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Impulse Noise Image Restoration Using Nonconvex
Variational Model and Difference of Convex
Functions Algorithm

Benxin Zhang™, Guopu Zhu

Yicong Zhou

Abstract—In this article, the problem of impulse noise image
restoration is investigated. A typical way to eliminate impulse
noise is to use an L; norm data fitting term and a total varia-
tion (TV) regularization. However, a convex optimization method
designed in this way always yields staircase artifacts. In addition,
the L norm fitting term tends to penalize corrupted and noise-
free data equally, and is not robust to impulse noise. In order to
seek a solution of high recovery quality, we propose a new varia-
tional model that integrates the nonconvex data fitting term and
the nonconvex TV regularization. The usage of the nonconvex TV
regularizer helps to eliminate the staircase artifacts. Moreover,
the nonconvex fidelity term can detect impulse noise effectively in
the way that it is enforced when the observed data is slightly cor-
rupted, while is less enforced for the severely corrupted pixels. A
novel difference of convex functions algorithm is also developed
to solve the variational model. Using the variational method, we
prove that the sequence generated by the proposed algorithm
converges to a stationary point of the nonconvex objective func-
tion. Experimental results show that our proposed algorithm is
efficient and compares favorably with state-of-the-art methods.

Index Terms—Difference of convex functions algorithm (DCA),
image restoration, impulse noise, nonconvex optimization model.
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I. INTRODUCTION

MAGE restoration is a classical inverse problem and

plays an important role in the field of image processing.
Specifically, we consider the problem of restoring an image
corrupted by impulse noise. Mathematically, the image degra-
dation model can be formulated as f = Nimp(Ku), where
f € R" is the damaged image, Nijmp means that the degra-
dation is caused by impulse noise, K € R™*" is an operator,
such as convolution and wavelet transform, and u € R" is the
original image. Then, our main aim is to recover the original
image from the damaged image.

Impulse noise often emerges due to transmission errors or
faulty memory locations of hardware. It will damage only
a part of the pixels of original image while not affecting
the other image pixels. A popular denoising method is the
median filter [1], which has high computational efficiency and
favorable denoising power. However, the edge information of
restored images is lost after median filtering. In order to pre-
serve the edges, variational approaches have been proposed
as an important class of image restoration methods, by which
the original image u is recovered by minimizing the energy
function. Generally, the energy function of the minimization
problem consists of the data fidelity term and regularization
term.

The data fidelity term is given by the noise type. According
to the statistical property of noise, we can derive the corre-
sponding form. For Gaussian noise, the data fidelity function
is usually L, norm [2]. For non-Gaussian noise, L; norm [3]
is suitable. It is well known that for impulse noise, the fidelity
term is L; norm [4]. But, L; norm yields biased estimators
in statistics. Especially, for high-level impulse noise, the data
fidelity term with L; norm performs poorly. Gu et al. [5] intro-
duced a smoothly clipped absolute deviation (SCAD) function
for data fitting term, which processes the desirable oracle prop-
erty. Some other nonconvex fidelity terms have been discussed
in [6], [7], and [8], including the exponential type, Geman
function, log penalty, and Ly norm. These nonconvex terms
are particularly suitable for restoring the images corrupted with
high-level impulse noise.

The regularization term is related to the priori knowledge
of the image, such as textures and edges, which are important
information and structures. A general form of this term is a
composition of the potential function and gradient operator.
The classical one is Tikhonov regularization [9], of which the
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function is quadratic and smooth. It can be easily minimized
using a smooth optimization method. However, this regulariza-
tion function often eliminates edges and texture details. To deal
with this shortcoming, total variation (TV) regularization was
proposed in [2] and has been proved very successful. TV term
is composed of the L; norm and gradient operator. It captures
the gradient sparsity of an image and has the edge-preserving
ability. Also, some variants of TV have been studied in the past
twenty years. Recently, the Potts model [10], which adopts
Ly norm to ensure sparseness, has received much attention.
However, the global optimal solution of the model is difficult
to obtain. So, it is expected to find new penalties that have
the advantages of L; and Ly norm while avoiding their dis-
advantages. There are many choices for nonconvex penalties,
for example, capped-L1 [11], the minimax concave penalty
(MCP) [12], and Log-norm penalty [13]. These regulariza-
tion functions were introduced to enhance gradient sparsity.
Theoretical analysis and experimental results indicate that non-
convex regularization can obtain a better performance than
convex regularization.

By using TV and L; norm data fitting terms, the
TVL1 model is proposed for impulse noise removal [3].
Some efficient algorithms, including the alternating direction
method of multipliers (ADMMs) [14] and the primal-dual
method [15], have been designed for solving the TVLI1
optimization problem. Nikolova et al. [4] proposed a new
model that combines L; norm data fitting and nonconvex reg-
ularizer. The nonconvex regularizer offers more possibilities
to recover high-quality image. By adopting TV as the regular-
ization term and SCAD as the data fitting function, Gu et al.
introduced a new model TVSCAD in [5]. This nonconvex
model can achieve higher performance than TVLI1, and a dif-
ference of convex functions algorithm (DCA) was designed
to solve it. Zhang et al. [7] proposed a simple optimization
model that makes use of a nonconvex log function for data
fitting term and TV regularization. Compared to TVSCAD,
this model is easy to choose the scalar parameter. They also
developed a new DCA with an adaptive proximal parameter.
Zhang et al. [6] introduced some nonconvex-TV models with
a nonconvex potential function, and gave a proximal linearized
minimization algorithm. Yuan and Ghanem [8] proposed a
sparse optimization method, which applies TV regulariza-
tion and Lo norm data fidelity for impulse noise removal.
To solve the nonconvex optimization model, the authors
reformulated the problem as a mathematical programming
with equilibrium constraints. Very recently, Cui and Fan [16]
proposed a nonconvex regularization term plus nonconvex data
fitting term model. Further, the authors designed an alternat-
ing direction minimization method to solve the optimization
problem.

In this article, the issue of impulse noise image restoration
is investigated. To solve this issue, a new nonconvex varia-
tional model is developed considering that the nonconvex plus
nonconvex model may be more suitable for reducing artifacts
and eliminating impulse noise. Generally, it is a challenging
task to find an efficient algorithm to solve the optimization
problem related to nonconvex variational model. To address
this, a novel DCA is presented. The main contributions of this
work are as follows:
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First, a new variational model, which is nonconvex in terms
of both TV term and data fidelity term, is proposed for the
removal of impulse noise. In the proposed model, the noncon-
vex TV eliminates artifacts while preserving the sharpness and
smoothness of the restored image, meanwhile the nonconvex
data fidelity effectively removes the impulse noise.

Second, a novel DCA with an L; norm proximal term is
presented to solve the proposed nonsmooth and nonconvex
variational model. To the best of our knowledge, L proximal
technique has not yet been used in DC programming. With the
help of the n stationary point, the convergence of the proposed
algorithm is also proved. The convergence analysis extends the
existing results of general DC programming, thus also makes
a theoretical contribution to this kind of issues.

Third, our new model can deal with different image pro-
cessing tasks, such as image deblurring, image recovery, and
image denoising (note that the noise types include salt-and-
pepper (SP) impulse noise, random-valued (RV) impulse noise,
Gaussian plus SP and RV impulse noise, and Gaussian mixture
noise). Experimental results show that the proposed algorithm
outperforms other competitors for suppressing impulse noise.

The remainder is organized as follows. In Section II, the
new nonconvex model is shown. In Section III, a novel DCA
is proposed to deal with this optimization model. The con-
vergence of DCA is established in Section IV. In Section V,
experimental results for the proposed model and algorithm
demonstrate encouraging performance. In Section VI, the
conclusion is presented.

II. MOTIVATION AND NEW MODEL

By combining TV regularization and L; norm penalized
data term, the minimization of TVL1 model for impulse noise
removal can be written as

min lull7y + pllKu = fl )

where p© > 0 is a regularization parameter, and || - |7y is TV
norm, that is, || Vu||;. Using the finite difference operation, TV
can be discretized into isotropic and anisotropic forms

lullzviy, = 1Dull2, Null1v,y, = Dully

where V is gradient operator and D denotes a first-order finite
difference of u at every pixel. It is known that TVL1 model
works reasonably well only for low-level impulse noise, and
performs poorly for high-level impulse noise. The reason may
be that both the corrupted data and the noise free data are
equally penalized in data fitting, leading to significant diffi-
culty in balancing regularization and data fitting. Moreover,
the L; norm penalty is known to yield biased estimators in
statistics. The solution of the TVL1 model substantially devi-
ates from both the data acquisition model and the prior model
and, thus, is suboptimal. Then, some nonconvex approaches
and correction procedures are proposed.

Yuan and Ghanem [8] proposed the following sparse
optimization LOTV model:

min [[Ku = fllo + [IVully @)
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which takes Ly norm as a data fidelity term and TV term as a
regularization term. Model (2) is suitable for image restoration
under impulse noise. While the problem described by (2) is a
combinatorial optimization problem (NP hard), and it is diffi-
cult to obtain its optimal solution. In [17], a corrected TVL1
approach was proposed by solving a series equivalence prob-
lems of TVL1. Base on the work of Bai et al. [17], Gu et al. [5]
introduced the TVSCAD model that includes TV and SCAD
function. The TVSCAD model can be described as

min [|ull7y + p @y (Ku — f) 3)

where @, is defined as

D, () =D ¢y,(). y€R"

and
|11, if [t] <y
by () = § S ey <y <
e if [1] > y2
where y = [y, . ..,ym]T denotes the function variable of

@, (y), t is the function variable of ¢, (¢), | - | denotes the
absolute value, y = (y1,)y2) is a pair of parameters, and
y2 > y1 > 0. Then, a DCA is proposed to solve this model.
The resulting subproblem is solved by ADMM, and the global
convergence is also established. Zhang et al. [6] proposed a
nonconvex model, which is defined as

min pP(Ku —f) + llullrv “4)

where P is a potential data fitting function, such as the
exponential-type (ET) function. Models (3) and (4) can be con-
sidered as the relaxation of (2). Such models can only lead to
suboptimal estimation since they give approximate solutions
of the problem of (2). Cui and Fan [16] introduced a model by
adopting the nonconvex data fitting and regularization terms.
Their model is expressed as

min pP(Ku —f) + Q(Vu) (&)

where P and Q are semialgebraic functions, and both of
them can be rewritten as the sum of two functions. By the
semiconvergence property of denoising problems, the optimal
estimation of (5) converges toward the desired solution first,
and then diverges from it after a number of iterations.

The data fitting term containing nonconvex functionals
has been used for image restoration under impulsive noise.
However, TV regularization was used as the regularizer in
these works [5], [6], [8]. Hence, the artifacts may still exist in
the restored image. Considering the effectiveness of the artifact
removal of nonconvex regularization [16] and the robustness
of nonconvex data fidelity to outliers, we propose a new model
that combines the nonconvex data fitting term and nonconvex
regularization term. The model is given as

min p®, (Ku —f) + Ws(Vu) (6)
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where W, is defined as

n

W) =Y Y5 (i), veR"

i
and

1

Y1) = ;LOg(l + sl#)

where s is a parameter larger than 0, and v = [vy, ..., vn]T

denotes the function variable of Wg(v). The motivation of
using the SCAD function here is to enforce less or even
no data fitting and more regularization whenever (Ku); devi-
ates significantly from f;. This is quite reasonable because
the ith pixel is more likely to be corrupted in such a case.
For the ith pixel such that (Ku — f); is sufficiently small, the
absolute penalty is kept. The structure of SCAD can discrim-
inate the difference between the corrupted and uncorrupted
pixels and provide good restorations. Moreover, the SCAD
and Log penalty functions make the resulting estimator pos-
sesses three desired properties, that is, continuity, sparsity, and
unbiasedness [5]. Hence, the solution of (6) is optimal and
robust.

III. ALGORITHM

In this section, we first introduce some preliminaries that
will be used in the proposed approach. Then, a novel DCA is
presented.

A. Some Properties of ®, and Wy

We show some properties of ®,, and ¥y, which are impor-
tant for a constructive algorithm. First, we consider the
functions v, () and ¢,(?) that can be induced by ¢, and s,
that is

vy () = [t| = ¢y (1), y >0 )
@s(t) = |t] = Ys(0), 5> 0. ®)

From [13], v, (¢) and ¢4(?) are continuously differentiable and
convex on R.

Note that in order to apply the difference of convex func-
tions programming to ®,, and W, v, () and ¢, (¢) are defined
in (7) and (8), respectively. Let v, (¢) be given by (7), then set
By :R"—>Ras

2y =) v, (). ©)

Similarly, ¢y(7) is given by (8). Set ®4:R" — R as

O;(1) =) o). (10)

Note that &, and ®; are continuously differentiable and
convex [13].
From (9) and (10), we also can obtain

@, =yl — Ey
Y, (v) = [Ivll1 — O().

(11
12)
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Hence, we can rewrite the proposed model (6) as a DC
programming.

B. DC Programming and Novel DCA

DC programming is used to minimize a problem which can
be written as the difference of convex functions [18], [19].
By (11) and (12), we can decompose SCAD and log functions
as the difference of convex functions, that is

Dy (Ku —f) = |Ku— fll1 — Ey(Ku —f)
and
W (v) = [Vull1 — O5(Vu).

By integrating the above two equations into (6), we obtain

H}Ain IVully + pllKu — fllt — (©5(Vu) + nEy (Ku —f)).  (13)
Let
gw) = Vully + wlKu — fll1
and

h(u) = ©4(Vu) + n8, (Ku — f)
then, (13) can be rewritten as the difference of g(u) and h(u)

min F(u) = g(u) — hw). (14)

So, (14) is a typical DC programming.

It is known that the aim of DCA is to solve the DC program-
ming and its dual problem. Generally, DCA optimizes (14) via
linearizing h(u) and solving the following convex problem:

ug+1 = argmin{g(u) — (h(ue) + (Vh(u), u — )} (15)

where (-) denotes the inner product between two vectors. Gu
et al. [5] added an L, norm proximal term to (15) and their
convex problem is

et = argmin{ g(u) — (h(ue) + (VAGR), 1 = )

+ Jlu = el (16)

where 1 > 0. Different from the above scheme, we introduce
a novel DCA with the L; norm proximal term as follows:

U1 = argmin{g(u) — (h(u) + (Vh(ug), u — u))

+ nllu — ugllr}. (17

Then, our DCA for solving (6) is described as
U] = arg muin{IIDullz + i Ku — flh

— (D'VO,(Duy) + uK'VEy (Kug — f), u — ug)
+nllu— w1} (18)

Note that the isotropic discretization TV is adopted in this
article and the case of anisotropic TV is completely similar.
The objective function of (18) is convex and has a global
optimal solution.

In order to use the popular ADMM [20], [21], [22] for
solving problem (18), we express (18) as an equivalent form
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1 = argmin{||Dull> — (VO (Duy), Du)
+ plKu —fll1 — W(VE, (Kug — f), Ku — f)
+ nllu — w1} (19)

By introducing free variables w, z,d, p, and ¢, and defining
w = Du,z = Ku—f,pr = VO;(wi), gk = VEy, (), d = u,
(19) can be rewritten as

ulzvliznd Iwll2 = (pr, w) + llizllt — (gk, 2)) + nlld — uilly
st. w=Du,z=Ku—f,d=u. (20)
The augmented Lagrangian function of (20) is

LW, Z,d, 1y s Azy k) = W2 — (pk, w) — AL (w — Du)

4 ’%an — Dull® + ulzlls = (e )
T (Ku—f) + %Ilz — (Ku—p)IP

Ba
+nlld — ully — 25 (d — u) + S ld - ul?

where By, B;, Ba > 0 are penalty factors, and A, € R,
Az €R™, and Ay € R" are multipliers. By (20), we have the
following ADMM when initial points start at ug and A3, 22,
and Ag:

(M+1,2i+l,dj+l) = arg min E(w, z,d, W, )»{V, )JZ, k{i) 21

w,z,d

W+ = argmin E(M/Jrl,ZjJrl,clH], u, M, ML, )»/d> (22)
)\j‘;:r] — )\']w _ oeﬂw(wj“ _ Duj+1)
W =00 — (T — (KWt —f)) (23)

W =3 — (I — i)

where o € (0, (14+/5)/2). In fact, the scheme of (21)—(23) is
ADMM for two blocks of variables (w, z, d) and u. Hence, the
convergence of this ADMM can be guaranteed by the classical
results in [23].

Next, we show how to solve the subproblems (21) and (22).
In fact, w!, Z+1 and &/*! are the solutions of proximity
operators about || - ||2 and | - ||1. So, the w, z, d-subproblems
in (21) have a closed form as

' o
A A {/V 1 AwtPr
wt! = max{ |Di + mllz - —.,0 —ﬁ" (24)
ﬂw ,Bw HDW + /\]w—O—pk
ﬁw 2
. 4 ¥
Z/+1 = max{ |Ki/ —f+ M| — ﬁ’o
B: Bz
A AL
~sign(Ku’ —f+ _'_qu) (25)
z
. . )Lj n . )\.j
T = max| W + =4 — | — —,0) -sign{ i + =4 | +u
< Ba T Ba £ Ba ¢
(26)

where |- | is componentwise absolute value and sign represents
the signum function. To address the issue that the divisor is
zero and avoid the instability of numerical computation, O -
(0/0) = 0 is assumed.
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Algorithm 1 DCA for Solving (6)

Set w, Bw, By Ba» €, 8, v2, v1i,1m > 0, up, po = VO, (Duy),
qo = VO (Kuo — f), kmax, jmax-
Fork = 0,1,2,..., kmax
Given Ag,, )L?v, A?V, and g, pr, qk.
Forj = 0,1,2,..., jmax
Calculate w/*! according to (24).
Calculate Z+! according to (25).
Calculate &+! according to (26).
Calculate #/ ! according to (27).
Update 27", a2t )JdH via (23).
If [t — ]2/ (1 + [ ]12) < e,
break,
End
End
Set up1 = W' and compute py.1 = VO (Duy1),
i1 = VO (Kug 1 — f).
End

The minimization u-subproblem (22) is a least square. The
corresponding normal equation is
(DTD + g—ZKTK + g—"l) Wt

w w

Y/ B LA
—plw+t — 2w L Pegr( v _ 22
( ﬁw) " B (ZJ /2)

j
4 Begrpy Be (di“ — ﬁ). (27)

ﬂw ﬂw lgd

When B, 8., 84 > 0, the coefficient matrix D'D +
(B:/Bw)KTK + (B:/Bw)I is nonsingular. Under the periodic
boundary conditions, this matrix can be diagonalized by
Fourier transform. So, the solution of normal equation (27)
can be given by two fast Fourier transforms. If the matrix has
no special structure to use, it can be commonly solved by the
conjugate gradient method.

Finally, we show the novel DCA for solving the proposed
model (6) in Algorithm 1.

C. Computational Complexity

The computational complexity of the proposed algorithm
can be analyzed as follows. In the outer loop, the complex-
ity of calculating Euclidean gradient is O(n), where n is the
image size. In the inner loop, the w, z and d subproblems
are solved using the shrinkage operators in linear time, so the
complexity of each of them is O(n); the computational cost
associated with the u subproblem is O(nlogn) if its solution
is obtained via fast Fourier transform and inverse transform,
and is O(n?) if its solution is achieved via the conjugate gradi-
ent method; the update of the Lagrangian multipliers via (23)
can be implemented straightforwardly in O(n) time. Thus, the
worst case complexity of the proposed algorithm for solving
problem (6) is O(kmaxjmax710g 1) or O(kmaxjmaxn>). It should
be pointed out that the complexity of our new algorithm is
the same as those of the methods of [5], [6], and [16], but is
lower than that of the classical ADMM presented in [8], [14],
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and [23] [i.e., O(Tnlogn) or O(Tnz)] if kmaxjmax < T, where
T is the total iteration number of the classical ADMM.

IV. CONVERGENCE

Using the tools from variational analysis, we prove that
Algorithm 1 is convergence in this section. First, a simple
property of subdifferential is established.

Lemma 1: If &1 € O|lug+1 — ukll1, then

k1 — welln < (Ext1s U1 — U)-
Proof: Let J(u) = |lu — ug||1. By the definition of subdif-
ferential, we obtain
J(ug) — J (1) = 0 — |lug1 — uglly
> (0 (ur+1), Uk — Ujet1)
= (k+1, Uk — Ut1)-

|
Lemma 2: For the sequence generated by Algorithm 1, we
have

F(up) — F(uk1) = nllugsr — vkl (28)
and {uy} is bounded and convergent.
Proof: Because g(u) is a convex function, we know
gui) — g(upr1) = (9g(ug41), Uk — t1)- (29)
Similarly, we obtain
h(ui41) — h(u) = (Oh(ug), ug1 — ug). (30)
It follows from (17) that:
Oh(ur) — ndllugrr — uglli € 9g(ugt1). €Y

Combining (29) and (30), we obtain

F(up) — F(ugr1) > (—0gupy1) + 0h(ug), w1 — ug)
= (N&ky1, Uk — Ug)
> Nllug+1 — uelh

where (31) and Lemma 1 are used.
For k = 0, 1, ..., summing all the inequalities in (28), we
deduce that

- 1

Z lukrr — uelly < EF(MO)

k=0

which implies that {4} is a Cauchy sequence and is conver-
gent. The assertion is proved. |

Before we show the convergence result, the definition of
stationary point [24] is given as below.

Definition 1: For n > 0, u* is n stationary point of F(u) if
there exists ¢ € dF (u) such that ||{]lcc < 1.

Theorem 1: The limit point u* of {uy} that is generated by
Algorithm 1 is an 5 stationary point of the objective function
F(u).

Proof: From the relationship (31), we have

OF (ujey1) > 08(uk+1) — 0h(ugr1)

= Vh(ui) — Vh(uri1) — €1 (32)
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Due to the boundedness of &1 € [—1, 1] and {ux}, we can
find a common subsequence {k;}, such that & — &* and
uy, — u*. Replacing k by k; in (32), taking the limit and
using the continuity of the function VA(u), we obtain —né* €
AF(u*). By |n&*|lc < n, u* is an n stationary point. |

V. EXPERIMENTAL VALIDATION

We evaluate the proposed model and algorithm on image
restoration problem with impulse noise in this section. The
experiments include image deblurring, image denoising and
image recovery. All code are performed on a PC with 2.9-GHz
processor and 16-GB RAM.

A. Image Debluring

In the first example, we show the effectiveness of the
proposed method in suppressing impulse noise and restoring
the blurred image. Impulse noise can be classified into two
types, namely SP noise and RV noise. If a grayscale image
is degraded by SP noise, then some of its pixels will change
to the minimum (0) or maximum (255) pixel values. More
specifically, the noisy f corrupted by the SP noise with noise
level r (0 <r <1) is given as

0, with probability
255, with probability
u;, with probability 1 —r

[SIRT IR

ﬁ:

where u denotes the original grayscale image, and i denotes the
pixel location. Similarly, if a grayscale image is degraded by
RV noise, then some of its pixels will change to the random
values which are between the minimum and the maximum
pixel values. The noisy f corrupted by the RV noise with noise
level r is expressed by

f= d;, with probability r
' 7| u;, with probability 1 — r

where d; is uniformly distributed in [0, 255]. In general, the
high-level impulse noise means that more than 50% pixels
of an entire image are corrupted. In this section, the experi-
ment results of image deblurring with SP and RV noise are
presented.

1) Compared With TVLI and TVSCAD: In this part, the
new model (6) is compared with the TVL1 model (1)
and TVSCAD model (3). For high-level impulse noise,
TVLI1 model works poorly. In order to overcome the limita-
tion of TVL1, TVSCAD is proposed. Moreover, our proposed
model (6) is an improved version of TVSCAD, where the
nonconvex log function is instead of the L; norm in the reg-
ularization term of TVSCAD. Moreover, TVSCAD model is
solved by the classical DCA with L, proximal term, while
the new model is solved by a novel DCA with L; prox-
imal term. Hence, our approach is called NNDCLI1, which
means that nonconvex plus nonconvex model is solved by DC
programming with L; proximal term.

In our experiments, a 9 x 9 Gaussian blur with standard
deviation 10 and an average blur with size 9 x9 are considered.
Also, SP or RV noises will be added after blur the image. As
we know, RV noise is more difficult to removal than SP noise
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Fig. 1. Tested images.

since the noise value can be arbitrary numbers between the
min and max pixel value. Therefore, we test 50%, 70%, and
90% noise levels for SP noise and 40%, 60%, and 80% noise
levels for RV noise. The testing images are House (256 x 256)
and Peppers (512 x 512), as shown in Fig. 1. The quality of
the restoration image is evaluated by the signal to noise ration
(SNR) and the structure similarity (SSIM) [25]. Obviously, the
higher values of SNR and SSIM, the better of the restoration
image.

The parameters of the tested models should be specified.
These parameters have a great influence on the numerical per-
formances. The best choice of the parameter © is known to
be problem dependent and very hard to find. So, we adjust
the parameters one by one for each image. For the regular-
ization parameter p, we first determine the optimal parameter
value u of TVSCAD by solving a series of problems (3) as
done in [5]. Then, the best u values of TVSCAD are also
used in our model (6). For a fair comparison, the time con-
sumed in parameter tuning is not taken into account for all the
tested methods. For the TVL1 model, u takes 1.75 for both
the two types of testing noise. For the TVSCAD model and
our model, u takes different values for the two types of noise.
Specifically, under the SP noise, u takes 22 for House image;
and under the SP noise with noise levels of 50%, 70%, and
90%, it takes 21, 7, and 17, respectively, for Peppers image.
While, under the RV noise with noise level of 80%, u takes
5 for House and 3.75 for Peppers; under the RV noise with
noise levels of 60% and 40%, it takes 5 and 21, respectively,
for two test images. In order to make a fair evaluation, the
function @, in (3) and (6) will be taken the same for high-
level noise. As suggested in [5], we set y; = 0.08/k and
y» = max(0.2 x 0.85%=1,0.1) for SP noise and y; = 0.0001
and y» = 0.5 for RV noise, About s in Wy, it takes 0.035 for
SP noise and 0.095 for RV noise.

Next, we consider these parameters in compared and
proposed algorithms. For all the compared algorithms, we
manually choose the regularization and the algorithmic param-
eters that yield the best SNR and SSIM in the experiments. For
nonconvex problems, it is impossible to make an optimization
algorithm achieve its best performance for all tests using a set
of fixed parameters. Hence in general, the parameters of the
optimization algorithm are tuned case by case to obtain much
better results for each test. The proximal term can make the
problem well defined and stabilize the method. It mentions
that the proximal parameter 1 in (17) is related to the opti-
mality condition. Hence, we set n = 0.001 in (16) and (17)
throughout. It also noted that both of TVSCAD and NNDCL1
use ADMM to solve the subproblems (16) and (17). Then, we
set B, =5, B, =10, B, = 100 for SP noise, B, =2, B; =5,
By = 650 for RV noise, and @ = 1.618 in all tests. For the
parameters of TVL1 method, we set them as done in [23].
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TABLE I
COMPARISON RESULTS OF DIFFERENT ALGORITHMS FOR SP AND RV NOISE

Images Level Blur - TVLL - TVSCAD - NNDCLI
Time SNR SSIM Time SNR SSIM Time SNR SSIM
50%(SP)  Gaussian ~ 4.2656 11.6934  0.7674  22.8281 155615  0.8261 21.4688 159974  0.8358
Average 4.1719 11.8543  0.7691 22.0625 15.6402  0.8268 20.9844 16.0296  0.8357
70%(SP)  Gaussian  6.0938 9.5297  0.7227 27.6875 149751  0.8209 27.8906 14.9951  0.8211
Average 5.9603 9.7914  0.7273 29.3281 14.9913  0.8209 28.3438 15.0035  0.8211
90%(SP)  Gaussian 5.3594 53728  0.6326  29.8906 12.1104  0.7717 29.8125 12.1351  0.7723
Average 6.2969 47739 0.6238 28.4219 12.2683  0.7733 29.0313 12.3014  0.7737
House 40%(RV)  Gaussian  4.2344 11.8545  0.7726  21.0469 153423 0.8258 22.1406 159341  0.8352
Average 4.2031 12.0024  0.7728 22.0156 154914  0.8282 21.5000 16.0723  0.8372
60%(RV)  Gaussian  2.3438 9.4281 0.7237 59.0313 12.9070  0.7838  58.9219 12.9274  0.7842
Average 2.6094 9.3768  0.7247 57.9375 127952 0.7822 57.8750 12.8240  0.7826
80%(RV)  Gaussian 3.9063 33515  0.6195 58.9063 9.7897 0.7265 58.3438 9.8008  0.7269
Average 3.8750 3.8104  0.6286  57.5313 10.1306  0.7293 58.0156 10.1368  0.7296
50%(SP)  Gaussian  20.6094  14.5231 0.7972  103.0625 16.1556  0.8119  102.5938  16.4884  0.8218
Average  20.5938  14.4890 0.7962  100.3594 16.1971 0.8112  102.2813  16.6093  0.8224
70%(SP)  Gaussian ~ 25.7031 12,9481 0.7628  133.3281 152821 0.8070  134.8125 153140 0.8074
Average  26.0313 129786  0.7613  132.6094 153822 0.8075 134.4531 15.3898  0.8078
90%(SP)  Gaussian ~ 24.3281 7.0226  0.6252  133.4688  9.2721 0.7228  134.6250  9.7295  0.7291
Average  25.4063 6.9395  0.6193  131.3906 8.9744  0.7210  135.8750  9.2049  0.7248
Peppers  40%(RV)  Gaussian ~ 20.3281  14.6067  0.7994  101.2656  16.5237  0.8157  102.7969  16.7265  0.8204
Average  20.6406  14.4556  0.7978  103.6250 16.5486  0.8153  105.2969  16.7887  0.8208
60%(RV)  Gaussian  16.1875  10.2582  0.7082  268.4375 14.7699  0.7954  272.6875  14.7928  0.7957
Average 16.1406  10.3871  0.7122  270.9375  14.7950  0.7955 273.1719  14.8176  0.7957
80%(RV)  Gaussian  20.1250  3.7172  0.5834  273.0469  10.3323  0.7088  272.7813  10.2960  0.7084
Average  21.3125 3.7399  0.5826  266.9219  10.2885  0.7120  279.4063  10.2507  0.7118

Fig. 2. Visual results for images corrupted by Gaussian blur with 70% SP
noise and restored by TVL1, TVSCAD, and NNDCLI.

Fig. 3.

Visual results for images corrupted by average blur with 90% SP
noise and restored by TVL1, TVSCAD, and NNDCLI.

For initialization of all algorithms, we set ug = f. To compute
ug+1 from uy in (16) and (17), ADMM starts at u; and the
initial multipliers are zeros when launching ADMM as dis-
cussed in [5]. ADMM will terminate when € < 0.0001 or the
inner iteration number is met. The maximum outer iteration
of TVSCAD and NNDCL1 is 5 for SP noise and 10 for RV
noise for high-level noise. But, the maximum outer iteration
is set as 5 for 40% and 50% low density noise. The reason is
that the quality has no much more improvement after several
iterations.

Now, we show the compared results of images corrupted
by Gaussian and average blur with SP and RV noise. The par-
tial visual comparisons are shown in Figs. 2-5, which include

Fig. 4. Visual results for images corrupted by average blur with 60% RV
noise and restored by TVL1, TVSCAD, and NNDCLI.

Fig. 5. Visual results for images corrupted by Gaussian blur with 80% RV
noise and restored by TVL1, TVSCAD, and NNDCLI.

the blurry noisy images and the restored images by different
methods. It can be seen that both TVSCAD and NNDCLI1
outperform TVLI1, especially for high-level noise. Comparing
the results of TVSCAD and NNDCLI1, we see that NNDCL1
performs competitive with TVSCAD and the two methods
adequately restore the images from the very high-level noise.
The quantitative evaluations of experiment results are reported
in Table I, which gives CPU time (seconds), SNR (dB) and
SSIM. Note that each algorithm is tested ten times on the
same image under the same random noise level, then each
result reported in Table I is obtained by averaging the ten
test results. From Table I, one can see that the new model
obtains higher SNR and SSIM values in most cases and CPU
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times of NNDCL1 and TVSCAD are almost the same. The
convergence curves of NNDCL1 and TVSCAD are plotted
in Figs. 6 and 7. We can see that the curves of SNR values
increase as the outer iteration numbers increase. NNDCLI1 per-
forms better than TVSCAD in the case of SP noise. For RV
noise, NNDCLI1 is also competitive.

As shown in Table I, Figs. 6 and 7, the superiority of the
proposed algorithm is more evident for low-level noise than
for high-level noise. The SNR and SSIM values of NNDCL1
are about 0.4dB and 0.01 higher than those of TVSCAD,
respectively. However, with the increase of noise density, the
superiority decreases gradually. This may be explained as fol-
lows. For low-level noise, both the regularization term and the
data fidelity term play equally important roles. In this case,
nonconvex regularizer has advantages over convex one. For
high-level noise, such as 80% and 90% impulse noise, the data
fidelity term plays a far more important role than the reg-
ularization term. Therefore, compared with TVSCAD, the
superiority of NNDCL1 is no longer obvious. But, in gen-
eral, by using the nonconvex log penalty to promote sparsity,
NNDCL1 can obtain higher quality restored images than
TVSCAD.

2) Compared With Nonconvex Models: In this part, the new
approach is compared with some nonconvex methods [6], [8],
[16]. In [6], ET function is used as data fitting term and TV is
taken as regularization term. The model (4) is called ETTV and
solved by proximal linearized minimization method. In [8],
an LOTV nonconvex model (2) was presented and the prox-
imal ADMM was used to solve the optimization problem.
In [16], a nonconvex data fitting term plus nonconvex regular-
izer model (5) was introduced and the authors also presented
an effective algorithm, called NNADM.

In this experiment, the same blur types are adopted as dis-
cussed in the last part. But, we test 30% and 80% noise levels
of SP noise and 20% and 70% noise levels of RV noise. The
tested images are Parrot (256 x 256), Lena (512 x 512), and
Man (512 x 512), which are displayed in Fig. 8. The p value
of (6) is taken from {3.8, 15, 20, 75}, and s is 0.035 for SP
noise and 0.09 for RV noise. We choose penalty parameters

Bw, Bz, Ba € {2, 5, 10, 20, 50, 100, 650, 1000}

in the ADMM. The max outer iteration number is 5 or 10. For
ETTV, LOTV, and NNADM, we use the suggested parameters
values.

and 80% (second row) RV noise.

Fig. 8. Tested images.

Fig. 9. Average blur image with 30% SP noise and images restored by
ETTYV, LOTV, NNADM, and NNDCLI.

Numerical performances of various compared methods are
recorded in Table II. The results show that NNDCLI1 performs
better than ETTYV, LOTV, and NNADM in terms of SNR and
SSIM in most cases. LOTV and NNADM seem to need more
CPU time in seconds than ETTV and NNDCLI except the case
of 70% noise level. Moreover, the performances of ETTV and
NNDCLI1 are almost similar in terms of CPU times for all
noise levels.

The visual comparisons are shown in Figs. 9-12. These fig-
ures give restored results of images degraded by average blur
kernel with 30% SP noise, Gaussian blur kernel with 80% SP
noise, Gaussian blur kernel with 20% RV noise and average
blur kernel with 70% RV noise. We see that the four meth-
ods can remove the noise well, regardless of low or high-level
noise.

The curves of partial SNR and SSIM versus CPU time are
plotted in Figs. 13—16. Among the four algorithms, SNR and
SSIM values of NNDCLI are increasing as CPU time and
always on the top at the last time. ETTYV is in the middle of the
four methods in most cases. From Figs. 13 and 14, we can find
that the curves of NNADM are far below. The increasing rates
of LOTV are slightly slower in Figs. 15 and 16. So, from these
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TABLE II
COMPARISON RESULTS OF DIFFERENT ALGORITHMS FOR SP AND RV NOISE

Images Level Blur ] ETTV ] LOTV ] NNADM ] NNDCLI1
Time SNR SSIM Time SNR SSIM Time SNR SSIM Time SNR SSIM
30%(SP)  Gaussian  35.8281 142114 0.8865  63.2656  14.6241  0.8768  47.0469  13.8484 0.8814  39.7813  14.9747 0.8829
Average 351719 14.2139  0.8866  61.3438  14.7842  0.8791  47.3125 13.9724  0.8832  36.5958  15.1324  0.8846
80%(SP)  Gaussian 351719  11.6026  0.8170  61.8594  12.0709  0.8140  84.6875 9.6343  0.8006  37.7188  12.0594  0.8271
Average 34.4844  11.6045 0.8180  61.6563  12.0472 0.8121  82.5781 10.6810  0.8072  38.5625  12.0754  0.8284
Parrot  20%(RV)  Gaussian ~ 35.1875 19.4783  0.9397  63.4531 18.8850 09350  57.1563  18.8047 0.9385  36.0156  19.5132  0.9425
Average 34.8281 20.0122  0.9431  63.4531 19.4198  0.9399  57.4531 19.3350  0.9419  36.3906  20.0454  0.9460
70%(RV)  Gaussian  68.7813 10.7450  0.7815  63.4531 11.2460  0.7657  60.8281 10.9647  0.7660  73.0156  11.0407  0.7860
Average 67.8594  10.6379  0.7801  64.0625 112338  0.7674  58.0625 109584  0.7632 729219  11.0595  0.7868
30%(SP)  Gaussian  160.4844  17.5292 0.8782 317.7344 169736 0.8614 176.1719 16.8644 0.8652 1647031 17.7704  0.8756
Average 1639219 17.6066  0.8796  320.0625  17.0312  0.8626  179.6563  16.9207  0.8666  165.0469  17.8682  0.8772
80%(SP)  Gaussian  162.0625  14.9607  0.8210 318.7344  15.1333  0.8189  309.4219  12.6904 0.8071 1723750  15.3160  0.8233
Average  162.2500  14.9713  0.8209  319.2656  15.1701  0.8209  315.0625 12.7450  0.8075 171.3906  15.3803  0.8246
Lena 20%(RV)  Gaussian  159.6406  20.8414  0.9048  318.5469  20.5992  0.9034  294.1719 202767 0.9012  168.6719  20.7412  0.9084
Average  159.6563  21.0909  0.9081  319.4844  20.8467 0.9068  295.1719  20.5214  0.9045  170.7656  21.0055  0.9120
70%(RV)  Gaussian ~ 327.0313  13.5388  0.7831  322.1250  13.3847  0.7702  299.0156  13.4411 0.7789  348.3594 14.0141  0.7855
Average  326.7969  13.7969  0.7822  320.6719  13.3790  0.7703  294.3906  13.4175 0.7792  341.3488 14.0131  0.7860
30%(SP)  Gaussian  161.9063  15.5185 0.8361  316.8906 14.9178 0.8061 181.0625 15.0034 0.8201  165.4844 15.8707 0.8429
Average 1659688  15.6153  0.8390  323.6094 150147 0.8095 180.8125 15.0964  0.8234  166.0156  15.9741  0.8457
80%(SP)  Gaussian  165.0313  13.0031  0.7407  317.2344  13.1090  0.7357  316.5938  12.0420 0.7451 1719844  13.4770  0.7550
Average  160.7031  13.0289  0.7416  320.3125 13.1166  0.7366  314.8594  11.9620  0.7432  167.7031  13.4973  0.7561
Man  20%(RV)  Gaussian  161.0313  19.4947  0.9244  323.1406  19.2115 09216  293.1719  18.9691 0.9191 170.1719  19.4400  0.9268
Average  159.9063  19.7582  0.9277  319.0313  19.4696 09253 2958906  19.1782  0.9221  171.0000  19.6650  0.9295
70%(RV)  Gaussian ~ 321.6719  11.6699  0.6820  308.7813  11.5663  0.6667  289.9063  12.0401 ~ 0.6931  333.1563  12.2584  0.7016
Average 3219688  11.5880  0.6810  317.7969  11.4971  0.6649  294.7031  12.0217  0.6922  339.2031  12.1662  0.6988

Fig. 10. Gaussian blur image with 80% SP noise and images restored by
ETTV, LOTV, NNADM, and NNDCL1.

Fig. 11. Gaussian blur image with 20% RV noise and images restored by
ETTV, LOTV, NNADM, and NNDCL1.

figures, we observe that NNDCLI1 has a good convergence
property and is stable.

B. Image Denoising

To further verify the performance of the proposed algorithm
in reducing artifacts, image denoising (when K is the identity
operator) experiment is tested. In this experiment, the proposed
algorithm is compared with two very recent works [26], [27]
for impulse noise removal. In [26], under the assumption that
both signal and noise are sparse, the authors proposed a fast
iterative method, called iterative double thresholding (IDT), to

Fig. 12.  Average blur image with 70% RV noise and images restored by
ETTV, LOTV, NNADM, and NNDCL1.
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Fig. 13.  SNR values versus CPU times for restoring Parrot, Lena, and Man
images which are corrupted by Gaussian blur (first row) and average blur
(second row) with 80% SP noise.

remove impulse noise, which has a low complexity. In [27], a
nonconvex model called LOOGSTV was presented, which has
an Lo norm data fidelity term and overlapping group sparse
TV (OGSTV) regularization function. This model can be con-
sidered as an extension of LOTV. Majorization-minimization
method and ADMM were used to solve the Ly-norm and the
OGSTV optimization problem.

The test images are Shape image (256 x256) and MRI image
(320 x 320), as shown in Fig. 17. The SP and RV noises
with different noise densities are tested. The noise levels of
SP are 40% and 60%, and those of RV are 10% and 50%. For
fairness, we manually chose the regularization and algorithm
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Fig. 14. SSIM values versus CPU times for restoring Parrot, Lena, and Man
images which are corrupted by Gaussian blur (first row) and average blur
(second row) with 80% SP noise.
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Fig. 15. SNR values versus CPU times for restoring Parrot, Lena, and Man
images which are corrupted by Gaussian blur (first row) and average blur
(second row) with 70% RV noise.
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Fig. 16. SSIM values versus CPU times for restoring Parrot, Lena, and Man
images which are corrupted by Gaussian blur (first row) and average blur
(second row) with 70% RV noise.

Fig. 17. Tested images.

parameters which yields the best SNR and SSIM for IDT and
NNDCLI1, while for LOOGSTYV, the parameter settings closely
follow [27]. The maximum outer iteration of NNDCLI1 takes
2 for low-level noise, and takes 3 or 5 for high-level noise.
The experiment results are reported in Table III. From the
table, two observations can be made. First, the proposed
NNDCL1 method almost always outperforms IDT and
LOOSGTV methods for both SP and RV impulse noise
removal. This is obvious especially in terms of SNR and SSIM.
Second, IDT has the lowest runtime. The reason is that the

Fig. 18.
corrupted by 40% SP noise and MRI by 10% RV noise.

Fig. 19.
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Denoising results by IDT, LOOGSTV, and NNDCLI for Shape

Denoising results by IDT, LOOGSTV, and NNDCLI for Shape
corrupted by 50% RV noise and MRI by 60% SP noise.

Fig. 20. Original images.

main computational costs are two thresholding operators, and
not involving the matrix—vector product.

We show the restored images in Figs. 18 and 19. From
Fig. 18, we can see that all the test methods can remove
the noise well when its density is low. Whereas, as shown
in Fig. 19, IDT is not capable of completely removing the
noise when the noise density is high or not sparse. Besides,
although LOOGSTYV preserves the details of the image, it tends
to cause blurred edges or produce undesired artifacts, and its
execution process usually takes a long time. By comparison,
the proposed NNDCL1 method can achieve a good balance
between artifact reduction and noise removal.

Besides, it is seen from the comparative experiment that the
first iteration of Algorithm 1 produces a high-quality guess for
the nonconvex optimization problem, and can be interpreted as
a warm-start step. This means that the proposed DCA needs a
less number of iterations to achieve the optimal solution, thus
improving the overall efficiency of the proposed method.

C. Image Recovery

The third example is given to further show the superior-
ity of the proposed method in image recovery with impulse
noise and the effectiveness of the L; proximal technique. In
this experiment, we apply our model to the image recov-
ery from compressed measurements. The tested images are
Shepp-Logan and Brain, and shown in Fig. 20. The size
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TABLE III
COMPARISON RESULTS OF DIFFERENT ALGORITHMS FOR SP AND RV NOISE REMOVAL

Images Level ] IDT ' LOOGSTV ' NNDCL1

Time SNR SSIM Time SNR SSIM Time SNR SSIM

40%(SP)  13.0313  14.3147 0.9041 99.2031 22.5821 0.8513 37.2500 14.8918 0.9157

60%(SP)  20.5469 8.0463 0.8523 88.7031 10.2914 0.7382  62.0469  10.4628  0.8394

MRI 10%(RV)  21.6503 14.8633 0.9144 52.4219 13.2394  0.7839  16.6563  20.9915 0.9743

50%(RV) 6.5626 7.7387 0.5919  105.9219 3.6139 0.6182 56.9375 109142 0.8156

40%(SP) 9.2344 6.7720 0.8965 52.1719 6.4567 0.8692  18.5938 154258  0.9433

60%(SP)  14.1719 7.5927 0.8666 51.3438 3.8005 0.8424 335469 12.5892 09115

Shape  10%(RV) 14.6250 10.6736  0.9753 86.3488 7.6116 0.7964  10.3750 23.5858  0.9874

50%(RV) 6.8906 8.7022 0.6602 55.4688 3.7324 0.7345 352656  13.6101  0.8268

TABLE IV
PSNR VALUES OF THE IMAGES RESTORED BY THE COMPARED ALGORITHMS

Noise Images LILS-FISTA Lo.sLS-ADMM  YALLI Lo 2LA-ADMM Lo sLA-ADMM  Lg.7LA-ADMM NNDCLI
Gaussian mixture  Logan 32.3301 32.5683 27.9568 39.3128 40.3454 39.2712 42.7397
Brain 27.7681 26.5287 26.6500 29.0384 29.2763 28.7730 29.1590
STS Logan 12.5396 13.0372 29.5403 31.6272 32.7204 32.6292 33.5979
Brain 12.1137 11.3154 24.8355 27.1307 27.5435 27.1410 27.2365

Fig. 21.
Brain images with Gaussian mixture noise.

of each image is 256 x 256. The measurement number is
m = round(0.4n), where n = 65536. A partial discrete cosine
transformation matrix A is employed as the sensing matrix K
and the Haar wavelets are used as the basis functions. Then,
the model (6) becomes

min pu®, (Ax — b) + W,(x)
X

where x is a wavelet coefficient and b is the sampled wavelet
data with impulse noise. We compare the new model with the
L, regularized least absolute (L,LA) formulation

chin ullAx — b1 + lIxllq
and the L, regularized least squares (L,LS) formulation
H&in ullAx — bli2 + lIxllq

where 0 < g < 1.

Two types of impulse noise [28] are tested. The first one
is Gaussian mixture noise. The probability density function of
two-term Gaussian model is given by

1- 8)/\/(0, 02> + 8N(O, /<02>

where ¢ = 0.1 and ¥ = 1000 in our experiments. The first
term stands Gaussian thermal noise and the second term means
the behavior of impulse noise. The second one is symmet-
ric t-stable (StS) noise. The characteristic function of StS

Recovery results of L1LS-FISTA, Ly 5sLS-ADMM, YALLI, Ly,LA-ADMM, Ly sLA-ADMM, Ly 7LA-ADMM, and NNDCL1 on Shepp-Logan and

distribution can be expressed as e(/'”")_pqu, where the char-
acteristic exponent 7 is 1 and the scale parameter p is 1074,
The smaller the value of t, the more impulse the noise is.

Our new method NNDCLI1 is compared with some
representative algorithms, which include L1LS-FISTA [29],
L,LS-ADMM [30], YALL1 [31], and L,LA-ADMM [28].
L1LS-FISTA solves the LiLS model. Ly 5LS-ADMM solves
the L,L.S model based on ADMM with g = 0.5. YALL1 solves
the robust L;LA model. L,LA-ADMM with different values
of ¢ € {0.2,0.5,0.7} solves the L,LA model. The peak-
signal noise ratio (PSNR) is used to evaluate the recovery
performance.

Fig. 21 presents the recovery versions of the images cor-
rupted by Gaussian mixture noise. We can see that all algo-
rithms achieve good results in terms of visual quality. Fig. 22
gives the recovery images that have been damaged by StS
noise. One can see that the L, data fidelity-based methods, that
is, L1LS-FISTA and Ly sLS-ADMM, are failed, while the L;
data fidelity-based algorithms, that is, YALL1, L,LA-ADMM
and NNDCL1, work well. That is because the considered StS
noise contains more impulse noise than Gaussian noise. The
performances in terms of PSNR are shown in Table IV. The
results show that NNDCL1 outperforms those representative
algorithms on reconstructing Shepp-Logan. The improvements
are higher as 2.39 dB (Gaussian mixture noise) and 0.87 dB
(StS noise) over the compared algorithms. The reason may
be that the L; norm proximal term of the proposed algorithm
further promotes the sparsity in the iterations. This advantage
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Fig. 22. Recovery results of LILS-FISTA, Ly 5LS-ADMM, YALLI, Ly,LA-ADMM, Ly 5LA-ADMM, Lj7LA-ADMM, and NNDCLI on Shepp-Logan and

Brain images with StS noise.

TABLE V
AVERAGE RESULTS ON REMOVING MIXED GAUSSIAN
PLUS RV AND SP IMPULSE NOISE

BACNN NNDCL1
DataSet Level —5sNR SSIM PSNR - SSIM
Pascal  (15,50,30) 255198 0.7360 23.8147  0.7089
(25,4020)  26.5697 0.7440  24.2687  0.7060
(15,80,0) 163726 03790 18.0848  0.5756
(25,70,40)  19.0974  0.5305  20.4848  0.6079

is decreased on recovering Brain image. The PSNR values
attained by NNDCLI1 are slightly lower than Ly sLA-ADMM,
but are higher than L1LS-FISTA, LyosLS-ADMM, YALLI,
Lo,LA-ADMM, and Ly 7;LA-ADMM.

D. Mixed Noise Removal

Our last example is given to show the application of the
new model in removing mixed noise. In this section, Gaussian
plus impulse noise and Gaussian mixture noise are consid-
ered. In recent years, the deep learning using convolutional
neural network (CNN) has attracted many researchers for its
wide application in image processing. It has been gradually
established as one of the significant techniques. Hence, we
compared our new method with deep-learning-based methods
in this section. PSNR and SSIM are adopted to evaluate the
restoration quality.

1) Gaussian Plus Impulse Noise: First, we test the removal
of Gaussian plus impulse noise. In this experiment, we choose
randomly 500 images from the Pascal dataset as our test
images. The images are corrupted by white Gaussian noise
plus RV and SP noise. To demonstrate the performance for dif-
ferent settings of mixed Gaussian, RV, and SP impulse noise,
we test on four noise levels, which are shown in Table V. The
noise level of (15, 50, 30) in this table means that Gaussian
noise (6 = 15) 4+ 50% RV noise + 30% SP noise, and the
other three cases have similar meanings. We compare our
proposed method with BACNN [32], which is a learning-based
method. By training different kinds of noisy images with var-
ious noise levels, BACNN can remove mixed noise regardless
of the noise level. For BACNN, we use the network trained by
the authors of [32]. For our model, the regularization parame-
ter w is set as 1.35, and the other parameters are set to s = 10,
y1 = 0.01, y» = 0.5. We set 8, = 10, B, = 50, B, = 100,
n = 0.00001, and o = 1.618 for the ADMM. The maximum
number of outer iterations is 5. This parameter setting of the
proposed method is used for all test cases.

Table V reports the test results for Gaussian plus impulse
noise removal. We can see from Table V that BACNN achieves
higher PSNR than NNDCL1 when the noise level is low.
But, our method performs well in terms of PSNR and SSIM
when the images are corrupted by heavy mixed noises. This is
because our new method use the nonconvex data fitting term,
which can detect impulse noise effectively. Hence, it can be
seen that compared with the deep-learning-based method, our
numerical results are quite competitive.

2) Gaussian Mixture Noise: In the second test, we compare
the proposed method with EMCMM [33] on the removal of
Gaussian mixture noise. EMCNN is a variational model for
mixed noise removal, and is integrated with the CNN deep
learning regularization. For EMCNN, image prior is learned
by the CNN that is associated with a variational functional.

In this part, Pascal (500 test images, which are the same as
those chosen in the previous test) and Berkeley Segmentation
Dataset (BSD, 100 test images in total) datasets are used for
the comparison. We consider the following Gaussian mixture
noise form:

EN(O 01) + —8)/\/(0 02)

Then, the test images are corrupted by Gaussian mixture noise
with mixture ratio ¢ = 0.4, 0.5, 0.6 and three noise levels, that
is: 1) oy = 10 and oy = 30; 2) 01 = 15 and op = 70; and
3) o1 = 25 and o = 60. For EMCNN, the regularization
trained by the authors of [33] is adopted, and the parameters
are set as suggested in [33]. For the proposed method, the
setting of the parameters is the same as that of the previous
test.

Table VI reports the results for Gaussian mixed noise
removal. It is seen from Table VI that the proposed method
achieves the highest SSIM index except for the case of low
noise level tested on BSD, which means that our method
produces the best restored results in the most cases. We
also observe that EMCNN performs better than NNDCLI in
terms of PSNR in the most cases. Fig. 23 shows the restored
images of EMCNN and NNDCLI1 for two test images (Bike
image from Pascal and Penguin image from BSD) with dif-
ferent noise levels. We can see from Fig. 23 that EMCNN
can retain more image details. Thus, the mean square error
value of EMCNN is less than NNDCL1, which leads to that
EMCNN has a higher PSNR value. However, a small amount
of noise or artifacts still exist in the images restored by
EMCNN. Although NNDCLI generates oversmooth edges in
the restored images, the noise is completely removed. By the

Authorized licensed use limited to: Universidade de Macau. Downloaded on March 21,2024 at 01:53:16 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: IMPULSE NOISE IMAGE RESTORATION USING NONCONVEX VARIATIONAL MODEL AND DCA

2269

TABLE VI
AVERAGE PSNR AND SSIM VALUES: EMCNN AND NNDCL1 ON PASCAL AND BSD DATASETS

DataSet 01=10 02=30 o1=15 02=70 01=25 02=60
0.4:0.6 0.5:0.5 0.6:0.4 0.4:0.6 0.5:0.5 0.6:0.4 0.4:0.6 0.5:0.5 0.6:0.4
Pascal EMCNN  29.2946  30.6564 31.6237 27.5260 28.1595 29.0134 26.8140 27.5028  28.0263
0.6834 0.7614 0.8071 0.6339 0.6784 0.7281 0.5958 0.6408 0.6729
NNDCL1 279841 28.2771  28.5647  26.1412  26.6347  27.0935 25.5511 25.8712  26.1714
0.7938 0.8039 0.8131 0.7416 0.7567 0.7699 0.7080 0.7180 0.7270
BSD EMCNN  27.7475 28.5534  29.3255 25.1053 25.6313 26.3697 24.3528 24.9035 25.3232
0.7187 0.7614 0.7968 0.5811 0.6194 0.6705 0.5337 0.5698 0.5957
NNDCL1 25.3835 25.6220 25.8561  23.9501 24.3713 24.7822  23.4221  23.6832  23.9367
0.6828 0.6961 0.7087 0.6121 0.6346 0.6553 0.5763 0.5897 0.6025

Fig. 23. (a) Bike image, (b) noisy image, oy = 25, oo = 60, and
& = 04, (c) restored by EMCNN, PSNR = 26.1105, and SSIM = 0.6348,
(d) restored by NNDCL1, PSNR = 23.0624, and SSIM = 0.7423, (e) Penguin
image, (f) noisy image, o1 = 15, op = 70, and ¢ = 0.5, (g) restored
by EMCNN, PSNR = 30.0007,and SSIM = 0.7337, and (h) restored by
NNDCLI1, PSNR = 29.3246, and SSIM = 0.7981.

d

e
o

n)

(h)

0
)

(g

Fig. 24.  (a) Plane image, (b) noisy image with the level (20, 80, 30),
(c) restored by BACNN, PSNR = 15.0069, and SSIM = 0.5602, (d) restored
by NNDCLI, PSNR = 20.6525, and SSIM = 0.8545, (e) Eagle image,
(f) noisy image with the level (35, 80, 20), (g) restored by BdACNN,
PSNR = 169129, and SSIM = 0.4900, and (h) restored by NNDCLI,
PSNR = 19.2452, and SSIM = 0.6694.

definition of SSIM, its value depends both on image mean
value and variance. So, NNDCL1 can obtain a higher SSIM
value under a lower PSNR value. This may be the reason
that the proposed algorithm has a lower PSNR value but a
higher SSIM value than EMCNN. Moreover, compared to the
EMCNN, our new method shows an improvement in SSIM
for high noise level. This shows the potential ability of our
new method to improve the performance of high-level mixture
noise removal.

In summary, as shown in Tables V and VI, it is obvious
that our new method can effectively remove different levels of
mixed noise. Though the tested deep-learning-based methods
exhibit better performance in terms of PSNR, the proposed
method has a higher SSIM value that BACNN and EMCNN.
Since deep-learning-based methods are data dependent, the
quality of their restored images are likely unsatisfactory if the

noise distribution or noise level is not included in the training
samples. To illustrate this, Fig. 24 shows the images restored
by BACNN and NNDCL1 with the noise levels of (20, 80, 30)
and (35, 80, 20). Note that the two noise levels are not included
in the training dataset of BACNN. It is seen that the images
restored by BACNN have unexpected artifacts, and the percep-
tual quality of the restored images are unsatisfactory. Although
some details are lost in the images restored by the proposed
NNDCLI, the proposed method has a good performance in
denoising. We also note that both the PSNR and SSIM values
of the proposed method are higher than that of BACNN in
this case. Moreover, compared with the deep-learning-based
methods, our proposed method has the advantage that it does
not require training data and training processing, and can deal
with different image processing tasks. In addition, the use of
the nonconvex and nonsmooth function in image processing
can preserve piecewise constant regions and match the image
data perfectly. This is particularly useful in enhancing restored
images and removing impulse noise.

VI. CONCLUSION

In this article, we have proposed a new model for
image restoration with impulse noise. Although the result-
ing optimization problem is nonconvex, a novel and effective
DCA has been designed for solving it. We have proved that
the limit point of the sequence generated by the proposed
algorithm is a stationary point of the nonconvex objective func-
tion. The convergence analysis expands the existing results
in DC programming. Experimental results of image deblur-
ring, denoising, and recovery demonstrated that the proposed
approach is highly competitive compared with the existing
popular methods. Note that it remains largely unexplored how
to adaptively choose the regularization parameter u. This is
an open and challenging problem, and we leave the problem
to further research.
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