
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 54, NO. 4, APRIL 2024 2257

Impulse Noise Image Restoration Using Nonconvex
Variational Model and Difference of Convex

Functions Algorithm
Benxin Zhang , Guopu Zhu , Senior Member, IEEE, Zhibin Zhu , Hongli Zhang , Member, IEEE,

Yicong Zhou , Senior Member, IEEE, and Sam Kwong , Fellow, IEEE

Abstract—In this article, the problem of impulse noise image
restoration is investigated. A typical way to eliminate impulse
noise is to use an L1 norm data fitting term and a total varia-
tion (TV) regularization. However, a convex optimization method
designed in this way always yields staircase artifacts. In addition,
the L1 norm fitting term tends to penalize corrupted and noise-
free data equally, and is not robust to impulse noise. In order to
seek a solution of high recovery quality, we propose a new varia-
tional model that integrates the nonconvex data fitting term and
the nonconvex TV regularization. The usage of the nonconvex TV
regularizer helps to eliminate the staircase artifacts. Moreover,
the nonconvex fidelity term can detect impulse noise effectively in
the way that it is enforced when the observed data is slightly cor-
rupted, while is less enforced for the severely corrupted pixels. A
novel difference of convex functions algorithm is also developed
to solve the variational model. Using the variational method, we
prove that the sequence generated by the proposed algorithm
converges to a stationary point of the nonconvex objective func-
tion. Experimental results show that our proposed algorithm is
efficient and compares favorably with state-of-the-art methods.

Index Terms—Difference of convex functions algorithm (DCA),
image restoration, impulse noise, nonconvex optimization model.
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I. INTRODUCTION

IMAGE restoration is a classical inverse problem and
plays an important role in the field of image processing.

Specifically, we consider the problem of restoring an image
corrupted by impulse noise. Mathematically, the image degra-
dation model can be formulated as f = Nimp(Ku), where
f ∈ Rm is the damaged image, Nimp means that the degra-
dation is caused by impulse noise, K ∈ Rm×n is an operator,
such as convolution and wavelet transform, and u ∈ Rn is the
original image. Then, our main aim is to recover the original
image from the damaged image.

Impulse noise often emerges due to transmission errors or
faulty memory locations of hardware. It will damage only
a part of the pixels of original image while not affecting
the other image pixels. A popular denoising method is the
median filter [1], which has high computational efficiency and
favorable denoising power. However, the edge information of
restored images is lost after median filtering. In order to pre-
serve the edges, variational approaches have been proposed
as an important class of image restoration methods, by which
the original image u is recovered by minimizing the energy
function. Generally, the energy function of the minimization
problem consists of the data fidelity term and regularization
term.

The data fidelity term is given by the noise type. According
to the statistical property of noise, we can derive the corre-
sponding form. For Gaussian noise, the data fidelity function
is usually L2 norm [2]. For non-Gaussian noise, L1 norm [3]
is suitable. It is well known that for impulse noise, the fidelity
term is L1 norm [4]. But, L1 norm yields biased estimators
in statistics. Especially, for high-level impulse noise, the data
fidelity term with L1 norm performs poorly. Gu et al. [5] intro-
duced a smoothly clipped absolute deviation (SCAD) function
for data fitting term, which processes the desirable oracle prop-
erty. Some other nonconvex fidelity terms have been discussed
in [6], [7], and [8], including the exponential type, Geman
function, log penalty, and L0 norm. These nonconvex terms
are particularly suitable for restoring the images corrupted with
high-level impulse noise.

The regularization term is related to the priori knowledge
of the image, such as textures and edges, which are important
information and structures. A general form of this term is a
composition of the potential function and gradient operator.
The classical one is Tikhonov regularization [9], of which the
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function is quadratic and smooth. It can be easily minimized
using a smooth optimization method. However, this regulariza-
tion function often eliminates edges and texture details. To deal
with this shortcoming, total variation (TV) regularization was
proposed in [2] and has been proved very successful. TV term
is composed of the L1 norm and gradient operator. It captures
the gradient sparsity of an image and has the edge-preserving
ability. Also, some variants of TV have been studied in the past
twenty years. Recently, the Potts model [10], which adopts
L0 norm to ensure sparseness, has received much attention.
However, the global optimal solution of the model is difficult
to obtain. So, it is expected to find new penalties that have
the advantages of L1 and L0 norm while avoiding their dis-
advantages. There are many choices for nonconvex penalties,
for example, capped-L1 [11], the minimax concave penalty
(MCP) [12], and Log-norm penalty [13]. These regulariza-
tion functions were introduced to enhance gradient sparsity.
Theoretical analysis and experimental results indicate that non-
convex regularization can obtain a better performance than
convex regularization.

By using TV and L1 norm data fitting terms, the
TVL1 model is proposed for impulse noise removal [3].
Some efficient algorithms, including the alternating direction
method of multipliers (ADMMs) [14] and the primal–dual
method [15], have been designed for solving the TVL1
optimization problem. Nikolova et al. [4] proposed a new
model that combines L1 norm data fitting and nonconvex reg-
ularizer. The nonconvex regularizer offers more possibilities
to recover high-quality image. By adopting TV as the regular-
ization term and SCAD as the data fitting function, Gu et al.
introduced a new model TVSCAD in [5]. This nonconvex
model can achieve higher performance than TVL1, and a dif-
ference of convex functions algorithm (DCA) was designed
to solve it. Zhang et al. [7] proposed a simple optimization
model that makes use of a nonconvex log function for data
fitting term and TV regularization. Compared to TVSCAD,
this model is easy to choose the scalar parameter. They also
developed a new DCA with an adaptive proximal parameter.
Zhang et al. [6] introduced some nonconvex-TV models with
a nonconvex potential function, and gave a proximal linearized
minimization algorithm. Yuan and Ghanem [8] proposed a
sparse optimization method, which applies TV regulariza-
tion and L0 norm data fidelity for impulse noise removal.
To solve the nonconvex optimization model, the authors
reformulated the problem as a mathematical programming
with equilibrium constraints. Very recently, Cui and Fan [16]
proposed a nonconvex regularization term plus nonconvex data
fitting term model. Further, the authors designed an alternat-
ing direction minimization method to solve the optimization
problem.

In this article, the issue of impulse noise image restoration
is investigated. To solve this issue, a new nonconvex varia-
tional model is developed considering that the nonconvex plus
nonconvex model may be more suitable for reducing artifacts
and eliminating impulse noise. Generally, it is a challenging
task to find an efficient algorithm to solve the optimization
problem related to nonconvex variational model. To address
this, a novel DCA is presented. The main contributions of this
work are as follows:

First, a new variational model, which is nonconvex in terms
of both TV term and data fidelity term, is proposed for the
removal of impulse noise. In the proposed model, the noncon-
vex TV eliminates artifacts while preserving the sharpness and
smoothness of the restored image, meanwhile the nonconvex
data fidelity effectively removes the impulse noise.

Second, a novel DCA with an L1 norm proximal term is
presented to solve the proposed nonsmooth and nonconvex
variational model. To the best of our knowledge, L1 proximal
technique has not yet been used in DC programming. With the
help of the η stationary point, the convergence of the proposed
algorithm is also proved. The convergence analysis extends the
existing results of general DC programming, thus also makes
a theoretical contribution to this kind of issues.

Third, our new model can deal with different image pro-
cessing tasks, such as image deblurring, image recovery, and
image denoising (note that the noise types include salt-and-
pepper (SP) impulse noise, random-valued (RV) impulse noise,
Gaussian plus SP and RV impulse noise, and Gaussian mixture
noise). Experimental results show that the proposed algorithm
outperforms other competitors for suppressing impulse noise.

The remainder is organized as follows. In Section II, the
new nonconvex model is shown. In Section III, a novel DCA
is proposed to deal with this optimization model. The con-
vergence of DCA is established in Section IV. In Section V,
experimental results for the proposed model and algorithm
demonstrate encouraging performance. In Section VI, the
conclusion is presented.

II. MOTIVATION AND NEW MODEL

By combining TV regularization and L1 norm penalized
data term, the minimization of TVL1 model for impulse noise
removal can be written as

min
u

‖u‖TV + μ‖Ku − f ‖1 (1)

where μ > 0 is a regularization parameter, and ‖ · ‖TV is TV
norm, that is, ‖∇u‖1. Using the finite difference operation, TV
can be discretized into isotropic and anisotropic forms

‖u‖TViso := ‖Du‖2, ‖u‖TVaniso := ‖Du‖1

where ∇ is gradient operator and D denotes a first-order finite
difference of u at every pixel. It is known that TVL1 model
works reasonably well only for low-level impulse noise, and
performs poorly for high-level impulse noise. The reason may
be that both the corrupted data and the noise free data are
equally penalized in data fitting, leading to significant diffi-
culty in balancing regularization and data fitting. Moreover,
the L1 norm penalty is known to yield biased estimators in
statistics. The solution of the TVL1 model substantially devi-
ates from both the data acquisition model and the prior model
and, thus, is suboptimal. Then, some nonconvex approaches
and correction procedures are proposed.

Yuan and Ghanem [8] proposed the following sparse
optimization L0TV model:

min
u

μ‖Ku − f ‖0 + ‖∇u‖1 (2)

Authorized licensed use limited to: Universidade de Macau. Downloaded on March 21,2024 at 01:53:16 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: IMPULSE NOISE IMAGE RESTORATION USING NONCONVEX VARIATIONAL MODEL AND DCA 2259

which takes L0 norm as a data fidelity term and TV term as a
regularization term. Model (2) is suitable for image restoration
under impulse noise. While the problem described by (2) is a
combinatorial optimization problem (NP hard), and it is diffi-
cult to obtain its optimal solution. In [17], a corrected TVL1
approach was proposed by solving a series equivalence prob-
lems of TVL1. Base on the work of Bai et al. [17], Gu et al. [5]
introduced the TVSCAD model that includes TV and SCAD
function. The TVSCAD model can be described as

min
u

‖u‖TV + μ�γ (Ku − f ) (3)

where �γ is defined as

�γ (y) =
m∑

i

φγ (yi), y ∈ Rm

and

φγ (t) =

⎧
⎪⎨

⎪⎩

|t|, if |t| ≤ γ1
−t2+2γ2|t|−γ 2

1
2(γ2−γ1)

, if γ1 < |t| < γ2
γ1+γ2

2 , if |t| ≥ γ2

where y = [y1, . . . , ym]T denotes the function variable of
�γ (y), t is the function variable of φγ (t), | · | denotes the
absolute value, γ := (γ1, γ2) is a pair of parameters, and
γ2 > γ1 > 0. Then, a DCA is proposed to solve this model.
The resulting subproblem is solved by ADMM, and the global
convergence is also established. Zhang et al. [6] proposed a
nonconvex model, which is defined as

min
u

μP(Ku − f )+ ‖u‖TV (4)

where P is a potential data fitting function, such as the
exponential-type (ET) function. Models (3) and (4) can be con-
sidered as the relaxation of (2). Such models can only lead to
suboptimal estimation since they give approximate solutions
of the problem of (2). Cui and Fan [16] introduced a model by
adopting the nonconvex data fitting and regularization terms.
Their model is expressed as

min
u

μP(Ku − f )+ Q(∇u) (5)

where P and Q are semialgebraic functions, and both of
them can be rewritten as the sum of two functions. By the
semiconvergence property of denoising problems, the optimal
estimation of (5) converges toward the desired solution first,
and then diverges from it after a number of iterations.

The data fitting term containing nonconvex functionals
has been used for image restoration under impulsive noise.
However, TV regularization was used as the regularizer in
these works [5], [6], [8]. Hence, the artifacts may still exist in
the restored image. Considering the effectiveness of the artifact
removal of nonconvex regularization [16] and the robustness
of nonconvex data fidelity to outliers, we propose a new model
that combines the nonconvex data fitting term and nonconvex
regularization term. The model is given as

min
u

μ�γ (Ku − f )+�s(∇u) (6)

where �s is defined as

�s(v) =
n∑

i

ψs(vi), v ∈ Rn

and

ψs(t) = 1

s
Log(1 + s|t|)

where s is a parameter larger than 0, and v = [v1, . . . , vn]T

denotes the function variable of �s(v). The motivation of
using the SCAD function here is to enforce less or even
no data fitting and more regularization whenever (Ku)i devi-
ates significantly from fi. This is quite reasonable because
the ith pixel is more likely to be corrupted in such a case.
For the ith pixel such that (Ku − f )i is sufficiently small, the
absolute penalty is kept. The structure of SCAD can discrim-
inate the difference between the corrupted and uncorrupted
pixels and provide good restorations. Moreover, the SCAD
and Log penalty functions make the resulting estimator pos-
sesses three desired properties, that is, continuity, sparsity, and
unbiasedness [5]. Hence, the solution of (6) is optimal and
robust.

III. ALGORITHM

In this section, we first introduce some preliminaries that
will be used in the proposed approach. Then, a novel DCA is
presented.

A. Some Properties of �γ and �s

We show some properties of �γ and �s, which are impor-
tant for a constructive algorithm. First, we consider the
functions νγ (t) and ϕs(t) that can be induced by φγ and ψs,
that is

νγ (t) = |t| − φγ (t), γ > 0 (7)

ϕs(t) = |t| − ψs(t), s > 0. (8)

From [13], νγ (t) and ϕs(t) are continuously differentiable and
convex on R.

Note that in order to apply the difference of convex func-
tions programming to �γ and �s, νγ (t) and ϕs(t) are defined
in (7) and (8), respectively. Let νγ (t) be given by (7), then set

γ : Rm → R as


γ (y) =
m∑

i

νγ (yi). (9)

Similarly, ϕs(t) is given by (8). Set �s:Rn → R as

�s(v) =
m∑

i

ϕs(vi). (10)

Note that 
γ and �s are continuously differentiable and
convex [13].

From (9) and (10), we also can obtain

�γ (y) = ‖y‖1 −
γ (y) (11)

�s(v) = ‖v‖1 −�s(v). (12)
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Hence, we can rewrite the proposed model (6) as a DC
programming.

B. DC Programming and Novel DCA

DC programming is used to minimize a problem which can
be written as the difference of convex functions [18], [19].
By (11) and (12), we can decompose SCAD and log functions
as the difference of convex functions, that is

�γ (Ku − f ) = ‖Ku − f ‖1 −
γ (Ku − f )

and

�s(v) = ‖∇u‖1 −�s(∇u).

By integrating the above two equations into (6), we obtain

min
u

‖∇u‖1 + μ‖Ku − f ‖1 − (
�s(∇u)+ μ
γ (Ku − f )

)
. (13)

Let

g(u) = ‖∇u‖1 + μ‖Ku − f ‖1

and

h(u) = �s(∇u)+ μ
γ (Ku − f )

then, (13) can be rewritten as the difference of g(u) and h(u)

min
u

F(u) = g(u)− h(u). (14)

So, (14) is a typical DC programming.
It is known that the aim of DCA is to solve the DC program-

ming and its dual problem. Generally, DCA optimizes (14) via
linearizing h(u) and solving the following convex problem:

uk+1 = arg min
u

{g(u)− (h(uk)+ 〈∇h(uk), u − uk〉)} (15)

where 〈·〉 denotes the inner product between two vectors. Gu
et al. [5] added an L2 norm proximal term to (15) and their
convex problem is

uk+1 = arg min
u

{
g(u)− (h(uk)+ 〈∇h(uk), u − uk〉)

+ η

2
‖u − uk‖2

}
(16)

where η > 0. Different from the above scheme, we introduce
a novel DCA with the L1 norm proximal term as follows:

uk+1 = arg min
u

{g(u)− (h(uk)+ 〈∇h(uk), u − uk〉)
+ η‖u − uk‖1}. (17)

Then, our DCA for solving (6) is described as

uk+1 = arg min
u

{‖Du‖2 + μ‖Ku − f ‖1

− 〈
DT∇�s(Duk)+ μKT∇
γ (Kuk − f ), u − uk

〉

+ η‖u − uk‖1}. (18)

Note that the isotropic discretization TV is adopted in this
article and the case of anisotropic TV is completely similar.
The objective function of (18) is convex and has a global
optimal solution.

In order to use the popular ADMM [20], [21], [22] for
solving problem (18), we express (18) as an equivalent form

uk+1 = arg min
u

{‖Du‖2 − 〈∇�s(Duk),Du〉
+ μ‖Ku − f ‖1 − μ

〈∇
γ (Kuk − f ),Ku − f
〉

+ η‖u − uk‖1}. (19)

By introducing free variables w, z, d, p, and q, and defining
w = Du, z = Ku − f , pk = ∇�s(wk), qk = ∇
γ (zk), d = u,
(19) can be rewritten as

min
u,w,z,d

‖w‖2 − 〈pk,w〉 + μ(‖z‖1 − 〈qk, z〉)+ η‖d − uk‖1

s.t. w = Du, z = Ku − f , d = u. (20)

The augmented Lagrangian function of (20) is

L(w, z, d, u, λw, λz, λd) = ‖w‖2 − 〈pk,w〉 − λT
w(w − Du)

+ βw

2
‖w − Du‖2 + μ(‖z‖1 − 〈qk, z〉)

− λT
z (z − (Ku − f ))+ βz

2
‖z − (Ku − f )‖2

+ η‖d − uk‖1 − λT
d (d − u)+ βd

2
‖d − u‖2

where βw, βz, βd > 0 are penalty factors, and λw ∈ R2n,

λz ∈ Rm, and λd ∈ Rn are multipliers. By (20), we have the
following ADMM when initial points start at u0 and λ0

w, λ
0
z ,

and λ0
d:

(
wj+1, zj+1, dj+1

)
= arg min

w,z,d
L
(

w, z, d, uj, λj
w, λ

j
z, λ

j
d

)
(21)

uj+1 = arg min
u

L
(

wj+1, zj+1, dj+1, u, λj
w, λ

j
z, λ

j
d

)
(22)

⎧
⎪⎨

⎪⎩

λ
j+1
w = λ

j
w − αβw

(
wj+1 − Duj+1

)

λ
j+1
z = λ

j
z − αβz

(
zj+1 − (

Kuj+1 − f
))

λ
j+1
d = λ

j
d − αβd

(
xj+1 − uj+1

) (23)

where α ∈ (0, (1+√
5)/2). In fact, the scheme of (21)–(23) is

ADMM for two blocks of variables (w, z, d) and u. Hence, the
convergence of this ADMM can be guaranteed by the classical
results in [23].

Next, we show how to solve the subproblems (21) and (22).
In fact, wj+1, zj+1, and dj+1 are the solutions of proximity
operators about ‖ · ‖2 and ‖ · ‖1. So, the w, z, d-subproblems
in (21) have a closed form as

wj+1 = max

{
‖Duj + λ

j
w + pk

βw
‖2 − 1

βw
, 0

}
Duj + λ

j
w+pk
βw∥∥∥∥Duj + λ

j
w+pk
βw

∥∥∥∥
2

(24)

zj+1 = max

{
|Kuj − f + λ

j
z + μqk

βz
| − μ

βz
, 0

}

·sign

(
Kuj − f + λ

j
z + μqk

βz

)
(25)

dj+1 = max

(
|uj + λ

j
d

βd
− uk| − η

βd
, 0

)
· sign

(
uj + λ

j
d

βd

)
+ uk

(26)

where |·| is componentwise absolute value and sign represents
the signum function. To address the issue that the divisor is
zero and avoid the instability of numerical computation, 0 ·
(0/0) = 0 is assumed.
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Algorithm 1 DCA for Solving (6)
Set μ, βw, βz, βd, ε, s, γ2, γ1, η > 0, u0, p0 = ∇�s(Du0),
q0 = ∇�s(Ku0 − f ), kmax, jmax.
For k = 0, 1, 2, . . . , kmax

Given λ0
w, λ

0
w, λ

0
w, and uk, pk, qk.

For j = 0, 1, 2, . . . , jmax
Calculate wj+1 according to (24).
Calculate zj+1 according to (25).
Calculate dj+1 according to (26).
Calculate uj+1 according to (27).
Update λj+1

w , λ
j+1
z , λ

j+1
d via (23).

If ‖uj+1 − uj‖2/(1 + ‖uj‖2) < ε,
break,

End
End

Set uk+1 = uj+1 and compute pk+1 = ∇�s(Duk+1),
qk+1 = ∇�s(Kuk+1 − f ).
End

The minimization u-subproblem (22) is a least square. The
corresponding normal equation is

(
DTD + βz

βw
KTK + βd

βw
I

)
uj+1

= DT

(
wj+1 − λ

j
w

βw

)
+ βz

βw
KT

(
zj+1 − λ

j
z

βz

)

+ βz

βw
KTf + βd

βw

(
dj+1 − λ

j
d

βd

)
. (27)

When βw, βz, βd > 0, the coefficient matrix DTD +
(βz/βw)KTK + (βx/βw)I is nonsingular. Under the periodic
boundary conditions, this matrix can be diagonalized by
Fourier transform. So, the solution of normal equation (27)
can be given by two fast Fourier transforms. If the matrix has
no special structure to use, it can be commonly solved by the
conjugate gradient method.

Finally, we show the novel DCA for solving the proposed
model (6) in Algorithm 1.

C. Computational Complexity

The computational complexity of the proposed algorithm
can be analyzed as follows. In the outer loop, the complex-
ity of calculating Euclidean gradient is O(n), where n is the
image size. In the inner loop, the w, z and d subproblems
are solved using the shrinkage operators in linear time, so the
complexity of each of them is O(n); the computational cost
associated with the u subproblem is O(n log n) if its solution
is obtained via fast Fourier transform and inverse transform,
and is O(n2) if its solution is achieved via the conjugate gradi-
ent method; the update of the Lagrangian multipliers via (23)
can be implemented straightforwardly in O(n) time. Thus, the
worst case complexity of the proposed algorithm for solving
problem (6) is O(kmaxjmaxn log n) or O(kmaxjmaxn2). It should
be pointed out that the complexity of our new algorithm is
the same as those of the methods of [5], [6], and [16], but is
lower than that of the classical ADMM presented in [8], [14],

and [23] [i.e., O(Tn log n) or O(Tn2)] if kmaxjmax < T , where
T is the total iteration number of the classical ADMM.

IV. CONVERGENCE

Using the tools from variational analysis, we prove that
Algorithm 1 is convergence in this section. First, a simple
property of subdifferential is established.

Lemma 1: If ξk+1 ∈ ∂‖uk+1 − uk‖1, then

‖uk+1 − uk‖1 ≤ 〈ξk+1, uk+1 − uk〉.
Proof: Let J(u) = ‖u − uk‖1. By the definition of subdif-

ferential, we obtain

J(uk)− J(uk+1) = 0 − ‖uk+1 − uk‖1

≥ 〈∂J(uk+1), uk − uk+1〉
= 〈ξk+1, uk − uk+1〉.

Lemma 2: For the sequence generated by Algorithm 1, we
have

F(uk)− F(uk+1) ≥ η‖uk+1 − uk‖1 (28)

and {uk} is bounded and convergent.
Proof: Because g(u) is a convex function, we know

g(uk)− g(uk+1) ≥ 〈∂g(uk+1), uk − uk+1〉. (29)

Similarly, we obtain

h(uk+1)− h(uk) ≥ 〈∂h(uk), uk+1 − uk〉. (30)

It follows from (17) that:

∂h(uk)− η∂‖uk+1 − uk‖1 ∈ ∂g(uk+1). (31)

Combining (29) and (30), we obtain

F(uk)− F(uk+1) ≥ 〈−∂g(uk+1)+ ∂h(uk), uk+1 − uk〉
= 〈ηξk+1, uk+1 − uk〉
≥ η‖uk+1 − uk‖1

where (31) and Lemma 1 are used.
For k = 0, 1, . . ., summing all the inequalities in (28), we

deduce that
∞∑

k=0

‖uk+1 − uk‖1 ≤ 1

η
F(u0)

which implies that {uk} is a Cauchy sequence and is conver-
gent. The assertion is proved.

Before we show the convergence result, the definition of η
stationary point [24] is given as below.

Definition 1: For η > 0, u∗ is η stationary point of F(u) if
there exists ζ ∈ ∂F(u) such that ‖ζ‖∞ ≤ η.

Theorem 1: The limit point u∗ of {uk} that is generated by
Algorithm 1 is an η stationary point of the objective function
F(u).

Proof: From the relationship (31), we have

∂F(uk+1) � ∂g(uk+1)− ∂h(uk+1)

= ∇h(uk)− ∇h(uk+1)− ηξk+1. (32)
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Due to the boundedness of ξk+1 ∈ [−1, 1] and {uk}, we can
find a common subsequence {kj}, such that ξkj → ξ∗ and
ukj → u∗. Replacing k by kj in (32), taking the limit and
using the continuity of the function ∇h(u), we obtain −ηξ∗ ∈
∂F(u∗). By ‖ηξ∗‖∞ ≤ η, u∗ is an η stationary point.

V. EXPERIMENTAL VALIDATION

We evaluate the proposed model and algorithm on image
restoration problem with impulse noise in this section. The
experiments include image deblurring, image denoising and
image recovery. All code are performed on a PC with 2.9-GHz
processor and 16-GB RAM.

A. Image Debluring

In the first example, we show the effectiveness of the
proposed method in suppressing impulse noise and restoring
the blurred image. Impulse noise can be classified into two
types, namely SP noise and RV noise. If a grayscale image
is degraded by SP noise, then some of its pixels will change
to the minimum (0) or maximum (255) pixel values. More
specifically, the noisy f corrupted by the SP noise with noise
level r (0 ≤ r ≤ 1) is given as

fi =
⎧
⎨

⎩

0, with probability r
2

255, with probability r
2

ui, with probability 1 − r

where u denotes the original grayscale image, and i denotes the
pixel location. Similarly, if a grayscale image is degraded by
RV noise, then some of its pixels will change to the random
values which are between the minimum and the maximum
pixel values. The noisy f corrupted by the RV noise with noise
level r is expressed by

fi =
{

di, with probability r
ui, with probability 1 − r

where di is uniformly distributed in [0, 255]. In general, the
high-level impulse noise means that more than 50% pixels
of an entire image are corrupted. In this section, the experi-
ment results of image deblurring with SP and RV noise are
presented.

1) Compared With TVL1 and TVSCAD: In this part, the
new model (6) is compared with the TVL1 model (1)
and TVSCAD model (3). For high-level impulse noise,
TVL1 model works poorly. In order to overcome the limita-
tion of TVL1, TVSCAD is proposed. Moreover, our proposed
model (6) is an improved version of TVSCAD, where the
nonconvex log function is instead of the L1 norm in the reg-
ularization term of TVSCAD. Moreover, TVSCAD model is
solved by the classical DCA with L2 proximal term, while
the new model is solved by a novel DCA with L1 prox-
imal term. Hence, our approach is called NNDCL1, which
means that nonconvex plus nonconvex model is solved by DC
programming with L1 proximal term.

In our experiments, a 9 × 9 Gaussian blur with standard
deviation 10 and an average blur with size 9×9 are considered.
Also, SP or RV noises will be added after blur the image. As
we know, RV noise is more difficult to removal than SP noise

Fig. 1. Tested images.

since the noise value can be arbitrary numbers between the
min and max pixel value. Therefore, we test 50%, 70%, and
90% noise levels for SP noise and 40%, 60%, and 80% noise
levels for RV noise. The testing images are House (256×256)
and Peppers (512 × 512), as shown in Fig. 1. The quality of
the restoration image is evaluated by the signal to noise ration
(SNR) and the structure similarity (SSIM) [25]. Obviously, the
higher values of SNR and SSIM, the better of the restoration
image.

The parameters of the tested models should be specified.
These parameters have a great influence on the numerical per-
formances. The best choice of the parameter μ is known to
be problem dependent and very hard to find. So, we adjust
the parameters one by one for each image. For the regular-
ization parameter μ, we first determine the optimal parameter
value μ of TVSCAD by solving a series of problems (3) as
done in [5]. Then, the best μ values of TVSCAD are also
used in our model (6). For a fair comparison, the time con-
sumed in parameter tuning is not taken into account for all the
tested methods. For the TVL1 model, μ takes 1.75 for both
the two types of testing noise. For the TVSCAD model and
our model, μ takes different values for the two types of noise.
Specifically, under the SP noise, μ takes 22 for House image;
and under the SP noise with noise levels of 50%, 70%, and
90%, it takes 21, 7, and 17, respectively, for Peppers image.
While, under the RV noise with noise level of 80%, μ takes
5 for House and 3.75 for Peppers; under the RV noise with
noise levels of 60% and 40%, it takes 5 and 21, respectively,
for two test images. In order to make a fair evaluation, the
function �γ in (3) and (6) will be taken the same for high-
level noise. As suggested in [5], we set γ1 = 0.08/k and
γ2 = max(0.2 × 0.85k−1, 0.1) for SP noise and γ1 = 0.0001
and γ2 = 0.5 for RV noise, About s in �s, it takes 0.035 for
SP noise and 0.095 for RV noise.

Next, we consider these parameters in compared and
proposed algorithms. For all the compared algorithms, we
manually choose the regularization and the algorithmic param-
eters that yield the best SNR and SSIM in the experiments. For
nonconvex problems, it is impossible to make an optimization
algorithm achieve its best performance for all tests using a set
of fixed parameters. Hence in general, the parameters of the
optimization algorithm are tuned case by case to obtain much
better results for each test. The proximal term can make the
problem well defined and stabilize the method. It mentions
that the proximal parameter η in (17) is related to the opti-
mality condition. Hence, we set η = 0.001 in (16) and (17)
throughout. It also noted that both of TVSCAD and NNDCL1
use ADMM to solve the subproblems (16) and (17). Then, we
set βw = 5, βz = 10, βx = 100 for SP noise, βw = 2, βz = 5,
βx = 650 for RV noise, and α = 1.618 in all tests. For the
parameters of TVL1 method, we set them as done in [23].
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TABLE I
COMPARISON RESULTS OF DIFFERENT ALGORITHMS FOR SP AND RV NOISE

Fig. 2. Visual results for images corrupted by Gaussian blur with 70% SP
noise and restored by TVL1, TVSCAD, and NNDCL1.

Fig. 3. Visual results for images corrupted by average blur with 90% SP
noise and restored by TVL1, TVSCAD, and NNDCL1.

For initialization of all algorithms, we set u0 = f . To compute
uk+1 from uk in (16) and (17), ADMM starts at uk and the
initial multipliers are zeros when launching ADMM as dis-
cussed in [5]. ADMM will terminate when ε ≤ 0.0001 or the
inner iteration number is met. The maximum outer iteration
of TVSCAD and NNDCL1 is 5 for SP noise and 10 for RV
noise for high-level noise. But, the maximum outer iteration
is set as 5 for 40% and 50% low density noise. The reason is
that the quality has no much more improvement after several
iterations.

Now, we show the compared results of images corrupted
by Gaussian and average blur with SP and RV noise. The par-
tial visual comparisons are shown in Figs. 2–5, which include

Fig. 4. Visual results for images corrupted by average blur with 60% RV
noise and restored by TVL1, TVSCAD, and NNDCL1.

Fig. 5. Visual results for images corrupted by Gaussian blur with 80% RV
noise and restored by TVL1, TVSCAD, and NNDCL1.

the blurry noisy images and the restored images by different
methods. It can be seen that both TVSCAD and NNDCL1
outperform TVL1, especially for high-level noise. Comparing
the results of TVSCAD and NNDCL1, we see that NNDCL1
performs competitive with TVSCAD and the two methods
adequately restore the images from the very high-level noise.
The quantitative evaluations of experiment results are reported
in Table I, which gives CPU time (seconds), SNR (dB) and
SSIM. Note that each algorithm is tested ten times on the
same image under the same random noise level, then each
result reported in Table I is obtained by averaging the ten
test results. From Table I, one can see that the new model
obtains higher SNR and SSIM values in most cases and CPU
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Fig. 6. SNR values versus iteration numbers for Peppers with 50% (first
row) and 90% (second row) SP noise.

times of NNDCL1 and TVSCAD are almost the same. The
convergence curves of NNDCL1 and TVSCAD are plotted
in Figs. 6 and 7. We can see that the curves of SNR values
increase as the outer iteration numbers increase. NNDCL1 per-
forms better than TVSCAD in the case of SP noise. For RV
noise, NNDCL1 is also competitive.

As shown in Table I, Figs. 6 and 7, the superiority of the
proposed algorithm is more evident for low-level noise than
for high-level noise. The SNR and SSIM values of NNDCL1
are about 0.4dB and 0.01 higher than those of TVSCAD,
respectively. However, with the increase of noise density, the
superiority decreases gradually. This may be explained as fol-
lows. For low-level noise, both the regularization term and the
data fidelity term play equally important roles. In this case,
nonconvex regularizer has advantages over convex one. For
high-level noise, such as 80% and 90% impulse noise, the data
fidelity term plays a far more important role than the reg-
ularization term. Therefore, compared with TVSCAD, the
superiority of NNDCL1 is no longer obvious. But, in gen-
eral, by using the nonconvex log penalty to promote sparsity,
NNDCL1 can obtain higher quality restored images than
TVSCAD.

2) Compared With Nonconvex Models: In this part, the new
approach is compared with some nonconvex methods [6], [8],
[16]. In [6], ET function is used as data fitting term and TV is
taken as regularization term. The model (4) is called ETTV and
solved by proximal linearized minimization method. In [8],
an L0TV nonconvex model (2) was presented and the prox-
imal ADMM was used to solve the optimization problem.
In [16], a nonconvex data fitting term plus nonconvex regular-
izer model (5) was introduced and the authors also presented
an effective algorithm, called NNADM.

In this experiment, the same blur types are adopted as dis-
cussed in the last part. But, we test 30% and 80% noise levels
of SP noise and 20% and 70% noise levels of RV noise. The
tested images are Parrot (256 × 256), Lena (512 × 512), and
Man (512 × 512), which are displayed in Fig. 8. The μ value
of (6) is taken from {3.8, 15, 20, 75}, and s is 0.035 for SP
noise and 0.09 for RV noise. We choose penalty parameters

βw, βz, βd ∈ {2, 5, 10, 20, 50, 100, 650, 1000}
in the ADMM. The max outer iteration number is 5 or 10. For
ETTV, L0TV, and NNADM, we use the suggested parameters
values.

Fig. 7. SNR values versus iteration numbers for House with 40% (first row)
and 80% (second row) RV noise.

Fig. 8. Tested images.

Fig. 9. Average blur image with 30% SP noise and images restored by
ETTV, L0TV, NNADM, and NNDCL1.

Numerical performances of various compared methods are
recorded in Table II. The results show that NNDCL1 performs
better than ETTV, L0TV, and NNADM in terms of SNR and
SSIM in most cases. L0TV and NNADM seem to need more
CPU time in seconds than ETTV and NNDCL1 except the case
of 70% noise level. Moreover, the performances of ETTV and
NNDCL1 are almost similar in terms of CPU times for all
noise levels.

The visual comparisons are shown in Figs. 9–12. These fig-
ures give restored results of images degraded by average blur
kernel with 30% SP noise, Gaussian blur kernel with 80% SP
noise, Gaussian blur kernel with 20% RV noise and average
blur kernel with 70% RV noise. We see that the four meth-
ods can remove the noise well, regardless of low or high-level
noise.

The curves of partial SNR and SSIM versus CPU time are
plotted in Figs. 13–16. Among the four algorithms, SNR and
SSIM values of NNDCL1 are increasing as CPU time and
always on the top at the last time. ETTV is in the middle of the
four methods in most cases. From Figs. 13 and 14, we can find
that the curves of NNADM are far below. The increasing rates
of L0TV are slightly slower in Figs. 15 and 16. So, from these
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TABLE II
COMPARISON RESULTS OF DIFFERENT ALGORITHMS FOR SP AND RV NOISE

Fig. 10. Gaussian blur image with 80% SP noise and images restored by
ETTV, L0TV, NNADM, and NNDCL1.

Fig. 11. Gaussian blur image with 20% RV noise and images restored by
ETTV, L0TV, NNADM, and NNDCL1.

figures, we observe that NNDCL1 has a good convergence
property and is stable.

B. Image Denoising

To further verify the performance of the proposed algorithm
in reducing artifacts, image denoising (when K is the identity
operator) experiment is tested. In this experiment, the proposed
algorithm is compared with two very recent works [26], [27]
for impulse noise removal. In [26], under the assumption that
both signal and noise are sparse, the authors proposed a fast
iterative method, called iterative double thresholding (IDT), to

Fig. 12. Average blur image with 70% RV noise and images restored by
ETTV, L0TV, NNADM, and NNDCL1.

Fig. 13. SNR values versus CPU times for restoring Parrot, Lena, and Man
images which are corrupted by Gaussian blur (first row) and average blur
(second row) with 80% SP noise.

remove impulse noise, which has a low complexity. In [27], a
nonconvex model called L0OGSTV was presented, which has
an L0 norm data fidelity term and overlapping group sparse
TV (OGSTV) regularization function. This model can be con-
sidered as an extension of L0TV. Majorization-minimization
method and ADMM were used to solve the L0-norm and the
OGSTV optimization problem.

The test images are Shape image (256×256) and MRI image
(320 × 320), as shown in Fig. 17. The SP and RV noises
with different noise densities are tested. The noise levels of
SP are 40% and 60%, and those of RV are 10% and 50%. For
fairness, we manually chose the regularization and algorithm
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Fig. 14. SSIM values versus CPU times for restoring Parrot, Lena, and Man
images which are corrupted by Gaussian blur (first row) and average blur
(second row) with 80% SP noise.

Fig. 15. SNR values versus CPU times for restoring Parrot, Lena, and Man
images which are corrupted by Gaussian blur (first row) and average blur
(second row) with 70% RV noise.

Fig. 16. SSIM values versus CPU times for restoring Parrot, Lena, and Man
images which are corrupted by Gaussian blur (first row) and average blur
(second row) with 70% RV noise.

Fig. 17. Tested images.

parameters which yields the best SNR and SSIM for IDT and
NNDCL1, while for L0OGSTV, the parameter settings closely
follow [27]. The maximum outer iteration of NNDCL1 takes
2 for low-level noise, and takes 3 or 5 for high-level noise.

The experiment results are reported in Table III. From the
table, two observations can be made. First, the proposed
NNDCL1 method almost always outperforms IDT and
L0OSGTV methods for both SP and RV impulse noise
removal. This is obvious especially in terms of SNR and SSIM.
Second, IDT has the lowest runtime. The reason is that the

Fig. 18. Denoising results by IDT, L0OGSTV, and NNDCL1 for Shape
corrupted by 40% SP noise and MRI by 10% RV noise.

Fig. 19. Denoising results by IDT, L0OGSTV, and NNDCL1 for Shape
corrupted by 50% RV noise and MRI by 60% SP noise.

Fig. 20. Original images.

main computational costs are two thresholding operators, and
not involving the matrix–vector product.

We show the restored images in Figs. 18 and 19. From
Fig. 18, we can see that all the test methods can remove
the noise well when its density is low. Whereas, as shown
in Fig. 19, IDT is not capable of completely removing the
noise when the noise density is high or not sparse. Besides,
although L0OGSTV preserves the details of the image, it tends
to cause blurred edges or produce undesired artifacts, and its
execution process usually takes a long time. By comparison,
the proposed NNDCL1 method can achieve a good balance
between artifact reduction and noise removal.

Besides, it is seen from the comparative experiment that the
first iteration of Algorithm 1 produces a high-quality guess for
the nonconvex optimization problem, and can be interpreted as
a warm-start step. This means that the proposed DCA needs a
less number of iterations to achieve the optimal solution, thus
improving the overall efficiency of the proposed method.

C. Image Recovery

The third example is given to further show the superior-
ity of the proposed method in image recovery with impulse
noise and the effectiveness of the L1 proximal technique. In
this experiment, we apply our model to the image recov-
ery from compressed measurements. The tested images are
Shepp-Logan and Brain, and shown in Fig. 20. The size
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TABLE III
COMPARISON RESULTS OF DIFFERENT ALGORITHMS FOR SP AND RV NOISE REMOVAL

TABLE IV
PSNR VALUES OF THE IMAGES RESTORED BY THE COMPARED ALGORITHMS

Fig. 21. Recovery results of L1LS-FISTA, L0.5LS-ADMM, YALL1, L0.2LA-ADMM, L0.5LA-ADMM, L0.7LA-ADMM, and NNDCL1 on Shepp-Logan and
Brain images with Gaussian mixture noise.

of each image is 256 × 256. The measurement number is
m = round(0.4n), where n = 65536. A partial discrete cosine
transformation matrix A is employed as the sensing matrix K
and the Haar wavelets are used as the basis functions. Then,
the model (6) becomes

min
x

μ�γ (Ax − b)+�s(x)

where x is a wavelet coefficient and b is the sampled wavelet
data with impulse noise. We compare the new model with the
Lq regularized least absolute (LqLA) formulation

min
x

μ‖Ax − b‖1 + ‖x‖q

and the Lq regularized least squares (LqLS) formulation

min
x

μ‖Ax − b‖2 + ‖x‖q

where 0 < q ≤ 1.
Two types of impulse noise [28] are tested. The first one

is Gaussian mixture noise. The probability density function of
two-term Gaussian model is given by

(1 − ε)N
(

0, σ 2
)

+ εN
(

0, κσ 2
)

where ε = 0.1 and κ = 1000 in our experiments. The first
term stands Gaussian thermal noise and the second term means
the behavior of impulse noise. The second one is symmet-
ric τ -stable (SτS) noise. The characteristic function of SτS

distribution can be expressed as e(jτω)−ρτ |ω|τ , where the char-
acteristic exponent τ is 1 and the scale parameter ρ is 10−4.
The smaller the value of τ , the more impulse the noise is.

Our new method NNDCL1 is compared with some
representative algorithms, which include L1LS-FISTA [29],
LqLS-ADMM [30], YALL1 [31], and LqLA-ADMM [28].
L1LS-FISTA solves the L1LS model. L0.5LS-ADMM solves
the LqLS model based on ADMM with q = 0.5. YALL1 solves
the robust L1LA model. LqLA-ADMM with different values
of q ∈ {0.2, 0.5, 0.7} solves the LqLA model. The peak-
signal noise ratio (PSNR) is used to evaluate the recovery
performance.

Fig. 21 presents the recovery versions of the images cor-
rupted by Gaussian mixture noise. We can see that all algo-
rithms achieve good results in terms of visual quality. Fig. 22
gives the recovery images that have been damaged by SτS
noise. One can see that the L2 data fidelity-based methods, that
is, L1LS-FISTA and L0.5LS-ADMM, are failed, while the L1
data fidelity-based algorithms, that is, YALL1, LqLA-ADMM
and NNDCL1, work well. That is because the considered SτS
noise contains more impulse noise than Gaussian noise. The
performances in terms of PSNR are shown in Table IV. The
results show that NNDCL1 outperforms those representative
algorithms on reconstructing Shepp-Logan. The improvements
are higher as 2.39 dB (Gaussian mixture noise) and 0.87 dB
(SτS noise) over the compared algorithms. The reason may
be that the L1 norm proximal term of the proposed algorithm
further promotes the sparsity in the iterations. This advantage
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Fig. 22. Recovery results of L1LS-FISTA, L0.5LS-ADMM, YALL1, L0.2LA-ADMM, L0.5LA-ADMM, L0.7LA-ADMM, and NNDCL1 on Shepp-Logan and
Brain images with SτS noise.

TABLE V
AVERAGE RESULTS ON REMOVING MIXED GAUSSIAN

PLUS RV AND SP IMPULSE NOISE

is decreased on recovering Brain image. The PSNR values
attained by NNDCL1 are slightly lower than L0.5LA-ADMM,
but are higher than L1LS-FISTA, L0.5LS-ADMM, YALL1,
L0.2LA-ADMM, and L0.7LA-ADMM.

D. Mixed Noise Removal

Our last example is given to show the application of the
new model in removing mixed noise. In this section, Gaussian
plus impulse noise and Gaussian mixture noise are consid-
ered. In recent years, the deep learning using convolutional
neural network (CNN) has attracted many researchers for its
wide application in image processing. It has been gradually
established as one of the significant techniques. Hence, we
compared our new method with deep-learning-based methods
in this section. PSNR and SSIM are adopted to evaluate the
restoration quality.

1) Gaussian Plus Impulse Noise: First, we test the removal
of Gaussian plus impulse noise. In this experiment, we choose
randomly 500 images from the Pascal dataset as our test
images. The images are corrupted by white Gaussian noise
plus RV and SP noise. To demonstrate the performance for dif-
ferent settings of mixed Gaussian, RV, and SP impulse noise,
we test on four noise levels, which are shown in Table V. The
noise level of (15, 50, 30) in this table means that Gaussian
noise (σ = 15) + 50% RV noise + 30% SP noise, and the
other three cases have similar meanings. We compare our
proposed method with BdCNN [32], which is a learning-based
method. By training different kinds of noisy images with var-
ious noise levels, BdCNN can remove mixed noise regardless
of the noise level. For BdCNN, we use the network trained by
the authors of [32]. For our model, the regularization parame-
ter μ is set as 1.35, and the other parameters are set to s = 10,
γ1 = 0.01, γ2 = 0.5. We set βw = 10, βz = 50, βx = 100,
η = 0.00001, and α = 1.618 for the ADMM. The maximum
number of outer iterations is 5. This parameter setting of the
proposed method is used for all test cases.

Table V reports the test results for Gaussian plus impulse
noise removal. We can see from Table V that BdCNN achieves
higher PSNR than NNDCL1 when the noise level is low.
But, our method performs well in terms of PSNR and SSIM
when the images are corrupted by heavy mixed noises. This is
because our new method use the nonconvex data fitting term,
which can detect impulse noise effectively. Hence, it can be
seen that compared with the deep-learning-based method, our
numerical results are quite competitive.

2) Gaussian Mixture Noise: In the second test, we compare
the proposed method with EMCMM [33] on the removal of
Gaussian mixture noise. EMCNN is a variational model for
mixed noise removal, and is integrated with the CNN deep
learning regularization. For EMCNN, image prior is learned
by the CNN that is associated with a variational functional.

In this part, Pascal (500 test images, which are the same as
those chosen in the previous test) and Berkeley Segmentation
Dataset (BSD, 100 test images in total) datasets are used for
the comparison. We consider the following Gaussian mixture
noise form:

εN
(

0, σ 2
1

)
+ (1 − ε)N

(
0, σ 2

2

)
.

Then, the test images are corrupted by Gaussian mixture noise
with mixture ratio ε = 0.4, 0.5, 0.6 and three noise levels, that
is: 1) σ1 = 10 and σ2 = 30; 2) σ1 = 15 and σ2 = 70; and
3) σ1 = 25 and σ2 = 60. For EMCNN, the regularization
trained by the authors of [33] is adopted, and the parameters
are set as suggested in [33]. For the proposed method, the
setting of the parameters is the same as that of the previous
test.

Table VI reports the results for Gaussian mixed noise
removal. It is seen from Table VI that the proposed method
achieves the highest SSIM index except for the case of low
noise level tested on BSD, which means that our method
produces the best restored results in the most cases. We
also observe that EMCNN performs better than NNDCL1 in
terms of PSNR in the most cases. Fig. 23 shows the restored
images of EMCNN and NNDCL1 for two test images (Bike
image from Pascal and Penguin image from BSD) with dif-
ferent noise levels. We can see from Fig. 23 that EMCNN
can retain more image details. Thus, the mean square error
value of EMCNN is less than NNDCL1, which leads to that
EMCNN has a higher PSNR value. However, a small amount
of noise or artifacts still exist in the images restored by
EMCNN. Although NNDCL1 generates oversmooth edges in
the restored images, the noise is completely removed. By the
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TABLE VI
AVERAGE PSNR AND SSIM VALUES: EMCNN AND NNDCL1 ON PASCAL AND BSD DATASETS

Fig. 23. (a) Bike image, (b) noisy image, σ1 = 25, σ2 = 60, and
ε = 0.4, (c) restored by EMCNN, PSNR = 26.1105, and SSIM = 0.6348,
(d) restored by NNDCL1, PSNR = 23.0624, and SSIM = 0.7423, (e) Penguin
image, (f) noisy image, σ1 = 15, σ2 = 70, and ε = 0.5, (g) restored
by EMCNN, PSNR = 30.0007,and SSIM = 0.7337, and (h) restored by
NNDCL1, PSNR = 29.3246, and SSIM = 0.7981.

Fig. 24. (a) Plane image, (b) noisy image with the level (20, 80, 30),
(c) restored by BdCNN, PSNR = 15.0069, and SSIM = 0.5602, (d) restored
by NNDCL1, PSNR = 20.6525, and SSIM = 0.8545, (e) Eagle image,
(f) noisy image with the level (35, 80, 20), (g) restored by BdCNN,
PSNR = 16.9129, and SSIM = 0.4900, and (h) restored by NNDCL1,
PSNR = 19.2452, and SSIM = 0.6694.

definition of SSIM, its value depends both on image mean
value and variance. So, NNDCL1 can obtain a higher SSIM
value under a lower PSNR value. This may be the reason
that the proposed algorithm has a lower PSNR value but a
higher SSIM value than EMCNN. Moreover, compared to the
EMCNN, our new method shows an improvement in SSIM
for high noise level. This shows the potential ability of our
new method to improve the performance of high-level mixture
noise removal.

In summary, as shown in Tables V and VI, it is obvious
that our new method can effectively remove different levels of
mixed noise. Though the tested deep-learning-based methods
exhibit better performance in terms of PSNR, the proposed
method has a higher SSIM value that BdCNN and EMCNN.
Since deep-learning-based methods are data dependent, the
quality of their restored images are likely unsatisfactory if the

noise distribution or noise level is not included in the training
samples. To illustrate this, Fig. 24 shows the images restored
by BdCNN and NNDCL1 with the noise levels of (20, 80, 30)
and (35, 80, 20). Note that the two noise levels are not included
in the training dataset of BdCNN. It is seen that the images
restored by BdCNN have unexpected artifacts, and the percep-
tual quality of the restored images are unsatisfactory. Although
some details are lost in the images restored by the proposed
NNDCL1, the proposed method has a good performance in
denoising. We also note that both the PSNR and SSIM values
of the proposed method are higher than that of BdCNN in
this case. Moreover, compared with the deep-learning-based
methods, our proposed method has the advantage that it does
not require training data and training processing, and can deal
with different image processing tasks. In addition, the use of
the nonconvex and nonsmooth function in image processing
can preserve piecewise constant regions and match the image
data perfectly. This is particularly useful in enhancing restored
images and removing impulse noise.

VI. CONCLUSION

In this article, we have proposed a new model for
image restoration with impulse noise. Although the result-
ing optimization problem is nonconvex, a novel and effective
DCA has been designed for solving it. We have proved that
the limit point of the sequence generated by the proposed
algorithm is a stationary point of the nonconvex objective func-
tion. The convergence analysis expands the existing results
in DC programming. Experimental results of image deblur-
ring, denoising, and recovery demonstrated that the proposed
approach is highly competitive compared with the existing
popular methods. Note that it remains largely unexplored how
to adaptively choose the regularization parameter μ. This is
an open and challenging problem, and we leave the problem
to further research.
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