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ABSTRACT

In image stitching, artifacts caused by misalignment affect the
visual quality and the performance of subsequent tasks such
as segmentation and detection. This paper proposes SMPR,
a reconstruction-based aligned image composition method to
minimize artifacts. SMPR fuses images in part of the overlap-
ping areas and reconstructs other portions from single images.
Specifically, we propose a seam mask generation method to
obtain optimal seam masks that pass through minimal mis-
alignment. During training, we use the seam masks to guide
the model in detecting optimal fusion areas. In testing, the
model can detect fusion areas without seam masks and recon-
struct stitching results. We propose a quantum-inspired local
aggregation (QILA) module to improve feature reconstruc-
tion performance. We develop an encoder-decoder network
with QILA and experiment on a real-world dataset. The ex-
periments show that our method outperforms state-of-the-art
methods in both qualitative and quantitative aspects.

Index Terms— Image Stitching, Image Reconstruction,
Deep Learning, Image Processing, Quantum Neural Network.

1. INTRODUCTION

Image stitching is a meaningful task in multimedia signal pro-
cessing. The goal of image stitching is to create large-view
images by combining images taken from different perspec-
tives. It has a lot of applications, including surveillance video
[1], autonomous driving [2], remote sensing [3], and UAV
(Unmanned Aerial Vehicle) imaging[4].

Most image stitching methods can be divided into two
steps: image alignment and image composition. Image align-
ment converts images captured from different positions to the
same plane and aligns as much content as possible. Due to
parallax between input images, it is difficult for alignment
methods to align all the image content well. So, the stitching
results usually suffer from artifacts if we directly fuse aligned
images. Therefore, we need image composition methods to
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Fig. 1: Three kinds of image composition methods for image
stitching. (a) Input images. (b) Original reconstruction. (c)
Seam detection. (d) Our partial reconstruction. The pink area
represents the fusion area. The blue and red regions are con-
tent from a single input image.

produce better stitching results. The commonly used image
composition technique is seam detection. Two-image seam
detection methods detect the optimal seam that passes through
regions with minimum misalignment on the overlapping area
between two images. The seam separates the output image
into two parts: one is the image content from the first image,
and the other is from the second image. These two parts com-
pose the stitching result. After seam detection and composi-
tion, we use image blending methods such as Poisson image
blending [5] to smooth the seam for a natural transition. How-
ever, these image blending methods cannot eliminate large
misalignments and may produce artifacts around seams.

Recently, some deep-learning-based methods [6, 7] use
feature reconstruction with perceptual loss [8] to reduce mis-
alignment. The perceptual loss is calculated on the feature
level instead of the pixel level. Thus, it can reconstruct im-
age content and reduce artifacts. However, when misalign-
ment is large, the reconstruction results may have artifacts.
Our method aims to reduce artifacts in large parallax cases
via partial reconstruction. Different from original reconstruc-
tion methods that fuse whole overlapping areas, we use seam
masks to guide the model to fuse smaller areas. This is be-
cause smaller areas have less misalignment. We hope to use
smaller fusion areas to reduce possible artifacts in the stitch-
ing results. The original reconstruction strategy is illustrated
in (b) of Figure 1, the seam detection method is illustrated in
(c), and our partial reconstruction is illustrated in (d). Com-
pared to seam detection methods, our method dilates the seam
line to make it a banded area and uses it for two-image feature
reconstruction.
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Inspired by the extraordinary feature mixing performance
of quantum networks, we work on developing quantum net-
work architecture for reconstruction. Wave MLP [9] is a
quantum network on the patch level that applies to image
classification, segmentation, and object detection. For our
task, we focus on local feature mixing. So, we aim to propose
a quantum network on the pixel level to improve local feature
aggregation performance for reconstruction.

In this paper, we propose a reconstruction-based image
composition method, SMPR. It transforms aligned inputs to
stitching results with fewer artifacts and better visual quality.
The contributions of this paper are summarized as follows:

• We propose a pixel-level quantum-inspired reconstruc-
tion network. To the best of our knowledge, it is the first
quantum network for deep image stitching. We verify
that it can improve the reconstruction performance.

• We propose a seam mask guided partial reconstruction
method using generated seam masks. It can reduce ar-
tifacts related to misalignment.

• Extensive experiments show that our method outper-
forms existing methods regarding the number of arti-
facts and the visual quality of stitching results.

2. METHODOLOGY

Our methodologies include quantum-inspired local aggrega-
tion, seam mask generation, and seam mask-guided partial
reconstruction.

2.1. Quantum-Inspired Local Aggregation

For the aligned image reconstruction task, we need to aggre-
gate local information for better feature mixing. We propose
a local information aggregation module under quantum repre-
sentations. Concretely, we represent each pixel as a wave that
contains both amplitude and phase. We convert real domain
pixels to the complex domain:

z̃j = |zj | ⊙ eiθj , j = 1, 2, 3, · · ·, H ×W × C, (1)

where z̃j represents the pixels in complex domain, |zj | stands
for the amplitude, θj denotes phase, i stands for the imagi-
nary unit, ⊙ is the pixel-level multiplication, H , W stand for
height and width, C is channel number. However, it is hard to
develop neural network architectures using complex domain
representation. So we use Euler’s formula to represent each
pixel in real part and imaginary part:

z̃j = |zj | ⊙ cosθj + i|zj |sinθj , j = 1, 2, 3, · · ·, H ×W ×C,
(2)

We use equation (2) as the quantum representation of wave-
like pixels.
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Fig. 2: The reconstruction networks, the detail of QILA lay-
ers, and the illustration of partial reconstruction loss.

Wave interference is a physical phenomenon of two waves
meeting when traveling in the same medium. We use convolu-
tional neural networks (CNN) to represent wave interference.
The convolution operation can be seen as multi-pixel wave
interference. With CNN, each pixel has a large receptive field
to fuse more local features.

In detail, we need pixel-level amplitude |zj | and phase
θj to do local aggregation. Given an input feature map F
∈ RH×W×C1, we use a 2D convolutional layer and ReLU ac-
tivation to get A ∈ RH×W×C2, which works as the amplitude.
Then we input A to another 2D convolutional layer and ReLU
activation to get P ∈ RH×W×C3, which works as the phase.
Finally, we get the quantum representation, which is the chan-
nel dimension concatenation of A⊙ cos(P ) and A⊙ sin(P ).
Then, we use the following CNN layers to do the pixel-level
wave interference. The illustration of the QILA layers can
be found in Figure 2. Compared to normal CNN, quantum-
inspired local aggregation can fully mix local information and
generate better reconstruction results.

2.2. Seam Mask Generation

We use input images aligned by an existing homography es-
timation method [10]. Then, we use the generated seams to
produce seam masks. We expand the seam areas so the model
can fuse the misalignments around the seam areas of two im-
ages through feature reconstruction. The mask generation
process is illustrated in Figure 3. The specific steps are as
follows,

Sline, SM1 , SM2 = SD(I1, I2), (3)

where the SD is the seam detection algorithm, we use Graph
Cut [11]. The inputs are two aligned images. Sline is the seam
line that the width is 1. SM1 and SM2 are the two seam masks
respectively. Then we expand the Sline using morphological
dilation operation [12]. The MSL is the output seam band.
The width of MSL is 30 pixels here. We notice that the seam
band exceeds the boundary of the input image. So, we use the
overlapping mask to remove the redundant parts.

Moverlapping = MA ∩MB , (4)

M ′
SL = MSL ∩Moverlapping, (5)
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Fig. 3: The process of seam mask generation. D stands for
morphological dilation.

where MA and MB are masks that stand for the valid areas of
inputs, and ∩ denotes the intersection of two images. Then,
we use this seam band to produce the final masks:

M1 = SM1
∪M ′

SL, (6)

M2 = SM2
∪M ′

SL, (7)

where ∪ denotes the union of two images. The overlapping
area of the two final masks is the seam band area. It is the
image fusion area.

2.3. Seam-Mask-Guided Partial Reconstruction

We use the aligned input images and the generated seam
masks for partial reconstruction. We use the seam masks for
training and do not use them during testing. The model learns
to detect fusion areas and reconstruct fusion content during
testing.

2.3.1. Reconstruction Network

We propose a U-shaped network with QILA layers as illus-
trated in the left top corner of Figure 2. We use QILA layers
as the basic feature extraction blocks of the encoders and de-
coders. We concatenate the features from the downsampling
stage to the upsampling stage to restore image details.

2.3.2. Partial Reconstruction Loss

SMPR is trained with pixel-level perceptual loss as shown in
Figure 2. At the same time, it can learn to detect fusion areas
with given seam masks. Concretely,

LPR = ∥Φ(I1 ⊙M1)− Φ(O ⊙M1)∥2
+ ∥Φ(I2 ⊙M2)− Φ(O ⊙M2)∥2 ,

(8)

where LPR stands for partial reconstruction loss, Φ means
the output feature maps of pretrained VGG-19 [13], I1 and I2
stand for input 1 and input 2, M1 and M2 stand for mask 1
and mask 2, O denotes the output.

3. EXPERIMENT

3.1. Dataset

We use a real-world dataset UDIS-D [7] for training and test-
ing. The UDIS-D contains 10,440 training image pairs and
1,106 testing image pairs. We train the model on the aligned
10,440 training image pairs and the proposed 10,440 seam
mask pairs. We test the model on the UDIS-D testing dataset.

3.2. Metrics

The dataset does not have ground truth so we use a combina-
tion of manual and algorithmic measurements. The manual
metric is the failure cases and success rates. The failure cases
refer to stitching results with unacceptable artifacts. The al-
gorithmic metrics are the non-reference image quality assess-
ment methods. We use BRISQUE [14] and PIQE [15] as our
image quality assessment methods.

3.3. Performance Comparison

3.3.1. Comparisons of Complete Image Stitching

We input non-aligned image pairs and evaluate the perfor-
mance of different complete image stitching methods. We
train our model on aligned UDIS-D and seam masks for five
epochs. To evaluate the performance of different scenes, we
split the 1,106 testing image pairs into three categories, i.e.,
large parallax (78 image pairs), small parallax (923 image
pairs), and low texture (105 image pairs). We compare with
image stitching methods, including traditional methods SIFT
[16] combined with RANSAC [17], APAP [18], robust ELA
[19], and deep learning methods VFISNet [6], EPIS [20], and
UDIS [7]. The failure cases, success rate, and image quality
assessment score are illustrated in Table 1. We can see that
traditional methods (lines one to three) perform badly in low-
texture cases. Deep learning methods (lines four to six) per-
form badly in large parallax cases. Our method outperforms
other methods in large parallax, small parallax, and low tex-
ture, obtaining the fewest failure cases and the highest success
rate. For the image quality assessment metrics, our method
obtains first place, and the traditional method SIFT gets sec-
ond place. The APAP and robust ELA get F (Failure) in IQA.
This is because they have failed stitching results and cannot
be calculated. From the qualitative comparison results illus-
trated in Figure 4, we notice that SIFT, APAP, robust ELA,
VFISNet, and UDIS have artifacts in the content, while EPIS
has distortion at the intersections and edges. The result of our
SMPR does not have these problems.

3.3.2. Comparisons of Image Composition

We use aligned image pairs as inputs to compare the perfor-
mance with three seam detection methods, including dynamic
programming (DP) [21], Voronoi [22], and Graph Cut (GC)
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(a) (b) SIFT (c) APAP (d) Rob. ELA (e) VFISNet (f) EPIS (g) UDIS (h) SMPR

Fig. 4: Qualitative comparison of different complete image stitching methods on the non-aligned image inputs (a).

Method Large Parallax Small Parallax Low Texture Overall IQA
Failure Rate Failure Rate Failure Rate Failure Rate BRI.(↓) PIQE(↓)

SIFT [16] 26 66.67% 43 95.34% 48 54.29% 117 89.42% 36.387 20.403
APAP [18] 23 70.51% 12 98.70% 25 76.19% 60 94.58% F F

Rob. ELA [19] 39 50.00% 44 95.23% 67 36.19% 150 86.44% F F
VFISNet [6] 31 60.26% 100 89.17% 30 71.43% 161 85.44% 48.275 22.523

EPIS [20] 25 67.95% 23 97.51% 6 94.29% 54 95.12% 55.846 20.099
UDIS [7] 32 58.97% 1 99.89% 3 97.14% 36 96.75% 40.155 20.559

SMPR (Ours) 20 74.36% 0 100.00% 3 97.14% 23 97.92% 35.350 19.874

Table 1: Success rate and image quality assessment metrics of different complete image stitching methods on different scenes
of 1106 non-aligned UDIS-D testing images.

[11]. A qualitative comparison is illustrated in Figure 5. From
the figure, we notice that all the seam detection methods have
artifacts. These artifacts are around the seams. Our partial re-
construction does not have such problems because we detect
fusion areas and reconstruct features.

(a) (b) DP (c) Voronoi (d) GC (e) SMPR

Fig. 5: Qualitative comparison of different image composi-
tion methods on the aligned image inputs (a).

(a) (b) w/o SMG (c) w/ SMG

Fig. 6: Ablation study of result without seam mask guidance
(SMG) (b) and with SMG (c) on the aligned image inputs (a).

3.4. Ablation Study

We perform ablation studies on seam mask guidance (SMG)
and QILA layers. The model without QILA retains the same
number of CNN layers. From Table 2, we know that the
model with SMG gets fewer failure cases than models with-
out SMG. From Table 3, we can see that the model with QILA

layers gets better image quality scores. From these results, we
conclude that (1) QILA helps improve reconstruction quality.
(2) SMG decreases failure cases. From Figure 6, we can see
that the model without SMG cannot deal with misalignment
and produce artifacts, while the model with SMG decreases
artifacts via fusion area detection and feature reconstruction.

Method Failure Success Rate
w/o SMG 35 96.84%

Ours 23 97.92%

Table 2: Ablation study of SMG on 1106 images of UDIS-D.

Method BRISQUE(↓) PIQE(↓)
w/o QILA 36.089 20.411

Ours 35.350 19.874

Table 3: Ablation study of QILA on 1106 images of UDIS-D.

4. CONCLUSION

In this paper, we proposed an alignment image composi-
tion method, SMPR. In particular, the seam mask generation
method produces seam masks. The seam mask guided partial
reconstruction model performs fusion area detection and vi-
sual reconstruction. The quantum-inspired local aggregation
(QILA) better mixes features and produces stitching results
with better visual quality. It has been demonstrated in qualita-
tive and quantitative experiments that our SMPR outperforms
other image stitching methods.
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