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Abstract
Due to the danger of explosive, oversize and poison-induced abnormal waste and the complex
conditions in waste-to-energy power plants (WtEPPs), the manual inspection and existing waste
detection algorithms are incapable to meet the requirement of both high accuracy and efficiency.
To address the issues, we propose the Waste-YOLO framework by introducing the coordinate
attention, convolutional block attention module, content-aware reassembly of features,
improved bidirectional feature pyramid network and SCYLLA- intersection over union loss
function based on YOLOv5s for high accuracy real-time abnormal waste detection. Through
video acquisition, frame-splitting, manual annotation and data augmentation, we develop an
abnormal waste image dataset with the four most common types (i.e. gas cans, mattresses, wood
and iron sheets) to evaluate the proposed Waste-YOLO. Extensive experimental results
demonstrate the superiority of Waste-YOLO to several state-of-the-art algorithms in waste
detection effectiveness and efficiency to ensure production safety in WtEPPs.

Keywords: deep learning, object detection, waste-to-energy power plants,
abnormal waste detection, YOLOv5, production safety

1. Introduction

Waste-to-energy power plants (WtEPPs) have become a
primary method of waste disposal that addresses waste

∗
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accumulation while generating heat and electricity [1]. In
China, due to confusion in waste classification and negli-
gence by waste transfer station workers, some wastes affect-
ing production safety are often transported to WtEPPs along
with domestic waste by closed garbage trucks. The wastes
are dumped into the garbage dumps at the discharge gate,
left to ferment and awaiting incineration. Some of the unsafe
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wastes (e.g. gas cans) are explosive, some (e.g. mattresses and
wood) are too large and tend to block the incinerator open-
ing, and some (e.g. iron sheets) may melt and bind the grate
at high temperatures, causing mechanical failure of the incin-
erator and even the production of poisonous substances [2].
This paper refers to all unsafe wastes as abnormal waste. Due
to the serious impact of abnormal waste on production safety
at WtEPPs, it is crucial to detect and remove them as soon
as possible. Most WtEPPs in China use manual identification
of abnormal waste. Employees need to constantly watch for
the abnormal waste and control the waste crane to pick them
out. Since the abnormal waste is heavy and often buried by
other lighter waste, it is more suitable to detect during the fall-
ing process rather than in garbage dumps. However, due to the
high similarity of garbage objects, fast falling speed and long
sight distance, it is difficult for employees to identify abnor-
mal waste with the naked eye. Prolonged gazing can also cause
eye fatigue. As a result, the manual inspection often leads to
a high false detection rate and missed rate of abnormal waste
and cannot locate abnormal waste in time.

To address the issues of high cost, low efficiency and low
accuracy of manual inspection, waste detection techniques
have been widely applied in urban and natural scenarios.
These techniques primarily include traditional methods and
deep learning-based methods. Traditional methods employ
classical image classification algorithms [3–6] to manually
extract features at the geometric, edge and texture levels,
and then classify waste by classifiers [7]. However, these
methods are characterized by a complex process, low effi-
ciency and accuracy. The superior performance of deep learn-
ing has led to its widespread adoption in computer vision
[8, 9]. Convolutional neural networks (CNNs) have been
widely applied for waste detection. Existing object detection
algorithms can be classified into two categories: two-stage
and single-stage. The former first generates candidate regions
and then performs classification and regression on them. The
latter directly regresses the bounding boxes and class labels.
Among the two-stage algorithms, Faster region-based convo-
lutional neural networks (R-CNN) [10] is a representative one
that combines region proposal network [10] and Fast R-CNN
[11]. Nowakowski and Pamuła [12] used Faster R-CNN for
the e-waste detection with an average accuracy of over 90%.
Faster R-CNN achieves high accuracy but suffers from low
speed and poor performance on small objects. To address these
issues, single-stage algorithms such as single shot multibox
detector (SSD) [13] and you only look once: unified, real-time
object detection (YOLO) [14–19] have been developed with
higher speed but lower accuracy than two-stage algorithms.
YOLOv5 [18] is the most popular one due to its excellent
overall performance. Recently, some new variants of YOLO
such as YOLOv6 [20], YOLOv7 [21], DAMO-YOLO [22] and
YOLOv8 [23] have been proposed and improved the detec-
tion accuracy on the COCO [24] dataset. However, their per-
formance on waste detection has not been validated. Patel et al
[25] compared the waste detection capability of several detect-
ors in street scenes and found that YOLOv5 outperformed the
others. Mao et al [26] designed a YOLOv3-based detector
on a Taiwanese recycled waste dataset with high accuracy.

Li et al [27] proposed a multimodel cascaded CNN based on
SSD, YOLOv4 [17] and Faster R-CNN to reduce false pos-
itive predictions of domestic waste. However, these detect-
ors are mostly evaluated on datasets with simple backgrounds
and single objects with fixed shapes. In contrast, the waste
detection in WtEPPs faces more challenges due to the com-
plex backgrounds, overlapping objects and varying shapes and
poses of the waste in the falling process. These issues may
lead to the incapability of existing detectors in waste detec-
tion in WtEPPs. Moreover, some of these detectors have a
large number of parameters and thus may not ensure real-time
performance.

To meet the need for data-driven evaluation benchmarks
for deep detection networks, several studies have focused on
image dataset construction for waste recognition. TrashNet
[28] is the first public waste dataset and contains images
taken at Stanford University and residential areas with simple
white background. The corresponding image augmentation
was achieved by techniques such as random rotation and
brightness adjustments. GINI [29] dataset contains 2561 waste
images obtained through a combination of Bing search engine
queries and other sources. TACO [30] is an open image data-
set for waste classification, detection and segmentation tasks
with images captured in outdoor scenes. Panwar et al [31] pro-
posed the AquaTrash dataset, which consists of 369 manu-
ally annotated images covering four types of waste. Although
these datasets provide a sample base and evaluation bench-
mark for the development of waste detection, there are still
very few available waste image datasets because of the lim-
itations of relatively small size, specific scenes and non-open
source. Therefore, these datasets cannot be applied to the task
of abnormal waste detection in this paper due to the differences
in waste categories and scenes.

Since there are few studies on the abnormal waste
detection, we propose a high accuracy real-time abnormal
waste detection algorithm for WtEPPs, named Waste-YOLO.
Additionally, we analyzed and collected four types of abnor-
malwaste (i.e. mattresses, gas cans, wood and iron sheets) with
the highest frequency and quantity according to the require-
ments of a WtEPP in Changsha, China, from July 2020 to July
2022. We captured the abnormal waste images during falling
in the dumping pool to construct a dataset for neural network
training and testing. Our main contributions are summarized
as follows:

(1) An abnormal waste image dataset is constructed with 6283
images, including the four most common types of abnor-
mal waste, i.e. mattresses, gas cans, wood, and iron sheets.

(2) Different from the typical modules in YOLOv5s, we
introduce the coordinate attention (CA) and convolu-
tional block attention module (CBAM) to extract the
key features and suppress the irrelevant information,
and the content-aware reassembly of features (CARAFE)
to enhance the image definition of feature maps after
upsampling and retainmore details. Besides, we also intro-
duce and improve the bidirectional feature pyramid net-
work (BiFPN) to enhance deep feature fusion. To further
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enhance object localization accuracy and speed up bound-
ing box regression convergence, SCYLLA-intersection
over union (SIoU) is applied as the bounding box regres-
sion loss function.

(3) Based on the improved modules, we propose a novel
YOLOv5s-based framework named Waste-YOLO for
high accuracy real-time abnormal waste detection.

(4) We provide extensive experiments to evaluate our method.
Experimental results show that the proposedWaste-YOLO
framework achieves state-of-the-art detection perform-
ance in both effectiveness and efficiency on the proposed
abnormal waste dataset and several public datasets.

The rest of the paper is organized as follows. Section 2
will describe the difficulties in abnormal waste image detec-
tion. Section 3 will briefly review the YOLOv5s network.
Section 4 will introduce the Waste-YOLO framework based
on YOLOv5s. Section 5 will present the experimental settings
and results. Section 6 will summarize the paper.

2. Difficulties in abnormal waste image detection

In the early stages of unloading waste, abnormal waste may be
hidden in the garbage heap and obscured by other objects. The
conditions for capturing images are complex and various unre-
lated domestic garbage can interfere with detecting specific
targets. This means that the detection model needs to focus on
learning the features of the object to be inspected while ignor-
ing irrelevant features as much as possible. Detection must
occur during the dynamic process of waste dumping and fall-
ing, where the shape and size of waste constantly change. This
requires that the detection model have good feature extraction
and fusion capabilities. However, due to limitations in cam-
era hardware and installation position, images may be blurred
and targets may occupy a relatively small portion of images.
The environmental brightness at the waste dump is also rather
dark, which adds further difficulty to the detection task.

Owing to the intricate environmental variables present in
waste disposal sites and the distinct morphological proper-
ties of waste, difficulties arise in the detection of abnormal
waste imagery. Figure 1 illustrates the difficulties of our detec-
tion task. The images have intricate backgrounds and contain
numerous small targets such as gas cans. Accurate detection of
these small targets within a complex background and dynamic
falling process is essential. Upon zooming in, figure 1(a)
reveals apparent noise related to the camera’s focus, lens
distance, and lens surface contamination. Figure 1(b) shows
motion blur during the fall of the red mattress, resulting in
indistinct texture at its edges. In figure 1(c), the top of the wood
is obscured by the waste truck’s tailgate and overlaps with sur-
rounding garbage. The iron sheet in figure 1(d) appears as a
horizontal strip with severe deformation during its fall, los-
ing its sheet-like characteristics. Note that images in figure 1
are acquired by our designed abnormal waste dataset, which
is introduced in section 4. Initially, we selected the YOLOv5s
algorithm for study in this paper. Our experimental results

indicate that there is potential for improvement in both the
mAP and prediction box localization. To address this, we have
improved YOLOv5s by focusing on the four difficulties men-
tioned above. Subsequently, the baseline algorithm YOLOv5s
will be introduced.

3. YOLOv5s network

YOLOv5 has gained widespread use in both industry and aca-
demia due to its lightweight design, high speed and accur-
acy. There are four versions of YOLOv5 [8]: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. The smallest version
YOLOv5s has the least network depth and width with a para-
meter size of only 7.2 MB. The other three models are deeper
and wider than YOLOv5s and the largest model YOLOv5x
has a parameter size of 86.7 MB. Due to the real-time
requirements for abnormal waste detection in actual scenes,
we choose YOLOv5s as our baseline network for further
development.

Figure 2 illustrates the structure of YOLOv5s comprising
four components: input, backbone, neck, and prediction. The
input component includes mosaic data enhancement, auto-
matic anchor box calculation and adaptive image scaling. The
backbone network consists of focus downsampling, convo-
lution + batch normalization + sigmoid linear unit (CBS),
cross-stage partial (C3) module and spatial pyramid pooling
(SPP). Firstly, the focus module takes each 640 × 640 RGB
image to generate a 320 × 320 × 12 feature map through two
times downsampling, channel concatenation and convolution
operation with a 3 × 3 kernel. This module retains the most
information while using reshape operations to reduce floating
point operations (FLOPs) caused by convolution and accel-
erate the network. Next, CBS and C3 blocks are stacked to
extract low-level visual features with downsampling used to
generate feature maps at different scales. CBS comprises con-
volutional layers followed by batch normalization and sig-
moid linear unit activation functions to extract image fea-
tures through convolutional operations. Based on ResNet’s
residual connection [32], C3 consists of three CBS modules
and shortcut branches, performing better in feature extraction
than traditional convolutional layers. Finally, SPP uses a con-
volutional module to halve the number of feature channels
before applying maximum pooling with three different ker-
nels to expand the receptive field at a relatively low cost. In the
neck component, C3 further extracts high-level semantic fea-
tures before combining feature pyramid network (FPN) [33]
and path aggregation network (PANet) [34] for feature fusion
through upsampling and concatenation transmitting features
at different scales. In the prediction component, three detec-
tion heads with size 80 × 80, 40 × 40, and 20 × 20 are gen-
erated using binary cross-entropy loss with a sigmoid layer
(BCEWithLogitsLoss) as the loss function for confidence and
classification, generalized intersection over union (GIoU) [35]
as the loss function for bounding box regression; and non-
maximum suppression (NMS) algorithm to select the best pre-
diction box.
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Figure 1. Difficulties in our detection task. The red rectangles represent detection targets. (a) Image noise. (b) Motion blur. (c) Occlusion
and overlap. (d) Severe deformation.

4. Waste-YOLO framework

To address the difficulties in abnormal waste sorting for
WtEPPs, we introduce an enhanced model structure of
YOLOv5s, named Waste-YOLO. Figure 3 illustrates its net-
work structure, with detailed descriptions provided below.
The red rectangles represent our improvements compared to
YOLOv5s-v5.0.

4.1. C3 with attention mechanisms

4.1.1. C3CA. While most image classification networks
utilize convolutional layers to extract image features, these
layers primarily analyze local relationships and often fail
to establish long-distance dependencies or focus on the
most relevant targets. This becomes particularly challenging
when low-level convolutional layers concentrate on features
with local deviation, making it difficult for high-level con-
volutional layers to capture effective features representing
local information through continuous downsampling and net-
work deepening. To mitigate this issue, we introduce the
C3CA module, which embeds a CA [36] block into the C3
module.

As depicted in figure 4, the execution of CA consists of two
stages: coordinate information embedding and CA generation
[36]. Initially, the feature map undergoes coordinate inform-
ation embedding. An image X of size C×H×W is inputted,

and average pooling is employed to encode each channel sep-
arately according to horizontal and vertical coordinate direc-
tions. Consequently, the output of the Cth channel with height
h is given by equation (1):

zhc (h) =
1
W

∑
0⩽i<W

xc (h, i). (1)

Here, xc(h, i) denotes the component with coordinates (h, i)
and channel c in the input feature map, zh is the output after
average pooling along the X-axis, and zhc(h) signifies the com-
ponent in the Cth channel with height h. The output expression
of the Cth channel with width w is illustrated in equation (2):

zwc (w) =
1
H

∑
0⩽j<H

xc ( j,w). (2)

In this equation, xc( j,w) denotes the component with
coordinates ( j,w) and channel c in the input feature map, zw is
the output after average pooling along the Y-axis, and zwc (w)
signifies the component in the Cth channel with width w. As
demonstrated in equation (3), the feature maps obtained from
the two pooling operations are concatenated and subsequently
transformed using a shared 1 × 1 convolution F1 to reduce
the channel dimension. The intermediate resultm, obtained by
passing the output through a nonlinear activation layer δ(•)
using the h-swish function [37], is then produced

4



Meas. Sci. Technol. 35 (2024) 016001 H Wang et al

Figure 2. The architecture of the YOLOv5s-v5.0 method.

Figure 3. Waste-YOLO network architecture.
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Figure 4. The calculation process of the CA mechanism.

m= δ
(
F1

([
zh,zw

]))
. (3)

Subsequently, the intermediate result m is divided into two
independent tensors mh and mw along the spatial dimension.
The feature maps mh and mw are then transformed to match
the number of channels as the input X using two separate 1× 1
convolutions Fh and Fw. The sigmoid activation function σ(·)
is applied to yield the results shown in equations (4) and (5):

gh = σ
(
Fh

(
mh

))
, (4)

gw = σ (Fw (mw)) . (5)

In equations (4) and (5), gh and gw denote the attention
weight features for the X and Y coordinates, respectively. The
final output of the CA module is given by equation (6):

yc (i, j) = xc (i, j)× ghc (i)× gwc ( j) . (6)

In this equation, xc(i, j) and yc(i, j) represent the values of
the input and output featuremaps at coordinates (i, j) and chan-
nel c, respectively.

The CA block in the C3CA module encodes each chan-
nel of the input feature map along with its horizontal and ver-
tical coordinates, and then aggregates these features to gener-
ate a set of direction-aware attention maps. This allows C3CA
to accurately locate objects of interest by establishing long-
distance dependencies along one spatial direction while pre-
serving localization information along the other. Furthermore,
C3CA can efficiently capture relationships among channels.
Given that its input and output feature maps are the same size,
C3CA can be seamlessly integrated into any network.

As depicted in figure 5, the structure of C3CA includes a
Resunit block, which represents stackable residual blocks. In
the C3CA module, the input feature map is processed through
two branches: one with a CBS block and a Resunit block for
feature extraction, and the other with a CBS block for resid-
ual connection. After channel concatenation, a CBS block and
a CA block are applied to produce the output results. Given
that the CA block encodes each channel of the input feature
map in conjunction with its horizontal and vertical coordin-
ates, and subsequently aggregates these features to produce a
set of direction-aware attentionmaps, C3CA can precisely loc-
ate objects of interest by establishing long-distance dependen-
cies along one spatial direction while preserving localization

Figure 5. Structure of C3CA module.

information along the other. Moreover, C3CA can effectively
capture relationships among channels. As its input and output
feature maps are of identical size, C3CA can be seamlessly
integrated into any network. To address limitations in fea-
ture extraction using convolution operations, we incorporate
C3CA into the backbone part of YOLOv5s to capture global
information from abnormal waste images, thereby focusing on
targets and significantly minimizing interference from irrelev-
ant background information. Furthermore, the introduction of
CA during the downsampling of feature maps amplifies useful
information while suppressing noise.

4.1.2. C3CBAM. Before we delve into the C3CBAM mod-
ule, let us briefly review the CBAM [38], a lightweight atten-
tion mechanism that can be integrated into CNNs with min-
imal computational overhead. CBAM comprises a channel
attention module and a spatial attention module. The channel
attention module assigns different weights to different chan-
nels in the feature map, distinguishing those that significantly
contribute to the task and making the feature map more effect-
ive for subsequent network layers. This process is summarized
by equation (7):

Mc (F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ
(
W1

(
W0

(
Fcavg

))
+W1 (W0 (F

c
max))

)
,

(7)

where F denotes the input feature map, while Fcavg and Fcmax
represent the feature maps post average pooling and max pool-
ing, respectively.W0 andW1 symbolize the two-layer paramet-
ers in the multilayer perceptron (MLP) model. The neurons in
this two-layer neural network utilize the rectified rinear unit
activation function. σ(·) is the sigmoid function. During com-
putation, both Fcavg and Fcmax share the two-layer parameters
W0 and W1 in the MLP model.
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Figure 6. Structure of C3CBAM module.

The spatial attention module focuses on location and pixel
information, helping the model identify the target region for
learning. The channel attention module first applies global
maximum pooling and global average pooling to produce two
vectors. These vectors are then processed by anMLP layer and
a sigmoid activation function to generate the channel atten-
tion map. Subsequently, the spatial attention module uses the
channel-refined features as input and applies global maximum
pooling, global average pooling, dimension raising and reduc-
tion, and a sigmoid function to obtain the spatial feature map.
This process is shown in equation (8):

Ms (F
′) = σ

(
f7×7 ([AvgPool(F ′) ;MaxPool(F ′)])

)
= σ

(
f7×7

([
Fsavg;F

s
max

]))
, (8)

where F ′ denotes the feature map computed by the channel
attention module, while Fsavg and Fsmax represent the feature
maps post average pooling and max pooling, respectively. f7×7

symbolizes a convolution operation with a kernel size of 7× 7.
σ(·) is the sigmoid function. The channel attention map and
the spatial feature map are amalgamated to produce a mixed-
domain feature map.

In the Waste-YOLO model, the backbone part is respons-
ible for primary feature extraction, and since the neck part
does not deepen the network, residual connections in C3
blocks within the neck part are unnecessary. The model per-
forms five downsampling operations in the backbone part
and two upsampling and two downsampling operations in the
neck part, leading to a constantly changing feature map size.
However, small targets in an image can cause spatial feature
loss, and as channel numbers increase with network depth,
channel information may also be lost. Post BiFPN [39] fea-
ture fusion, the data becomes more abstract and if feature loss
is not suppressed in time, accuracy may decrease. To mitigate
this issue, we introduce CBAM into C3 to create the C3CBAM
module (as shown in figure 6), which is placed after BiFPN–
Concat layers. This allows CBAM to enhance focus on import-
ant channel and spatial features, suppress irrelevant regions,
and reduce image feature loss.

4.2. Improvement of upsampling layer

Most object detection algorithms employ nearest-neighbor
interpolation for upsampling. Despite its high speed and low
computational overhead, this method often leads to signi-
ficant feature loss and reduced detection accuracy for small
targets. Given that our dataset comprises blurry images and
small targets, it is crucial to preserve more features during
the upsampling process. To tackle this challenge, Waste-

YOLO incorporates CARAFE [40] to enhance image defin-
ition post-upsampling. As depicted in figure 7, the structure
of CARAFE primarily consists of two components: the kernel
prediction module and the content-aware reassembly module.

In the kernel prediction module, the channel of an H×
W×C input feature map is initially compressed from C to
Cm using a 1 × 1 convolution. Assuming that the upsampling
size is Kup ×Kup, and a unique upsampling kernel is util-
ized for each position of the output feature map, the size of
the predicted upsampling kernel is σH×σW×Kup ×Kup. For
the compressed input feature map from the initial step, an
upsampling kernel is predicted via a Kencoder ×Kencoder convo-
lutional layer with an input channel of Cm and an output chan-
nel of σ2K2

up. The channel dimension is subsequently expan-
ded in the spatial dimension to yield an upsampling kernel with
a shape of σH×σW×K2

up. Finally, this kernel is normalized
by a softmax function such that the weighted sum of its ele-
ments equals 1.

In the content-aware reassembly module, each position
in the output feature map is mapped back to its corres-
ponding position in the input feature map. A Kup ×Kup area
centered on this position is extracted and dot-multiplied with
its corresponding predicted upsampling kernel to finalize
upsampling and generate an output featuremapwith a shape of
σH×σW×C.

Compared to nearest neighbor and bilinear interpolation
methods, CARAFE significantly enhances performance on
various tasks with minimal computational overhead [40].

4.3. Improved feature fusion network

In CNNmodels, feature maps in shallow layers undergo fewer
downsampling operations compared to those in deep lay-
ers. Consequently, shallow layer feature maps possess higher
resolution and retain richer texture information. Conversely,
deep-layer feature maps have lower resolution due to more fre-
quent downsampling but encapsulate richer semantic inform-
ation. However, due to variations in camera focal length and
shooting angle, the scale of abnormal waste can vary signific-
antly. Single-layer CNN feature representation and the trans-
lation invariance of CNN can cause the model to lose position
information. As a result, multi-scale feature representation and
fusion are indispensable.

Feature fusion networks have witnessed significant devel-
opment in recent years. To tackle the limitation of one-way
feature flow in FPN’s [33] top-down path, PANet [34] intro-
duces an additional bottom-up path. Building on this, BiFPN
[39] employs bidirectional cross-scale connections while sim-
plifying the network by eliminating nodes with only one input
edge.

Therefore, we propose an enhanced BiFPN network as the
feature fusion network in Waste-YOLO, replacing the PANet
in YOLOv5. Figure 8(b) illustrates this enhanced BiFPN net-
work, and figure 8(a) displays the PANet connections used
in YOLOv5s for comparison purposes. Feature fusion is
expressed using the equation: feature= [f1; f2; f3], where ‘;’
denotes splicing by channel dimension and f1, f2, f3 symbolize
three feature maps within a feature fusion network. The res-
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Figure 7. Structure of CARAFE.

ulting feature map used for subsequent transfer post-fusion is
denoted by feature. In figure 8, Ci, Fi, and Pi signify feature
maps generated at different stages of the network. P4 is pro-
duced by concatenating downsampled features of P3, C4, and
F4 along the channel dimension. This process is illustrated in
equation (9), where we represent the C3CBAM operator as a
function F and Downsample refers to double downsampling
achieved through convolution operations. Similarly, the gen-
eration process P3 is illustrated in equation (10):

P4 = F([Downsample(P3) ;F4;C4]) , (9)

P3 = F(F3;C3) . (10)

Unlike the BiFPN in EfficientDet [39], Waste-YOLO
employs C3CA and CARAFE for feature processing instead
of traditional convolutional layers. We have designed a novel
Concat layer, christened as BiFPN–Concat, by integrating
the characteristics and advantages of the original BiFPN.
BiFPN–Concat is applied within Waste-YOLO, replacing the
four Concat layers in YOLOv5s. Unlike Concat, which dir-
ectly concatenates feature channels, BiFPN accomplishes fea-
ture fusion by adding weighted features to the feature chan-
nels. If the size and channel number of the input feature
map and output feature map are identical, BiFPN–Concat
can fuse the features of both, sharing a convolution ker-
nel. As depicted in the neck section in figure 3, the second
BiFPN–Concat from the top has an additional edge con-
nected to backbone’s C3CA, achieving the fusion of shal-
low and deep features. We introduce learnable weights for
each input of BiFPN–Concat to ascertain the significance of
different input features and employ the stochastic gradient

Figure 8. Feature fusion network of YOLOv5s and Waste-YOLO.

descent (SGD) optimization method for backpropagation to
update weights during network training. This is a capability
that the Concat layer lacks. Compared to Concat, BiFPN–
Concat not only reduces computational overhead and sup-
ports feature fusion of a larger number of feature maps,
but also distinguishes the importance of different input fea-
tures. Therefore, introducing BiFPN–Concat enhances cross-
scale feature fusion and enriches both positional and semantic
information across different scales.
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4.4. Loss function

The loss function of Waste-YOLO is composed of three com-
ponents: confidence loss (lconf), category loss (lcls), and bound-
ing box regression loss (lbox). The corresponding equations are
as follows:

Loss= lconf + lcls + lbox, (11)

lconf = λobj

S2∑
i=0

B∑
j=0

Iobjij

[
−Ĉi lnCi−

(
1− Ĉi

)
ln(1−Ci)

]

+ λnobj

S2∑
i=0

B∑
j=0

Inobjij

[
−Ĉi lnCi−

(
1− Ĉi

)
ln(1−Ci)

]
,

(12)

lcls =
S2∑
i=0

B∑
j=0

∑
c∈cls

Iobjij [−p̂i (c) ln(pi (c))

−(1− p̂i (c)) ln(1− pi (c))] . (13)

In equations (11)–(13), s2 signifies the number of grid cells,
and B denotes the number of predicted bounding boxes within
each grid cell. The binary variables Iobjij = 1 and Inobjij = 1 indic-
ate whether the jth bounding box in the i th grid cell is respons-
ible for predicting an object or not, respectively. λobj and
λnobj are the corresponding weight coefficients. Ci and Ĉi
represent the confidence scores of the predicted and actual
targets, respectively. c represents the predicted category of
the bounding box. pi(c) and p̂i(c) denote the predicted and
actual probabilities that a detected object belongs to category
c, respectively.

YOLOv5s employs the GIoU loss function as its bounding
box regression loss function. This function measures the devi-
ation in position between the target and predicted boxes, as
expressed in equation (14):

LGIoU = 1− IoU+
C− (A∪B)

C
. (14)

In equation (14), A represents the target box, and B denotes
the predicted box. IoU is the ratio of the intersection area to
the union area of these two boxes. C signifies the area of the
smallest enclosing region that contains both boxes. According
to equation (14), when the predicted box and target box do not
overlap, the intersection over union (IoU) value is always zero.
However, gradient regression can still be performed. When
two boxes have overlapping regions, their IoU value may be
identical but may not accurately reflect the degree of over-
lap between them. GIoU considers not only overlapping areas
but also non-overlapping areas, providing a more accurate rep-
resentation of the degree of coincidence between two boxes.
This addresses having identical values but different regression
effects for the predicted box. However, when a target box
completely encloses a predicted box, GIoU cannot distinguish
their relative positions and cannot provide an effective optim-
ization direction.

To address these issues, a more advanced loss func-
tion called complete-IoU (CIoU) [41] has been proposed.
Compared to GIoU, CIoU introduces the aspect ratio of a
bounding box and performs regression based on overlapping
area, center point distance, and aspect ratio between a pre-
dicted box and a target box.

However, CIoU does not consider mismatch angles
between a target box and a predicted box. As a result, we intro-
duce SIoU loss [42] as the lbox of Waste-YOLO. SIoU loss
comprises angle cost (Λ), distance cost (∆), shape cost (Ω),
and IoU cost. The formulas for SIoU loss are defined below.
Unlike CIoU, SIoU incorporates angular calculations between
a target and predicted boxes, which accelerates network con-
vergence.

LSIoU = 1− IoU+
∆+Ω

2
, (15)

Λ = 1− 2 · sin2
(
arcsin(x)− π

4

)
, (16)

∆=
∑
t=x,y

(
1− e−(2−Λ)ρt

)
, (17)

Ω=
∑
t=w,h

(
1− e−ωt

)θ
. (18)

5. Experiments and discussions

5.1. Experimental settings

5.1.1. Evaluation indicators. We evaluate the performance
of our model using both qualitative and quantitative meth-
ods. Qualitative evaluation involves assessing the visible res-
ults produced by the model based on images. For quantitat-
ive evaluation, we use metrics such as mean average precision
(mAP), mAP(0.5:0.95), parameter size, Giga Floating Point
Operations (GFLOPs), and graphic processing unit (GPU)
inference time. Parameter size and GFLOPs are calculated
using the thop and torchsummary Python packages. mAP rep-
resents the average precision (AP) when the IoU threshold is
0.5 and reflects the model’s recognition ability. mAP(0.5:0.95)
represents the average mAP value when the IoU threshold
varies from 0.5 to 0.95 in increments of 0.05 and is used to
evaluate localization performance and bounding box regres-
sion capability. The calculation of mAP involves precision and
recall values. The GPU inference time reflects the speed at
which our model can process a single frame, encompassing
pre-processing time, inference time, and NMS processing
time. Parameter size and GFLOPs serve as indicators of model
complexity and are defined as follows:

Precision=
TP

TP+FP
, (19)

Recall=
TP

TP+FN
, (20)
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AP=

1ˆ

0

P(R)dR, (21)

mAP=

N∑
i=1

APi

N
. (22)

In equations (19)–(22), TP denotes the number of predicted
bounding boxes with an IoU value greater than or equal to the
preset threshold. FP signifies the number of predicted bound-
ing boxes with an IoU value less than the preset threshold. FN
represents the number of missed targets. P and R symbolize
precision and recall, respectively. N indicates the number of
categories.

5.1.2. The establishment of abnormal waste image dataset

5.1.2.1. Dataset collection. The abnormal waste image data-
set was collected and organized from a WtEPP located in
Changsha, China between July 2020 and July 2022. With sig-
nificant practical implications, the dataset can provide data
support and industry references for relevant enterprises to
identify abnormal waste and promote the digital construc-
tion of intelligent factories. Four HuaweiM6721-E-Z31 spher-
ical network cameras are installed inside the garbage yard
as part of an abnormal waste detection system to record the
dumping waste from an unloading door. Two of them are
set on the wall opposite the garbage discharge door to mon-
itor ten discharge doors and the other two are installed on
the side of the yard. The camera frame rate is set to 25
frames per second with a shutter speed of 1/50 s, allowing
for real-time capture of the entire dynamic process of abnor-
mal waste dumping at a high frame rate. The collected video
is in mp4 format with a frame width of 1920, frame height
of 1080 and frame rate of 60 frames per second to capture
the movement of abnormal waste. Videos containing abnor-
mal waste are manually screened and intercepted before being
processed into individual images through post-framing pro-
cessing. The dataset contains four categories: mattress, gas
can, wood and iron sheet. The initial dataset includes 1898
images which are divided into training (1328 images with
1469 labels) and test (570 images with 630 labels) sets using a
ratio of 7:3.

5.1.2.2. Dataset labeling. Different deep neural networks
require input data in specific formats. For object detection
tasks, the PASCAL visual object classes (VOC) data format
is commonly used for manual labeling of datasets because it is
widely recognized and easily convertible to other formats. In
this study, we use LabelImg software to manually label abnor-
mal waste images in the PASCAL VOC format to meet the
requirements of various models for comparative experiments.
The label box parameters in the PASCALVOC format include
xmin, ymin, xmax, and ymax, representing the x- and y-coordinates
of the upper left and lower right vertices of the target. However,
YOLOv5 andWaste-YOLOdo not support input parameters in

Table 1. The number of abnormal waste image dataset training set
labels before and after data augmentation. Original is the original
training set. DataAug is the training set after data augmentation.

Training set Mattress Gas can Wood Iron sheet Total

Original 547 398 406 118 1469
DataAug 2113 2255 2164 354 6886

Table 2. The number of abnormal waste image dataset test set
labels.

Mattress Gas can Wood Iron sheet Total

Test set 239 184 166 41 630

this format and require conversion to YOLO format. The label
box parameters in YOLO format include xcenter, ycenter, w, and
h, representing normalized values for the x- and y-coordinates
of the target center point location and the width and height
of the label box, respectively. The conversion process from
PASCAL VOC to YOLO format is defined by equations (23)–
(28), where width and height denote the width and height of
the image, respectively

x ′center =
xmax − xmin

2
+ xmin, (23)

y ′center =
ymax − ymin

2
+ ymin, (24)

xcenter =
x ′center
width

, (25)

ycenter =
y ′center
height

, (26)

w=
xmax − xmin

width
, (27)

h=
ymax − ymin

height
. (28)

5.1.2.3. Dataset augmentation. To improve model gener-
alization ability, we use four data augmentation methods as
below to expand the number of training images to 5713 (6886
labels). Table 1 shows the number of labels in the training set
before and after data augmentation. Table 2 presents the num-
ber of labels in the test set.

• Random channel swap: the RGB channels of the image
are randomly swapped according to a transformation mat-
rix with a probability of 1.

• Random horizontal flip: the image is randomly flipped hori-
zontally with a probability of 1.

• Random rotation: The image is rotated randomly by a degree
chosen uniformly from the interval (10, 90).

• Random crop: the image is randomly cropped according to
the size of its bounding boxes with a probability of 1.

10
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Table 3. Experimental environment configuration.

Hardware and software Name

Operating system Windows 10 64 bit
Central processing unit Intel Core i9-10900 K 3.70 GHz
Graphic processing unit NVIDIA GeForce RTX 3090
Random access memory 32.0 GB
Programming language Python 3.8.12
Compiling software PyCharm 2021.1.1
Deep learning dependency Pytorch 1.9.0 + torchvision

0.10.0 + cudatoolkit 11.1.1

Table 4. The primary hyperparameter values of Waste-YOLO.

Hyperparameter Value

Initial learning rate (lr0) 0.01
Final OneCycleLR learning rate (lrf ) 0.01
SGD optimizer momentum 0.937
Optimizer weight_decay 0.0005
Warmup epochs 3.0
Warmup initial momentum 0.8
Warmup initial bias lr 0.1
IoU threshold during training 0.20
Box loss gain 0.05
Cls loss gain 0.5
Obj loss gain 1.0

5.1.3. Parameter settings

5.1.3.1. Environment configurations and hyperparameter set-
tings. The software and hardware configurations for all
experiments are shown in table 3. All experiments use
the same environment configuration and dataset. During
training, the input image size is 640 × 640, the batch
size is 16 and the number of epochs is 300. The SGD
optimizer is used to iteratively update the network para-
meters. YOLOv5s serves as the baseline model. Waste-
YOLO follows the hyperparameters and values established by
YOLOv5. The primary hyperparameter values are shown in
table 4.

5.1.3.2. Learning rate adjustment. We use the warmup
method to preheat and periodically adjust the learning rate. At
this stage, the learning rate for each iteration is updated until
0.1 using one-dimensional linear interpolation. After that, the
learning rate is updated by the cosine annealing algorithm, and
finally drops to 0.0001 (lr0× lrf ). The change in learning rate
during training is shown in figure 9.

5.2. Experimental results on the abnormal waste image
dataset

5.2.1. Data enhancement experiments. To evaluate the
effectiveness of the data augmentation operation described in
this paper, we train YOLOv5s using both the original and
data-augmented abnormal waste image dataset training sets
and then validate their performance on the abnormal waste

Figure 9. Change in learning rate during training.

Figure 10. Variation curves for box loss values across different
bounding loss functions in data enhancement experiments.

image dataset test set. The corresponding results are presen-
ted in figure 10 and table 5.

As presented in table 5, we conducted experiments using
the baseline model YOLOv5s with three different loss func-
tions: SIoU loss, GIoU loss (the default lbox in YOLOv5) and
CIoU loss. The average accuracy by three loss functions on
the data-augmented abnormal waste image dataset was signi-
ficantly higher than that on the original abnormal waste image
dataset. The mAP and mAP(0.5:0.95) increase by 1.6% and
5.7%, respectively, for both GIoU loss and CIoU loss, and by
1.4% and 5.6%, respectively, for SIoU loss. This fully demon-
strates the effectiveness of the data enhancement methods used
in this paper. Since SIoU considers the vector angle between
the target box and the prediction box, it achieved the highest
average accuracy in our experiment. On the data-augmented
abnormal waste image dataset, SIoU loss surpasses GIoU loss
and CIoU loss by 0.5% and 0.2% in mAP, respectively, and
by 0.7% and 0.3% in mAP(0.5:0.95), respectively. In terms
of inference speed, SIoU loss was slightly faster than both
GIoU loss and CIoU loss. These results indicate that SIoU loss
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Table 5. Data enhancement experiments result on the abnormal waste image dataset test set using YOLOv5s. Original and DataAug,
represent the original training set and the training set after data augmentation, respectively.

Model Dataset Bounding box regression loss mAP(0.5) mAP(0.5:0.95) Speed-GPU (ms) Params (106) FLOPs (G)

YOLOv5s

Original
GIoU 92.1% 68.9% 14.6

7.072 16.4

CIoU 92.4% 69.3% 14.4
SIoU 92.8% 69.7% 14.3

DataAug
GIoU 93.7% 74.6% 14.5
CIoU 94.0% 75.0% 14.4
SIoU 94.2% 75.3% 14.3

Table 6. Ablation experiments result on the abnormal waste image dataset test set. ‘+’ represents adding modules based on YOLOv5s.
Data for the proposed Waste-YOLO model is bolded.

Model mAP(0.5) mAP(0.5:0.95) Params (106) FLOPs (G) Speed-GPU (ms)

YOLOv5s 94.2% 75.3% 7.072 16.4 14.3
+C3CBAM 95.2% 75.7% 7.090 16.4 17.4
+C3CA 94.7% 75.9% 7.107 16.5 15.5
+CARAFE 95.6% 77.4% 7.205 16.9 15.1
+BiFPN 94.2% 74.3% 8.139 17.8 14.7
+C3CA + BiFPN 95.0% 76.1% 8.175 17.8 16.1
+C3CBAM + CARAFE 95.7% 77.4% 7.224 16.9 16.6
+C3CA + C3CBAM + BiFPN 95.3% 76.6% 8.194 17.9 17.2
Waste-YOLO 96.2% 77.4% 8.328 18.4 18.1

has better bounding box regression capability than both GIoU
loss and CIoU loss while having minimal impact on inference
speed when used with the YOLOv5s model.

Figure 10 illustrates the training progress of six mod-
els listed in table 5 by displaying their bounding box loss
curves. As can be seen from figure 10, the models trained
on both datasets eventually converge. For the models trained
on the original abnormal waste image dataset, the final
loss value was around 0.026. For the models trained on
the data-augmented abnormal waste image dataset, the final
loss value was reduced to 0.02. Thus, a larger amount of
data can help YOLOv5s fit better during training. Moreover,
with lower bounding box regression loss and less oscilla-
tion during training, SIoU loss outperforms GIoU loss and
CIoU loss.

Overall, these results demonstrate the effectiveness of data
augmentation and SIoU loss’s superior localization accur-
acy. Thus, we choose SIoU as the lbox of Waste-YOLO and
data-augmented abnormal waste image dataset in subsequent
experiments.

5.2.2. Ablation experiments. To test the effectiveness of
each proposed module, we conduct the ablation experiments
presented in table 6, figures 11–13.

In table 6, YOLOv5s+ C3CBAM and YOLOv5s+ C3CA
increase the mAP of YOLOv5s by 1.0% and 0.5%, respect-
ively, and the mAP(0.5:0.95) by 0.4% and 0.6%, respectively.
This demonstrates that the attention mechanism can help the
model focus on practical feature information and enhance
CNN’s feature extraction ability. YOLOv5s + CARAFE
surpasses YOLOv5s by 1.4% in mAP and 2.1% in

mAP(0.5:0.95), proving that CARAFE can enhance the defini-
tion of upsampling feature maps compared to nearest neighbor
interpolation, thereby significantly improving model accur-
acy. The YOLOv5s + BiFPN decreases the mAP(0.5:0.95)
of YOLOv5s by 1.0%. We believe this is because YOLOv5s’
backbone network is not processed, resulting in some irrel-
evant features being redundant and key features being fur-
ther lost after neck feature fusion, affecting BiFPN weight
training effectiveness. However, when BiFPN is used alone
with CA and CBAM, both mAP@0.5 and mAP(0.5:0.95)
are improved. This shows that CA enhances the extraction
of critical information during feature extraction and CBAM
further filters out redundant and irrelevant information in
channels and spatialities during feature fusion. Ultimately, the
embedding of CA and CBAM enables BiFPN to optimize its
neurons’ weights and biases to better values using the SGD
optimizer during the back-propagation phase of training. The
proposed Waste-YOLO network performs the best by exceed-
ing YOLOv5s by 2.0% in mAP and 2.1% in mAP(0.5:0.95).
In terms of the number of parameters, the introduction of
BiFPN increases far more than the introduction of CBAM,
CA, and CARAFE. Overall, Waste-YOLO has 17.76% more
parameters and 12.19% more GFLOPs than YOLOv5s with
an inference speed only 3.8 ms slower. In summary, although
the proposed Waste-YOLO slightly increases complexity and
inference time, it significantly improves mAP. Figure 11
shows the change curve of mAP values with epoch during the
training process of each model in table 6. The results demon-
strate that Waste-YOLO outperforms YOLOv5s in detection
accuracy, exhibiting the highest mAP and mAP(0.5:0.95).
Waste-YOLO improves mAP and mAP(0.5:0.95) via the
positive aggregation and reorganization of channels and
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Figure 11. Results of ablation experiments for each model on the testing set.

spatial features facilitated by C3CA and C3CBAM, the
enhancement of feature map resolution and receptive field
brought about by CARAFE, and the balance of semantic
and spatial information of features maintained by BiFPN.
Additionally, the SIoU loss function contributes to a lower
prediction box localization error. In summary, Waste-YOLO
focuses more on abnormal waste features than the competing
methods.

Figure 12 depicts a visual comparison of detection effects
between Waste-YOLO and YOLOv5s. We randomly choose
one image from each of the four categories in the abnor-
mal waste test set for detection. Waste-YOLO can accurately
detect all targets with higher accuracy than YOLOv5s, indic-
ating that its ability to detect abnormal waste is stronger.
As shown in figure 12(d), Waste-YOLO’s predicted box is
better suited to the target, further demonstrating the super-
ior bounding box regression ability of SIoU compared to
GIoU loss.

In figure 13, we employ Grad-CAM [43] to compare the
heatmaps of Waste-YOLO and YOLOv5s. The redder regions
in the image indicate a higher network response and contri-
bution, signifying the importance of each location for detec-
tion. Compared to Waste-YOLO, YOLOv5s disperses more
attention on unrelated regions. This demonstrates that CA and
CBAM can help Waste-YOLO focus more on critical feature
information of actual objects than YOLOv5s, thus improving
the detection accuracy.

5.2.3. Algorithm comparisons. In this experiment, we com-
pare Waste-YOLO with 11 popular and different types of
object detection algorithms in terms of quantitative and
qualitative evaluation. All algorithms are trained using the
scratch training strategy (without pre-trained weights) to
ensure fairness. The results are presented in table 7 and
figure 14.

In table 7, Waste-YOLO performs the best in mAP and
second in mAP(0.5:0.95) following YOLOv8n. The single-
frame inference speed of Waste-YOLO is fast enough to meet
the real-time requirements of the WtEPP where abnormal
waste data was collected for this study. Furthermore, its accur-
acy surpasses other mainstream object detection algorithms
from the same period and exceeds that of subsequently
released algorithms such as YOLOv7-Tiny, YOLOv6n, and
DAMO-YOLO-T.

For visual evaluation, we implement Faster-R-CNN,
EfficientDet-D1, YOLOv8n, and our proposed Waste-YOLO
(the top four models ranked by mAP in table 7) on two abnor-
mal waste images randomly selected from the test set fea-
tured occlusion and severe deformation during falling. As
shown in figure 14, Waste-YOLO has the best detection res-
ults. It detects an iron sheet and a mattress with the highest
probabilities of 0.85 and 0.93, respectively. This superior
performance can be attributed to several factors: The intro-
duction of CA and CARAFE maximizes information about
target areas and CBAM further filters background informa-
tion; deep feature fusion by BiFPN allows Waste-YOLO to
effectively complete detection on abnormal waste. Although
YOLOv8n has the highest mAP(0.5:0.95) in table 7, its detec-
tion performance is not as good as Waste-YOLO in terms
of visual evaluation. Specifically, YOLOv8n has a lower
detection probability of iron sheets and matrices compared
to Waste-YOLO. Additionally, during the detection of iron
sheet images, YOLOv8n produces overlapping prediction
boxes with inaccurate positioning.

5.2.4. Experiments with imbalanced data. Focal loss (FL)
[44] was developed to address the issue of imbalanced pos-
itive and negative samples and complex samples. Based on
FL, quality focal loss (QFL) [45] addresses FL’s limitation
of only supporting discrete labels and varifocal loss (VFL)
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Figure 12. Comparison of detection effects between YOLOv5s (left) and Waste-YOLO (right) for each group of images.

Figure 13. Comparison of heat maps of Waste-YOLO and YOLOv5s.

Table 7. Comparison of different networks’ performance on the abnormal waste image dataset test set. Data for the proposed Waste-YOLO
model is bolded.

Method mAP(0.5) mAP(0.5:0.95) Params (106) FLOPs (G) Speed-GPU (ms)

YOLOv8n 95.9% 81% 3.012 8.2 16.5
YOLOv7-Tiny 94.20% 75.2% 6.023 13.2 13.65
YOLOv6n 94.00% 74.3% 4.3 11.1 17.29
DAMO-YOLO-T 92.40% 73.5% 8.57 18.25 20.32
YOLOX-s 94.05% 72.7% 8.939 26.642 29.29
SSD 60.87% 30.2% 3.941 6.042 16.74
YOLOv4-Tiny 84.42% 50.7% 5.881 16.157 18.47
CenterNet 89.42% 61.0% 32.665 109.338 31.72
Faster-R-CNN 95.65% 64.0% 28.306 946.508 61.49
EfficientDet-D1 95.81% 72.5% 6.557 11.205 57.61
YOLOv3-Tiny 88.10% 62.7% 8.677 12.9 9.72
Waste-YOLO 96.2% 77.4% 8.328 18.4 18.1
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Figure 14. Comparison of detection effects of four algorithms ranking the top four in mAP.

Table 8. Results of focal loss family experiment on the abnormal waste image dataset test set.

Model Classification and confidence loss mAP(0.5) mAP(0.5:0.95) Params (106) FLOPs (G) Speed-GPU (ms)

Waste-YOLO

FL 93.1% 75.9%

8.328 18.4

18.4
QFL 93.4% 76.3% 18.5
VFL 94.3% 76.8% 18.7
BCEWithLogitsLoss 96.2% 77.4% 18.1

[46] integrates object confidence and localization accuracy
into detection scores.

In our dataset, there is an imbalance in the number of labels
between iron sheets and the other three types of targets. As a
result, we replace the classification loss and confidence loss
BCEWithLogitsLoss of Waste-YOLO with one from the FL
family to explore whether this could improve model perform-
ance. The results of these experiments are presented in table 8
and figure 15.

In table 8, with the help of BCEWithLogitsLoss, Waste-
YOLO achieves the best results on all the metrics. Figure 15
presents the classification loss and confidence loss for these
loss functions during training and validation. It can be seen
that the BCEWithLogitsLoss value goes higher than VFL, FL
and QFL. Furthermore, FL, QFL and VFL converge at earlier
epochs and their curves were smoother than BCEWithLogits.
These results demonstrate that while members of the FL fam-
ily converged faster than BCEWithLogitsLoss their accur-
acy and speed were not as good. This is because [44–46]
were tested on the COCO dataset, which is much larger than
our abnormal waste image dataset. It is considered that the
small size of our dataset prevented us from fully utilizing the

advantages of members of the FL family, which were designed
to balance various APs rather than improve the final mAP.

In conclusion, BCEWithLogitsLoss is more suitable for
Waste-YOLO to implement detection on the abnormal waste
image dataset.

5.3. Experimental results on public datasets

To further verify the universality ofWaste-YOLO, we test it on
two public datasets: PASCAL VOC [47] and VisDrone2021
[48]. The PASCAL VOC dataset consists of VOC2007 and
VOC2012 and contains 16 551 training images and 4952 test
images. The VisDrone2021 dataset is used for object detec-
tion and tracking in visual data obtained from aerial drones.
It includes ten categories with 6471 training images, 548 val-
idation images, and 1610 test images. These images feature
many dense and small targets. For our tests, we combined the
validation and test sets into one.

Table 9 presents the results of Waste-YOLO compared to
12 other models on the PASCAL VOC dataset and the results
compared to YOLOv5s on the VisDrone2021 dataset. In terms
of mAP and mAP(0.5:0.95), Waste-YOLO improves upon
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Figure 15. Curves of loss values for different classification and confidence loss functions during training and validation.

YOLOv5s by 2.0% and 3.4%, respectively, on the PASCAL
VOC dataset, and by 0.9% and 0.4%, respectively, on the
VisDrone2021 dataset, with only a 1.4 ms slower single-frame
detection speed. Tables 10 and 11 provide detailed single-
class AP comparison results of our method and YOLOv5s
for all categories on the PASCAL VOC2007 test set and
VisDrone2021 test set, respectively. As can be seen, the AP
results of Waste-YOLO are higher than those of YOLOv5s
on almost all categories. Therefore,Waste-YOLOoutperforms
YOLOv5s in terms of quantitative evaluation on the two public
datasets.

Figures 16 and 17 compare the visual performance of
Waste-YOLO with YOLOv5s on the PASCAL VOC and
VisDrone2021 test sets, respectively. For simple scenes with
large objects in figures 16(a) and (b), Waste-YOLO obtains
higher detection accuracy than YOLOv5s. This indicates
that Waste-YOLO can effectively detect ordinary objects.
For scenarios with dense and similar targets in figure 16(c),

YOLOv5s detects only a few sheep in the front while miss-
ing others while Waste-YOLO accurately identifies not only
all sheep in the front but also the small sheep in the distance.

This demonstrates that Waste-YOLO has a higher recog-
nition recall rate and better detection ability for small tar-
gets. As shown in figure 16(d), Waste-YOLO can yield more
accurate frames to detect more boats than YOLOv5s. This
further proves that SIoU loss has better bounding box pos-
itioning ability than GIoU loss. In figures 17(a) and (b),
Waste-YOLO successfully detects an occluded white truck
on the left side and two highly-overlapped trucks on the
upper right and several densely-overlapped motorbikes in the
central region, while YOLOv5s fails to do so. In addition,
Waste-YOLO identifies more pedestrians and vehicles in the
distance than YOLOv5s. The results indicate that our pro-
posedWaste-YOLO has better detection in both occlusion and
overlapping conditions and excels at detecting small dense
objects.
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Table 9. Performance of different models on PASCAL VOC07 + 12 and VisDrone2021. Data for the proposed Waste-YOLO model is
bolded.

Dataset Method Epoch mAP(0.5) mAP(0.5:0.95) Params (106) FLOPs(G) Speed-GPU (ms)

VOC07 + 12

YOLOv5s 150 71.5% 44.0% 7.115 16.5 9.1
YOLOv8n 150 73.2% 51.5% 3.015 8.2 11.7
YOLOv7-Tiny 150 70.7% 43.9% 6.066 13.3 7.65
YOLOv6n 150 70.0% 46.8% 4.3 11.1 9.92
DAMO-YOLO-T 150 66.2% 41.9% 8.64 18.46 21.27
YOLOX-s 150 72.3% 44.7% 8.945 26.676 15.91
SSD 150 49.63% 20.4% 6.071 7.297 14.24
YOLOv4-Tiny 150 50.6% 21.9% 5.918 16.216 6.54
CenterNet 150 46.2% 26.4% 32.688 109.563 13.82
Faster-RCNN 150 65.9% 36.5% 28.47 946.705 40.73
EfficientDet-D1 150 55.1% 31.5% 6.57 11.423 51.90
YOLOv3-Tiny 150 49.7% 22.2% 8.714 13.0 6.5
Waste-YOLO 150 73.5% 47.4% 8.371 18.5 13.9

VisDrone2021
YOLOv5s 300 28.3% 14.5% 7.088 16.5 17.1
Waste-YOLO 300 29.2% 14.9% 8.344 18.4 18.5

Table 10. Single-class AP results on the VOC07 + 12 test set.

Category YOLOv5s Waste-YOLO

Airplane 81.1 85.1
Bicycle 78.7 81.2
Bird 68.4 69.3
Boat 57.4 62.6
Bottle 56.9 57.5
Bus 76.4 79.2
Car 83.5 84.0
Cat 79.3 82.7
Chair 57.0 55.9
Cow 81.5 83.0
Dining table 65.5 65.6
Dog 72.8 76.3
Horse 82.3 83.7
Motorbike 79.7 80.3
Person 81.4 82.1
Potted plant 46.6 47.4
Sheep 71.8 72.7
Sofa 62.0 65.3
Train 80.0 81.2
TV monitor 75.1 75.3

Table 11. Single-class AP results on the VisDrone2021 validation + test set.

Category YOLOv5s Waste-YOLO

Pedestrian 27.4 28.0
People 20.8 21.8
Bicycle 7.83 9.09
Car 68.6 69.2
Van 30.1 31.2
Truck 25.9 26.8
Tricycle 14.7 15.3
Awning-tricycle 10.7 11.3
Bus 48.9 49.9
Motor 28.9 29.8
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Figure 16. Comparison of detection effects between YOLOv5s (left column) and Waste-YOLO (right column) on the VOC test set. Red
arrows indicate areas of comparison.

According to the blurred image in figure 17(c), YOLOv5s
not only fails to detect several pedestrians on the left and three
side-by-side pedestrians below but also incorrectly identifies a
bin at the bottom as a pedestrian, while Waste-YOLO detects
more actual pedestrians.

In summary, Waste-YOLO has stronger feature extraction
ability for blurry images than YOLOv5s with higher accur-

acy and recall. By introducing SIoU loss, our proposed model
considers factors such as overlapping area, center point dis-
tance and aspect ratio similarity between target and prediction
boxes to improve network regression accuracy and enhance
sensitivity to small objects. As such, our model’s bounding
box detection effect is more aligned with actual targets than
that of YOLOv5s.
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Figure 17. Comparison of detection effects between YOLOv5s (left column) and Waste-YOLO (right column) on the VisDrone2021 test
set. Red arrows indicate areas of comparison.

6. Conclusion

This paper presents Waste-YOLO, a novel YOLOv5s-based
detection framework for real-time abnormal waste detection
in complex backgrounds with high accuracy. The framework
incorporates CA and CBAM blocks at the end of the C3 mod-
ule to enhance the attention mechanism and filter out irrelev-
ant features such as background and noise. It also employs
CARAFE to increase the resolution of feature maps after
upsampling and an improved BiFPN network to strengthen
feature fusion between consecutive layers. Furthermore, it
adopts SIoU as the bounding box loss function to improve the
localization and regression of predicted boxes. To assess the

performance of Waste-YOLO, we have developed an abnor-
mal waste image dataset comprising four common types: mat-
tresses, gas cans, wood, and iron sheets. We have conducted
extensive experiments on this dataset and several public data-
sets. The quantitative results show that Waste-YOLO achieves
significant improvement in detection accuracy over YOLOv5s
with a slight efficiency trade-off. The qualitative results also
confirm the superior detection effect of Waste-YOLO com-
pared to several state-of-the-art methods including YOLOv8n.
Therefore, the proposed abnormal waste image dataset can
facilitate further research on abnormal waste detection, and
the excellent performance of Waste-YOLO demonstrates its
potential for practical engineering applications.
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Future research may focus on increasing the data volume
and abnormal waste categories, applying lightweight optimiz-
ation techniques such as model pruning and knowledge dis-
tillation to further enhance detection speed, and deploying
the framework on embedded devices with limited computing
resources such as the NVIDIA Jetson Nano.Moreover, wewill
explore the use of more advanced object detection algorithms
and enhanced techniques in abnormal waste detection.
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