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Natural image matting has garnered increasing attention in various computer vision applications. The mat- 

ting problem aims to find the optimal foreground/background (F/B) color pair for each unknown pixel and 

thus obtain an alpha matte indicating the opacity of the foreground object. This problem is typically mod- 

eled as a large-scale pixel pair combinatorial optimization (PPCO) problem. Heuristic optimization is widely 

employed to tackle the PPCO problem owing to its gradient-free property and promising search ability. How- 

ever, traditional heuristic methods often encode F/B solutions to a one-dimensional (1D) representation and 

then evolve the solutions in a 1D manner. This 1D representation destroys the intrinsic two-dimensional (2D) 

structure of images, where the significant spatial correlations among pixels are ignored. Moreover, the 1D 

representation also brings operation inefficiency. To address the above issues, this article develops a spatial- 

aware tensorial evolutionary image matting (TEIM) method. Specifically, the matting problem is modeled as 

a 2D Spatial-PPCO (S-PPCO) problem, and a global tensorial evolutionary optimizer is proposed to tackle the 

S-PPCO problem. The entire population is represented as a whole by a third-order tensor, in which individ- 

uals are classified into two types: F and B individuals for denoting the 2D F/B solutions, respectively. The 

evolution process, consisting of three tensorial evolutionary operators, is implemented based on pure tensor 

computation for efficiently seeking F/B solutions. The local spatial smoothness of images is also integrated 

into the evaluation process for obtaining a high-quality alpha matte. Experimental results compared with 

state-of-the-art methods validate the effectiveness of TEIM. 
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 INTRODUCTION 

atural image matting, aimed at precisely extracting foreground objects, is a long-standing prob-

em in computer graphics and vision. It serves as the basis for image and video editing and is widely

pplied in various fields such as film production [ 36 ], object tracking [ 3 , 38 ], and augmented re-

lity [ 17 , 26 ]. Typically, a four-channel image comprises Red, Green, Blue, and Alpha channels,

hich can be represented by a convex linear combination of the foreground and background

olors as 

I = αI (F ) + (1 − α)I (B), (1)

here I , I (F ), I (B) denote the true RGB color of the observed image, the corresponding foreground

nd background colors, respectively; α ∈ [0 , 1 ] indicates the transparency of the foreground ob-

ects, which is usually stored in an image known as the alpha matte. The matting problem is then

efined as to obtain the alpha matte, given only the observed image and prior information such

s scribbles or a trimap [ 9 ]. Figure 1 depicts two examples of trimaps, where each image is parti-

ioned into three distinct regions: the known foreground ( α = 1 ), the known background ( α = 0 ),
nd the unknown region. Trimap-based methods heavily depend on the information provided by

he known foreground (F) and background (B) to compute the transparency of pixels in the

nknown (U) region. 

Normally, the matting problem is a complex and large-scale pixel pair combinatorial opti-

ization (PPCO) problem. Its goal is to find the optimal F/B color pair for each pixel in the U

egion and then derive the alpha value. In early studies, the problem was solved by sampling to se-

ect the optimal F/B color pairs. Different handcrafted sampling strategies were designed to select

ub-F and B regions, and then determine the optimal F/B pair for each unknown pixel according

o the nearest neighbor [ 15 , 16 , 40 , 41 ]. However, although the sampling methods are computa-

ionally efficient, their accuracy is rather unsatisfactory. Sampling-free methods were therefore

roposed to enhance the performance, where heuristic optimization techniques are employed to

eek the optimal pixel pairs under the complete search space of F/B colors. These algorithms have

chieved promising performance in solving the PPCO problem, comprising methods such as par-

icle swarm optimization (PSO) [ 20 , 33 ], cooperative coevolution differential evolution

CC-DE) [ 4 ], ant colony optimization (ACO) [ 50 ], and multi-objective evolutionary algo-

ithm (MOEA) [ 34 ]. 

Figure 2 illustrates the pipeline of existing heuristic matting methods. Given a trimap, the

ecision space is the U region, while the search space is determined based on the F/B regions.

raditional matting methods include a sampling step to narrow the search space for easing the

omputing pressure. However, it was later discarded, since the newly developed heuristic algo-

ithms can greatly enhance the problem-solving capability. Then, the optimizer is employed to find

he optimal F/B color pair for each unknown pixel. Finally, the alpha matte is obtained according to

quation ( 1 ). For heuristic matting, a proper evaluation is required to measure the quality of can-

idate F/B solutions. Nearly all the existing heuristic matting methods evaluate the F/B solutions
CM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 

https://doi.org/10.1145/3649138


Tensorial Evolutionary Optimization for Natural Image Matting 194:3 

Fig. 1. Examples of the trimap. F denotes the known foreground region, B is the known background region, 

and U represents the unknown region. 

Fig. 2. Main procedures of heuristic matting methods. 
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ased on color similarity and spatial closeness [ 16 ], which are typically formulated as 

min G(X ) = 
N U ∑
k= 1 

д c (x k ) + д s (x k ), 

д c (x k ) = 

�����
�����p (C,U )

k 
−
(

ˆ αk p 
(C,F )
x 
(F )
k 

+ (1 − ˆ αk )p (C,B)
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(B)
k 

) �����
�����, 

д s (x k ) = 
| | p (S,U )

k 
− p (S,F )

x 
(F )
k 

| | 

min 

N U 

t= 1 | | p 
(S,U )
k 

− p (S,F )t | | 
+

| | p (S,U )
k 

− p (S,B)
x 
(B)
k 

| | 

min 

N U 

t= 1 | | p 
(S,U )
k 

− p (S,B)t | | 
, 

(2)

here X = {x 1 , . . . , x k , . . . , x N U 
}, and x k = (x (F )k 

, x (B)
k 

) denotes the F/B decision variables for the

 th unknown pixel; д c (x k ) evaluates the color distortion of a F/B color pair where ˆ αk is the es-

imated alpha value, and p (C,F ), p (C,B), and p (C,U ) stand for the RGB values of F, B, and U pixels,

espectively; д s (x k ) calculates the spatial costs of F and B pixel where p (S,F ), p (S,B), and p (S,U ) de-

ote the spatial coordinates of F, B, and U pixels, respectively. The overall evaluation function

(X ) sums up д c (x k ) and д s (x k ) over all unknown pixels. 

Despite the current advances in heuristic matting methods, there are still significant limitations

n both the effectiveness and efficiency, mainly due to the high dimensionality of decision vari-

bles and the complexity of the search space. First, most of the matting methods adopt a trimap

xpansion procedure that expands the F/B regions toward U region based on color similarity [ 4 ,

1 ]. The available F/B labels are assigned to unknown pixels when the color distances are less

han a pre-defined threshold. This greatly narrows the U region, improving the computation effi-

iency. However, the color thresholding is unstable and may fail when the F/B labels are wrongly

ssigned. Another critical limitation of previous studies is the failure to incorporate and utilize the

patial structure of images into the heuristic optimization process. Traditional heuristic methods

perate on solutions of one-dimensional (1D) structure and accordingly develop 1D evolution-

ry operators for evolving new generations. Consequently, they follow a 1D evolving pattern, and

he valuable spatial information of images is largely ignored. 
ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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To address the aforementioned limitations, in this article, we propose a spatial-aware tenso-

ial evolutionary image matting (TEIM) method to improve the accuracy and efficiency of

he matting methods/algorithms. First, we develop a superpixel-based trimap expansion method

hat effectively expands F/B regions. We then build upon a tensorial evolutionary optimizer to

ackle the matting problem based on tensorial evolutionary optimization. In our previous work,

e have proposed a general tensorial evolutionary algorithm (TEA) [ 25 ] that well models the

eographical structure of solutions and demonstrates promising performance in solving 2D spa-

ial optimization problems. Nevertheless, TEA encounters deficiencies when applied to the PPCO

roblem. For instance, PPCO is inherently large-scale, resulting in intensive tensor computations

uring the individual-based evolution of TEA, leading to computational inefficiency. Consequently,

e have devised a more efficient method in TEIM, specifically tailored to address the challenges

osed by the large-scale PPCO problem. Furthermore, we integrate a spatial smoothness compo-

ent into the evaluation process to leverage the valuable spatial correlation of image pixels, which

romotes spatial continuity of the estimated image, and ultimately generates high-quality alpha

attes. 

The main contributions are summarized as follows: 

(1) As far as we know, this is the first work that models the matting problem as a spatial pixel

pair combinatorial optimization (S-PPCO) problem. The S-PPCO problem integrates

pixel-level color distortion, pixel-level spatial closeness, and spatial smoothness into op-

timization. The last term significantly improves the performance of the S-PPCO problem

as traditional 1D methods are unintuitive and inefficient to utilize the spatial information.

(2) We introduce a spatial-aware TEIM method to tackle the S-PPCO problem based on tenso-

rial evolutionary optimization. All individuals are stacked into a third-order tensor where

each tensor slice denotes an F or B individual. We devise three tensorial evolutionary op-

erators, in which three types of evolutionary tensors are designed for the evolution based

on pure tensor computations. Thereby, all dimensions of the population are evolved si-

multaneously, which realizes the explicit parallelism and operation efficiency. 

(3) We develop a superpixel-based trimap expansion method, in which a voting strategy

is carefully designed to expand the F/B regions toward U region. The superpixel-based

trimap expansion significantly reduces the number of unknown pixels and brings rela-

tively low alpha errors. 

(4) We compare TEIM with state-of-the-art matting methods. Experimental results demon-

strate the effectiveness and efficiency of TEIM. 

The remainder of the article is outlined as follows: Section 2 reviews the related work. Section 3

ormulates the S-PPCO problem, and Section 4 presents TEIM to tackle the S-PPCO problem. Ex-

eriments are conducted in Section 5 . Finally, conclusions are made in Section 6 . 

 RELATED WORK 

enerally, natural image matting methods are classified into trimap-based and trimap-free meth-

ds. The former adopts a user-defined trimap and input, whereas the latter uses interactive tools

o supply semantic prior information for solving the matting problem [ 11 , 47 ]. As illustrated in

igure 3 , the trimap-based methods can be further subdivided into traditional matting and deep

atting [ 18 , 28 , 29 ]. The trimap-based methods can be more granularly classified into PPCO-based

atting [ 32 , 33 , 37 ], propagation-based matting [ 2 , 7 , 27 ], or hybrids [ 8 ]. A succinct summary of

he key characteristics of these aforementioned methods is provided in Table 1 . Our research en-

eavors are focused on addressing the trimap-based PPCO problem. Under this scope, we further

ategorize PPCO-based models into sampling and heuristic methods. This section meticulously
CM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Fig. 3. Classification of trimap-based matting methods. 

Table 1. Summary of Trimap-based Image Matting Methods 

Category of Methods Characteristic Pros. & Cons. Representatives 

Propagation methods assumption of color 
distribution 

fast speed; only suitable for 
images that conform to the 

color distribution 

[ 2 , 9 , 42 , 52 ] 

Sampling methods different sampling regions 
and sampling techniques 

fast speed; unstable 
sampling quality; fail to 

cover the optimal pixel pair 

[ 13 , 19 , 16 , 23 , 41 ] 

Heuristic methods various heuristic 
algorithms 

no sampling; robust; high 

precision; slow speed 

[ 12 , 31 , 33 , 34 , 52 ] 

Deep Matting methods end-to-end network high precision; lack of data 
to train the network; high 

cost of data generation 

[ 18 , 29 ] 
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eviews and analyzes both types of methods. Afterward, we investigate the evaluation methods

or measuring the quality of F/B solutions, which is also a critical component of PPCO. 

.1 Sampling-based Matting Methods 

ampling-based matting methods aim to select the optimal F/B solution from the F/B search space

sing various sampling strategies [ 13 , 16 , 23 , 40 , 41 , 45 ]. He et al. [ 16 ] selected the best F/B color

airs from the entire boundary of F and B regions. Gastal et al. [ 15 ] collected a subset of F/B

olors for each unknown pixel from several line segments starting from the unknown pixel it-

elf. Shahrian et al. [ 41 ] comprehensively constructed different search spaces for different un-

nown pixels based on the distances between the unknown pixels and the known regions. Karacan

t al. [ 23 ] developed a sparse subset selection approach that performs selection from the mean col-

rs of superpixels. Feng et al. [ 13 ] used sparse encoding to collect a set of representative samples

o avoid missing the underlying F/B color pairs. Chen et al. [ 22 ] utilized edge detection to collect

ore potential pixel pairs from both the edges of objects and boundaries of images. Furthermore,

 hybrid sampling and learning-based matting approach was proposed in Reference [ 43 ] that use

eep neural networks to estimate the colors. 

.2 Heuristic Matting Methods 

n early studies, heuristic optimizers were primarily used to improve the performance of sampling-

ased methods [ 4 , 35 ]. The values of F and B decision variables are obtained from the sampled F

nd B regions of a trimap, respectively. The sampling strategies directly affect the quality of the

lpha matte, since they construct different search spaces. For instance, one of the latest works
ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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eveloped a pixel-level discrete multi-objective sampling method for image matting [ 19 ]. How-

ver, the sampling approach would inevitably result in missing the true F/B colors. Therefore,

ecent heuristic matting methods directly construct the search space from the entire F/B regions

 33 , 34 ]. 

Later, advanced optimizers appeared to solve the PPCO problem without sampling [ 32 , 37 , 49 ].

he approaches are mainly divided into two categories depending on whether a decomposition

trategy is utilized in the optimizer. The earliest study of heuristic matting optimization was intro-

uced in Reference [ 31 , 48 ], where the PSO optimizer was applied, and a variant of PSO, namely,

SO-CSC, was then proposed in Reference [ 35 ]. Cai et al. [ 5 ] developed an optimizer based on the

arthworm optimization algorithm. In Reference [ 33 ], the authors proposed a PSO-ACSC optimizer

o balance the convergence speed. Other optimizers like DE, ACO, and CSO were also adopted

n References [ 4 , 50 ]. The aforementioned methods fall under the non-decomposition category. In

ontrast, for the decomposition-based methods, several cooperative coevolution (CC) optimiz-

rs were developed, where the PPCO problem was decomposed into subproblems by grouping the

nknown pixels. Cai et al. [ 4 ] introduced a CC-DE optimizer where similar pixels in the U region

ere grouped using image segmentation. Besides, Liang et al. [ 34 ] developed a multi-objective op-

imizer based on decomposition and fuzzy multicriteria evaluation that significantly improved the

atting accuracy. The unknown pixels are sampled at regular intervals, with only half of the pixels

olved by the optimizer. Liang et al. [ 49 ] employed an image pyramid structure, where the CSO

ptimizer was employed to solve the topmost layer with a very small-size image. Feng et al. [ 12 ]

tilized RGB-clustering to group unknown pixels and proposed a grouping-based collaborative

warm optimizer (GC-CSO) that only solves representative unknown pixels in each cluster to

fficiently process high-resolution images. Liu et al. [ 37 ] proposed a group optimization algorithm

or image matting that transforms the large-scale PPCO problem into multiple small-scale opti-

ization problems. Liang et al. [ 32 ] proposed to use the optimal pixel pair of the surrogate models

o approximate the optimal pixel pair of PPOP. 

.3 Pixel Pair Evaluation Methods 

ixel pair evaluation metrics are proposed to assess the quality of F/B color pairs for each un-

nown pixel to select the best F/B color, contributing to obtaining a high-quality alpha matte. For

xample, the authors in References [ 9 , 42 ] used a maximum likelihood measure to estimate the F/B

olors of unknown pixels, assuming that image colors follow a certain probability distribution. The

olor distortion objective was initially introduced in Reference [ 45 ], which computes the differ-

nce between the true color of unknown pixels and the estimated color derived from the F/B pixel

airs. Shahrian et al. [ 44 ] argued that relying solely on color features may be inadequate when

mages exhibit very similar color distributions. To address this limitation, they incorporated tex-

ure features into the evaluation procedure to better distinguish pixel pairs. Gastal et al. [ 15 ] also

onsidered both color and texture features within the objective function, extending the evaluation

ranularity from the pixel-level to local regions. Karacan et al. [ 23 ] proposed a local contexture

imilarity metric based on superpixels to enhance pixel pair evaluation. Furthermore, the authors

f Reference [ 34 ] proposed a fuzzy multicriteria evaluation method to quantify the uncertainty of

olor distortion and spatial closeness. More recently, Liang et al. [ 32 ] put forward to utilize sur-

ogate models to approximate the quality of pixel pairs, which greatly enhance the efficiency of

ixel pair evaluation. 

 THE S-PPCO PROBLEM 

he existing heuristic matting methods typically model the matting problem as a PPCO problem,

n which each decision variable stands for the F or B solution of an unknown pixel as shown
CM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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n Equation ( 2 ). However, this pixel-level optimization is suboptimal and inefficient. More impor-

antly, spatial correlations among pixels are often overlooked, especially when nearby pixels share

imilar characteristics. The 1D representation of PPCO hinders the exploitation of spatial informa-

ion, and also leads to operational inefficiency. Hence, we propose extending the PPCO problem to

 Spatial-PPCO problem for leveraging the intrinsic spatial structure of images. In this section, we

rst present the formulation of the S-PPCO problem and then introduce the optimization objective

f S-PPCO based on the spatial-aware representation of F/B solutions. 

.1 Definition of S-PPCO 

he S-PPCO problem is a type of 2D spatial optimization problem that seeks optimal 2D F/B solu-

ions of an image by leveraging the spatial property of the image. The S-PPCO problem represents

ll known pixels based on the inherent 2D representation of images, and optimizes them as a

hole. In this view, we formulate the S-PPCO problem as 

min G(X ) = G(X 

(F ), X 

(B))

= G 

��������
��������

x (F )11 x (F )12 · · · x (F )
1 N 

x (F )21 x (F )22 · · · x (F )
2 N 

. . . 
. . . 

. . . 
. . . 

x (F )
M1 

x (F )
M2 

· · · x (F )
M N 

	





�
, 

��������

x (B)11 x (B)12 · · · x (B)
1 N 

x (B)21 x (B)22 · · · x (B)
2 N 

. . . 
. . . 

. . . 
. . . 

x (B)
M1 

x (B)
M2 

· · · x (B)
M N 

	





�
	





�
, 

(3)

here G(·) denotes the objective function, X 

(F ) takes the form of a 2D matrix containing the fore-

round decision variables for all the unknown pixels, and similarly X 

(B) consists of the background

ecision variables. The search space for X 

(F ) and X 

(B) is determined by the F and B regions in the

rimap, respectively. The subscripts in Equation ( 3 ) indicate the spatial coordinates of image pixels,

nd M × N denotes the size of a trimap. 

In the S-PPCO problem, we gather all the pixels from the F, B, and U region separately, and

tored the information of the three types of pixels in the F, B, and U sets, respectively. The F, B,

nd U sets are defined as 

FS = 
{ 
p (F )1 , p 

(F )
2 , . . . , p 

(F )
N F 

} 
, (4)

BS = 
{ 
p (B)1 , p 

(B)
2 , . . . , p 

(B)
N B 

} 
, (5)

U S = 
{ 
p (U )

1 , p 
(U )
2 , . . . , p 

(U )
N U 

} 
, (6)

here N F , N B , and N U 

count the number of pixels in the F, B, and U regions, respectively. Each

ixel is represented by a 5D vector containing the color feature p (C) and spatial feature p (S ). For

xample, a pixel in the U region is denoted as p (U ) = (p (C,U ), p (S,U ))T . The F and B sets constitute

he search space for the S-PPCO problem where the decision variables in X 

(F ) and the decision

ariables in X 

(B) is in the range of [1 , N F ] and [1 , N B ], respectively. The U set determines the

ecision space where the true F/B decision variables are located. 

.2 Objective of S-PPCO 

ost existing heuristic matting methods evaluate the quality of each F/B color pair based on two

bjectives: color distortion and spatial closeness, both of which are evaluated at the pixel level.

evertheless, the valuable spatial correlation among pixels is barely considered, resulting in low

uality of the estimated alpha mattes and the inefficiency of evaluation. Spatial smoothness is fre-

uently considered in image field for delaminating image noises and promoting spatial continuity
ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Fig. 4. Overall procedures of TEIM. 

o  

n  

(  

t  

f

 

w  

 

t

4

T  

t  

p

 

 

 

 

4

M  

U  

p  

f  

r  

C  

t  

t  

c  

A

f image pixels [ 46 ]. Therefore, we propose a new evaluation metric that integrates three compo-

ents: pixel-level color distortion ( f p c d ), pixel-level spatial closeness ( f psc ), and spatial smoothness

 f s ). The last spatial term computes the total variation loss based on the spatial-aware representa-

ion of the S-PPCO problem to promote the spatial continuity of solutions. The overall objective

unction is defined as 

G(X 

(F ), X 

(B)) = f p c d + β f psc + γ f s , (7)

here β and γ are trade-off parameters to balance different components, and the formulations of

f p c d , f psc , and f s will be detailed in the next section. The aim of S-PPCO is to minimize G(·) to find

he optimal alpha matte. 

 TENSORIAL EVOLUTIONARY IMAGE MATTING 

his article proposes a novel spatial-aware tensorial evolutionary image matting algorithm TEIM

o solve the S-PPCO problem by tensorial evolutionary optimization (TEO) . The overall

ipeline of TEIM is illustrated in Figure 4 , which consists of five major modules: 

—Feature Representation: represent each pixel by a 5D feature vector consists of the color

and spatial information. The 5D feature vector is defined as p = (p (C), p (S ))T where the p (C)

stands for the RGB values and p (S ) denotes the spatial coordinates. 

—Trimap Refinement: refine the original trimap based on superpixels, which narrows the

decision space (see Section 4.1 ). 

—Patch Extraction: divide the refined trimap into equal-sized trimap patches to decompose

the decision space (see Section 4.2 ). 

—TEO Iteration: optimize the trimap patches, and output the resultant alpha patches (see

Section 4.3 ). 

—Patch Connection: enforce the edge connectivity among alpha patches (see Section 4.4 ). 

.1 Trimap Refinement 

ost existing matting methods include a pre-processing step to expand the F/B regions toward

 region according to the color similarity, which would directly reduce the number of unknown

ixels. However, this method requires a pre-defined threshold of the color similarity that may

ail when the color distinction of foreground and background is vague. This way, the expanded

egion generates wrong F/B labels, resulting in unexpected errors in the alpha mattes directly.

onsidering the characteristics of the image alpha channel, typically only the boundaries of the

rue F and B regions would undergo significant changes within the open interval α ∈ (0 , 1 ), where

he main difficulty of the matting problem lies. Meanwhile, the majority of the F or B regions

orrespond to determined alpha values of 1 or 0. Image superpixels provide an effective way to
CM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Fig. 5. Illustration of superpixel-based trimap expansion, where the green lines represent the boundaries of 

superpixels. (a) SLIC segmentation of an image, (b) superpixels on the trimap, (c) the refined trimap. 
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dentify the boundaries of F/B regions. Therefore, we develop a superpixel-based trimap expan-

ion method that effectively reduces the number of decision variables. It facilitates the subse-

uent matting optimizer to locate the real difficulty of the problem and reduce the computational

ost. 

To generate the superpixel-refined trimap, we first obtain the superpixels using an efficient SLIC

egmentation method [ 1 ], and the segmentation results are stored in a label matrix L. Then, we

xpand the known F/B regions based on a voting strategy within each superpixel. Specifically, if

n unknown pixel is not located on the boundary of the superpixel, it is directly assigned with an

 or B label based on the label information of its neighbors. The voting strategy is implemented as

ollows: 

(1) Collect the superpixel labels and F/B labels of neighboring pixels: The superpixel

labels determine whether the unknown pixel would be assigned with a label, while the

F/B labels determine whether the assigned label is F or B. Specifically, for an unknown

pixel k , there are eight neighboring pixels located in a 3 × 3 neighborhood. The overall

superpixel labels, L1 all 
k 
= {L1 

(1 )
k 
, L1 

(2 )
k 
, . . . , L1 

(8 )
k 
}, are collected from the label matrix L by

shifting a 3 × 3 matrix one unit along all the eight directions. Similarly, the F/B labels of

these neighboring pixels are collected from the original trimap. The overall F/B labels are

defined as L2 all 
k 
= {L2 

(1 )
k 
, L2 

(2 )
k 
, . . . , L2 

(8 )
k 
}. 

(2) Assign F/B label to the unknown pixel: If the neighboring labels in L1 all 
k 

are not con-

sistent, then the k th pixel locates on the boundary of a superpixel, and the label remains

unknown. Otherwise, the k th pixel belongs to the inner region of a superpixel, and will be

assigned with a label according to L2 all 
k 

. In this case, if all the neighboring labels in L2 all 
k 

are F or B, the k th pixel is directly assigned with the F (set α = 1 ) or B label (set α = 0 ),
respectively. 

Figure 5 illustrates an example of superpixel-based trimap expansion. As shown in Figure 5 (b),

he boundaries of superpixels go through the U region. The expansion starts from the edge of the

/U region or the B/U region, and gradually moves toward the superpixel boundaries. Note that

lthough the boundaries of superpixels may be inaccurate in some cases (see the blue square in

igure 5 (a)), the above superpixel-based trimap expansion would skip inaccurate regions where the

nknown pixels remain unknown. In this way, the refined trimap directly narrows the U region

o reduce the decision space and expands the F/B regions to enlarge the search space. 

.2 Patch Extraction 

hen, we divide the refined trimap into multiple patches to decompose the S-PPCO problem. Only

he patches containing unknown pixels need to be further considered. In addition, each trimap

atch can be optimized in parallel to improve efficiency. In this view, patch extraction is a useful

ool to alleviate the burden of subsequent searching and effectively speed up problem-solving. Note
ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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hat we also introduce a patch connection procedure in TEIM, detailed in Section 4.4 , to mitigate

he side effects resulting from the dividing-and-conquering of the patches. 

After patch extraction, the S-PPCO problem is divided into several subproblems. Each subprob-

em is still a S-PPCO problem that handles only one trimap patch. The search spaces for each sub-

roblem remain the same as the whole S-PPCO problem, as defined in Equations ( 4 ) and ( 5 ). The

ecision space is decomposed depending on the U region of a trimap patch, and each subproblem

as a different number of decision variables. The U set for the pid th patch ( pid ∈ [1 , N p atc h ] where

 p atc h is the total number of unknown patches) is defined as U S pid = {p 1 , p 2 , . . . , p N u 
} where N u 

ounts the number of unknown pixels in the current patch. In this setting, the choice of patch size

s an important issue to be considered. If the patch size is too small, then the local spatiality of the

mage might be destroyed by patch division. Contrarily, if the patch size is too large, then it would

e more easily to be trapped into local optimal within the feasible time. Further analysis on the

ffect of patch size would be discussed in Section 5 . 

.3 TEO Iteration 

he entire procedure of the spatial-aware tensorial evolutionary optimizer is illustrated in Figure 4 .

he input for TEO is a trimap patch. The TEO iteration contains three main components: the ini-

ialization component that generates the initial population, the evaluation component that mea-

ures the quality of pairs of F/B individuals, the update component that contains three tensorial

volutionary operators for breeding new generations. The three components are elaborated in this

ection. 

4.3.1 Initialization. Existing 1D matting methods represent F/B solutions by a long vector with

he dimensionality of 2 × N U 

, where odd positions stand for x (F )
k 

and even positions are for x (B)
k 

ith k ∈ [1 , N U 

], x (F )
k 

∈ [1 , N F ], and x (B)
k 

∈ [1 , N B ]. Differently in TEIM, each candidate solution

or the trimap patches is represented by a pair of 2D individuals, and hence the spatial structure

f images is preserved inherently. The individuals are classified into F or B individuals, since they

ave different search spaces. The F/B individuals are formulated as 

X 

(F ) = 
�����
x (F )11 · · · x (F )1 n 
. . . 

. . . 
. . . 

x (F )m1 · · · x (F )mn 

	


� , X 

(B) = 
�����
x (B)11 · · · x (B)1 n 
. . . 

. . . 
. . . 

x (B)m1 · · · x (B)mn 

	


� , (8)

here x (F )i j ∈ [1 , N F ], x (B)i j ∈ [1 , N B ], and m × n is the size of the trimap patch. The sizes of F/B

ndividuals are consistent with the patch size. 

The whole population is stacked into a 3D tensor pop ∈ R 

m ×n ×N P , where N P is the population

ize. As shown in Figure 4 (4), the F/B individuals in the population are distinguished by red and

reen. Each frontal slice of the population tensor stands for an F or B individual, which is defined

s 

p op (: , : , t) = 
{ 

X 

(F )
t , i f t i s od d , 

X 

(B)
t , i f t i s e ve n, 

(9)

here t ∈ [1 , N P] denotes the t th individual in the population. However, the initialization of pop-

lation is not done at this stage. The problem is that not all pixels in the patch need to be solved.

f a pixel locates at position (i, j) belongs to F or B region, then the true alpha solution is already

nown. Therefore, we propose to utilize this information. For an F individual X 

(F )
t , if (i, j) belongs

o F region, x (F )i j is determined by Equation ( 1 ), since the true color is directly determined by the
CM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Fig. 6. Mode -1 crossover (The starting point sp = 3 and the length parameter sl = 2 ). The mode -1 crossover 

tensor determines the exchange of mode -1 fibers. For clarity, we use different colors to track how the fibers 

are swapped. The F and B individuals are marked by red and green lines. 
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oreground value with α = 1 . Similarly, for the B individual, if (i, j) is located in B region, x (B)i j is

lso known, since the true color is uniquely determined by the background value with α = 0 . 

4.3.2 Update. The update process consists of three tensorial evolutionary operators: T-product

rossover, local convolutional mutation, and global Gaussian mutation. 

T-product crossover: The crossover operator recombines different individuals to generate the

ffspring. Given the crossover probability P tpc , a percentage of P tpc individuals from population

s collected and superposed to a crossover population tensor through an indexing operation. The

rossover population is denoted as pop tpc ∈ R 

m ×n ×N P c where N P c = N P × P tpc . The crossover

perator is implemented as 

p op tpc = 

{ 

p op tpc ∗ T tp c 1 , i f θ ≤ 0 . 5 , 

T tp c 2 ∗ p op tpc , i f θ > 0 . 5 , 
(10)

here T tp c 1 ∈ R 

n ×n ×N P c and T tp c 2 ∈ R 

m ×m ×N P c denote the mode -1 crossover tensor and mode -2

rossover tensor, respectively. The random θ ∈ [0 , 1 ] controls the selection of mode -1 or mode -2

rossovers on the population. The mode -1 crossover tensor is defined as 

T tp c 1 (i , i ) = 
{ 

0 , f or i = 〈 sp 〉 n , . . . , 〈 s p + s l 〉 n , 
1 , f or all other i ∈ [1 , n], 

(11)

here t ∈ [1 , N P c ] represents the t th frontal slice, 〈·〉 n is a modular function over n. Similarly,

he mode -2 crossover tensor is defined as 

T tp c 2 (i , i ) = 
{ 

0 , f or i = 〈 sp 〉 m 

, . . . , 〈 s p + s l 〉 m 

, 

1 , f or all other i ∈ [1 , m], 
(12)

here 〈·〉 m 

is a modular function over m. Figure 6 presents an example of the mode-1 crossover.

he crossover operation imitates the interaction between any two of the individuals, and two slices

f the crossover tensor are required to manipulate the interaction. Note that the F/B individuals

re superposed in an alternating order. Since the interaction only occurs among the same type of

ndividuals, the corresponding two slices of the crossover tensors are separated one slice unit apart,

or example t = 1 and 3 in Figure 6 . The two slices must satisfy the condition that T (t= 1 )tp c 1 (i , i ) +
T (t= 3 )tp c 2 (i , i ) = 1 ( t = 2 and 4 also works and generates the same result). 

Local convolutional mutation: The local mutation performs the t-product-based convolution

o mutate each gene based on the topology of individuals. Given a mutation probability P lcm 

,

 number of F/B individuals are selected from the population tensor. Similarly to the crossover
ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Fig. 7. Local mutation. The intermediate states of the local mutant population are marked by dashed lines. 

The three local mutant tensors are marked by different colors for distinction. The F and B individuals are 

marked by red and green lines. 
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perator, these individuals are stacked into a local mutant population tensor denoted as pop lcm 

∈
 

m ×n ×N P m , where N P m 

= N P × P lcm 

. The local mutation operator is then implemented 

pop lcm 

= u np ad d i nд(shi f t 1 (T lcm1 ∗ pop lcm 1 
))

+ u np ad d inд(T lcm2 ∗ pop lcm 1 
)

+ u np ad d i nд(shi f t 2 (T lcm3 ∗ pop lcm 1 
)), (13)

here p op lcm1 = p ad d inд(pop lcm 

), and T lcm1 , T lcm2 , T lcm3 ∈ R 

(m +pad )×(m +pad )×N P m denote the

hree local mutant tensors. The shi f t 1 operation horizontally rotates all the genes one unit to

he right, while the shi f t 2 operation rotates all the genes one unit to the left. Figure 7 illustrates

he overall procedures of the local mutation. First, the local mutant population goes through

 padding operation to facilitate the subsequent handling of genes located on the boundaries.

hen, a t-product of the three local mutant tensors and the population is performed to obtain the

ffspring. 

The local mutant tensors store the sampling locations and corresponding weights of a linear

ernel. Only one slice is required to store the weights, since genes are mutated on the F or B

ndividual itself. The local mutant tensor is defined as 

T (t )
lcm 

(i, i − 1 : i + 1 ) = K(: , j), (14)

here i = 2 , . . . , (m + pad − 1 ), j ∈ [1 , n k ], and t ∈ [1 , N P m 

] represents the t th frontal slice. As

hown in Figure 8 , the value of j equals to 1, 2, and 3 for the local mutant tensors T lcm1 , T lcm2 ,

nd T lcm3 , respectively. 

Global Gaussian mutation: The Gaussian distribution is performed on the population to im-

rove the global exploration ability of TEO. It is implemented by the addition of the global mutant

ensor and the population under a given probability P д д m 

. The global mutation is defined as 

p op = p op + T д д m 

, (15)

here T д д m 

is the global mutant tensor with the same size of the population. The global mutant

ensor stores the information of locations and the degree of Gaussian distribution for the mutated

enes. It is formulated as 

T д д m 

= I 
(
R (0 , 1 ) < P д д m 

)
× (G (0 , 0 . 1 ) × (ub − lb )) , (16)
CM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Fig. 8. Structure of local mutant tensors. The weights are distributed on the three local mutant tensors, 

marked by green, red, and blue, respectively. 
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here I is an indicator function, R(0 , 1 ) generates a random tensor in [0 , 1 ] with the same size

f the population, and G(0 , 0 . 1 ) generate a random Gaussian tensor with 0 mean and 0.1 standard

eviation. The lb is set to one for both F/B individuals, while ub = N F for F individuals and ub = N B

or B individuals. 

4.3.3 Patch Evaluation. Each pair of F/B individuals is evaluated using Equation ( 7 ). However,

he X 

(F ) and X 

(B) are adjusted to the candidate F/B solutions for a trimap patch. Consequently, the

rst two evaluation terms of f p c d and f psc only consider the unknown pixels within one trimap

atch, while the last spatial term f s is also restricted to the range of a trimap patch. Here f s is

e-defined as f wps that evaluates the within-patch smoothness by computing the total variation

oss to promote the spatial consistency within an alpha patch. The three terms f p c d , f psc , and f wps 

n patch evaluation are formulated as 

f p c d (X 

(F ), X 

(B)) = 
∑

p (C,U )
i j − ˆ p (C)

x 
(F )
i j ,x 

(B)
i j 

, (17)

f psc (X 

(F ), X 

(B)) = 
| | p (S,U )

i j − p (S,F )
x 
(F )
i j 

| | 

min (a , b) | | p (S,U )
i j − p (S,F )

ab 
| | 
+

| | p (S,U )
i j − p (S,B)

x 
(B)
i j 

| | 

min (a , b) | | p (S,U )
i j − p (S,B)

ab 
| | 
, (18)

f wps (X 

(F ), X 

(B)) = 
∑

ˆ p (C)
i(j+1 ) − ˆ p (C)

i j 

m × n 

+

∑
ˆ p (C)
(i+1 )j − ˆ p (C)

i j 

m × n 

, (19)

here i, a ∈ [1 , m], j, b ∈ [1 , n], and 

ˆ p (C) is the estimated RGB color computed by Equation ( 1 ) using

he F/B solution (x (F )i j , x 
(B)
i j ) and the estimated alpha value. 

After evaluation, individuals are selected with probabilities proportional to their objective val-

es, to form the new generation. During each TEO iteration, the population undergoes the afore-

entioned update and selection procedures iteratively until the maximum evaluation number is

eached. Ultimately, the alpha matte is derived from the optimal F/B individual for the correspond-

ng trimap patch. 

.4 Patch Connection 

n this module, all alpha patches are connected to obtain the final alpha matte with the primary

ocus on edge smoothness. Since TEO optimizes trimap patches independently, only within-patch

moothness is considered during patch optimization. Therefore, the smoothness across patches is
ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Fig. 9. Patch connection. The boundary pixels (marked by red) are refined by its eight neighbors (marked 

by blue) located in 3 × 3 regions. 
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aken into account to further refine boundaries between adjacent patches. Based on the connectiv-

ty among adjacent patches, the optimal F/B pair for each boundary pixel is refined by considering

ll F/B solutions from its neighbors, as depicted in Figure 9 , and selecting the best one. 

.5 GPU Parallelism of TEIM 

raditional evolutionary algorithms typically represent an individual as a 1D vector, and a pop-

lation consists of a set of 1D vectors. The offspring are generated individual by individual until

he population size is reached. Moreover, the decision variables are also executed dimension by

imension, making it difficult to adjust the conventional evolutionary operators into fast multidi-

ensional data operations for GPU parallel acceleration [ 14 , 51 ]. 

In contrast, the TEO iteration in TEIM achieves explicit individual-level and dimensional-level

arallelism. It defines the entire population as a third-order tensor rather than 2D individuals.

he mode -1 and mode -2 directions of the population tensor represent the dimensions of an indi-

idual, and the mode -3 direction represents different F/B individuals. This structure is natural for

ultidimensional data operations and parallel implementation. The individuals participating in

he crossover and mutation operators are packed into an evolutionary population tensor. Thereby,

ll individuals and all dimensions of individuals execute simultaneously in each generation owing

o the parallel routine of tensor operations. 

.6 Complexity Analysis 

he pseudocode of TEIM is outlined in Algorithm 1 . Given the image of size T , the complexity

f superpixel segmentation and trimap expansion is O(T ) according to Reference [ 30 ]. The com-

lexity of fitness evaluation is O(ps ize ) where ps ize indicates the size of patches. The construc-

ion of the crossover, local mutation, and global mutation tensors are all bit-wise operations, and

ence the costs are O (psize × N P c ), O (psize × N P m 

), and O (psize × N P), respectively. The over-

ll complexity for generating these evolutionary tensors can be written as O(psize × N P), since

 P c = N P × P tpc where P tpc < 1 and N P m 

= N P × P lcm 

where P lcm 

< 1 . The core operations of

EO are the t-product and addition calculations. According to Reference [ 24 ], the crossover oper-

tor is at most the crossover operator is at most O(p size ×
√ 

p size × N P c ) complex, and the local

utation operator is at most O(p size ×
√ 

p size × N P m 

) complex on the corresponding populations

f pop tpc and pop lcm 

. The global mutation operator performs bitwise addition, and hence the com-

lexity is O(psize × N P). The overall complexity of the TEIM is at most O(T + ps ize 3 /2 × N P). 

 EXPERIMENTS 

n this section, we conduct experiments to validate the effectiveness of TEIM. We first introduce

he experimental settings. Afterward, we compare TEIM with state-of-the-art heuristic matting

ethods and several representative non-heuristic matting methods separately. Finally, we also

rovide discussions to enhance the understanding of TEMI. 
CM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Algorithm 1 : TEIM 

1: /* Initialization */ 

2: SLIC segmentation: label matrix L; 

3: Expand the original trimap: T ri; 
4: Extract trimap patches from T ri: patch 1 , 2 , . . . , N p atc h ; 

5: Initialize the search space: FS , BS ; 

6: For pid = 1 : N p atc h 

7: /* TEO for One Patch */ 

8: Initialize the decision space for the pid th patch: U S pid ; 

9: Initialize the population within the search range: p op ; 
10: repeat /* Main Loop */ 

11: Evaluate each pair of F/B individuals by Equation ( 7 ); 

12: Generate crossover tensors by Equations ( 11 ) and ( 12 ), and perform crossover by Equation ( 10 ); 

13: Generate local mutant tensors by Equation ( 14 ), and perform mutation by Equation ( 13 ); 

14: Generate global mutant tensor by Equation ( 16 ), and perform mutation by Equation ( 15 ); 

15: until maximum evaluations is reached; 

16: End 

17: Connect all the alpha patches and post-process the final alpha matte; 

18: return The alpha matte. 
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.1 Experimental Setup 

Dataset: The experiments are conducted on a popular benchmark image matting dataset [ 39 ]

ncluding two image sets, denoted as IS 1 and IS 2 . The IS 1 consists of 27 images groups where each

mage group constitutes the original color image and their corresponding trimaps with different

 regions. The IS 1 has two types of trimaps with small and large U regions, and the ground truth

lpha mattes of 27 images are available for evaluation. While the IS 2 has 8 images groups that

ontain three types of trimaps with small, large, and user-defined U regions. The estimated alpha

attes of images in IS 2 are evaluated online 1 to compare with other methods. 

Competing methods: 

—Heuristic matting methods include PSO [ 31 ], PSO-CSC [ 35 ], PSO-ACSC [ 33 ], CSO [ 12 ],

CC 1 -PSO [ 12 ], CC-DE [ 4 ], GC-CSO [ 12 ], PM [ 49 ], MOEA [ 34 ], IMTO-ACO [ 50 ], and

TEA [ 25 ]. 

—Non-heuristic matting methods include CWCT [ 40 ], SCM [ 21 ], KLSM [ 23 ], SC-CSM [ 13 ],

GSM [ 22 ], PBM [ 6 ], TSM [ 8 ], ATPM [ 52 ], GCA [ 29 ], and LA2U [ 10 ]. 

The parameters of all competing methods are set as recommended in the original paper. The

aximum number of fitness evaluations in our TEIM method is set to 5000, and the probabilities of

rossover, local mutation, and global mutation are set as the same in Reference [ 25 ]. Three widely

sed measures, including sum of absolute differences (SAD) , mean squared error (MSE) ,

nd gradient error (GE) [ 39 ], are employed to evaluate the quality of alpha mattes produced by

ifferent matting methods. All experiments are conducted ten times independently and the average

esults are recorded. 

.2 Performance Comparison 

e compare our TEIM with all competing methods in this section, where both numerical and

isual comparisons are presented. 
 http://w w w.alphamatting.com/ 
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Table 2. Results of Alpha Mattes Obtained by Different Matting Methods Using Image Set IS 1 

Method 

SAD MSE GE 

Overall Small Large Overall Small Large Overall Small Large 

PSO 27.0526 22.3221 31.7831 0.0365 0.0297 0.0433 20.2073 15.8862 24.5284 

PSO-CSC 26.1570 21.5487 30.7653 0.0348 0.0282 0.0413 19.6515 15.4307 23.8722 

PSO-ACSC 26.7035 22.0137 31.3934 0.0357 0.0290 0.0424 19.9493 15.6467 24.2519 

CSO 11.6948 9.5357 13.8539 0.0145 0.0112 0.0177 7.0144 5.1362 8.8926 

CC 1 -PSO 11.7742 9.6105 13.9379 0.0146 0.0113 0.0179 7.0213 5.1438 8.8989 

CC-DE 11.2738 9.0204 13.5272 0.0116 0.0088 0.0144 6.0628 4.2296 7.8961 

GC-CSO 11.6342 9.4981 13.7702 0.0143 0.0111 0.0176 6.9081 5.0508 8.7654 

PM 10.4410 8.4742 12.4079 0.0087 0.0067 0.0106 5.6895 4.1052 7.2737 

MOEA 8.9538 6.9293 10.9783 0.0065 0.0045 0.0084 4.3236 2.8020 5.8452 

IMTO-ACO 7.9836 5.9748 9.9924 0.0060 0.0041 0.0078 3.8517 2.3338 5.3697 

TEA 9.2194 7.3913 11.0475 0.0069 0.0052 0.0086 4.6937 3.0234 6.3640 

TEIM (ours) 6.9984 5.0929 8.9040 0.0054 0.0034 0.0074 3.4883 1.9941 4.9825 
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5.2.1 Numerical Comparison. In the first experiment, we compare TEIM with the 11 heuristic

atting methods using image set IS 1 . The average SAD, MSE, and GE values over all images in IS 1
sing both small and large trimaps are provided in Table 2 , and the overall evaluation of the three

easures is also computed. The detailed results of all the 27 images are also provided in the Sup-

lemental_Material . We find that PSO, PSO-CSC, and PSO-ACSC exhibit the worst performance.

eanwhile, CC-DE, CC 1 -PSO, and GC-CSO achieve similar moderate performance. Besides, we

ave two important observations. First, methods that have an expanded search space, such as CSO,

C-CSO, and IMTO-ACO, tend to outperform those that rely on the original trimap. More possible

/B colors enrich the search space. Second, methods that reconstruct the decision space tend to

erform better than those with the original decision space. Nearby pixels in an image tend to have

imilar properties, and using different decision space construction methods such as grouping in

M and MOEA greatly improve the matting performance by better incorporating these properties.

verall, TEIM achieves the best results on all image cases, because it further enhances the quality

f alpha mattes with the carefully designed TEO procedure. Furthermore, Figure 10 showcases

ox-plot diagrams that vividly depict the distribution of SAD values across all images in IS 1 . The

esults underscore the consistent trend of TEIM outperforming other competing methods, as it

onsistently delivers lower SAD values across almost all cases. Most significantly, it further sub-

tantiates the superior stability of TEIM as the interquartile range is much smaller compared to

ther competitors. 

In the second experiment, the TEIM is compared with the other ten non-heuristic matting

ethods using IS 2 . Since the resultant alpha mattes of these ten methods have been provided

nline, 1 and all the competing methods have already ranked based on SAD, MSE, and GE.

herefore, the alpha mattes obtained by TEIM are uploaded for online ranking. Note that to

nable a fair comparison, we equip the TEIM tested on IS 2 with a postprocessing process [ 15 ],

hich is employed in the competing methods and further enhances the quality of alpha mattes.

he average rankings of alpha mattes over all images in IS 2 obtained by different methods are

abulated in Table 3 . Moreover, an overall ranking of the three measures using three types of

rimaps is also provided. The detailed results of all images in IS 2 are provided in the Supple-

ental_Material . In terms of SAD ranking, TEIM scores 2.250, 1.875, and 2.375 on the small,

arge, and user trimaps, respectively. Among all competing methods, TEIM ranks the second

n both the small and large trimaps and ranks the first on the user-defined trimaps. For the
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Fig. 10. Comparison of different image matting methods regarding SAD on the IS 1 dataset. 

Table 3. Average Rankings of Different Matting Methods on SAD, MSE, and GE Using Image Set IS 2 

Method SAD MSE GE 

Overall Small Large User Overall Small Large User Overall Small Large User 

CWCT 7.167 7.125 7.250 7.125 3.458 3.000 3.875 3.500 3.708 3.250 4.375 3.500 

SCM 6.875 5.125 7.375 8.125 2.917 2.000 3.375 3.375 3.375 3.250 3.250 3.625 

KLSM 6.667 5.750 7.125 7.125 3.167 2.500 3.250 3.750 4.083 4.000 4.000 4.250 

SC-CSM 6.583 6.250 6.875 6.625 3.333 2.750 3.750 3.500 3.792 3.375 3.875 4.125 

GSM 6.167 6.875 5.125 6.500 3.375 3.125 3.375 3.625 4.208 4.375 3.500 4.750 

PBM 7.500 8.250 7.500 6.750 3.708 3.250 4.375 3.500 3.458 3.500 3.875 3.000 

TSM 5.708 5.375 6.125 5.625 2.500 1.875 2.750 2.875 3.750 3.750 4.000 3.500 

ATPM 5.542 6.250 6.000 4.375 2.750 2.750 3.375 2.125 4.000 4.250 4.500 3.250 

GCA 2.542 2.875 2.250 2.500 1.542 1.250 1.500 1.875 1.667 1.750 1.625 1.625 

LA2U 2.167 1.625 1.750 3.125 1.500 1.125 1.250 2.125 1.458 1.250 1.250 1.875 

TEIM (ours) 2.167 2.250 1.875 2.375 1.458 1.250 1.625 1.500 1.500 1.250 1.625 1.625 

The best results are in bold, the second-best are underlined. 

M  

a  

I  

m

SE measure, our TEIM also ranks the first, while the performance of LA2U and GCA is also

ppealing. In GE evaluation, TEIM achieves the second best overall ranking among all methods.

n sum, our TEIM obtains highly competitive results over the other non-heuristic matting

ethods. 
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Fig. 11. Results of Alpha Mattes. For each image case, the first row is the alpha mattes obtained by different 

methods, and the second row is the zoomed-in region marked by green. From left to right: original image, 

ground-truth, PSO, PSO-CSC, PSO-ACSC, CSO, CC 1 -PSO, CC-DE, GC-CSO, PM, MOEA, IMTO-ACO, TEA, 

and our TEIM. 

Fig. 12. Results of Alpha Mattes. For each image case, the first row is the alpha mattes obtained by different 

methods, and the second row is the zoomed-in region marked by green. From left to right: CWCT, SCM, 

KLSM, SC-CSM, GSM, PBM, TSM, ATPM, GCA, LA2U, and our TEIM. 
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5.2.2 Visual Comparison. Figure 11 presents a visual comparison of the 11 heuristic matting

ethods on five typical images in IS 1 , and Figure 12 shows the alpha mattes of four representative

mages in IS 2 produced by the other 10 non-heuristic matting methods. From the results, we

bserve that the alpha mattes produced by our TEIM method are more precise and clearer

han other methods. TEIM has less noise than the others, especially near the boundaries of the

oreground objects. 

.3 Further Investigation and Discussion 

5.3.1 Runtime Analysis. To verify the efficiency of tensorial evolutionary computations in

EIM, we compare the empirical runtime of different heuristic optimizers. We fix the population

ize and the maximal evaluation time for all competing algorithms to ensure a fair comparison.

he results are presented in Figure 13 , which depicts the average runtimes (in seconds) over all
CM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 7, Article 194. Publication date: March 2024. 
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Fig. 13. Time costs (in seconds) of different heuristic matting methods. 
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mages using two types of trimaps. Notice that the IMTO-ACO is excluded from comparison, since

he heuristic optimizer is not used for pixel pair optimization. The MOEA that requires performing

ultiobjective optimization on each pixel is not shown, since it takes running times far more than

he others (over 30,000 s) due to the huge number of unknown pixels. 

Among the four methods PSO, CSO, PSO-CSC, and PSO-ACSC, CSO is the most competitive

ver the other three methods. The PSO-CSC and PSO-ACSC adopt different convergence con-

rollers based on PSO optimization. The performance of CC-DE, CC 1 -PSO, and GC-CSO with dif-

erent grouping strategies vary significantly due to the imbalanced distribution of pixel groups.

he problem is that some groups may contain only a few pixels, while others may contain thou-

ands of pixels, leading to disparities in running times. The PM uses the image pyramid to reduce

he number of unknown pixels to be optimized while the extra pyramid construction and pixel

ropagation times are added compared to other methods. The TEA is more time-consuming than

EIM, since its operators are burdened with intensive tensor operations. Overall, our TEIM method

hows the lowest empirical runtime, benefiting from the natural tensorial representation and ex-

licit parallel implementation based on tensor operations. 

5.3.2 Ablation Study. To gain a comprehensive understanding of the various modules within

EIM, we conducted ablation studies to further validate the effectiveness of our approach. In

his experiment, we incrementally add different modules of TEIM one by one: superpixel-based

rimap expansion (STE) , patch extraction (PE) , within-patch smoothness loss ( f wps ) as defined

n Equation ( 7 ), and patch connection (PC) , to assess the individual contributions of each module

o the overall performance of TEIM. The ablation results shown in Table 4 validate the effectiveness

f different modules in TEIM. Specifically, the STE module facilitates the subsequent optimization

y reducing the number of decision variables, and we have also noted that the U region of trimaps

s narrowed by around 20% to 50%. When the PE module is added, both SAD and MSE would ex-

erience a significant growth. Moreover, the PE procedure would also accelerate TEIM. The f wps 

omponent in the objective evaluation aims to improve the color smoothness within the alpha

atches, While the PC module is to refine the connecting boundaries of adjacent alpha patches.

oth the f wps and the PC module contribute to obtaining a higher-quality alpha matte. 
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Table 4. Ablation Results of TEIM with Different Variants Using Small, Large, and User 

Trimaps in IS 2 

Variation 

Small Large User 

SAD MSE SAD MSE SAD MSE 

STE 10.26 0.58 12.43 0.71 12.19 0.70 

STE+PE 9.20 0.49 10.34 0.56 10.54 0.55 

STE+PE+ f wps 8.39 0.40 9.51 0.48 9.74 0.58 

STE+PE+ f wps +PC 7.62 0.39 8.95 0.45 9.53 0.49 

Table 5. Results of TEIM with Different Configurations of Patch Size on Five Image Cases 

TEIM 8 ×8 TEIM 16 ×16 TEIM 32 ×32 TEIM 64 ×64 TEIM 128 ×128 TEIM tr i 

GT02 

N p atc h 1391 500 210 88 25 1 

Runtime 2.55 3.45 7.54 36.97 56.29 87.69 

MSE 54.4 54.6 56.7 57.7 56.9 64.9 

GT04 

N p atc h 3659 974 290 96 42 1 

Runtime 2.73 3.96 7.71 38.85 60.61 103.94 

MSE 278.1 277.7 277.1 276.0 282.3 302.5 

GT07 

N p atc h 979 317 111 54 26 1 

Runtime 2.21 3.25 7.89 28.13 51.52 96.21 

MSE 26.6 25.5 26.4 25.5 27.3 32.9 

GT13 

N p atc h 2881 868 274 91 37 1 

Runtime 2.69 3.87 7.24 30.91 61.48 106.08 

MSE 187.6 171.0 177.2 180.2 186.7 201.8 
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5.3.3 Influence of Patch Size. The patch size is an important factor regarding both the effective-

ess and efficiency of TEIM, which directly determines the number of patches to be optimized and

he range of decision space. Therefore, we analyze the influence of patch size ( ps ize ) in this sec-

ion. The TEIM is set with different configurations of ps ize for comparison: TEIM 8 ×8 , TEIM 16 ×16 ,

EIM 32 ×32 , TEIM 64 ×64 , TEIM 128 ×128 , TEIM tr i , where TEIM tr i is a special case with only one patch.

e report three major factors associated with different ps ize : the number of patches ( N p atc h ) for

 given trimap, the average runtime for the tensorial evolutionary optimizer to handle one patch,

nd the MSE value of the resulting alpha matte. The influence of ps ize is reported in Table 5 .

n terms of runtime, it would experience a growth as the patch size increases. A larger patch

eans the increasing evolution time during generations, since the time complexity of TEIM is

roportional to the individual size (i.e., ps ize ), as discussed in Section 4.6 . Regarding MSE, it is

bserved that for relatively small patch sizes (less than 16 × 16 ), the MSE values tend to degrade

s the patch size increases. However, when the patch size becomes much larger, the MSE val-

es start to increase. Several reasons can be attributed to these observations. On the one hand,

hen the patch size is too small, the local optimality of the image would be significantly affected,

ince its local spatiality is destroyed by the patch division. Even with the post-processing patch

onnection in TEIM, it still becomes challenging to compensate for the loss of global optimal

erformance. On the other hand, using a larger trimap patch or even the entire trimap directly

nlarges the decision space. It might increase the probability of finding a suboptimal solution

ithin a feasible time. Taking all factors into consideration, a patch size of 16 × 16 is chosen in the

xperiment. 
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5.3.4 Limitation and Future Directions. The proposed TEIM has demonstrated promising per-

ormance for solving the PPCO-based image matting problem. However, it still faces several lim-

tations. First, the inherent nature of PPCO-based methods formulates image matting as a color

roblem, seeking different linear combinations of foreground and background colors. This reliance

n color features is highly effective for images with distinct color contrasts. However, TEIM be-

omes sensitive and struggles to produce accurate alpha mattes when dealing with images where

he foreground and background colors are ambiguous or overlapping. Second, similar to other

PCO-based methods, TEIM heavily relies on the known regions provided by the trimap. When

he known region in the trimap is small or even missing, there may not be enough color infor-

ation to synthesize the color of pixels in the unknown region. These properties hinder TEIM

rom handling more complex images. Recently, deep matting is anticipated to offer solutions in

he mentioned scenarios, and combining heuristic and deep matting techniques holds promise for

urther improving matting performance. 

Furthermore, current research in image matting primarily concentrates on improving matting

uality for various color images but often overlooks the impact of varying trimaps. At present,

rimap annotation predominantly relies on manual user input and reducing the burden of user

abeling is a critical research direction. However, existing automatic trimap annotation methods

ay occasionally lead to a reduction or loss of valuable information within the trimap. Therefore,

 major future trend in natural image matting is to enhance the robustness of matting algorithms

o adapt to different trimaps and ensure high-quality matte even when provided with very lim-

ted known information. This encompasses not only improving the methods themselves regarding

obustness to more natural and complex environments but also developing more reliable and au-

omated ways to generate trimaps that capture the essence of the image. 

 CONCLUSION 

e designed a spatial-aware tensorial evolutionary image matting method, TEIM, to produce high-

uality alpha mattes of images. To take full advantage of the spatial structure of images, we pro-

ose to formulate the image matting problem as a spatial combinatorial optimization problem and

evelop a novel tensorial evolutionary optimizer based on tensorial evolutionary optimization

o solve the problem. Specifically, the candidate solutions for foreground and background colors

re represented by tensor slices, while the entire population naturally forms a third-order tensor.

ased on this spatial representation, we develop several tensorial evolutionary operators for breed-

ng offspring under the full consideration of local spatiality, and all operators are computationally

fficient with a natural parallel design and implementations. Experimental results validate the ef-

ectiveness of TEIM for natural image matting problem. Moving forward, we would investigate

he application of TEIM into more complex image matting environments. 
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