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Long-term monitoring and recognition of underwater organism objects are of great significance in marine
ecology, fisheries science and many other disciplines. Traditional techniques in this field, including man-
ual fishing-based ones and sonar-based ones, are usually flawed. Specifically, the method based on manual
fishing is time-consuming and unsuitable for scientific researches, while the sonar-based one, has the de-
fects of low acoustic image accuracy and large echo errors. In recent years, the rapid development of deep
learning and its excellent performance in computer vision tasks make vision-based solutions feasible. How-
ever, the researches in this area are still relatively insufficient in mainly two aspects. First, to our knowl-
edge, there is still a lack of large-scale datasets of underwater organism images with accurate annotations.
Second, in consideration of the limitation on hardware resources of underwater devices, an underwater or-
ganism detection algorithm that is both accurate and lightweight enough to be able to infer in real time
is still lacking. As an attempt to fill in the aforementioned research gaps to some extent, we established
the Multiple Kinds of Underwater Organisms (MKUO) dataset with accurate bounding box annotations of
taxonomic information, which consists of 10,043 annotated images, covering eighty-four underwater organ-
ism categories. Based on our benchmark dataset, we evaluated a series of existing object detection algo-
rithms to obtain their accuracy and complexity indicators as the baseline for future reference. In addition,
we also propose a novel lightweight module, namely Sparse Ghost Module, designed especially for object
detection networks. By substituting the standard convolution with our proposed one, the network complex-
ity can be significantly reduced and the inference speed can be greatly improved without obvious detec-
tion accuracy loss. To make our results reproducible, the dataset and the source code are available online at
https://cslinzhang.github.io/MKUO-and-Sparse-Ghost-Module/.
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1 INTRODUCTION

The ocean is the lifeline of the earth. According to data from the National Oceanic and Atmo-
spheric Administration, the ocean covers 70% of the earth’s surface, and oceanographers believe
that in this huge underwater field, more than 80% of the area is still unobserved and undeveloped
[35]. As a natural ecosystem made up of biomes in the ocean and their surrounding environment,
marine ecosystem affects climate, regulates temperature, ultimately supports all living things, and
plays a crucial role in the ecological balance of nature. Many related disciplines have been born to
deepen the study of this ecosystem and to better get along with it. For example, marine ecology,
as the most crucial part of marine biology, explores the laws of the marine ecosystem by studying
the reproduction, growth, distribution and quantitative changes of marine organisms in the ma-
rine environment, as well as the interaction between organisms and the environment, in order to
provide a scientific basis for the development, utilization, management and enrichment of marine
biological resources and the protection of the marine environment and ecological balance. Because
of its uniqueness and importance, the study of the marine ecosystem has received increasing at-
tention from countries around the world in recent years. Among these related studies, long-term
monitoring and recognition of underwater organism objects, as an important source of data for
many upper-level studies, has attracted extensive attention.

There are quite a few traditional methods for long-term monitoring and recognition of under-
water organism objects, but they usually cannot fully satisfy both academic and industrial require-
ments more or less. Taking the most commonly used method in fishery science as an example,
operators use traditional marine fishing techniques such as longline fishing and trawling to catch
marine organisms in fixed sites in each season and then complete subsequent data analysis. Fish-
behavior researchers will analyze the behavioral responses of fishes under the influence of exter-
nal tools (such as fishing nets) and the relationship between fishing yield and towing time, towing
methods, and hydrological changes. The analysis results can be applied to the improvement of fish-
ing gear design and fishing operation principles. Although fishing efficiency has been improved
greatly with the development of automatic fishing tools, it’s still time-consuming and laborious for
researchers. On the one hand, marine fishing occupies a significant amount of researchers’ time,
which obviously slows down the progress of fishery scientific research. On the other hand, the
fishing process consumes a lot of human and material resources, which is usually unaffordable for
most researchers. Thus, in most cases, they can only use historical fishing data instead of first-hand
data, which will bring inconvenience to research work and weaken the reliability of the results.

The other type of traditional mainstream method, the sonar-based method, relies on sonar equip-
ment to emit acoustic pulse signals and obtain underwater target echo signals. Due to the different
physical characteristics between the water environment and the target, echo transducers can con-
vert sonar electrical signals into acoustic signals and then emit them into the water. When acoustic
waves propagate in the water and encounter targets (such as fish, underwater buildings, sunken
ships, etc.), some of the acoustic signals will undergo refraction, scattering, or absorption by the
target, while the other part, also known as an echo signal, will be reflected back and received by the
transducer. The transducer then converts the echo signal into the electrical signal and transmits it
back to the data processing unit. After the processing, it is displayed in the form of an analyzable
echo map. In underwater acoustics, the most popular fish resource assessment method currently
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relies on acoustic image processing methods using Multi-beam Imaging Sonar equipment. Such
a method has many advantages compared with the fishing-based method, such as no harm to or-
ganisms, no damage to the environment, high efficiency, and low consumption of manpower and
resources, and can provide long-term real-time observations. However, the acoustic image formed
by the projection of the echo signal usually has low accuracy [34]. Zwolinski et al. [60] found exper-
imentally that the standard deviation of hydroacoustics-based fish amount estimation was about
20%, and the study of Appenzeller and Leggett [2] showed that the deviation was even greater,
up to about 50%, when fish gathered to produce acoustic shadows. Compared with the aforemen-
tioned traditional methods, deploying underwater recording equipment to monitor underwater
organisms and conducting further analysis via computer vision techniques is much more reliable
and efficient.

A large-scale underwater organism dataset with accurate annotations is of great significance to
the vision-based underwater organism analysis. Unfortunately, to the best of our knowledge, such
a dataset is still lacking. At present, the existing public datasets either lack accurate annotations due
to the limited quality of images acquired in the natural environment, or cover relatively few species.
As an attempt to fill in the research gaps to some extent, we acquired data over several weeks from a
subtropical aquarium, which simulates the underwater scene of the natural ocean, and established
a large-scale dataset, named MKUO (Multiple Kinds of Underwater Organisms). In addition,
the research on underwater organism detection based on vision is still relatively lacking, and the
explored methods could not fully meet the requirements of high-precision detection and real-time
inference. In this article, we attempt to partly tackle this problem and propose a novel lightweight
module designed for object detection networks. Substituting the standard convolution in an object
detection network by our proposed one can markedly reduce the network complexity and improve
the inference speed without observable detection accuracy loss.

The contributions of this article are summarized below:

(1) A public underwater organism dataset MKUO (Multiple Kinds of Underwater Organisms)
which contains 10,043 images annotated in bounding box form is proposed. The dataset
covers multiple kinds of underwater organisms, including fish, jellyfish, hermit crab, lobster,

turtle, limulus, sea anemone, seahorse, and so on. The captured organisms are classified ac-
cording to taxonomy, covering 84 species. As far as we know, it covers the broadest cate-
gories compared with other existing annotated underwater organism datasets. Some typical
examples of the proposed dataset are offered in Figure 1, where original images and their
annotated versions of underwater organisms are shown.

(2) A baseline evaluation of the existing underwater organism detection algorithms and a batch
of novel object detection algorithms is conducted on our proposed dataset. The evaluation
results on a series of metrics, such as the detection accuracy, the inference speed and the
parameter amount are provided for the reference of relevant researchers. Our work will be
helpful for subsequent researchers to select the appropriate object detection algorithm as the
backbone network for underwater organism detection tasks according to their own research
needs.

(3) A novel lightweight module designed for object detection networks, namely Sparse Ghost
Module, is proposed. By substituting the standard convolution with it, the number of param-
eters and the model size of the object detection network could be effectively reduced and the
inference speed would also be improved with almost no accuracy loss. Thus, the improved
network will occupy less memory and storage space and could better meet the real-time
inference requirements, which is beneficial for the deployment of underwater monitoring
equipment.
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Fig. 1. Some typical samples of our MKUO dataset. In each column, the image without annotations is shown

on the top, and the corresponding result with annotations is shown at the bottom. From left to right, the

samples of Pneumatophorus japonicus, Aurelia aurita, Scarus ghobban and Echeneis naucrates are given, re-

spectively.

The rest of this article is organized as follows. Section 2 introduces related studies and our con-
tributions. Section 3 provides details of the dataset. Section 4 introduces our evaluation experiment
on the dataset. Section 5 details the lightweight module and experiments we have done. Finally,
Section 6 concludes the article.

2 RELATED WORK

2.1 Underwater Organism Datasets

In the past few decades, many underwater organism datasets have been released. In this article,
we summarize these datasets mainly into two categories, the unannotated datasets and annotated
ones.

For the unannotated datasets, Van Horn et al. [46] proposed a comparatively well-known dataset
consisting of 369 fish images collected from InaturaList1 which is a social network of naturalists,
citizen scientists, and biologists built on the concept of mapping and sharing observations of bio-
diversity across the globe. Wildfish [58] and Wildfish++ [59] are two large-scale unlabeled fish
benchmark datasets recently proposed by Zhuang et al. They are composed of 54,459 fish images
classified into 1,000 categories and 103,034 fish images classified into 2,348 categories, respectively.
The data of these two datasets are mainly obtained from various professional fish knowledge web-
sites, including FishBase2, Florida Museum3, Discover Life4, Encyclopedia of Life5, Shorefishes6, Fishes

of Australia7, Underwater Photography-Fish Database8, and search engines such as Google9 and

1InaturaList: https://www.inaturalist.org
2FishBase: http://www.fishbase.org
3Florida Museum: https://www.floridamuseum.ufl.edu
4Discover Life: http://www.discoverlife.org
5Encyclopedia of Life: http://eol.org
6Shorefishes: http://biogeodb.stri.si.edu/sftep
7Fishes of Australia: http://fishesofaustralia.net.au
8Underwater Photography-Fish Database: http://www.fishdb.co.uk
9Google Images: https://images.google.com
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Flickr10. These aforementioned datasets are large enough to cover a large number of fish species,
but due to the lack of object-level annotations, they are only applicable to the research of fish
image classification algorithms.

In addition to the above-mentioned unannotated fish datasets, there are also some public an-
notated datasets. One of the most popular underwater datasets used for fish detection is the F4K
(Fish4Knowledge) dataset [5]. It was recorded by ten cameras set up in Taiwan, China from 2010
to 2013 and consisted of videos and images with various marine fish and accurate annotations.
Besides, it is also used as part of the benchmark of the SEACLEF mission, which is a sub-task
of the series challenge organized by the LifeCLEF lab every year from 2014 to 2017. During in-
vestigations of rocky seafloor environments in Southern California coastal waters, the Southwest
Fisheries Science Center established another labeled wild fish dataset collected by forward-tilting
digital cameras deployed on Remotely Operated Vehicles (ROVs) and named it Labeled Fishes
in the Wild [9]. The other two worth mentioning fish datasets are the Croatian fish dataset [20]
and the QUT fish dataset [1]. The Croatian fish dataset [20] consisted of cropped images of twelve
different fish species. For the QUT fish dataset [1], except for the images collected underwater,
observations of the out-of-the-water fishes are also covered. Sixteen species of fish images were
collected in the widely used ImageNet [11]. As a large-scale general image detection database, Im-
ageNet includes more than 1,000 categories of organisms besides fish labeled with common names.
All images in the ImageNet have image-level labels, and some images have object-level labels in
the form of bounding boxes. The Brackish dataset [38] contains 14,518 images collected from the
saltwater straits, and several common underwater organisms such as fish, crab, jellyfish, shrimp,

and starfish are observed. However, according to the authors’ description, due to the turbidity of
the seawater, even marine biologists with expertise in the local marine environment can only clas-
sify the captured fishes roughly as big fishes and small fishes. In addition to fish, benthos such
as scallops and corals are also the key objects in the research of marine organisms. The HabCam
dataset [7] contains 2.5 million annotated images, mainly scallops and a few starfish. These im-
ages were taken along the continental shelf of the east coast of the United States. The Tasmania
Coral Point Count [14] was recorded in 22 diving missions using AUVs on the southeast coast of
Tasmania in 2008. Another well-known annotated coral reef dataset is the Moorea Labeled Corals
[3] which is a subset of the Moorea Labeled Corals Long Term Ecological Research [4] project in
French Polynesia. Although the above datasets are rich enough, there are still some imperfections:

(1) The above datasets focus on a particular species of fish or coral, except for the Brackish
dataset [38] which focuses on half-a-dozen different species of underwater organisms. In fact,
in addition to cartilaginous fishes, bony fishes and corals, there are also many underwater
organisms that marine scholars pay attention to. For example, jellyfish and sea anemones
are cnidarians, hermit crabs and lobsters are arthropods, and so on.

(2) The annotation accuracy of datasets is also an important guarantee for related studies. The
optimal classification way in our opinion is to classify organisms by scientific name accord-
ing to taxonomy. Unfortunately, the ways of species classification of existing datasets are
usually defective. Specifically, Labeled Fishes in the Wild [9] only distinguishes between
fishes and non-fishes, the Brackish dataset [38] only roughly divides the categories such as
big fish, small fish, and the like, while most other existing datasets use unofficial common
names as class names for captured marine organisms.

(3) Some datasets, such as F4K [5] and Labeled Fishes in the Wild [9], use manual cropping to
focus on one instance in the center of the image. This method emphasizes the characteristics

10Flickr : http://flickr.com
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Table 1. An Overview of Underwater Organism Datasets

Underwater dataset Year Classes Coverage Instances/image Images Label
Fish4Knowledge [5] 2012 23 Fish 0/1 27,370 Masks
ImageNet(F ishClass) [11] 2012 16 Fish More than 1 21,134 Bounding boxes
Tasmania Coral Point Count [14] 2012 13 Coral More than 1 1,258 Points
Moorea Labeled Corals [3] 2012 9 Coral More than 1 2,055 Points
Labeled Fishes in the Wild [9] 2015 2 (fish or not) Fish 0/1 3,167+2 videos Bounding boxes
Croatian Fish Dataset [20] 2015 12 Fish 1 794 Bounding boxes
iNaturalist(F ishClass) [46] 2018 369 Fish 1 8,942 Image-level
WildFish [58] 2018 1,000 Fish 1 54,459 Image-level

Brackish Dataset [38] 2019 6
Fish, Starfish, Shrimp,
Jellyfish, Crab

More than 1 14,518 Bounding boxes

WildFish++ [59] 2020 2,348 Fish 1 103,034 Image-level

MKUO (Ours) 2022 84
Fish, Jellyfish, Hermit crab,
Lobster, Turtle, Limulus, Sea
anemone, Seahorse, etc.

More than 1 10,043 Bounding boxes

of the organism while disregarding the features of its surrounding environment to some
extent. The absence of the background environment may lead to the detector relying solely
on the appearance of underwater organisms, overlooking the influence of the underwater
environment on organism classification. Furthermore, this approach may cause the model
to overfit these images, leading to incorrect recognition of underwater organisms in diverse
environments.

(4) Underwater organisms exhibit unique morphological characteristics, which are crucial for
accurate identification and classification, when observed from specific perspectives. Captur-
ing as many morphological characteristics as possible can enhance the diversity, applica-
bility, and reliability of datasets. Unfortunately, existing underwater organism datasets are
often captured from fixed perspectives and may contain incomplete or biased morphological
characteristics. This limitation can impede the diversity of data, hinder subsequent research
on ecology and species behavior diversity, and restrict the application scenarios of these
datasets.

For the consideration of the above points to be improved, we propose a novel underwater organism
dataset, namely MKUO (Multiple Kinds of Underwater Organisms), with bounding box formed an-
notations. Compared with the existing datasets, our dataset has the following characteristics: wide
coverage range of species, precise species classification, high-quality annotations and comprehen-
sive morphological characteristics. Due to its uniqueness, it is an important supplement to the
existing annotated underwater organism datasets.

Table 1 summarizes the characteristics of typical existing underwater organism datasets and our
proposed one, MKUO. In Section 3, our dataset will be introduced in further detail.

2.2 Underwater Organism Detection

In recent years, more and more research related to underwater organism detection has been re-
ported. To classify coral reef fishes, Villon et al. [47] trained a traditional Support Vector Ma-
chine (SVM) classifier on the Histogram of Oriented Gradients (HOG) features and fine-tuned
a Convolutional Neural Network (CNN). Then, they evaluated the performance of these two
methods and found that CNNs overwhelmingly outperformed traditional classification methods.
Salman et al. [41] compared traditional classification methods such as SVM, k-Nearest Neighbor
(k-NN) and Sparse Representation Classifier (SRC) with CNNs and got a similar conclusion.
The average classification accuracy using CNNs on the LifeCLEF14 [18] and the LifeCLEF15 [19]
fish datasets exceeded 90%, while the accuracies of traditional methods were much lower. Sid-
diqui et al. [42] trained a deep CNN with the cross-layer pooling trick to deal with the problem of
limited labeled training data and achieved high performance for the classification of fish images.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 5, Article 147. Publication date: February 2024.



An Underwater Organism Image Dataset and a Lightweight Module Designed 147:7

Cai et al. [6] proposed a modified YOLOv3 [39] taking MobileNetv1 [17] as the backbone, which
has the capability of providing the accurate number of fishes and can be used to determine the
breeding actions accordingly in a real breeding farm. Wulandari et al. [51] compared the main-
stream object detection networks (including Faster-RCNN [40], SSD [29], RetinaNet [26], YOLOv3
[39], etc.) on an underwater dataset, finding that all these models have their own advantages and
disadvantages and there is no model fully suited for underwater object detection.

Except for fish, scallop detection and coral reef detection have also received a lot of research
passions in the ocean monitoring field. One of the most prominent scallop detection algorithms
was developed by Dawkins et al. [10] using a series of cascaded Adaboost classifiers. A more re-
cent research study was presented by Ovchinnikova et al. [37] who employed a CNN detector to
identify king scallop in images of the seabed. Their results strongly suggest that the application of
machine learning and low-cost imaging are merited. Coral reefs have attracted plenty of interests
from marine biologists around the world, but it’s quite difficult to monitor them. To assist biolo-
gists, Mahmood et al. [32] fine-tuned VGGNet and made use of it to automatically analyze corals’
cover at three sites in Western Australia. Another approach was investigated by Beijbom et al. [4]
which achieved state-of-the-art detection performance by fusing standard reflection images with
fluorescence images of corals using a 5-channel CNN. Recently, Soukup [43] proposed a method
based on Mask RCNN for automatic annotation, localization and pixel-wise parsing of the coral
reefs from underwater images.

As pioneering works, in the above-mentioned studies, researchers usually selected the classical
object detection networks as backbones, and then further fine-tuned them for application in under-
water organism detection tasks. However, the object detection networks they selected are quite
different from the recently proposed algorithms which have made many unprecedented explo-
rations or expansions, making them unique in terms of universality, time complexity or precision
performance and other research concerns. Due to the lack of comprehensive comparison and eval-
uation of these algorithms, it is often difficult for researchers to choose the appropriate network
as the solution according to their own research needs. In order to facilitate the follow-up research,
we selected a series of object detection algorithms proposed since 2020 and also some classical
algorithms (including Faster-RCNN [40], SSD [29], RetinaNet [26] and YOLOv3 [39]) and evalu-
ated them on our MKUO dataset, so as to analyze the performance of different object detection
algorithms on underwater organism images. The characteristics of some typical selected object
detection networks are briefly introduced in turn below.

Aiming to improve the performance and generalization ability of the detection model, Kong
et al. [22] overcame the limitation of the anchor box and proposed a novel anchor-free object
detection framework, “FoveaBox”. To tackle the difficulty of accurate localization when the dis-
tances between the anchors and the corresponding targets are large, Wang et al. [49] proposed an
approach, named ‘‘Side-Aware Boundary Localization” (SABL), where each side of the bound-
ing box is respectively localized with a dedicated network branch. “Dynamic RCNN” proposed by
Zhang et al. [52] is able to adjust the label assignment criteria (IoU threshold) and the parame-
ters of regression loss function (SmoothL1 Loss) automatically based on the statistics of proposals
during training. “YOLOv5” [45] presented by Ultralytics is a group of object detection models pre-
trained on the COCO [27] dataset, which used various techniques to improve accuracy such as
mosaic data enhancement, adaptive anchor frame calculation, adaptive image scaling, focus struc-
ture, cross-stage local network structure, and so on, and achieved superior performance. Zhang
et al. [54] proposed an IoU-aware Classification Score (IACS) as a joint representation of object
presence confidence and localization accuracy, and built a dense object detector, called “VFNet”,
which can offer an accurate ranking of all candidate detections based on the IACS. “Sparse RCNN”
proposed by Sun et al. [44] is a completely sparse object detection method designed to make the
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object detection network get rid of the limitations brought by dense anchors. Ge et al. [33] pre-
sented some experienced improvements to the YOLO series, formed a novel anchor-free detector,
named “YOLOX”, whose design is very exquisite and absorbs a lot of tricks from other former
work, i.e., the decoupled head and the leading label assignment strategy SimOTA, to achieve state-
of-the-art object detection results. In this article, in order to facilitate the follow-up research, we
have made detailed analyses and comparisons of these methods on our MKUO dataset to provide
sufficient support for subsequent related research.

2.3 Lightweight Design of Object Detection Network

Although deep learning brings high benefits for feature extraction, classic networks are often ac-
companied by dependence on strong computing power and large memory space in the training
process. In the underwater environment, the hardware performances of calculating units are usu-
ally limited, that is, they do not have the same memory space, storage space and computing power
as those large-scale servers or workstations deployed on land. Usually, applying classical object
detection networks to underwater organism detection tasks can meet the accuracy requirements,
but encounter efficiency problems, which are ultimately storage problems and speed problems:

(1) The storage problem. Deep networks with hundreds of layers often have a large number
of parameters. Saving and using these parameters require a huge amount of memory space
and storage space. If the memory space and storage space of the device is insufficient, the
application of the algorithm will be directly affected.

(2) The speed problem. In the practical application of object detection algorithms, in order to
meet the real-time requirements, the single frame inference speed of millisecond level is
usually required, which brings great challenges to the inference efficiency of the selected
algorithm.

A forward inference of ResNet-152 [16], the model that for the first time surpassed human in
image classification tasks, requires approximately 11.3 billion floating-point calculations (and con-
sumes 240MB of storage). A recent natural language processing model, OpenAI’s GPT-3 [36], has
175 billion parameters. Google’s updated Switch Transformer even has 1.6 trillion parameters. Al-
though such network architectures have great advantages in prediction accuracy, they are difficult
to apply to an online practical environment. In order to facilitate deployment in actual scenarios,
real-time object detectors for different devices have still been under development in recent years.
For example, the development of MCUNet [25] and NanoDet-Plus [31] focused on the deployment
on low-power single-chips and aimed to improve the inference speed on edge CPU. The YOLOX
[33] focuses on achieving high inference speed on various GPUs. More recently, the research stud-
ies of real-time object detectors have focused on the design of efficient architectures. Existing real-
time object detectors are mostly based on MobileNetv1 [17], ShuffleNet [57], or GhostNet [15], and
their architectures can be optimized using the strategy proposed in CSPNet [48]. Besides, a series
of tricks have also been proposed by researchers to build efficient network architectures, such as
network pruning, knowledge distillation, and low-level quantization.

Another lightweight solution to this dilemma is to design more efficient basic modules. In 2012,
Krizhevsky et al. [23] split the convolution operations to run them on two GPUs in parallel to
speed up the inference. As the rudiment of group convolution, whose illustration is shown in
(b) of Figure 2, this idea has been continuously developed and improved in the follow-up works.
In 2017, multiple powerful lightweight CNN models such as SqueezeNet [30], MobileNetv1 [17],
ShuffleNet [57], and Xception [8] were published one after another, greatly accelerating the devel-
opment of this field. The Fire Module proposed by SqueezeNet [30] used to replace the common
3 × 3 convolution is composed of a squeeze layer with 1 × 1 convolution kernels and an expanded

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 5, Article 147. Publication date: February 2024.



An Underwater Organism Image Dataset and a Lightweight Module Designed 147:9

Fig. 2. Illustrations of (a) standard convolution, (b) group convolution, (c) depthwise convolution, and (d)

pointwise convolution.

layer composed of 1 × 1 and 3 × 3 convolution kernels. It reduces the calculation and the number
of parameters by using smaller convolution kernels. Depthwise Separable Convolution proposed
by Google in MobileNetv1 [17] decouples a convolution operation into two steps, depthwise con-
volution and pointwise convolution. The schematic diagrams of these two convolution structures
are shown in (c) and (d) of Figure 2. The former is the group convolution whose group number
equals the number of input channels, which means that it uses a single convolution kernel for
each input channel. The latter one applies a 1 × 1 convolution to linearly combine the outputs
in the depthwise convolution, so as to integrate the features between different channels. In order
to solve the problem that the feature information between groups is not interconnected in group
convolution, ShuffleNet [57] explored a channel shuffle operation to shuffle the groups and im-
prove the performance of group convolution. The lightweight modules in Xception [8] are similar
to those in MobileNetv1 [17], but the operation order is opposite. It uses pointwise convolution
and depthwise convolution, in turn, to fully decouple the cross-channel correlations and spatial
correlations of the input feature mapping. In addition, this work also mentioned the feasibility of
replacing the larger convolution kernel with the smaller convolution kernels to reduce the compu-
tational complexity (for example, substituting a 5×5 convolution kernel with two 3×3 convolution
kernels). Two other important works proposed recently are GhostNet [15] and MicroNet [24]. By
analyzing the feature maps of the input images generated by ResNet-50, the authors of GhostNet
[15] found that there were many similar feature map pairs like overlays of each other. They ad-
vocate a cheaper linear operation to generate these similar feature maps to achieve lightweight
models, and propose the Ghost Module. The Ghost Module divides a standard convolutional layer
into two parts. The first part involves ordinary convolutions but the total number of kernels will
be rigorously controlled. Based on the feature maps obtained from the first part, a series of simple
linear operations (the linear operation here used in practice is group convolution as shown in (b)
of Figure 2) are used for generating more feature maps. MicroNet [24] studies how to decompose
the dense convolution process into sparse ones with the idea of matrix decomposition, so as to
integrate sparse connectivity into convolution without reducing the number of network layers.
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In this article, we integrate sparse group-adaptive convolution into the Ghost Module and pro-
pose a novel lightweight module named Sparse Ghost Module. Using such a lightweight module
to replace the standard convolution in the object detection networks can reduce the calculation
and the number of model parameters, and improve the inference speed with almost no loss of pre-
diction accuracy. Compared with the existing lightweight modules, our module not only reduces
the complexity of the network, but also maintains high detection accuracy. In Section 5, more
information about our lightweight module will be further detailed.

3 THE MULTIPLE KINDS OF UNDERWATER ORGANISMS DATASET

Our dataset was collected at the Xiaomeisha Ocean World in Shenzhen, Guangdong Province,
China. Its aquarium has over twenty fish display tanks with different themes, breeding a variety
of rare fish species with a quantity of over 10,000. The polar aquarium, jellyfish aquarium, shark
aquarium, turtle island, and other pavilions showcase a wider range of underwater organisms. The
climate of this area is mainly subtropical to tropical transitional maritime climate, with warm water
suitable for the reproduction of marine life populations. The seawater and ecological environment
of the aquarium simulate the marine environment, which ensures that the data we collect is as
close to the real environment as possible. For the data collection of MKUO dataset, we used a
handheld Nikon Z5 digital camera which is a 24.3 megapixel full frame digital camera with an
internal processor of Speed 6. The camera body is equipped with five axis anti shake. The camera
has 273 auto focal points and a sensitivity range of ISO 100-51,200. Our recording process lasted for
10 days, with two operators alternating day and night to record. After focusing on recording about
eight categories of underwater organisms every day, a total of 84 species of underwater organisms
were filmed, and 111 videos of 4.92 GB in total size were acquired. In collaboration with fisheries
experts from the Eastern China Sea Fisheries Research Institute, we accurately labeled 111 video
data. After multiple rounds of screening, 10,043 clear images were selected and cropped to the size
of 684 × 456 to form the MKUO dataset.

3.1 Label Rules and Categories Information

The standardization degree of classification and the accuracy of labeling are important criteria for
judging the quality of a dataset. Unfortunately, many factors in the marine underwater environ-
ment (lack of light in the deep sea, high chlorophyll concentration of seawater, high scattering
turbidity concentration of seawater, and different absorption coefficients of different wavelengths
of light at different depths of seawater, etc.) will affect the image quality, and thus the images of the
seafloor collected in the real environment are usually blurry and have obvious chromatic aberra-
tion. Classifying underwater organisms from these images is not an easy task even for professional
marine biologists [38].

Unlike most datasets that collect images in the ocean, our dataset is collected in a large
aquarium. Due to the aquarium’s sufficient ambient light, our dataset has clearer images than
deep ocean ones, which helps to display organisms’ features more clearly. Therefore, with the
help of fishery experts, we easily obtained the common names of all underwater organisms in our
dataset. Common names of organisms are easy to remember and record, and are often used as an
alternative to scientific names. However, marine ecologists may sometimes find new underwater
organisms without names, or encounter some underwater organisms with the same common
name or with multiple common names. In these cases, scientific names are more suitable as mark-
ers of species. To standardize the classification, we used scientific name annotations in our dataset.
The Binomial Nomenclature has been the standard form of the scientific name since Linnaeus [28]
proposed it in 1753. As Binomial Nomenclature suggests, the name given to each species has two
parts, the generic name (identifies the genus to which the species belongs) and the species name
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Fig. 3. The visualization shows the category tree of our proposed MKUO dataset and shows one example

for each category.

(distinguishes the species within the genus). The generic name is formed by Latin grammaticalized
nouns, but its word source can be from Latin words, Greek words or other Latinized words, and
the initial letter of the name must be capitalized. The species name is an adjective in Latin, and
its initial letter is not capitalized. For accurate annotations, we performed a manual comparison
of images on Baidu online encyclopedia11 and Wikipedia12 based on common names to obtain
organisms’ scientific names. It should be noted that the scientific name provided in the online
encyclopedia may be an unaccepted version of the WoRMS13 (World Register of Marine
Species). We also corrected the unaccepted scientific names to the accepted version in WoRMS

which ensures that the final classification results are consistent with those names in WoRMS.
What’s more, Figure 3 shows the category tree of our dataset, which is divided hierarchically by

taxonomic phylum, class, orders, family, genus and species. The captured organisms include four
phyla, nine classes, 35 orders, 56 families, 71 genera and 84 species. It should be noted that the
category tree is not completely filled. For example, two species of turtles, Eretmochelys imbricata

and Chelonia mydas have no class information on WoRMS and belong to the superclass Reptilia,
which does not influence us to label them with their scientific names. The dataset contains one
hybrid species, which we labeled as the scientific name combination of its parent species, called
Amphilophus citrinellus × Vieja melanurus. In addition, we classify one kind of hermit crab into
the family level Paguridae, and one kind of starfish into the class level Asteroidea without subclas-
sifying because their common names are general and vague. Other categories are all subdivided
into the species level. To the best of our knowledge, this dataset has the broadest organism species
coverage among all annotated underwater organism datasets.

3.2 Dataset Overview

In total, our MKUO dataset contains 10,043 clear underwater organism images with bounding box
form annotations. The resolution of each image is 684 × 456, and the number of objects captured
in each image varies from one to dozens.

Figure 4 shows the visualization of some annotation information in the MKUO dataset, including
the number of instances in each category, positions and size information of bounding boxes. The
statistics show that except for the category Chanos chanos, which contains 1,084 labeled instances,
the number of labeled instances in each category varies between 69 and 595. In summary, there are
14,476 annotated instances in our MKUO dataset. (c) of Figure 4 is the accumulated graph of the first
1,000 normalized bounding boxes, showing their shapes and distributions. More detailed statistics

11Baidu: https://baike.baidu.com
12Wikipedia: https://en.wikipedia.org
13WoRMS: https://www.marinespecies.org/index.php
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Fig. 4. The visualization of the annotation information in MKUO dataset on four typical aspects. (a) shows

the total number of labeled instances in each category. (c) is the accumulated graph of the normalized bound-

ing boxes (only the first 1,000 labels are visualized here to avoid excessive overlap of rectangles). (b) and (d)

respectively show the locations and sizes of the normalized bounding boxes, which is displayed by the count-

ing histogram divided into 50 cells on each dimension.

are shown in (b) and (d) of Figure 4. Figure 4(b) is the histogram of the joint distribution of the
bounding boxes’ locations. It can be seen that the centers of the bounding boxes were concentrated
near the center of the image and spread over the whole image. Figure 4(d) is the histogram of the
height and width of the bounding boxes showing that the dimensions of the bounding boxes cover
a wide range of sizes. It can be seen that the height and width of most bounding boxes are less
than half of the image.

To sum up, as shown in Table 1, our proposed MKUO dataset has the following three advantages
compared with existing underwater organism image datasets:

(1) Wide coverage range of species. Unlike most existing underwater organism datasets, which
only contain one or several kinds of underwater organisms, our MKUO dataset contains
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Fig. 5. Some examples in the MKUO dataset. From top to bottom are Ostracion rhinorhynchos, Pterapogon

kauderni, and Arothron hispidus, respectively. The recorded data from different perspectives and detailed

annotations are displayed from left to right.

84 species of underwater organisms, including fish, jellyfish, hermit crab, lobster, turtle, limu-

lus, and so on. (as shown in Table 1). As the underwater organism dataset with the broadest
species coverage to our knowledge (as shown in Figure 3), it is conducive to distinguishing
different species of underwater organisms in the follow-up scientific research work.

(2) Precise species classification and location information. With the help of fishery experts
from the Eastern China Sea Fisheries Research Institute, our dataset has accurate annotations
which classify the instances precisely to species level (according to biology taxonomy). Each
image in the dataset has been filtered multiple times and manually annotated, providing
precise annotation at the pixel level in the form of bounding boxes (as shown in Figure 5),
which is helpful for the future research of object detection algorithms.

(3) Complete morphological characteristics. With the influence of recording time, perspec-
tive and other factors, underwater organisms often show different morphological character-
istics (as shown in (d) and (h) of Figure 1, only when photographing from the back, Echeneis

naucrates shows a unique sucker like the dorsal fin, while from other perspectives it has no
obvious features). Different from the fixed recording position of most datasets at present,
our MKUO dataset recorded underwater organisms from different perspectives (as shown
in Figure 5). This is helpful for the algorithm to learn the organisms’ high-dimensional char-
acteristics, which can not only be used to distinguish different organisms but also help to
detect organisms of the same species under different postures.

3.3 Discussion on Application in Real Underwater Environment

Clear images were collected in the aquarium to establish the MKUO dataset. Constructing a dataset
in this way is conducive to showcasing biodiversity and fully capturing the biological character-
istics of underwater organisms, which are important to the underwater object detection task but
usually difficult to be obtained in real underwater environments. In fact, even collecting data from
the real environment, the lighting and hydrogeological conditions still vary obviously in different
regions, naturally causing the differences in observations even though the observed organisms
are the same. Thus, in the authors’ opinion, collecting data from a real underwater environment
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is not a suitable solution to solve the generalization problems of training models since it’s almost
impossible to collect real data covering all existing water environments.

Although there is a gap between our MKUO dataset and real underwater ocean data, and the
models trained on the MKUO dataset may not yet have the ability to be directly applied in real
ocean scenarios, the gap can be filled in via the underwater environment simulation to some ex-
tent, and such a technology is relatively mature currently. Before conducting object detection in
real underwater scenes, it is often suggested to analyze, classify (Jerlov water types for example),
and simulate the scenes based on different optical water types. After that, researchers can easily
complete the mutual conversion of clear images from the MKUO dataset and simulated underwa-
ter images, thereby completing high-precision underwater object detection tasks. This is just in
line with our research path for underwater organism monitoring tasks and we will continue to
strive in this field in the future.

4 EVALUATION OF OBJECT DETECTION NETWORKS ON THE MKUO DATASET

As mentioned in Section 2.2, in many related works, researchers selected classic networks, and
then further fine-tuned them to apply to underwater organism detection tasks. The object detec-
tion networks they selected, though, are quite different from the recently proposed algorithms
which have made many unprecedented explorations or expansions, making them unique in terms
of universality, time complexity, precision performance and other research concerns. It is of great
significance to apply these algorithms to underwater organism detection. However, due to the
lack of comprehensive comparison and evaluation of these recently proposed algorithms in un-
derwater datasets, it is often difficult for researchers to choose appropriate networks as solutions
according to their research needs. In order to fill in the gap in this regard, we compared and eval-
uated the performance of these classic networks and some recently proposed networks on our
MKUO dataset, and analyzed their potential in underwater organism detection. In this section,
we evaluated Faster-RCNN [40], SSD [29], RetinaNet [26], YOLOv3 [39] and 13 other advanced
object detectors proposed since 2020 on the MKUO dataset to obtain baseline results for future
reference. In order to evaluate as comprehensively as possible, the object detectors we selected
have different design principles and architectures. In terms of whether anchor boxes are required,
these networks include anchor-based networks, such as PAA [21] and YOLOv5 [45], and anchor
free networks, such as FoveaBox [22] and ATSS [55]. In terms of detection steps, there are two-
stage networks such as Double-Head RCNN [50], Dynamic RCNN [52] and Sparse RCNN [44], and
one-stage networks such as YOLOX [33] and TOOD [13].

For the sake of fairness, the training process for all networks did not use pre-trained weights,
and all models were trained on our proposed MKUO dataset and then evaluated. The dataset is split
randomly into 48% training, 32% validation and 20% testing data. That is to say, the training set, val-
idation set and testing set contain 4,820 images, 3,214 images and 2,009 images, respectively. The
workstation used for training consists of two GEFORCE RTX 2080 Ti GPUs with 11GB GPU mem-
ory. Each network is trained for 300 epochs using its original training regime, and the weights that
perform best in the validation set during the training process were taken as the evaluation target.

4.1 Evaluation Metrics

Our evaluations are mainly conducted on two aspects, the accuracy and the complexity. Next, we
will introduce the metrics we utilized in detail.

(1) Accuracy metrics: Average Precision (AP) and mean Average Precision (mAP).

In the evaluation metrics of Pascal VOC [12], the average precision (AP) of the detection
is defined as the magnitude of the area under the precision/recall curve, with the recall on
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the horizontal axis and the precision on the vertical axis, which is due to the fact that a good
object detection algorithm needs to have good precision at different recall levels. Before
VOC2010, the AP is defined as the mean precision at a set of eleven equally spaced recall
levels [0, 0.1, . . . , 1]:

AP =
1

11

∑

r ∈{0,0.1, ...0.9,1.0}

pinterp (r ). (1)

The precision at each recall level r is interpolated by taking the maximum precision for
which the corresponding recall exceeds r :

pinterp (r ) = max
r̃ :r̃ ≥r

p(r̃ ) (2)

where p(r̃ ) is the measured precision at recall r̃ . To improve precision and ability to measure
differences between methods with low AP, from VOC2010 onwards the method of computing
AP changed to use all data points rather than sampled at a fixed set of uniformly-spaced recall
values. It is computed as in the following steps:

(a) Compute a version of the measured precision/recall curve with precision monotonically
decreasing, by setting the precision for recall r to the maximum precision obtained for any
recall r ′ ≥ r .

(b) Compute the AP as the area under this curve by numerical integration.
Another frontier dataset in the research field of object detection, MS COCO [27], evaluated
the AP at different Intersections over Unions (IoUs) [0.5 : 0.05 : 0.95] for a total of 10
IoUs and averaged the AP at these thresholds as the result at the end, denoted as mAP0.5:0.95.
While Pascal VOC [12] only evaluates the AP value of those results whose IOU is at the
threshold of 0.5. Compared to Pascal VOC [12], the evaluation matrix in the MS COCO [27]
dataset is more comprehensive and widely used by recent object detection research, since
not only the classification ability of the object detection model is evaluated, but also the
localization ability of the detection model is reflected. Both AP0.5 and mAP0.5:0.95 were used
as the evaluation metrics in this article, and mAP0.5:0.95 took the first place of evaluation
metrics on accuracy in subsequent comparison.

(2) Complexity metrics: the number of Parameters (Params), the FLoating point OPera-

tions (FLOPs) and the inference Time (Timeinf er ).

The complexities of compared models are mainly manifested on two aspects, space complex-
ities and time complexities. On the aspect of space complexities, we utilized Params and
FLOPs as corresponding metrics, while for time complexities, the Timeinf er was adopted.
It’s worth mentioning that the Timeinf er here includes the pre-processing time, algorithm
operation time and post-processing time. Pre-processing includes loading images to GPU
and resizing image processing (resize, pad, etc.), algorithm operation refers to the time that
the network runs in the GPU and post-processing mainly includes Non-Maximum Sup-
pression (NMS) and sending the results back to the CPU. For each model to be evaluated,
we used a single GPU to test multiple groups of images, and finally calculated the average
inference time of the model on one single image.

4.2 Precision and Complexity Results

As shown in Table 2, we list the evaluation results of each object detector using the aforementioned
five accuracy or complexity metrics. Through the statistical analysis, in terms of the accuracy, the
mAP0.5:0.95 values of most evaluated networks fluctuate around 70%, and the AP0.5 values fluctuate
around 90%. In terms of the complexity, the minimum number of parameters of these models is as
low as 31.98 M (TOOD), and the maximum number is more than 100 M (Sparse RCNN). The FLOPs
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Table 2. Results of Compared Models Evaluated on the Proposed MKUO Dataset

Model mAP0.5:0.95(%) AP0.5(%) Params(M) FLOPs(G) Timeinf er (ms)
FoveaBox [22] 73.5 92.1 36.20 68.16 25.8
Double-Head RCNN [50] 73.7 92.9 47.14 352.14 93.5
ATSS [55] 75.7 92.9 32.08 67.83 25.5
SABL [49] 76.7 93.6 41.99 137.20 37.5
Dynamic RCNN [52] 73.2 92.9 41.55 77.49 28.3
PAA [21] 76.0 93.2 32.08 67.83 82.6
YOLOv5 [45] 79.9 96.5 46.60 109.20 5.1
VFNet [54] 60.9 77.9 32.68 63.72 30.1
Sparse RCNN [44] 74.1 90.8 106.07 54.69 33.6
YOLOX [33] 81.2 96.0 54.21 128.43 13.1
DINO [53] 78.5 93.9 47.71 95.30 59.5
DDQ [56] 78.9 93.4 44.92 71.69 62.9
TOOD [13] 68.6 85.5 31.98 60.93 29.5
YOLOv3 [39] 50.1 78.4 61.97 64.56 27.6
Faster-RCNN [40] 69.6 93.5 41.55 77.94 36.5
SSD [29] 70.0 92.8 34.84 128.16 17.6
RetinaNet [26] 76.7 93.3 37.83 79.59 35.4

Fig. 6. Typical examples of detection results of YOLOv5l and YOLOXl. (a) is the labeled image of a Naso

elegans and a Naso unicornis, (b) is the detection results of YOLOv5l, and (c) is the detection results of YOLOXl.

of these models vary from 54.69G to 352.14G, and the inference times vary from 5.1 milliseconds
to 93.5 milliseconds.

Among these evaluated networks, YOLOX and YOLOv5 achieve the highest accuracies on
mAP0.5:0.95 and AP0.5, respectively, with excellent inference speeds. It is worth noting that both
YOLOv5 and YOLOX include a series of network models with similar structures, and can be clas-
sified into “small”, “medium”, and “large” according to different depths and widths. The network
models we choose in our experiments are “large” models, YOLOv5l and YOLOXl. Next, more eval-
uation results about these two models will be given.

Figure 6 shows a typical sample of the results inferred by YOLOv5l and YOLOXl on the testing
set and the corresponding manually labeled ground truth, and the image of the sample includes
a Naso elegans and a Naso unicornis. It can be seen from the figure that YOLOX is slightly better
than YOLOv5 in edge positioning and classification confidence of the bounding boxes, which is
consistent with the mAP0.5:0.95 results obtained from the quantitative evaluation results in Table 2.
Besides, the accuracy scores along with the evolvement of training of these two compared models
are shown in Figure 7. This figure shows that YOLOv5 converges more smoothly than YOLOX,
which may be due to YOLOX’s use of the decoupling head. It is also worth mentioning for the last
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Fig. 7. The accuracy scores along with the evolvement of training of two compared models on our MKUO

dataset. (a) shows the curves of metric AP0.5 and (b) corresponds to metric mAP0.5:0.95.

Table 3. The Species on Which Compared Schemes Perform Best, Second Best and Worst

Model Best species Second best species Worst species
FoveaBox [22] Asteroidea Centropyge heraldi Sardinella aurita

Double-Head RCNN [50] Asteroidea Heteractis crispa Polyodon spathula

ATSS [55] Asteroidea Centropyge heraldi Polyodon spathula

SABL [49] Asteroidea Heteractis crispa Polyodon spathula

Dynamic RCNN [52] Asteroidea Centropyge heraldi Sardinella aurita

PAA [21] Asteroidea Centropyge heraldi Sardinella aurita

YOLOv5 [45] Tachypleus tridentatus Zebrasoma velifer Sardinella aurita

VFNet [54] Centropyge heraldi Asteroidea Polyodon spathula

Sparse RCNN [44] Asteroidea Heteractis crispa Sardinella aurita

YOLOX [33] Asteroidea Centropyge heraldi Sardinella aurita

TOOD [13] Heteractis crispa Centropyge heraldi Polyodon spathula

DINO [53] Asteroidea Centropyge heraldi Sardinella aurita

DDQ [56] Centropyge heraldi Asteroidea Sardinella aurita

YOLOv3 [39] Asteroidea Sphaeramia nematoptera Aetobatus narinari

Faster-RCNN [40] Asteroidea Centropyge heraldi Sardinella aurita

SSD [29] Heteractis crispa Centropyge heraldi Polyodon spathula

RetinaNet [26] Asteroidea Centropyge heraldi Polyodon spathula

15 epochs before the end of the training of YOLOX, the Data Augmentation (Mosaic and Mixup) is
turned off, which is very helpful for accuracy improving, since the augmented training images are
far from the true distribution of natural images. Such an operation brings a significant improve-
ment to YOLOX in mAP0.5:0.95 and helps YOLOX catch up with and surpass the performance of
YOLOv5.

4.3 Performances of Models on Various Species

The species on which compared schemes perform best, second best and worst are summarized
in Table 3. It can be seen that among 84 classes of organisms, most object detectors performed
best in Asteroidea, which is a kind of starfish and has a unique shape. Besides, two other kinds of
underwater organisms, Heteractis crispa and Centropyge heraldi, are also easily detected by most
object detectors. The former is a kind of anemone with purple on the top of its tentacles, and the
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latter is a kind of ornamental fish with bright yellow color. The characteristics of these three kinds
of organisms are unique and obvious, thus it is easy to distinguish them from other species. From
the results, the species with low detection accuracy of these algorithms mainly include Polygon

spathula and Sardinella aurita. The former, also known as American paddlefish, is a kind of large-
size sturgeon, and the latter is a kind of small sardine. According to our analysis, on the one
hand, the low detection accuracy of Polygon spathula, which is Vulnerable (VU) determined by
IUCN (International Union for Conservation of Nature) 14, is due to that the number of
instances captured in our dataset is relatively less. On the other hand, the low detection accuracy
of Sardinella aurita is due to its lack of unique biological characteristics, and it is still a challenging
study to distinguish different sardines.

5 SPARSE GHOST MODULE: A NOVEL LIGHTWEIGHT CONVOLUTION MODULE

Aiming at the problems of high computing complexity and slow inference speed in the application
of existing object detection algorithms based on deep learning in underwater organism observa-
tion, we propose a novel lightweight module, namely Sparse Ghost Module. The module could
complete standard convolution with much fewer parameters and floating point operations, help-
ing to reduce the storage space and calculation required by the object detection networks, so as to
adapt to the underwater hardware platform.

The Sparse Ghost Module focuses on eliminating the data redundancy of the traditional con-
volutional kernel in different channels. In well-trained deep neural networks constructed using
traditional convolution methods, the rich feature maps can ensure a comprehensive understand-
ing of input data, but they usually bring significant storage burden. Specifically, traditional deep
convolutional neural networks usually generate many similar feature-map pairs in the same layer,
called ghost maps [15]. Unlike the implementations of tensor products used in traditional dense
convolutions, in order to generate these feature maps more cheaply, our Sparse Ghost Module
uses matrix decomposition and low-rank approximation to generate them, effectively reducing
computational complexity.

5.1 Details of Sparse Ghost Module

Different from the Ghost Module [15] (which is described in detail in Section 2.3), our proposed
Sparse Ghost Module is composed of two parts. In the first part, a strictly controlled number of
ordinary convolution kernels is used to generate intrinsic feature maps, and in the second part,
the group-adaptive convolutions are used to generate more feature maps. Figure 8 shows the illus-
tration of the Ghost Module and the Sparse Ghost Module.

Compared to Ghost Module [15] which uses group convolution to generate feature maps, we
apply low-rank approximations in the second part of Sparse Ghost Module according to the idea
of matrix decomposition. To concisely describe the idea, we assume a k ×k convolution kernelW
with the same number of input and output channels (cin = cout = c) and ignore bias terms. The
kernel matrixW could be sparsely decomposed as,

W = PΦQT (3)

where W is a c × c matrix, Q is a c × c
r

matrix that compresses the number of channels by the
channel reduction ratio r , and P is a c × c

r
matrix that expands the number of channels back to

c . Furthermore, the corresponding convolution is sparsely decomposed into two group-adaptive

14IUCN : the international organization working in the field of nature conservation which has the most comprehensive
collection of authoritative publications, reports, guides and databases supporting the fields of conservation and sustainable
development.
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Fig. 8. Illustration of the Ghost Module and the Sparse Ghost Module whose cin = 4, cout = 12 and s = 4.

(a) is the Ghost Module and (b) is the Sparse Ghost Module.

Fig. 9. Sparsely decomposing a pointwise convolution into two group-adaptive convolutions, where c =
18, r = 2 and д = 3. The matrixW can be divided into д × д blocks, and the rank of each block is 1.

convolutions, where the number of groups is д. That is, P and Q are diagonal block matrices
with д blocks, and each block corresponds to the convolution of a group of channels. Φ is a c

r
×

c
r

permutation matrix for channels shuffling. In the most special case, to sparsely decompose a
pointwise convolution, as MicroNet [24] has done, the group-adaptive convolutions’ kernel size is

1 × 1, and the computational complexity is O = 2c2

rд
, as shown in Figure 9.

As mentioned above, in order to sparsely decompose the convolution in the second part of the
Sparse Ghost Module, the original convolution should be replaced by two linked group-adaptive
convolutions with the kernel size of k × k , while some adjustments are made to build the Sparse
Ghost Module. Firstly, two group-adaptive convolutions are used to process the same feature map
from the hidden layer. The kernel sizes of these two convolutions are k × 1 and 1×k , respectively.
Secondly, the two output feature maps are directly concatenated and a channel shuffle is applied
after the concatenation, as shown in Figure 8. This adjustment is reasonable for the following two
reasons: (1) Two strip convolution kernels could be used to approximate the square kernel when
the kernel size k is relatively small; (2) Since the object detection network is usually deep, channel
shuffle could ensure the channel connectivity between the group-adaptive convolutions of the
adjacent Sparse Ghost Modules. This adjustment would also bring two benefits: (1) The number
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Table 4. Experimental Results on Lightweight YOLOv5l and YOLOXl

Model mAP0.5:0.95 (%) mAP0.5 (%) Params (M) Sizeweiдhts (MB) FLOPs (G) Timeinf er ence (ms)
YOLOv5l(base) 79.9 96.5 46.6 93.8 109.2 5.1
YOLOv5l-Depthwise Separable [17] 50.8 87.2 14.0 28.8 30.5 4.0
YOLOv5l-Fire [30] 77.6 96.1 17.4 35.9 38.9 4.1
YOLOv5l-Ghost [15] 77.5 96.2 12.6 26.0 27.3 6.0
YOLOv5l-Sparse Ghost 78.2 96.2 12.4 25.8 26.5 4.4
YOLOXl(base) 81.2 96 54.21 434.4 128.43 13.11
YOLOXl-Depthwise Separable [17] 58.9 92.6 14.94 120.7 29.83 8.06
YOLOXl-Fire [30] 78.1 95.9 18.69 150.8 39.08 8.34
YOLOXl-Ghost [15] 77.8 96.2 14.57 117.6 31.62 9.01
YOLOXl-Sparse Ghost 78.3 95.9 13.94 112.8 29.65 8.88

of parameters of the strip convolution kernel is less than that of the square convolution kernel; (2)
Compared with the structure before adjustment, the number of channels to be processed by each
group-adaptive convolution is reduced by half, and then the computational complexity is naturally
lower.

The proposed Sparse Ghost Module could be easily integrated into the existing well-designed
object detection networks to reduce their complexities. In order to analyze the profits of using the
Sparse Ghost Module on memory consumption and inference speed, we calculated the theoretical
compression ratio of the Sparse Ghost Module. Before that, for the convenience of calculation, the
theoretical compression ratio of the Ghost Module should be calculated first. Assuming that the
convolution kernel size of standard convolution is k×k , the input channel size is cin, and the output
channel size is cout. When the number of hidden channels is set to cout

s
and the kernel size of the

group convolution is set to k , the parameter compression ratio crGhost of the Ghost Module [15]
can be calculated as,

crGhost =
cout · cin · k · k

cout
s

· cin · k · k + (s − 1) · cout
s

· k · k
=

s · cin

cin + s − 1
≈ s (4)

where s � cin. In comparison, the parameter compression ratio crSparseGhost of the Sparse Ghost
Module can be calculated as,

crSparseGhost =
cout · cin · k · k

cout
s

· cin · k · k + 2 · s
2 · cout

s
· k · 1

=
s · cin · k

cin · k + s
≥

s · cin

cin + s − 1
≈ s . (5)

This inequality only takes the equal sign when s = k = 2, where s,k ∈ {q |q > 1,q ∈ N}, and
generally s and k are no less than 3. Thus, in most cases, the compression ratio of the Sparse Ghost
Module obviously exceeds that of the ordinary Ghost Module.

5.2 Experiments on Lightweight Object Detection Network

In order to verify the practical effectiveness of the Sparse Ghost Module, a series of experiments
were conducted. YOLOv5 and YOLOX were selected as experimental subjects since these two ob-
ject detection networks performed relatively well in the evaluation of underwater organism de-
tection (refers to Section 4.2). By replacing the standard convolutions in these two networks with
different classic lightweight modules (including Depthwise Separable Modules [17], Fire Modules
[30] and Ghost Modules [15]) and Sparse Ghost Modules, we obtained a series of experimental
results about the lightweight effects of these modules. All experiments were conducted on our
proposed MKUO dataset, and the results were obtained on the testing set after each model was
trained on the training set (refer to Section 4 for the division of the dataset). As shown in Table 4,
compared with the existing classic lightweight modules, the Sparse Ghost Module significantly
reduces the computation and the number of parameters at the minimum accuracy loss. Besides,
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whether for YOLOv5l or YOLOXl, among the results of various lightweight networks, the net-
work using the Sparse Ghost Modules was the best in terms of precision (mAP0.5:0.95 and mAP0.5)
and network complexity (the number of network parameters, parameter file size and the floating
point operations). Although the lightweight network using Depthwise Separated Module [17] has
a slight advantage in inference speed, the corresponding detection accuracy has decreased signifi-
cantly. Considering all metrics comprehensively, the lightweight effect of the Sparse Ghost Module
is the best among all compared schemes in our experiments, which means that it is more suitable
for application in an underwater environment with limited hardware conditions.

6 CONCLUSION

In this article, a novel large-scale annotated underwater organism dataset named MKUO was es-
tablished, which consists of 10,043 images and 14,476 annotations. The dataset contains 84 species
of underwater organisms (including fish, jellyfish, hermit crab, lobster, turtle, limulus, sea anemone,

seahorse, etc.), and it has the broadest organism species coverage among all existing annotated
underwater organism datasets to the best of our knowledge. Based on our MKUO dataset, a com-
prehensive evaluation of the existing underwater organism detection algorithms and typical uni-
versal object detection algorithms was conducted. The evaluation results on both accuracy metrics
and complexity ones were provided for the reference of future research. Our work is helpful for
subsequent researchers to select the proper object detection algorithm for underwater organism
detection tasks according to their own needs. Besides, in consideration of the hardware limita-
tions of underwater devices, a novel lightweight convolution module named Sparse Ghost Module
was proposed. By substituting the standard convolution in the object detection networks with our
Sparse Ghost Module, the calculation and the number of parameters of the networks can be sig-
nificantly reduced and the inference speed can naturally be improved without noticeable accuracy
loss.
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