
3846 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 5, MAY 2024

Global Localization in Large-Scale Point Clouds via
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Abstract— For autonomous ground vehicles, global localization
with 3D LiDAR is an indispensable part of tasks such as
navigation. Usually, global localization using LiDAR is subdivided
into two sub-problems, place recognition and global registration.
For place recognition, the recent emerging schemes based on deep
learning either rely on 3D convolution with high complexity or
need to learn features from various forward perspectives. To mit-
igate this, we propose a model with roll-pitch-yaw invariance
that represents point clouds as probabilistic voxels and generates
occupancy grids from a bird’s-eye view, fulfilling robust place
recognition by learning aggregated embeddings from a fixed
perspective. For low-overlap global registration, the traditional
handcraft feature-based methods are mostly limited to dense
object-level point clouds, while the state-of-the-art learning-based
approaches often rely on complex 3D convolution and additional
feature association learning. To fill this gap to some extent,
we propose to estimate the relative roll-pitch angles and vertical
translation by fitting and aligning the ground plane of the point
clouds and to determine the horizontal translations and yaw angle
by matching their projected occupancy grids. Extensive experi-
ments corroborate the superior recall and generalization ability
of our place recognition model, as well as the advanced success
rate and accuracy of our 3D registration approach. Especially in
the recognition and registration of hard samples, our results far
exceed those of our counterparts by large margins. To ensure full
reproducibility, the relevant codes and data are made available
online at https://cslinzhang.github.io/GLoc/GLoc.html.

Index Terms— Global localization, place recognition, low-
overlap global registration, point cloud.
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I. INTRODUCTION

INTELLIGENT agents have gradually entered our pub-
lic life, such as mobile robots and self-driving cars.

In autonomous navigation, such agents often have to face
the problem that at the initial moment of receiving a task,
they only know the destination with a given map but do not
know where they are located on the map, resulting in down-
stream tasks such as path planning being unable to proceed.
Similarly, during the navigation, the agents may encounter
“robot kidnapping” (the agents are deliberately moved away
from their original positions). In such cases, they need to be
globally (re)-localized from the global map in time to restore
the carrier states, which is referred to as a global localization
problem.

In GPS-denied environments, owing to the merits of high
accuracy ranging, wide-angle viewing, and active measuring,
LiDAR (Light Detection and Ranging) has become one of
the mainstream sensors relied on to fulfill global localization
by constructing the environmental map with large-scale point
clouds offline and globally localizing the carrier using the
arriving point cloud online [1]. Using a divide-and-conquer
strategy, global localization with LiDAR can be divided into
two sub-problems, i.e., place recognition and global registra-
tion [2]. As presented in Figure 1, the former is responsible for
retrieving candidates with high similarities from the historical
gallery using the query point cloud, while the latter is devoted
to accurately aligning the query point cloud to the response
one and thus obtaining its pose in the global frame.

To date, LiDAR place recognition mainly follows the tech-
nical route of visual loop closure detection [3], [4], [5],
i.e., by constructing a gallery of place embeddings from
historical point clouds and detecting similar places resorting
to fast retrieval techniques. Based on how place embeddings
are generated, existing LiDAR place recognition methods can
be classified into two categories: handcraft feature-based ones
and learning-based ones. The handcraft feature-based ones
focus on the construction of global place descriptors with
yaw invariances, such as histogram-based [6], [7], [8], [9],
matrix factorization-based [10], grid-based [11], [12], [13],
and frequency-based [14], [15] approaches. The major advan-
tages of these methods are that they are computationally
efficient, interpretable, and training-free. However, they often
require adjustment of many hyperparameters, therefore leading
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Fig. 1. The general architecture of a typical global localization system.

to low robustness in practical applications. Learning-based
schemes can be further categorized into two types. The
first type involves directly learning place embeddings from
the raw point cloud in an end-to-end manner. For exam-
ple, PointNetVLAD [16] and LPD-Net (Large-scale Place
Description Network) [17] extract features for each point based
on PointNet [18], and the aggregated embedding of these
features will be learned subsequently with NetVLAD (Net
Vector of Locally Aggregated Descriptors) [19]. Such neural
networks can be trained end-to-end, but they often require
downsampling the raw point cloud dozens of times due to
the high computational cost of processing the entire scan,
which inevitably undermines their performance. The other
type first converts point clouds into pseudo-camera images
(e.g., range images or semantic images [20], [21], [22], etc.)
and subsequently learns place embeddings from them using
image-oriented deep learning. These methods take advantage
of the fact that 2D convolution can be conducted efficiently.
However, on the one hand, the scenes in the forward perspec-
tive are often complex and variable, thus making it challenging
to train robust place embeddings directly from those images
generated from the pseudo-camera view. On the other hand,
they tend to consider only the rotational invariance in yaw
and lack the rotational invariances in roll and pitch, which
hampers their performance when query point clouds exhibit
significant pose differences compared to the ones in the
historical gallery.

For point cloud registration, traditional methods such as
ICP (Iterative Closest Point) [23], NDT (Normal Distributions
Transform) [24], and their variants [25], [26], [27] can achieve
satisfactory results when the good enough initial values are
available. However, they are limited to local registration only.
That is to say, when lacking approximate initial guesses, these
methods only produce local optimal solutions. In the case of
global localization, there is often a difference of several meters
between the query and the response frame, and also there may
be great attitude differences in roll, pitch, and yaw. Such a
challenging registration with a low overlap between two point

clouds is also called a global registration problem [28], [29].
To solve this problem, a few methods based on parameter
search estimate the global pose by branching and bounding
the solution space step by step [30], [31]. They perform well
in object-level registration between dense point clouds, but
when encountering registrations of large-scale sparse point
clouds like LiDAR scans, their efficiency and results will be
greatly reduced. Another line of approaches establishes the
corresponding relationship between the query and response
points by minimizing the metric feature distance of their
salient points, thus transforming the pose estimation into
a least squares problem. Among them, the ones based on
handcraft features are mostly limited to object-level regis-
tration [32], [33]. Although the learning-based ones yield
state-of-the-art results recently, they often require complex 3D
convolution and additional feature association learning to elim-
inate outliers, which undoubtedly increases the computational
complexity [28], [29], [34], [35], [36].

In this article, to fill the aforementioned research gap to
a certain extent, we propose a Roll-pitch-yaw invariant Place
Recognition scheme, termed RpyPR, and a Low-overlap Point
cloud Global Registration approach, LoPcGR in short. Specif-
ically, considering that the variable scene from the forward
perspective makes it difficult to establish place embeddings
with significant discrimination, we choose to generate the
occupancy grids from point clouds in the bird’s-eye view
and learn aggregated features end-to-end from these grids.
With such a representation, each element of an occupancy
grid contains the sum of the probabilities that the position is
occupied by a point cloud in its vertical direction. In this way,
on the one hand, the occupancy grid of the same place will
be roll and pitch invariant. On the other hand, the distribution
of features in the same place will be more concentrated in
the feature space, which brings higher distinguishability of
different places. After retrieving similar candidates from the
gallery, we conduct the 6-DoF (Degree of Freedom) registra-
tion of the query frame and the response frame in two steps,
that is, first determine the roll angle (α), pitch angle (β), and
vertical translation (1z), and estimate the horizontal transla-
tions (1x and 1y) and yaw angle (γ ) afterwards. Specifically,
since the working scenes of mobile robots and unmanned
ground vehicles generally have an approximately horizontal
ground, that shared ground plane is therefore regarded as a
static reference. Firstly, we extract the ground points from the
point cloud and perform plane fitting, so as to align the LiDAR
coordinate system with the ground’s frame to estimate α, β,
and 1z. Secondly, feature points of the projected occupancy
grids are extracted and matched, and the 2D transformation
among them is estimated, thus obtaining reasonable estimates
of 1x , 1y, and γ . As a result, the full 6-DoF pose can be
restored from α, β, γ , 1x , 1y, and 1z.

Extensive experiments are conducted on large-scale outdoor
datasets KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute) [37], [38] and NCLT (North Campus
Long-Term) [39] to evaluate the performance of the proposed
RpyPR and LoPcGR. The results show that our RpyPR
outperforms its counterparts by a large margin on KITTI,
with a top-1 recall rate 7.5 percentage points higher than that
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of the runner-up. The evaluations on distinct scenarios also
demonstrate the superior generalization ability of our RpyPR.
More specifically, RpyPR trained on KITTI achieves a top-1
recall rate of 98.92% on NCLT and that trained on NCLT
obtains a top-1 recall rate of 85.40% on KITTI. In global
registration between low-overlap point clouds, our LoPcGR
achieves the highest success rates at all difficulty levels and it
also achieves pleasing registration accuracy. Last but not least,
the practicability of RpyPR and LoPcGR is also corroborated
in real-world applications both of global localization and
SLAM (Simultaneous Localization and Mapping).

To summarize, our contributions are threefold:

1) We propose RpyPR for place recognition in large-scale
point clouds captured by unmanned ground vehicles.
RpyPR transforms point clouds into occupancy grids
and learns place embeddings from the bird’s-eye view.
Such a probabilistic representation markedly reduces
the morphological differences of point clouds in differ-
ent attitudes, bringing superior generalization ability to
RpyPR and making it roll-pitch-yaw invariant.

2) We propose LoPcGR, a global registration approach
for 6-DoF matching of low-overlap point clouds.
By aligning point clouds to the ground and match-
ing their occupancy grids, LoPcGR separately esti-
mates roll-pitch-1z and 1x-1y-yaw parameters in two
steps. Such a strategy makes it achieve high suc-
cess rates and accuracy even when there are large
pose differences between the point clouds to be
registered.

3) We demonstrate the practicability of the proposed
RpyPR and LoPcGR in global localization and SLAM
and verify their exceptional recall, high success rates,
and precise registration through extensive experiments.
Also, to ensure the full reproducibility of our work and
for the convenience of the community, all the relevant
codes and data are made online available.

II. RELATED WORK

In this section, we review the related work from the per-
spectives of place recognition and point cloud registration.

A. LiDAR Place Recognition

According to the construction manners of place embeddings,
the existing LiDAR place recognition methods can be roughly
classified into handcraft feature-based ones and learning-based
ones. The handcraft feature-based schemes focus on the design
of place descriptors with statistical characteristics, including
histogram-based ones [6], [7], [8], matrix factorization-based
ones [10], grid-based ones [11], [12], [13], and frequency-
based ones [14], [15]. For example, VFH (Viewpoint Feature
Histogram) [6], CVFH (Clustered VFH) [7], and Small-
sized Signatures [8] calculate the normal vector of the point
cloud and encode the histogram of the relative geometric
angles as the place embedding. In a matrix factorization
way, M2DP (Multiview 2D Projection) [10] projects the point
cloud onto multiple 2D planes from different perspectives and

subsequently conducts Singular Value Decomposition on the
obtained projection matrices. Afterwards, the singular vectors
of those matrices constitute a 192-dimensional compact rep-
resentation of the measurement place. Compared with those
histogram-based methods, M2DP improves recall by a large
margin at the expense of losing some computational efficiency.
In a grid-representation manner, Kim et al. proposed Scan-
Context [12], which divides the point cloud into fan-shaped
grids according to the polar coordinates of the points and
generates a featured image of the place from those grids
according to the maximum z values of the points belonging to
the grids. To further speed up the retrieval, Kim et al. extracted
the seminal pixels from the feature image row by row and
constructed the yaw-invariant ring key. Turning eyes to the
frequency domain, Wang et al. put forward LiDAR-Iris [14],
which transforms point clouds into frequency images and
generates binary signatures corresponding to each point cloud
by LoG-Gabor filtering and thresholding. When searching,
the revisited place is detected by comparing the Hamming
distance between those signatures. Recently, Cui et al. pro-
posed Bow3D [9], which constructs a bag-of-words model of
place embeddings based on Link3D [40], actively exploring
the technology migration of visual loop detection to LiDAR
place recognition.

With the rapid development of deep learning, recent years
have witnessed a growing interest in learning-based LiDAR
place recognition. Among those learning-based approaches,
PointNetVLAD [16], as a distinguished pioneer, extracts the
feature vector of each point based on the popular point
cloud encoder PointNet [18] and learns the aggregated place
embedding using a NetVLAD layer [19]. To make up for
the deficiency of PointNetVLAD in modeling geometric rela-
tionships, LPD-Net [17] designs an Adaptive Local Feature
Extraction module to construct several handcraft features of
each point. After that, these handcraft features, together with
the raw points, are fed into a PointNet-like network to extract
the point-wise features. These features are further encoded via
an attention network, and global descriptors are aggregated
eventually by PointNet and NetVLAD again. Beyond the place
recognition as PointNetVLAD and LPD-Net do, Du et al.
proposed DH3D (Deep Hierarchical 3D Descriptors) [34] to
fulfill large-scale 6-DoF relocalization, which is based on
a siamese structure, employs FlexConv and Squeeze-and-
Excitation to capture multi-scale geometric information along
with channel-wise association and jointly infers local and
global features. Different from the above methods of learning
features directly from 3D point clouds, some schemes first
generate 2D images from point clouds and then extract place
embeddings resorting to convolutional neural networks. For
example, OverlapNet [20] generates range, normal, intensity,
and semantic images in forward view and employs a siamese
network to predict the overlap between two frames of point
clouds and regress the relative rotation in yaw at the same
time. In [21], Ma et al. introduced the Transformer [41]
structure into OverlapNet [20], yielding OverlapTransformer,
which further boosts the performance of place recognition
compared with OverlapNet.
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Fig. 2. Overview of our framework. In the offline RpyPR training phase, sampled query-positive-negative tuples are aligned to the ground to derive projection
parameters. With these parameters, 2D occupation grids are projected from the 3D occupancy voxels. Such 2D grids are subsequently fed into a deep encoder
and NetVLAD layers to aggregate place embeddings, which are used to update the search tree and network under the supervision of the triplet loss. During
online global localization (RpyPR recognition and LoPcGR registration), the query obtains its place embedding and employs it to retrieve the response and
the corresponding occupancy grids from the gallery. At last, by estimating the transformation between the 2D grids and combining the projection parameters,
the full 6-DoF pose can be determined.

B. Point Cloud Registration
As analyzed in Section I, according to whether the initial

values are provided, existing point cloud registration methods
can be divided into two categories: local registration and
global registration. One seminal approach of local point cloud
registration is ICP [23], which minimizes the geometric dis-
tance between two point sets, alternately optimizes rotation
and translation, and iteratively seeks the optimal solution.
In order to be more robust against outliers, Biber et al.
proposed NDT [24], which casts the registration problem
as a parameter estimation problem for similar distributions.
Although both ICP and NDT can obtain satisfactory results
when reasonable initial values are available, when such a
condition is not met, what they produce is often a locally
optimal solution. To find the global optimum, some researchers
were devoted to designing fast search methods in the solution
space. For example, Olsson et al.’s approach [42] and Go-ICP
(Global optimal ICP) [31] are based on branch-and-bound that
recursively compresses the parameter search space by finding
the upper bound of the optimal matching. Another class of
schemes focuses on establishing salient points together with
descriptors and establishing point correspondence by minimiz-
ing the metric distance between the descriptors to estimate the
alignment parameters. In such approaches, traditionally PFH
(Point Feature Histograms) [32] and FPFH (Fast PFH) [33] are
employed to extract features of salient points to establish the
corresponding point pairs, while it is still difficult to sustain
the good performance in object-level registration to large-scale
sparse point clouds. Recent learning-based approaches learn
feature representations of salient points in the implicit feature
space from raw point clouds end-to-end employing deep neural

networks [28], [29], [35], [43], [44], [45], [46], [47], [48].
Among them, early learning-based ones mostly focused on
the local registration problem, such as PointNetLK (PointNet
of Lucas-Kanade algorithm) [43], Deep Closest Point [44],
PRNet (Partial-to-Partial Registration Net) [45], and VRNet
[46]. In [28], Huang et al. were the first to focus on the global
registration problem for low-overlap point clouds, arguing that
the key to solving this problem is to determine which feature
points to sample from. They voxelized the point cloud and
extracted their features based on a PointNet encoder, and
subsequently encoded feature points from the overlap region
by overlap-attention modules. By encoding pair-wise dis-
tances and triplet-wise angles in Transformer-like blocks, Qin
et al. proposed GeoTransformer (Geometric Transformer) to
learn geometric features for robust superpoint matching [35].
Using a similar attention mechanism, Arnold et al. [29] fed
point-wise features from the base feature encoder into a mod-
ule with self-cross attention, thus aggregating both foreground
and background contexts simultaneously. Very recently, Zhang
et al. presented a 3D registration method with maximal cliques
(MAC) [49], effectively filtering out the outliers of feature
matching.

III. METHODOLOGY

A. Overview

As illustrated in Figure 2, our full framework is composed
of two parts: RpyPR and LoPcGR. RpyPR is carried out
in two stages: offline training and online recognition, while
LoPcGR only works in online registration. During RpyPR’s
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offline training phase, query-positive-negative tuples are first
sampled from the priori point cloud map. Then, their attitudes
(α, β, and 1z) relative to the ground are estimated by ground
segmentation and plane fitting. Afterwards, according to their
associated attitudes, the tuples are converted to probabilistic
voxels with the ground as a reference and are further projected
to occupancy grids. These grids are fed into a deep encoder
and NetVLAD layers to construct place embeddings, and
are also cached in the gallery together with the associated
projection parameters for follow-up retrieval and registration.
At last, these place embeddings flow forward to update
the search tree, and the network’s parameters are updated
under the supervision of the triplet loss. During online global
localization (RpyPR recognition and LoPcGR registration),
we first get the projective parameters, occupancy grid, and
place embedding of the query, and then retrieve the response
candidate from the search tree. Subsequently, the occupancy
grid of the response is matched with that of the query to obtain
the 2D transformation parameters (1x , 1y, γ ). Eventually,
the global 6-DoF pose of the query in the response is thereby
recovered by integrating the 3D-to-2D projection parameters
and the 2D-to-2D transformation values.

B. RpyPR: Roll-Pitch-Yaw Invariant Place Recognition

Instead of directly projecting point clouds to the bird’s-eye
view, we build probability voxels and project probability grids
to establish place embeddings. Such a choice can offer three
distinct advantages. Firstly, projecting point clouds directly
onto a bird’s-eye view often results in significant noise, which
can hinder the establishment of stable feature associations for
follow-up transform estimation. Secondly, errors in estimating
roll and pitch angles are inevitable. The probability grid
representation allows for accommodating attitude estimation
errors. Lastly, the method of probability accumulation nat-
urally reflects the richness of ground objects and encodes
associated place features, thereby enhancing the learning of
place embedding.

1) Occupancy Grid Generation: When the state (s) of
the sensor is known, modeling the environment according
to the sensor measurements Z1:t = {z1, z2, . . . , zt } (t is
the timestamp/index of the last echo) is called a mapping
problem [50], [51]. Due to the measuring noises, mapping is
usually carried out in a filtering manner. In range data-based
mapping (e.g., LiDAR-based, radar-based, or depth camera-
based mapping), a typical idea is to divide the space into
voxels (V = {vi }, i ∈ Z+) to organize the sparse data. The
mapping is thereby transformed into a problem of finding the
joint probability distribution of the voxels,

p(V|Z1:t , s). (1)

One problem to estimate this probability is that its dimension
increases exponentially with the map. To mitigate this, it is
usually assumed that all voxels are independent of each other,
thus simplifying Eq. 1 to,

p(V|Z1:t , s) =

∏
i

p(vi |Z1:t , s). (2)

Suppose that for a specific voxel vi , there is a binary
state, namely occupied o or free o. When measurements are
provided, the occupied probability of the voxel is,

p(o|Z1:t ) =
p(zt |o,Z1:t−1)p(o|Z1:t−1)

p(zt |Z1:t−1)
, (3)

where we omit the known state in the condition for simplicity.
With Markov assumption p(zt |o,Z1:t−1) = p(zt |o), apply
Bayes’ rule on Eq. 3 yields,

p(o|Z1:t ) =
p(o|zt )p(zt )

p(o)
p(o|Z1:t−1)

p(zt |Z1:t−1)
. (4)

Likewise, conducting the above procedure again on the prob-
ability of o produces,

p(o|Z1:t ) =
p(o|zt )p(zt )

p(o)
p(o|Z1:t−1)

p(zt |Z1:t−1)
. (5)

Dividing the two ends of Eq. 4 and Eq. 5 results in,

p(o|Z1:t )

p(o|Z1:t )
=

p(o|zt )

p(o|zt )

p(o)
p(o)

p(o|Z1:t−1)

p(o|Z1:t−1)
, (6)

Further taking the logarithm of Eq. 6, we have,

lt (o) = log
p(o|zt )

p(o|zt )
+ log

p(o)
p(o)

+ lt−1(o),

lt (o) = log
p(o|Z1:t )

p(o|Z1:t )
, lt−1(o) = log

p(o|Z1:t−1)

p(o|Z1:t−1)
. (7)

Note that in Eq. 7, the sum of p(o|zt ) and p(o|zt ) is 1, and
so are p(o) and p(o). Moreover, p(o|zt ) is a fixed value related
to the sensor’s measurement noise only, and p(o) represents
the prior of the voxel state. Therefore, at this point, we have
obtained a complete recursive update rule for a voxel’s state.

When modeling the environment from a point cloud aligned
with the ground, we divide the space into 3D voxels first
and update the corresponding voxels point by point according
to Eq. 7. After obtaining the 3D voxel representation, feature
extraction can be carried out with the help of tools such as
3D convolution. However, considering that on the one hand,
it will bring a huge computing load, on the other hand, it is still
difficult to learn place embeddings directly from the occupancy
voxels. Inspired by the map representation of 2D SLAM [52],
we consider generating the occupancy grid corresponding to
the point cloud from the bird’s-eye view. Specifically, for the
voxel set of a point cloud, we generate a 2D grid corresponding
to its spatial range on the horizontal plane. Then, for each
element of the grid, we take the sum of the probabilities of
all voxels accumulated in the vertical direction as its value.
In this way, each 2D grid will reflect the richness of ground
objects in the corresponding vertical direction, and express
the unique characteristics of the place macroscopically. As an
intuitive example, our occupancy grid projection is illustrated
in Figure 3, where voxels in yellow stand for occupied space
while ones in blue imply free there. After projection, a 2D
patch in a darker color indicates that the LiDAR scanner
encounters a higher density of obstacles along its vertical
direction.
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Fig. 3. Occupancy grid projection. Each element of the grid holds the sum
probability of the voxels in its vertical direction.

2) Place Embedding Encoding: Thanks to the compact
representation of point clouds with occupancy grids, we can
learn global place embeddings conveniently. In specific, those
grids are first fed into a commonly used convolution encoder
(e.g., VGGNet [53] etc.) to extract deep semantic features.
Then, with the help of the learnable image retrieval technology,
NetVLAD [19], we further cluster the deep semantic features
with the learning goal of minimizing the intra-class distance
and maximizing the inter-class distance. There are two kinds
of parameters to be learned by NetVLAD layers. One is the
clustering centers of all feature classes ({ck}, ck ∈ RD, k ∈

{1, 2, . . . , K }, K is the number of class centers). The other is
the weights ({wk} and biases {bk},wk, bk ∈ RD) that features
are given by soft-assignment. For features, {xi }, xi ∈ RD ,
encoded by the encoder, the associated soft-assignment func-
tion which assigns xi to ck is defined as,

λ(xi ) =
ewT

k xi +bk∑K
k′=1 ewT

k′ xi +bk′

. (8)

For the k-th class, its associated feature f k of the given
input {xi } is eventually weight-averaged via,

f k =

∑
i

λ(xi )(xi − ck). (9)

Stacking f k, k ∈ {1, 2, . . . , K } leads to a matrix V with
dimensions of K × D. When querying, one always wishes
to receive a response with a low delay. Although V can be
directly utilized as a distinctive place embedding to construct
a search tree (e.g., KD-Tree, etc.), building and querying such
a high-dimensional tree is not efficient enough. Therefore,
we further append a fully-connected layer after the NetVLAD
layers to output compressed place embeddings {v} for the
search tree construction and query.

3) Metric Learning: During training, for each query sam-
ple, we randomly sample positive samples at places close
to its measurement location and negative samples far away
from it from the priori point cloud map to form triplet tuples
as network inputs. After backbone encoding and NetVLAD
aggregation, the network parameters are updated under the
supervision of the triplet loss. In specific, for the triple output
(vq , v p, vn) where vq , v p, and vn are the embeddings of

the query, positive, and negative samples respectively, its
corresponding loss is,

L(vq , v p, vn) = max(∥vq − v p∥ − ∥vq − vn∥ + µ, 0), (10)

where ∥ · ∥ returns the l-2 norm of the associated vector, and
µ refers to the margin which is a hyperparameter to render
the network learn features with a larger distance between the
query and the negative than that between the query and the
positive.

C. LoPcGR: Low-Overlap Point Cloud Global Registration

1) Roll-Pitch Angles and the Vertical Translation: On
unmanned ground vehicles such as robots and autonomous
cars, the query and response point clouds collected at the
same place usually have a common reference plane, that is,
the ground. Therefore, we consider estimating and aligning
the ground planes from those point clouds, so as to indi-
rectly estimate the roll-pitch angles (α, β) and the vertical
translation (1z).

Specifically, for the point cloud { pi } ( pi ∈ R3 indexed
by i), which is inclined relative to the ground, we need to
screen out the ground points first. To lower the computation
load, we only keep a certain range of points around the
vehicle for ground estimation. This strategy also improves
the accuracy of plane fitting due to the fact that the outliers
are growing with distance. It is not difficult to infer that the
normal vectors of the ground points have approximately the
same or opposite directions. Therefore, we estimate the normal
vector of each point and obtain the corresponding normal-to-z
angle between the normal vector and the positive z-axis of the
LiDAR frame Fl . Subsequently, these points are assigned into
18 bins with sizes of 10◦ growing from 0◦ to 180◦ according
to their normal-to-z angles. After that, if the sum of the angles
corresponding to the two bins with the highest number of
points is close to 180◦, it is considered that these two bins
contain most of the ground points, denoted by {

g pi }.
When {

g pi } is screened out, the ground plane fitting can be
cast as a least square estimation problem under the RANSAC
(Random Sample Consensus) [54] strategy. The plane function
and the fitting objective are accordingly defined as,

ρ · [
g pT , 1]

T
= 0, (11)

ρ∗
= arg min

ρ

∑
i

1
2

(
ρ · [

g pT
i , 1]

T

∥ρ1:3∥

)2

, (12)

where ρ ∈ R4 represents the parameter vector of the ground
plane, g p is a point lies strictly on that plane, and ρ1:3 is the
vector with the first three elements of ρ.

Conducting the above steps yields the normal vector of the
ground (nl

g =
ρ∗

1:3
∥ρ∗

1:3∥
) under the LiDAR frame Fl . Denote the

normal vector which points to the positive z-axis of Fl by nl
z .

The rotation matrix Rg
l that transforms nl

g into the ground
coordinate system Fg can be obtained by Rodrigues’ rotation
formula,

Rg
l = I + (sin η)⌊c⌋× + (1 − cos η)⌊c⌋2

×, (13)
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where I is a 3 × 3 identity matrix,

c =
[
c1 c2 c3

]T
= nl

g × nl
z, (14)

⌊c⌋× =

 0 −c3 c2
c3 0 −c1

−c2 c1 0

 , (15)

and η is the rotation angle from nl
g to nl

z along c.
Correspondingly, the vertical translation tg

l from Fl to Fg is,

tg
l =

[
0 0

ρ4

∥ρ1:3∥

]
. (16)

Consequently, let the compound transformation matrix
between the query frame Flq and Fg be T g

lq (Rg
lq , tg

lq ), and
the transformation between the response frame Flr and Fg
be T g

lr (Rg
lr , tg

lr ). T p
q of Flq in Flr can thereby be obtained

accordingly via,

T r
q =

[
Rr

q tr
q

0T 1

]
= (T g

lr )
−1T g

lq =

[
Rg

lr tg
lr

0T 1

]−1
[

Rg
lq tg

lq
0T 1

]
.

(17)

Note that T r
q is just 3-DoF determined so far since we

ignored the horizontal translation and rotation in the foregoing
discussion. At present, we can infer the Euler angles α and
β from the left-top rotation matrix of T r

q and obtain 1z
directly while making 1x,1y and γ remain to be determined.
It should be also noted that since matrix multiplication does
not commute, the order of the axes which one rotates about
and the internal/external rotation manner will affect the result.
For this reason, we follow the convention of external rotation
that first rotates about the x-axis, then the y-axis, and finally
the z-axis.

For a better understanding, the estimation of α, β, and 1z
is formally defined in Algorithm 1.

2) Horizontal Translations and the Yaw Angle: According
to Section III-C1, the query frame Flq and response frame
Flr can be aligned to the shared ground with associated pro-
jective parameters. Thus, their corresponding two-dimensional
occupancy grids can be generated according to the pipeline
described in Section III-B1. Such a representation allows us
can estimate the horizontal translations (1x , 1y) and yaw
angle (γ ) by resorting to image processing techniques. Ideally,
our purpose here is essentially a two-dimensional rigid trans-
formation estimation problem. However, due to the noise in the
estimation of the roll and pitch angles, we instead regard the
relationship between the points on the query occupancy grid
{uq

j } and those on the response one {ur
k} (uq

j , ur
k ∈ R2 indexed

by j, k) approximately conforms to an affine transformation,

ur
k = π(uq

j | 1x,1y, γ )+

[
δx
δy

]
(18)

= s ·

[
cos γ − sin γ
sin γ cos γ

]
uq

j +

[
1x
1y

]
+

[
δx
δy

]
, (19)

where π(·) transforms a grid point in the query frame to the
response frame, s is the affine scale, δx and δy are residuals
of transformation results.

The key to estimating 1x,1y, γ , and s is to estab-
lish the correspondences of point pairs between the two

Algorithm 1 Estimation of α, β, and 1z
Require: Point clouds of query (Pq ) and response (Pr )
Ensure: Roll-pitch angles (α, β), and z-translation (1z)

1: for P ∈ {Pq ,Pr } do
2: Filter P to retain points which are in a certain range

(20m in our setting), resulting in P′ with N points
3: Initialize a count histogram H with 18 bins growing

from 0◦ to 180◦

4: Initialize an index container I with a size of 18
5: Estimate the normals of P′, yielding N′

6: for all i ∈ [0, 1, . . . , N − 1] do
7: nl

i = N′
[i]

8: θ = 8(nl
i , nl

z+

l
), 8(·) returns the angle of vectors in

[0◦, 180◦), nl
z+

l
points to the positive z-axis of Fl

9: j = θ // 10◦, // means floor division
10: H[ j] −→ H[ j] + 1
11: Insert i into I[ j]
12: end for
13: Find the top-2 bins with greatest counts from H,

indexed by m, n
14: Get possible ground points gP = {

g p} from P using
indices in I[m] and I[n]

15: Assume the ground plane is defined as Eq. 11
16: Estimate ρ∗ by Eq. 12 under RANSAC
17: Get the normal of the ground in Fl , i.e., nl

g =
ρ∗

1:3
∥ρ∗

1:3∥

18: Get the rotation Rg
l and the translation tg

l by Eq. 13
and Eq. 16, respectively

19: end for
20: Repeat line 1∼19, resulting in Rg

lq (Rg
lr ) and tg

lq (tg
lr )

21: Get T r
q via Eq. 17 with Rg

lq , Rg
lr , tg

lq , and tg
lr

22: Recover α and β from the left-top 3×3 sub-matrix of T r
q

by rotation matrix to Euler angles conversion
23: 1z = T r

q(2, 3), T r
q(2, 3) is the element of T r

q at the third
row and the fourth column

24: return α, β, and 1z

occupancy grids. To achieve this goal, we extract the SURF
(Speeded-Up Robust Features) [55] corners from the occu-
pancy grids, and screen the matching pairs with high similarity
according to Lowe’s criterion [56]. As a result, the problem
of estimating 2D transformation parameters is converted to,

{1x,1y, γ, s}∗ = arg min
1x,1y,γ,s

∑
j∼k

1
2

(
∥ur

k − π(uq
j )∥
)2
, (20)

where j ∼ k means a valid point pair with correspondences.
Guided by Eq. 20, we estimate the transformation param-

eters with RANSAC [54]. When the final estimated scale
s is close to 1 (we empirically set the difference threshold
as 0.1 via experiments), it is considered that the accept-
able two-dimensional transformation parameters are obtained.
According to the image resolution, these parameters are trans-
formed back to the physical measurement space, and thus the
estimates of 1x,1y, γ of Flq in Flr are obtained.

At this point, combined with the roll-pitch angles (α and γ )
and the vertical translation (1z), the full 6-DoF pose (R, t) of
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the query frame Flq in the response frame Flr can be obtained
by the following transformation,

t =
[
1x 1y 1z

]T
, (21)

R = Rz(γ )Ry(β)Rx (α)

=

cβ · cγ sα · sβ · cγ − cα · sγ cα · sβ · cγ + sα · sγ
cβ · sγ sα · sβ · sγ + cα · cγ cα · sβ · sγ − sα · cβ
−sβ sα · cβ cα · cβ

 ,
(22)

where Rψ (·) returns the basic rotation matrix along the
corresponding principle axis ψ , ψ ∈ {x, y, z}, sα and cα are
the abbreviations of sinα and cosα (the same for β and γ ).

IV. EXPERIMENT

A. Setup

1) Datasets: In this section, we demonstrate the effective-
ness of our RpyPR and LoPcGR on two point cloud datasets,
KITTI and NCLT, which are widely used for LiDAR-related
algorithm evaluations. The KITTI dataset [37], [38] includes
gray/color binocular images, 64-beam Velodyne point clouds,
and synchronized GPS-IMU readings. Its point clouds, odom-
etry ground truth, and GPS coordinates were employed to
train and evaluate our algorithms. The NCLT dataset [39]
is collected from a mobile robot equipped with a 32-beam
LiDAR. Like KITTI, NCLT also contains real-time kinematic
positioning GPS coordinates.

a) Data preparation for RpyPR: The sequences
“00∼02”, “04∼07”, and “10” of KITTI Odometry were used
for training, and “08∼09” were treated as test sequences.
Since all NCLT sequences were collected from the same
geographical space and the time spans among its sequences
are much longer than KITTI, to investigate the stabilities
of the algorithms against scenario variations over time,
we took NCLT’s “2012-01-08” as the training sequence and
its “2013-04-05” as the test sequence. Additionally, since
sequential point clouds are highly similar, to ensure the
diversity of data, we first extracted the raw sequences every
5/10 frames to yield sub-sequences with lower frequencies.
After that, these training/test sub-sequences were randomly
split into gallery sets and query sets at a ratio of 4:1 according
to the ground truth of GPS positions. In splitting the training
sets, the sub-sequences with extracting rates of 5 were used,
while in splitting the test sets, both the extracting rates of
5 and 10 were included and the resulting sets were marked as
“Easy” and “Hard” accordingly. Consequently, “KITTI-Train,
NCLT-Train, KITTI-Test-Easy, KITTI-Test-Hard, NCLT-Test-
Easy”, and “NCLT-Test-Hard” were yielded for training
and test.

b) Data preparation for LoPcGR: The difficulty of
global registration is related to the disparity in poses. To eval-
uate the ability of LoPcGR in more detail, we classified the
registration samples of KITTI Odometry’s 08∼09 sequences
into “GR-Easy”, “GR-Medium”, and “GR-Hard” based on the
distances between two point clouds to be registered: 0∼5m,
5∼10m, and 10∼15m, respectively. Additionally, since the
point clouds in these test sets were primarily collected from

approximately horizontal orientations, we applied a manual
roll-pitch-yaw transformation to each frame to be registered
in the test sets. This transformation was drawn from a normal
distribution with a mean of 10 degrees and a standard deviation
of 2 degrees, allowing us to comprehensively evaluate the 6-
DoF estimation capabilities.

2) Metrics:
a) Recall Rate (RR): The recall rate is one of the

indicators that can best reflect the performance of a place
recognition algorithm. It measures the ability of the algorithm
to successfully detect similar candidates from the gallery
according to the incoming query. The higher the recall rate,
the better the algorithm’s recognition performance. Denote the
number of correctly identified positive and negative samples in
the test set by TP and TN, while the number of misidentified
positive and negative samples by FP and FN respectively. The
recall rate (RR) is accordingly defined as,

RR =
TP

TP + FN
. (23)

b) Relative registration error: Suppose that the poses of
the query frame Fq and the response frame Fr relative to the
world coordinate system Fw are Twq and Twr , respectively. The
ground truth of the relative pose can be obtained accordingly
by, T r

q = (Twr )−1Twq . Let the relative pose of Fq in Fr

estimated by an algorithm be T̂
r
q . The difference 1T between

T r
q and T̂

r
q is therefore obtained by 1T = (T r

q)
−1T̂

r
q . As a

result, the translation error (TE) and the rotation error (RE) of
the registration can be measured by,

1T =

[
1R 1t
0T 1

]
, (24)

TE = ∥1t∥, (25)

RE = arccos
Tr(1R)− 1

2
, (26)

where 1R ∈ R3×3 and 1t ∈ R3 are the rotation matrix and
translation vector of 1T , and Tr(·) returns the trace of the
involved matrix.

c) Success rate (SR): The ratio of the total number of
successful tests to that of all tests is defined as the success
rate. In both the evaluation of global registration and global
localization, we utilized the metric of success rate. However,
it is important to note that the specific meaning and criteria
of success rate differ between the two evaluations. For global
registration evaluation, a test was considered successful if the
translation error was less than 1.5m and the rotation error
was less than 5◦; Otherwise, it was classified as a failure.
In the case of global localization evaluation, a trial was deemed
successful if it achieved both successful place recognition
and global registration. On the other hand, if either place
recognition or global registration failed, the trial was classified
as a failure.

3) Implementation: During training, for each query frame,
we randomly sampled its positive candidates within a 20-meter
radius of its geographical location, and obtained negative
samples from locations beyond 50 meters away from the
query’s location. Then, the triplet inputs were formed with
these samples and were fed into the network. To optimize the
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TABLE I
RECALL RATES OF OUR RPYPR AND ITS COUNTERPARTS ON TEST SETS OF NCLT AND KITTI

TABLE II
GENERALIZATION ABILITY COMPARISON. THE RECALL RATES BELOW OF NCLT-TEST-EASY AND NCLT-TEST-HARD ARE PRODUCED BY THE MODELS

TRAINED ON KITTI, WHILE THOSE OF KITTI-TEST-EASY AND KITTI-TEST-HARD ARE GENERATED BY THE MODELS TRAINED ON NCLT

network parameters, we utilized the SGD optimizer with a
momentum of 0.9 and an initial learning rate of 0.0001. The
learning rate decayed every 5 epochs with a decaying rate of
0.5. The optimization process spanned 30 epochs.

All experiments were carried out on a workstation with
processors of “AMD Epyc 7302 16-core processor × 32” and
an “NVIDIA GeForce RTX 3090” graphics card.

B. Results of Place Recognition

In this part, we corroborate the effectiveness of our proposed
RpyPR from two aspects. One is its high recall rate, and the
other is its superior generalization ability. Besides, RpyPR’s
time cost is also to be discussed.

1) About Recall Rate: We trained our RpyPR and
its counterparts, PointNetVLAD [19], LPD-Net [17], and
OverlapTransformer [21] on KITTI-Train and NCLT-Train
respectively. Subsequently, these models were employed to
evaluate their recall rates on KITTI-Test-Easy, KITTI-Test-
Hard, NCLT-Test-Easy, and NCLT-Test-Hard. In addition,
a representative of handcraft feature-based methods, Scan-
Context [12], was also compared. The detailed results are
provided in Table I.

From Table I, it can be seen that although our RpyPR
doesn’t have the best results on all test sets of NCLT, its
recall rates on non-first test sets are merely less than 1% lower
than the champions on those sets. In addition, RpyPR achieves
98.80% (96.17%) of top-1 RR and 100% (99.04%) of top-20
RR on NCLT-Test-Easy (NCLT-Test-Hard), which is qualified
to meet the requirements of high recall rate of global localiza-
tion. On the KITTI dataset, our RpyPR outperforms by a large
margin over its counterparts. In specific, on KITTI-Test-Easy,
our RpyPR’s top-1 RR exceeds the runner-up by 7.5 percentage
points. In the more difficult test on “KITTI-Test-Hard”, its
top-1 RR surpasses the runner-up largely by 19.5 percentage
points. It can also be found that RpyPR’s recall rates on NCLT
are higher than that on KITTI. We argue that this performance
difference is mainly due to the distribution difference between
training and test sets. In essence, although the training and

test sequences of NCLT came from different trajectories, they
were all collected from the same scene, which makes it easier
for models trained on NCLT to perform well on similar
distributions. Differently, the training and test sequences of
KITTI were completely from different trajectories and scenes,
which inevitably increases the difficulty.

2) About Generalization Ability: In practical applications,
a place recognition model with superlative generalization abil-
ity is highly desired, which will avoid laborious data collection
and tedious training. In order to evaluate the generalization
capabilities of RpyPR and its opponents, we conducted tests
on KITTI-Test-Easy and KITTI-Test-Hard using the models
trained on NCLT-Train, and tests on NCLT-Test-Easy and
NCLT-Test-Hard using the models trained on KITTI-Train.
The obtained results are listed in Table II. It can be seen
that the generalization ability of our RpyPR is markedly
better than other learning-based approaches. In the place
recognition evaluation on NCLT, RpyPR trained on KITTI
achieves recall rates of 98.92% at top-1 and 100% at top-20.
In the more difficult scenes of KITTI, RpyPR trained from
NCLT achieves 85.40% top-1 and 99.56% top-20 recall rates.
As for its counterparts, although they produce fairish results
on NCLT, their recall rates drop largely when tested on the
more challenging KITTI. Such an exceptional generalization
ability of our RpyPR should be attributed to the fact that the
probability representation from the bird’s-eye view effectively
narrows the morphological differences between point clouds
in different scenes so that the model trained in one scene
can be well qualified for place recognition in other different
scenes.

To further illustrate the advanced generalization ability of
our RpyPR, we additionally evaluated the models trained on
KITTI on the singapore-onenorth sequence of the nuScenes
(nuTonomy scenes) dataset [57]. The obtained results are
shown in Table III. As can be seen, the proposed RpyPR also
shows a superior generalization ability on nuScenes. As for
other learning-based counterparts, only OverlapTransformer
performs moderately well, while both PointNetVLAD and
LPD-Net produce unsatisfactory results.
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TABLE III
GENERALIZATION ABILITY COMPARISON ON NUSCENES. THE RECALL

RATES BELOW ON NUSCENES ARE PRODUCED BY THE MODELS
TRAINED ON KITTI

TABLE IV
SUCCESS RATES OF GLOBAL REGISTRATION APPROACHES

3) About Recognition Efficiency: The time consumption of
RpyPR in place recognition is about 105 milliseconds (ms),
including 28ms for preprocessing, 27ms for embedding extrac-
tion, and 50ms for querying. For global localization, such time
efficiency is adequate for most cases. For SLAM relocaliza-
tion, since the frame rates of most LiDARs today, such as
Velodyne, Livox, etc., are usually about 10 frames per second,
and the SLAM backends typically process keyframes only,
our RpyPR is qualified to help SLAM systems eliminate their
accumulated errors in time.

C. Results of Global Registration

In the context of global registration, we investigated
the success rates (SR), registration accuracy (TE, RE),
and time costs of LoPcGR and those of its competitors
FPFH+RANSAC [33], FastReg (Fast Registration) [29],
PREDATOR (Point Cloud Registration with Deep Atten-
tion to the Overlap Region) [28], GeoTransformer [35], and
FPFH+MAC [49]. The related results are given in Table IV,
Figure 4, and Table V.

1) About Success Rate: As observed in Table IV, LoPcGR
achieves the highest success rates on datasets at differ-
ent difficulty levels. Especially in the registration tests
on “GR-Medium” and “GR-Hard”, LoPcGR surpasses the
runner-ups by large margins. It should be emphasized that such
high success rates on challenging samples are of great sig-
nificance for global localization and re-localization in SLAM
since the query and response point clouds may only share a
small overlap. Therefore, a high success rate in global regis-
tration becomes the premise for successful global localization,
which also ensures that the accumulated errors in SLAM can
be eliminated in time.

2) About Registration Accuracy: The accuracy of a registra-
tion algorithm can be reflected by its corresponding translation
and rotation errors under a specific success rate. However,
under the same threshold, the success rates of the algorithms
are often different. Therefore, in order to comprehensively
evaluate the registration accuracy, we recorded the success

Fig. 4. Translation and rotation errors of different global registration methods.

TABLE V
TIME COST (SECOND) OF GLOBAL REGISTRATION APPROACHES.

N/A MEANS UNAVAILABLE

rates and the corresponding translation-rotation errors of each
algorithm as the threshold varied from fine to coarse. The
related results are reported in Figure 4. It can be seen that
in terms of the translation accuracy, LoPcGR’s is slightly
lower than PREDATOR’s [28] and GeoTransformer’s [35] in
the low success rate intervals, but its accuracy is better than
theirs in the high success rate intervals. As for the rotation
accuracy, our LoPcGR consistently achieves the best results at
any success rate and difficulty level. Overall, when achieving
the highest success rates of 83.75%, 79.15%, and 49.91% on
GR-Easy, GR-Medium, and GR-Hard respectively, LoPcGR
demonstrates impressive accuracy, with values of (0.20m,
0.26◦), (0.27m, 0.40◦), and (0.39m, 0.52◦), respectively.

3) About Registration Efficiency: When examining the time
efficiency of global registration, we evaluated the average time
consumed by each method to complete a full trial on the
GPU or CPU. The recorded results can be found in Table V,
which includes FPFH+RANSAC and LoPcGR without GPU
acceleration, and FastReg for which the CPU time data
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Fig. 5. Typical registered point clouds by LoPcGR on low-overlap cases of
NCLT. The query and response point clouds in (a)∼(f) are with large pose
disparities in translation, while the ones in (b)∼(e) are with significant pose
disparities in rotation. The blue and yellow dots indicate the points of the query
and response frames, respectively. The annotation “5◦-12m” in (a) means that
the query and response point clouds are with a 5◦ disparity in rotation and
with a 12m disparity in translation, so do (b)∼(f).

was unavailable. From Table V, it can be seen that our
LoPcGR has a notable efficiency advantage over the competing
approaches. Compared to traditional handcraft feature-based
FPFH+MAC, LoPcGR achieves a registration acceleration of
approximately 30 times. Compared to deep learning-based
methods (FastReg, PREDATOR, and GeoTransformer), even
compared with their time costs with GPU acceleration,
LoPcGR’s efficiency remains comparable.

4) About Qualitative Results: Due to the lack of credi-
ble ground truth of inter-frame registration in NCLT, it is
infeasible to quantitatively evaluate the registration results on
NCLT. To demonstrate the adaptability of LoPcGR for differ-
ent scenarios, we also provide qualitative results of LoPcGR
registration between various difficult samples on NCLT. With
the obtained registration parameters, we transform the query
point cloud to the coordinate system of the response point
cloud. As shown in Figure 5, LoPcGR can achieve successful
global registration in various difficult cases with low overlaps.
The point clouds after registration show good matching at
common prominent features (such as street lamp poles, wall
corners, flower beds, etc.), demonstrating the correctness of
the obtained registration parameters.

D. Performance in Real-World Applications

Next, we investigate the practicability of RpyPR and
LoPcGR in practical applications.

1) Performance in Global Localization: We first test the
global localization on sequences KITTI-08 and KITTI-09,
which were gathered along urban and mountain roads. The
model trained on NCLT-Train was utilized to extract features
from the gallery to build search trees. During the localization,
top 20 candidates were reserved for global registration one by

Fig. 6. Global localization on KITTI-08 and KITTI-09.

one for geometric verification and the pose of the most similar
one which was successfully registered was regarded as the
result. As shown in Figure 6, the purple points represent the
collection locations of the historical point clouds in the gallery,
and the blue and pink points stand for the locations of data
collection that are successfully localized and failed, respec-
tively. It can be seen that the proposed RpyPR and LoPcGR
can produce pleasing global localization results with strong
geometry consistency both along complex urban roads and in
challenging mountain environments. According to statistics,
our global localization manages to achieve an average success
rate of 90.26% in these challenging scenarios.

2) Performance in SLAM: We show another important
application of SLAM on KITTI-01. Zhang and Singh’s famous
LOAM (LiDAR Odometry and Mapping) [58], a LiDAR
SLAM approach that consists of a front-end odometry and
a backend mapping module was taken as the baseline.
At LOAM’s back-end, we deployed our RpyPR model trained
on NCLT to detect the loop closures of the point clouds and
resorted to LoPcGR to establish the relative pose constraints
between the incoming frame and the historical frame, so as
to build and optimize a global pose graph to eliminate the
cumulative error. In Figure 7, we present the estimated trajec-
tories, where the gray dotted line, the blue solid line, and the
green solid line represent the ground truth, LOAM’s trajectory,
and the trajectory with our RpyPR and LoPcGR, respectively.
It can be seen that the estimated trajectory has good global
consistency with the ground truth by introducing RpyPR and
LoPcGR, while that estimated by LOAM obviously drifts
when driving back to the start point.

Authorized licensed use limited to: Universidade de Macau. Downloaded on May 11,2024 at 07:24:28 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: GLOBAL LOCALIZATION IN LARGE-SCALE POINT CLOUDS 3857

Fig. 7. Results improvement in SLAM by introducing RpyPR and LoPcGR.
When driving back to the start, the trajectory estimated by the variant of
LOAM that is enhanced by our RpyPR and LoPcGR shows a much better
geometric consistency with the ground truth.

TABLE VI
ABLATION STUDY ON LOPCGR. LOPCGR-αβ1z (LOPCGR-1x1yγ )

DENOTES α-β-1z ESTIMATION (1x -1y-γ ESTIMATION)

E. Ablation Study

To further demonstrate the indispensability of the submod-
ules in LoPcGR, we conducted ablation studies on its α-β-1z
estimation (denoted by LoPcGR-αβ1z) and 1x-1y-γ esti-
mation (denoted by LoPcGR-1x1yγ ) on the “GR-Easy”
test set. Since only three degrees of freedom are determined
by LoPcGR-αβ1z or LoPcGR-1x1yγ separately, we took
their respective results and LoPcGR’s output as initial values,
supplemented by NDT registration [24], to refine the global
registration and recorded their success rates in Table VI.

As shown in Table VI, it can be seen that the success rate
is very low when only estimating the initial values of α, β,
and 1z. By contrast, successfully estimating 1x , 1y, and
γ can significantly improve the success rate. The reason for
this phenomenon is that the horizontal translation differences
between the point clouds to be registered are generally greater
than their vertical translation difference, and their attitude
difference in yaw is greater than that in roll and pitch. When
LoPcGR-αβ1z and LoPcGR-1x1yγ take effect simultane-
ously, it can be found that the complete LoPcGR achieves
a predominant success rate of global registration. Such a
remarkable result verifies the indispensability of LoPcGR’s
submodules.

F. Failure Case Study

Although the excellent performance of our RpyPR and
LoPcGR has been corroborated in the previous experiments,
there still exist some extreme cases that are hard to handle.

1) Failure in Place Recognition: In place recognition, the
two typical types of failure cases are false negatives and

Fig. 8. Typical failure cases. (a) A positive sample is misidentified as
negative. (b) A negative sample is misidentified as positive. (c) The points
belonging to a fence are fitted as the ground.

false positives. A false negative results in the omission of a
candidate location that should have been detected. As illus-
trated in Figure 8 (a), two frames of point clouds belonging
to the same place are obviously different due to the occlusion
of large obstacles nearby. A false positive mainly comes from
highly similar places. For example, the two frames of point
clouds in Figure 8 (b) are collected in a narrow road, which
leads to a high degree of similarity between them from the
bird’s-eye view, thus leading to false recognition.

Note that in a global localization system, the tolerance for
false negatives is lower than that for false positives. This is
because the false positives can be filtered by further geometric
verification, while the false negatives will directly lead to
the failure of localization. Therefore, it is suggested that
more candidates can be appropriately retained to ensure fewer
missed detections.

2) Failure in Global Registration: In global registration,
we find that one kind of the most typical failures comes from
ground estimation. As shown in Figure 8 (c), in some extreme
locations, a large number of points whose normal vectors
are perpendicular to the ground appear on a fence, leading
the algorithm to misjudge the fence as the ground. If the
computing resources allow, this negative effect is expected to
be alleviated by fitting the two bins containing the most points
as candidates and further conducting geometric verification.

V. CONCLUSION

To achieve global localization for ground unmanned vehi-
cles in large-scale scenes using multi-beam LiDAR, we study
two sub-problems, place recognition and global registration,
in this article. For place recognition, we propose to learn the
place embeddings with discrimination from the perspective
of bird’s-eye view, so as to construct a compact embedding
gallery and facilitate efficient retrieval of similar candidates,
yielding RpyPR with roll-pitch-yaw invariances. For the global
registration of point clouds with low overlaps, we propose
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LoPcGR which estimates the relative roll-pitch-1z parameters
by fitting and aligning the ground plane from the point clouds
and conducts the 2D transformation estimation to determine
1x-1y-yaw values by matching the key points of the projected
occupancy grids, so as to restore the full 6-DoF global pose.
We evaluate the proposed RpyPR and LoPcGR comprehen-
sively through a large number of experiments. In terms of
recall, success rate, generalization capacity, and accuracy, our
approaches demonstrate superior performance. Notably, when
handling challenging samples, our RpyPR and LoPcGR out-
perform their counterparts by a significant margin. In addition,
we also corroborate RpyPR’s and LoPcGR’s practicability by
applying them to real-world applications of global localization
and SLAM in complex scenarios.
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