of the generator must be minimized, while
the loss of the discriminator should be maximized. Thus, the
entire procedure of the GAN model can be described as

T = arg mGin rnla)lx{ﬁ(G, D)}
= arg m(i;n mgx{E[logD(I, L)]}. 4)

Although the prototype model may satisfy the fundamental
requirements to perform as a cGAN to remove manipulated
fingerprints, we believe that the anti-forensics performance of
the model can be improved if proper enhanced supervision can
be conducted. Besides, it has been proved that the generating
process could be more accurate if a more powerful supervision
is applied in GANSs. Therefore, we designed a refined supervi-
sion system to be associated with the prototype model to boost
the performance. The proposed refined model is depicted in
Fig. 3.

As seen in Figs. 2 and 3, the major difference is that two
new discriminators, D2 and D3, are introduced in the refined
structure in Fig. 3. These two discriminators serve as Extra-
Supervisions (Ex-S) for the prototype. All three discriminators
are equally weighted in our proposed model.

D2 is assumed to be trained to classify the output of the
generative network from the input. Through backpropagation,
the learned weights are transferred back to the generator. This
strategy guarantees that the synthesized images should be far
from the manipulated images in terms of high-level patterns
and statistics while preserving the content.

Similar to many forensics detectors based on CNN, D3
is responsible for discriminating manipulated images from
untouched images during training. The weights learned by D3
can also be used to update the parameters in the generator. This
can enhance G and allow it to make wiser choices to avoid
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inputting features learned in D3 into synthesized images. As
a result, the synthesized images may become more difficult to
be distinguished from untouched images. Modules with sim-
ilar functions to D3 can also be found in other works. It has
been proven to have a positive impact on generating desired
signals [44].

During training, all the discriminators are trained simul-
taneously, along with the generator. Nevertheless, we expect
different convergence performances from each discriminator.
As discussed in the prior discussion, the generative network
deliberately deceives D1 to prevent it from converging. In con-
trast, we adopt D2 to monitor the generated images to be
statistically further from the manipulated ones. D3 is required
to converge with high classification performance to enhance
the generation from different aspects. All three discrimina-
tors are equally weighted. Therefore, the loss function for this
refined model can be defined as

L(G, Dy, Dy, D3) = E[logD1 (1, I)]
+ E[1 —logDs (I, Ig)]
+ E[logD3 (1, Iy)]- (3)

In addition, as learned from recent reports [44], [45], [46],
[47] on cGANSs, we also deploy an L loss to enhance the
performance of the generative network. This strategy has been
proven to be capable of improving the quality of synthesized
images. This loss can be described as

L1(G) = Epg,1,[| s — GUm. )|, 6)

Then, we have the complete form of the loss function for the
refined model as

L'(G,Di, Dy, D3) = L;(G, Dy, D2, D3) + AL1(G).  (7)

This could lead to our final goal of the entire model which is
defined as

T' =arg min max {£'(G,D1,D;, D3)}. (8)
(G,D3) (D1,D7)

C. Architectures of Discriminator and Generator

With the GAN architectures and loss functions studied,
the remaining task is to discuss the architectures of the
discriminative network and generative networks.

To the best of our knowledge, many proposed CNNs are
serving as detectors in digital forensics. Although they have
been employed to solve different problems successfully, most
methods use simple, single lanes of feedforward structures,
which can be considered homogeneous to AlexNet and LeNet.
A similar arrangement can also be found for many discrim-
inators in GANs. Thus, considering that the difficulty of
discrimination tasks is not high, we also employ a simple
structure of this type for all the discriminators in our proposed
models. The architecture of our discriminators is depicted in
Fig. 4.

The generator is the decisive component and can directly
impact the anti-forensics performance. Therefore, we put
greater effort into investigating generative networks with dif-
ferent architectures. Since the input signals to our generator
are images and since the outputs are also images of uniform
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a

r r

| = (- (- — — e ee 1 |
| I I (- H I |
' gl [ T -4 I !
I I & t [ & L [ I
| 7l :rEII I olallZ [ il |

= =
MR E RIGIEHIER L] =
12 1% (52 3‘::"* X6 =P °—3—.—LP| HH [xeP 8 H 2!
< < | 3 171 3
& (el I8 |22 ol el | c ] [ <
I c| S|IE|N! R E [ || ® |
| o | | 2 |

| Iy = | (- o ! 1 [
| Iy e It (- S H I |
| Iy Il [ [ 1 |
[| [ LIt I I L LI T pald L
| IR [ DN R (I T S A [ d bl

Fig. 5. Structure of basic generative network. For all convolutional and
deconvolutional layers, the kernel size is fixed to 4, the stride is 2. The number
of filters is n, n = 64 for convl and deconv8, n = 128 for conv2 and deconv7,
n = 256 for conv3 and deconv6, and n = 512 for all the others.

size, one of the most typical generative structures that suit
this circumstance is the end-to-end model with a downsam-
pling network and an upsampling network. In this model,
the input images are first downsampled into feature vectors
in the downsampling network, and then, the feature vectors
are reconstructed as images by the upsampling network. This
structure is illustrated in Fig. 4. Multiple convolutional lay-
ers are arranged in series to function as the downsampling
network. Eventually, after processing by these convolutional
layers, the images can be downsampled into feature vectors.

After downsampling, we employ an upsampling network to
reconstruct the images from the feature vectors. The upsam-
pling network consists of multiple deconvolutional layers in
series. The upsampling network is symmetric to the down-
sampling network to ensure a consistent image size. This
is the simplest and most fundamental structure that can be
considered the basic generator for our GANs.

The upsampling here is used to restore the image to be of
equal size to the input image. In most cases, deconvolution is
the preferred upsampling method over linear interpolation in
GANSs. From the literature, it can be assumed that the input
images should be downsampled by a series of convolutional
layers to produce feature vectors as output. The output of the
downsampling network should be the input for the upsampling
network to have the image reconstructed. Thus, the upsam-
pling network, consisting of multiple deconvolutional layers in
series, should be connected behind the downsampling network
to rebuild the images. This structure is shown in Fig. 5. It is
the simplest and most fundamental structure for building our
desired generative network.

In addition to the structure of the basic generator, there are
also other advanced end-to-end architectures. These architec-
tures can be considered refined versions of the basic model.
They can serve as optional structures for our generator. Here,
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Fig. 6. Generative network of T-Net. The kernel size for convl and conv4 is
7, and for other layers and residual blocks is 3. The stride for conv2, conv3,
deconvl, and deconv2 is 2, and for other layers and residual blocks is 1. The
number of filters for convl and deconv2 is 64, for conv2 and deconvl is 128,
for conv4 is 3, and for conv3 and residual blocks is 256.

we introduce two types of refined versions and evaluate them
later with experiments. The first optional adjustment is insert-
ing a transformation network between the upsampling and
downsampling networks [48]. The transformation network is
composed of multiple residual blocks which can be regarded
as convolutional layers. It has been proved to be efficient
for transforming images that can be employed as a genera-
tor in GANs. We name this structure T-Net in this article.
The second optional adjustment is inspired by U-Net, which
was proposed in Ronneberger et al.‘s work [49]. It establishes
channels for the symmetrically located layers in upsampling
and downsampling networks to enable one-way communica-
tion in corresponding layers from the downsampling network
to the upsampling network. As a result of their strategy,
the deconvolutional layers in the upsampling network can
reconstruct the images with the assistance of corresponding
convolutional layers to improve the accuracy of the details in
the synthesized images. Consequently, the synthesized images
generated via this model are expected to be of higher quality
than the other methods. The architectures of these advanced
generative models are illustrated in Figs. 6 and 7.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In order to serve as a general anti-forensics tool, the eval-
uation for the proposed ExS-GAN model is based on four
datasets to increase the diversity of data. The BOSS image
dataset contains 10000 grayscale images of size 512 x 512.
RAISE is a relatively new image dataset released in 2015. It
consists of 8156 high-resolution images of size 4288 x 2848
or 4928 x 3264 and is intended for research on digital foren-
sics. UCID includes 1338 uncompressed color images of size
384 x 512. The NRCS dataset consists of 1000 grayscale
images of size 768 x 512. The BOSS and RAISE datasets
are our training datasets, while the UCID and NRCS datasets
are the validation set. All images are randomly cropped to
a uniform size of 256 x 256. In addition, all color images
are converted to grayscale images for our experiments. All
experiments are simulated with TensorFlow 1.1.0 and CUDA
8.0. The generator along with all discriminators in the GAN
models are trained simultaneously with the Adam optimizer
of learning rate 0.0002 for 50 epochs. We manually terminate
training if the losses of generators and discriminators tended
to be stable.
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Fig. 7. Generative network of U-Net. For all convolutional and deconvo-

lutional layers, the kernel size is fixed to 4, the stride is 2. The number of
filters is n, n = 64 for convl and deconv8, n = 128 for conv2 and deconv7,
n = 256 for conv3 and deconv6, and n = 512 for all the others.

TABLE I
EMPLOYED MANIPULATIONS AND APPLIED PARAMETERS

Editing manipulations (EM) Parameters
Gaussian filtering (GF)
Median filtering (MF)

Average filtering (AF)

3 x 3 window size, o = 0.8

3 x 3 window size

3 X 3 window size

USM sharpening (US) c=1x=1
Gaussian noising (AGN) o =0.01
JPEG compression (JC) Q =50

In our experiment, as introduced in Section III, we would
like to assess the anti-forensics performance of the GAN
models with some common signal processing manipulations.
Hence, the following manipulations were selected in the
manipulation module for the GAN models: Gaussian fil-
tering, median filtering, average filtering, USM sharpening,
adding Gaussian noise, and JPEG compression. The parame-
ters applied for each manipulation in our experiments can be
found in Table I.

A. Ablation Study of ExS and Generator Structure

First, we study the structures of the generator and the
proposed Ex-S enhanced supervision system. To achieve this
goal, we employ the prototype GAN model « with different
generator structures introduced in Section IV: the encoder—
decoder E, the U-Net U, and the Transformation-Net T as
options for assessment. In addition, we conducted several
experiments in ablation studies of Ex-S. In this case, indi-
vidual D2, D3, and Ex-S are tested along with the prototype
model «. The generator in « is fixed with E to ensure the
ablation study is professional.
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TABLE II TABLE IV
CLASSIFICATION PERFORMANCE OF TRAINED AVERAGE PSNR FOR IMAGES SYNTHESIZED BY DIFFERENT MODELS
CCNN FOR ABLATION STUDY
EM a+E | a+U | a+T | a+D2 | a+ D3 a + ExS Im
EM Detection accuracy GF 31.03 | 3272 | 25.31 31.07 30.88 30.97 29.89
GF 99.12% MF 27.86 | 30.62 | 25.27 27.99 27.86 27.85 28.35
MFE 99.67% AF 27.69 29.31 23.57 27.72 27.75 27.76 27.68
UsS 35.13 36.39 26.77 35.08 35.10 35.12 35.38
AF 99.52% AGN || 24.55 | 2690 | 16.77 24.60 24.53 24.64 19.87
UsS 99.25% ic 31.80 | 33.77 | 23.98 | 31.65 | 31.71 31.74 | 33.09
AGN 99.93%
JC 99.34% TABLE V
AVERAGE SSIM FOR IMAGES SYNTHESIZED BY DIFFERENT MODELS
TABLE III EM a+E a+ U a+T a+ D2 a + D3 a + ExS Im
PRECISION RESULTS OF ABLATION STUDY FOR MODELS WITH GF 0.913 | 0941 | 0.850 | 0.916 0.918 0.916 | 0.883
DIFFERENT GENERATORS AND SUPERVISION MODULES MF 0.827 | 0903 | 0.726 0.828 0.825 0.826 0.836
AF 0.887 0.922 0.715 0.900 0.902 0.892 0.817
EM a+E a+U a+T | a+D2 | a+D3 | a+ExS US 0.978 | 0.988 | 0.852 0.979 0.976 0.981 0.975
GF 13.64% | 13.59% | 14.38% 9.13% 10.21% 9.16% AGN 0.617 0.731 0.387 0.638 0.620 0.652 0.389
MF 1.93% 1.66% 3.47% 1.02% 1.58% 0.29% JC 0.919 0.933 0.735 0.922 0.920 0.920 0.923
AF 0.25% | 0.57% | 0.96% | 0.01% 0.06% | 0.01%
US || 22.33% | 20.51% | 26.21% | 15.46% | 17.01% | 12.89% TABLE VI
AGN T 0.07% 1 001% T 019% | 0.03% | 0.01% | 0.00% AVERAGE VIF FOR IMAGES SYNTHESIZED BY DIFFERENT MODELS
JC 19.51% | 19.63% | 23.70% | 16.32% | 17.30% | 13.17% EM 2+El a+U lasT [asD2 | a+D3 | a+ExS I
GF 0.809 | 0.861 | 0.576 0.806 0.801 0.800 0.612
MF 0.493 | 0.547 | 0.408 0.495 0.492 0.492 0.526
AF 0.680 | 0.759 | 0.406 0.667 0.666 0.671 0.552
To evaluate the undetectability, it is necessary to employ a US || 0898 | 0.945 | 0.788 | 0.895 | 0.908 | 0.902 | 0.947
forensics tool as a benchmark. In this experiment, we choose AGN || 0.182 | 0.278 | 0.075 | 0.191 0.180 0.193 | 0.247
IC 0.670 | 0.714 | 0.437 0.675 0.681 0.668 0.712

the constrained CNN (CCNN) [24] to play this role. Although
many famous classifiers can be employed as forensics detec-
tors, the CCNN [24] proposed in 2018 is generally considered
the state-of-the-art detector in digital forensics. The reported
results outperform almost all digital forensics tools proposed
in past years. In addition, the CCNN covers a wide range of
image editing manipulations and can also serve as a universal
tool. Given all the advantages, our ideal evaluation tool should
be the CCNN. Therefore, several CCNNs are trained against
the manipulations listed in Table 1. The observed classifica-
tion performance reported in Table II demonstrates that it is
an effective and reliable tool as a benchmark.

The anti-forensics images synthesized by GANs are then
predicted by corresponding detectors. For each manipulation,
the ratio of synthesized images detected as manipulated images
is listed in Table III.

From the table, we can see that each extra discriminator
boosts the undetectability of the GAN model. Above that, it
can also be observed that the model with the joint supervision
from both extra discriminators achieves the best anti-forensics
performance of all the models. Hence, ExS is the ideal strategy
to boost the anti-forensics performance. Although the structure
of the generator has a certain impact on the undetectability of
GAN models, this effect is not prominent that can be ignored.

Then, we examine the qualities of the synthesized images
via three criteria: PSNR, SSIM, and VIE. PSNR and SSIM are
two popular criteria widely applied for image quality assess-
ments. VIF is an image quality assessment method proposed in
2006 [50]. Unlike the other methods, VIF evaluates the image
quality in a perceptually consistent manner that matches the
human vision system. The quality assessment can be found in
Tables IV-VI.

The quality assessments demonstrate that the structure of
the generator has a strong impact on the quality of the syn-
thesized images. In the meanwhile, the supervisions have a
quite limited effect on image quality. Therefore, after all these
evaluations, we pick ExS as the supervision system to pursue
higher undetectability. On the other hand, the U-Net is chosen
as the generator structure to improve the quality of synthe-
sized images. The proposed model is determined to be the
GAN model illustrated in Fig. 3 with U-Nets as generators.

B. Evaluation of the Proposed ExS-GAN Model

Since the structure of the proposed ExS-GAN model is
determined via the justifications above, we thoroughly evaluate
the model by conducting more experiments.

With the trained proposed models, image sets can be synthe-
sized. Since we also want to investigate the effect of different
patch sizes, the images are generated of size 256 x 256,
128 x 128, and 64 x 64. For the quality assessments of these
images, the average value of PSNR, SSIM, and VIF is reported
in Table VII.

The results of the quality assessment demonstrate that the
quality of the synthesized image is quite high. It is well known
in traditional anti-forensics that attacking images produces dis-
tortions. Consequently, the image quality is always sacrificed
to enhance the undetectability. However, this rule does not
apply to our proposed method. Surprisingly, in contrast, sum-
marized from the observed results, the synthesized images tend
to have higher quality than the attacked images I,,,. This can be
considered as a tremendous advantage for anti-forensics based
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Fig. 8.

Sample images. The images on the top are the manipulated images, the ones on the bottom are the synthesized images. (a) Gaussian filtering,

(b) median filtering, (c) average filtering, (d) Gaussian noising, (¢) USM sharpening, and (f) JPEG compression.

on GANSs. In addition, it can also be observed that the patch
size has little impact on the quality of the synthesized images.
Afterward, we conducted several experiments to investigate
the undetectability of the proposed model. In most conventional
cases, for anti-forensics, an attack is successful if an attacked
image can be falsely determined as untouched image by a binary
classifier. Therefore, since there were only two categories for
classification, and only the synthesized images are tested, the
anti-forensics performance can be regarded as higher if less
attacked images are classified as manipulated images.

Here, we employ more forensics detectors to fulfill the
task. Along with the CCNN introduced in the above sec-
tion, the VGG16 and the rich model are also chosen for
validation. VGG16 is a famous CNN model for classification
and detection [51]. The rich model is a non-CNN forensics
tool proposed in 2012. Although the original purpose of the
rich model was steganalysis, it has been proven by many
researchers to be a successful algorithm in revealing manip-
ulations in images [52]. We employ it along with ensemble
learning for multiclass classification. Both the VGG16 and rich
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TABLE VII
QUALITY ASSESSMENT FOR IMAGE OF DIFFERENT SIZES SYNTHESIZED VIA PROPOSED EXS-GAN

EM 256 x 256 128 x 128 64 x 64
PSNR SSIM VIF PSNR SSIM VIF PSNR SSIM VIF
GF 3277 0938 0.864 32.67 0.931 0.865 32.66 0.933 0.865
MF  30.71 0.898 0.559 30.70 0.900 0.562 30.67 0.903 0.560
AF 29.33 0919 0.763 29.36 0.917 0.760 29.37 0.915 0.760
[N 36.41  0.989 0948 36.38 0.991 0.948 36.40 0.990 0.947
AGN 2692 0.742 0.290 26.73 0.726 0.288 26.34 0.721 0.281
IC 33.72 0937 0715 33.79 0.935 0.717 33.80 0.935 0.714

TABLE VIII

ANTIFORENSICS ASSESSMENT FOR IMAGE OF DIFFERENT SIZES SYNTHESIZED VIA PROPOSED EXS-GAN

EM 256 x 256 128 x 128 64 x 64
Rich model VGGI6 CCNN  Rich model VGG16 CCNN  Rich model VGG16 CCNN
GF 3.50% 7.72% 5.34% 3.03% 7.17% 5.45% 1.59% 6.85% 6.09%
MF 0.01% 0.97% 0.35% 0.00% 0.23% 0.52% 0.00% 0.68% 0.39%
AF 0.55% 2.15% 0.82% 0.20% 2.23% 1.67% 0.00% 1.86% 1.34%
usS 22.25% 23.68% 14.03% 17.52% 25.16% 18.59% 12.77% 24.39% 17.21%
AGN 0.00% 0.01% 0.01% 0.00% 0.03% 0.01% 0.00% 0.05% 0.07%
IC 7.21% 20.89%  9.27% 4.19% 23.26% 12.79% 3.45% 22.63% 11.52%

TABLE IX

model could easily reach excellent detection accuracy over
99% toward all manipulations in Table II after training. All
the GAN-generated images are tested by the three detectors.
The detection rate representing the ratios of images that are
detected as “manipulated” on images of different patch sizes
are reported in Table VIIIL.

As observed from the table, most synthesized images were
falsely judged as untouched images. We can also notice that
the impact of patch sizes is also not prominent. Hence, the
proposed enhanced supervision system along with the GAN
structure has been justified to be a successful general anti-
forensics tool.

After the evaluation based on the conventional binary clas-
sification detector, we conduct further experiments to investi-
gate the anti-forensics performance of these GAN-generated
images toward universal forensics tools. For universal detec-
tors, the most important feature is that they can be employed
against a wide range of attacks. Thus, the three forensics detec-
tors were trained with untouched images I, and all kinds of
manipulated images I, to be powerful multiclass classifiers
that can achieve overall classification accuracies over 90%.
Then, the GAN-generated images were classified by these
general forensics detectors. Along with the overall detection
accuracy reported in Table IX, the confusion matrices based
on the classification of image patch size 256 x 256 for each
detector are shown in Tables X—XII.

It can be observed that most synthesized images are falsely
detected as original images. However, unlike the binary
classifications, for multiclass classification, the synthesized
images may also be falsely predicted as images attacked
by other manipulations. For example, the sharpened images
could be incorrectly labeled as compressed images after being

PREDICTION PRECISION OF DIFFERENT MULTICLASS
CLASSIFIERS ON IMAGES OF DIFFERENT SIZES

Classifiers 256 x 256 | 128 x 128 | 64 x 64
Rich model 6.20% 3.85% 2.52%
VGG16 8.07% 8.76% 8.68%
CCNN 4.18% 4.39% 4.15%

processed by the GAN model. Nevertheless, such results can
also be regarded as successful anti-forensics attacks because
detectors are disrupted.

Summarizing the above experiments, the proposed model
is found to be a reliable anti-forensics tool that can pro-
duce images with high quality while maintaining satisfying
undetectability.

C. Comparisons With Prior Arts

Recall that there are existing anti-forensics approaches for
median filtering and JPEG compression. In the following
experiments, we compare the performance of the proposed
model with these prior arts.

For median filtering, Kim et al.‘s method [42] is reported
as a state-of-the-art median anti-forensics model. Their work
is also based on supervised training of the GAN model.
Therefore, their model is an ideal approach to be compared
with. Validation images are generated with their model from
the identical dataset as ours to guarantee that the comparison
is fair. Here, the CCNN is trained with median filtered images
and untouched images as binary classifiers for validation. For
comparison, we also considered the effect of different param-
eters for median filtering. Hence, the comparison results for
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Manipulations GF MF AF uUsS AGN JC I,
GF 1.39% | 0.00% 6.28% 31.55% 0.00% 12.64% | 48.14%
MF 0.01% | 0.01% | 0.36% | 29.44% | 0.00% 4.15% 66.03%
AF 0.00% | 0.00% 9.72% 27.66% 0.00% 1.72% 60.90%
[SN] 0.00% | 0.00% | 0.10% | 19.18% | 0.01% 6.39% 74.42%
AGN 0.00% | 0.00% 0.00% 39.37% 0.00% 5.11% 55.52%
JC 0.83% | 0.12% | 0.03% | 26.32% | 0.00% 6.91% 65.79%
TABLE XI
CONFUSION MATRIX OF VGG16; PREDICTION (COLUMNS) VERSUS GROUND TRUTH (ROWS)
Manipulations GF MF AF US AGN JC Io
GF 7.66% | 0.52% | 0.03% 4.15% 0.00% 5.47% 82.17%
MF 1.82% | 0.55% 0.27% 4.98% 0.00% 6.25% 86.13%
AF 0.67% | 0.58% | 1.43% 3.73% 0.00% 4.08% 89.51%
usS 0.03% | 0.00% | 0.01% | 20.21% | 0.00% | 16.32% | 63.43%
AGN 0.03% | 0.12% | 0.01% | 29.16% | 0.00% | 10.75% | 59.94%
JC 1.73% | 0.03% | 0.00% | 12.45% | 0.00% | 18.57% | 67.22%
TABLE XII
CONFUSION MATRIX OF CCNN; PREDICTION (COLUMNS) VERSUS GROUND TRUTH (ROWS)
Manipulations GF MF AF us AGN JC I,
GF 5.69% | 0.07% | 0.12% 6.61% 0.00% 6.12% 81.39%
MF 0.03% | 0.22% | 0.38% 5.96% 0.03% 5.40% 88.00%
AF 1.15% | 0.79% | 0.03% 6.22% 0.00% 7.78% 84.03%
US 0.12% | 0.03% | 0.03% 9.69% 0.00% | 19.73% | 70.40%
AGN 0.01% | 0.03% | 0.00% | 26.63% | 0.03% 9.82% 63.48%
JC 1.12% | 0.66% | 0.01% | 20.57% | 0.00% 8.33% 69.31%
TABLE XIII TABLE XIV
COMPARISON RESULTS FOR ANTIFORENSICS OF MEDIAN FILTERING COMPARISON RESULTS FOR ANTIFORENSICS OF JPEG COMPRESSION
Window size Methods PSNR | SSIM VIF Precision Quality factor Methods PSNR | SSIM VIF Prescision
Kim et al.’s 28.45 | 0.870 | 0.553 4.07% Stamm et al.’s 26.74 | 0.811 | 0.598 0.13%
3x3 Proposed || 30.71 | 0.898 | 0559 | 035% 30 Luo eral’s || 30.94 | 0.901 | 0.676 | 17.43%
Kim et al’s || 24.52 | 0.741 | 0.312 | 4.52% Proposed 3115 | 0904 | 0.670 | 13.28%
5xX5H Stamm et al.’s 27.72 | 0.840 | 0.616 0.27%
Proposed 26.19 | 0.763 | 0.347 | 0.50% 50 Luo ef al.’s 32.90 | 0.920 | 0.696 | 13.21%
Proposed 33.72 | 0937 | 0.715 9.27%
Stamm et al.’s 28.55 0.859 | 0.641 0.00%
70 Luo et al.’s 34.94 0.958 | 0.728 6.55%
window sizes 3 and 5 are displayed in Table XIII with the Proposed 3547 | 0.956 | 0.730 2.26%

detection accuracy and image quality. The detection accuracy
here is the ratio of synthesized images that are classified as
median filtered images.

The experimental results demonstrate that both models
can reach quite high anti-forensibility, as the detection
performance for both is almost perfect. Under such circum-
stances, our proposed model can still outperform Kim et al.‘s
method by at least 3%. For qualities of reconstructed images,
the images synthesized with our proposed model lead the com-
petition with higher quality. It can be also observed that a
larger window size may lead to lower quality of synthesized
images. Despite that, there is not any impact on window size
that can be observed for the detection accuracy.

We follow the same pipeline to implement compar-
isons with Stamm ef al.’s method [34] and Luo et al’s
method [43] as JPEG compression anti-forensics models.
For JPEG compression, the quality factors of 30 and 70
are also considered for comparison. We still employ the

trained CCNN as our validation tool. The detection accu-
racy is still the ratio of synthesized images that are clas-
sified as compressed images. The performance, including
detection accuracy and image quality, can be found in
Table XIV.

As observed from the experimental results, Stamm et al.‘s
method can achieve the highest undetectability, that almost
all compression fingerprints left in compressed images can be
removed. However, this merit comes at the price of sacrificing
image quality. Albeit the undetectability is relatively low in
contrast to [34], the image quality can be satisfactory for the
ones synthesized by GANSs. For the performance of two GAN
models, our proposed model outperforms Luo ef al.’s method,
with slight improvements in both undetectability and image
quality for most cases.
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VI. CONCLUSION

In this article, we investigate the capability of GANs to per-
form as image anti-forensics tools. Discussions are made on
this topic after proposing a GAN model as an anti-forensics
tool. With extra supervision, the proposed ExS-GAN can
synthesize images with high anti-forensics performance. As
proved by our experiments, most synthesized images are unde-
tectable by forensic detectors regardless of whether they are
based on CNNs. In addition, the images synthesized by GANs
are also of higher quality when compared with the traditional
anti-forensics approach. Anti-forensics via GANs could be
a potentially huge threat to information security. The devel-
opment of forensic tools with higher robustness should be
encouraged against this situation.
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