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Abstract— Owing to the inherent complementarity among
LiDAR, camera, and IMU, a growing effort has been paid to
laser-visual-inertial SLAM recently. The existing approaches,
however, are limited in two aspects. First, at the front-end, they
usually employ a discrete-time representation that requires high-
precision hardware/software synchronization and are based on
geometric laser features, leading to low robustness and scalability.
Second, at the backend, visual loop constraints suffer from scale
ambiguity and the sparseness of the point cloud deteriorates
the scan-to-scan loop detection. To solve these problems, for
the front-end, we propose a continuous-time laser-visual-inertial
odometry which formulates the carrier trajectory in continuous
time, organizes point clouds in probabilistic submaps, and jointly
optimizes the loss terms of laser anchors, visual reprojections, and
IMU readings, achieving accurate pose estimation even with fast
motion or in unstructured scenes where it is difficult to extract
meaningful geometric features. At the backend, we propose build-
ing 5-DoF laser constraints by matching projected 2D submaps
and 6-DoF visual constraints via laser-aided visual relocalization,
ensuring mapping consistency in large-scale scenes. Results show
that our framework achieves high-precision estimation and is
more robust than its counterparts when the carrier works in
large scenes or with fast motion. The relevant codes and data are
open-sourced at https://cslinzhang.github.io/Ct-LVI/Ct-LVI.html.

Index Terms— Laser-visual-inertial odometry, SLAM, loop
detection, data fusion.

I. INTRODUCTION

FOR agents like unmanned aerial vehicles and mobile
robots, real-time accurate estimation of their positions in

the environment is a prerequisite for intelligent applications.
In open outdoors, this task is usually fulfilled by GNSS
systems (GPS etc.). However, in indoor environments, clus-
tered parks, or high-rise blocks, the instability of satellite
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signals makes such systems no longer available. At this time,
agents often seek onboard sensors to sense the environment
and determine their positions simultaneously, which is called
a Simultaneous Localization and Mapping (SLAM) prob-
lem. LiDAR, camera, and IMU are the three most common
types of sensors used to build such SLAM systems [1],
[2], [3], [4], [5]. Due to the natural complementarity among
these three types of sensors, recent years have witnessed a
research upsurge of laser-visual-inertial SLAM (LVI-SLAM)
[6], [7], [8], [9], [10], [11].

The early LVI-SLAM schemes fuse the multi-sensor data in
a loosely-coupled way, for example, using laser scan to provide
depth to visual points, or employing IMU to predict a rough
transformation for inter-frame matching [6], [12], [13]. Unlike
loosely-coupled ones, in addition to data association, recent
methods also make a tightly-coupled estimation of sensor mea-
surements, such as jointly optimizing carrier poses, visual/laser
features, and IMU biases in the visual-inertial/laser-inertial
subsystems [7], [8], [9], [10], [11]. Relatively speaking, the
latter ones deeply fuse the multi-sensor data and thereby obtain
more accurate results. However, they are limited in scalability
and robustness either in their front-ends or backends due to
the following reasons.

Their front-ends often encounter two critical challenges.
Firstly, ensuring the time synchronization of incoming data
from different sources is an inevitable issue. One option is to
synchronize the time of the three sensors in hardware, such
as some visual-inertial modules or some LiDARs equipped
with built-in IMUs [14], [15] However, currently, there are no
hardware solutions available in the market to synchronize the
three. Alternatively, one way is to seek soft synchronization,
for example, to find the nearest neighbor time or perform
interpolation approximation. It is worth thinking that when the
number of sensors to be fused increases (for example, self-
driving cars will carry several LiDARs or cameras), either
the hardware or the soft synchronization will be too cum-
bersome. Therefore, it is imperative to explore more feasible
and rational time synchronization schemes. Secondly, existing
research predominantly relies on the extraction of line or plane
features from point clouds to facilitate laser data association
and achieve precise scan registration, as seen in methods like
LOAM [16]. However, such a registration technique is subject
to two limitations. a) Its feature extraction is coupled with
the scanning pattern of LiDAR, making it hard to support
multi-LiDAR inputs. b) Feature-based methods are sensitive
to noise and therefore do not perform well when the carrier
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works with fast motion or in unstructured scenes with few
geometric features.

The backend of a SLAM system usually resorts to loop
detection technologies to eliminate accumulated drifts. For
visual data, the loop detection based on bag of words has
become a golden standard, while the scale of pure visual
loop constraint is left with ambiguity [17], [18]. One pos-
sible remedy for this issue is to utilize IMU to capture
scale information [19], but how to ensure long-term scale
consistency is still an open problem. Compared with images,
it is more difficult to extract stable position features from
sparse laser point clouds. With the aid of image processing
and deep learning technologies, scan-to-scan loop detection
has developed to some extent in recent years [20], [21].
However, it is still difficult to detect the loop when there is
a big difference in the pose between the two scans. Although
assisting laser constraint construction with the help of visual
information is an easy-to-think-of strategy, considering loop
detection only while ignoring loop constraint construction
still cannot effectively eliminate the cumulative error [22].
Therefore, how to skillfully fuse the laser-visual data so that
they can complement each other both in loop detection and
constraint construction is a key problem that needs to be
solved.

To deal with the aforementioned problems, for the front-
end, we propose a Continuous-time Laser-Visual-Inertial
Odometry, Ct-LVIO for short. Specifically, considering the
time asynchrony among different sensors, we formulate the
carrier trajectory in a continuous-time representation, making
the constraints between the data at any time and the trajectory
conveniently established. To avoid the feature extraction of
point clouds and support the multi-LiDAR inputs with arbi-
trary scanning patterns, laser data is organized and associated
with probability submaps. Further, the front-end odometry
is modeled as a Maximum A Posterior estimation problem
and the loss terms among the continuous-time trajectory, the
incoming laser scans, the IMU readings, and the camera
images are specially designed and jointly optimized in a
local time window, enabling high-precision pose estimation
even when the carrier works in unstructured scenes or moves
intensely. For the backend, considering the sparseness of point
clouds and the scale ambiguity of visual loop constraints,
we propose a loop detection and constraint construction strat-
egy that integrates the projected laser submap with visual
information. First, rough 5-DoF laser loop constraints are
built from the submap-to-submap matching and 6-DoF visual
loop constraints are constructed via the local visual bundle
adjustment, respectively. Afterwards, these initial values are
refined by the precise scan-to-submap registration, so as to
further construct the global pose graph and eliminate the accu-
mulated errors in time. Hereinafter, the complete framework
with the front-end Ct-LVIO and the backend optimization will
be referred to as Ct-LVI.

To verify the effectiveness of Ct-LVI, we developed a
handheld device that consists of a multi-beam LiDAR and a
binocular camera with a built-in IMU (as shown in Fig. 1(a))
and collected a wealth of real-world data, including sequences
from common structured scenes, complex unstructured areas,

as well as those gathered with aggressive maneuvers. Exper-
imental results show that Ct-LVI can produce accurate maps
whether in structured environments or not. Moreover, when
mapping in large scenes and when the carrier is moving
intensely, Ct-LVI performs much better than its state-of-the-art
counterparts.

To summarize, our contributions are threefold:
1) We are the first to fully merge the merits of the

continuous-time trajectory and probabilistic submap rep-
resentation, yielding Ct-LVIO which enables the tightly
coupled fusion of time-unsynchronized laser-visual-
inertial data and supporting multi-LiDAR inputs with
any scanning patterns. Ct-LVIO jointly optimizes the
loss terms of laser anchors, visual reprojections, and
IMU readings regarding the continuous-time trajectory,
enabling high-precision pose estimation even in unstruc-
tured scenes or with fast motion.

2) At the backend, we propose a strategy that integrates
the projected laser submaps with visual information to
detect loop closures and construct global constraints.
The submap-based loop detection makes full use of the
place features from located multi-frame point clouds,
overcoming the degradation problem caused by the
sparsity of a single scan. Also, the laser-aided visual
constraint brings the place features from dense visual
data and the absolute scale information provided by
LiDAR into full play.

3) We developed a handheld device and gathered a
challenging real-world dataset for LVI-SLAM evalua-
tion. To ensure the reproducibility of all our results
and facilitate related extended studies, all the rele-
vant data and codes are made publicly available at
https://cslinzhang.github.io/Ct-LVI/Ct-LVI.html.

The remainder of this paper is organized as follows. Sec. II
introduces related studies. Details of the proposed continous-
time laser-visual-inertial SLAM framework are presented in
Sec. III. Experimental results are reported in Sec. IV. Finally,
Sec. V concludes the paper.

II. RELATED WORK

In this part, we first review the discrete-time SLAM frame-
works which are closely relevant to our work from the
perspective of data fusion manners and afterward review the
continuous-time SLAM systems.

A. Discrete-Time Laser-Visual-Inertial SLAM

1) Loosely Coupled: Zhang et al. [12] associated and esti-
mated the depths of visual features from point clouds, which
improved the speed and accuracy of the visual odometry.
Likewise, in [13], laser odometry with higher accuracy and
stronger robustness was fused to reduce the drift of visual
odometry. Further, based on their previous research on laser-
visual fusion [12], [13], Zhang and Singh [6] utilized IMU data
to improve the SLAM performance in fast motion, resulting
in a laser-visual-inertial SLAM framework, in which the state
was estimated from coarse to fine hierarchically. Although this
method advanced the laser-visual-inertial SLAM in part, its
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Fig. 1. (a) Self-developed handheld device. (b) The framework of Ct-LVI: “Preprocessing” produces synchronized and de-skewed point clouds, roughly fitted
trajectory, and tracked visual features; “Front-end” conducts continuous-time laser-visual-inertial odometry; and “Backend” eliminates drifts via laser-visual
fused loop detection and constraint construction, as well as global pose graph adjustment.

loosely coupled fusion led to the insufficient exploration of
the internal relations of sensors.

2) Tightly Coupled: In the past decade or so, SLAM
research on visual-inertial fusion has made great progress.
Relevant schemes fused visual and inertial information in a
tightly coupled way with the help of Kalman filters [23] or
joint optimization techniques [19]. In recent years, a line
of studies migrated the techniques used in visual-inertial
SLAM to laser-inertial SLAM. For example, based on Kalman
filter, LINS [24], Fast-LIO [25], Fast-LIO2 [26], and Point-
LIO [27] fused laser measurements with inertial data by
carefully designing the state propagation and update mecha-
nisms. In a different way, LIO-Mapping [28], LIO-SAM [29],
and D-LIOM [30] conducted joint optimization to achieve
tightly coupled state estimation.

Inspired by the mechanisms of visual-inertial and laser-
inertial SLAM, researchers tried to conduct LVI-SLAM in
a tightly coupled manner. According to the joint estimation
methods adopted, tightly coupled LVI-SLAM frameworks can
be classified into two types, filter-based ones and optimization-
based ones. The filter-based schemes focused on the front-end
odometry and mostly resorted to the Kalman filter to fuse
data. For instance, based on the visual odometry framework
MSCKF [23], Zuo et al. [7] proposed LIC-Fusion, in which
laser measurement models of point-to-surface and point-to-
line were constructed. Further, a more robust point-to-surface
association mechanism was designed to boost LIC-Fusion,
resulting in LIC-Fusion2 [8]. Recently, the error-state Kalman
filter has shown a promising potential in multi-sensor fused
SLAM. For example, Lin et al. [9] performed state prediction
via IMU propagation and updated the state by constructing
laser point-to-surface and visual reprojection measurement
models. Built atop the same framework, R3LIVE [10]
employed color information to assist the state estimation of
the visual-inertial subsystem, enabling colorful reconstruction.
Unlike these filter-based methods, which usually focused on

the current incoming data, a few approaches incorporated
multi-frame data to estimate states. To fuse multi-frame
information, a common way is to conduct joint optimiza-
tion. For example, Shan et al. proposed LVI-SAM [11]
based on the “smooth and mapping” framework [31], [32],
which estimated the states of visual-inertial and laser-inertial
subsystems separately and subsequently jointly optimized
the results of visual-inertial odometry, IMU pre-integration,
and laser-inertial odometry. Although LVI-SAM produced
promising results, its system-wise fusion of visual-inertial
and laser-inertial odometries limited its scalability and its
location-triggered loop detection was vulnerable in practice.
Very recently, Zheng et al. managed to deeply integrate the
information from a visual-inertial subsystem and a laser-
inertial subsystem, yielding a tightly-coupled and direct
odometry framework, FAST-LIVO [33].

B. Continuous-Time SLAM

The continuous-time trajectory representation was first
applied to the extrinsic calibration of camera and IMU [34].
After that, based on Bayesian rule, Furgale et al. [35] took the
lead in establishing a complete continuous-time SLAM theory
and verified its effectiveness by the joint visual-inertial cali-
bration [36]. Due to the high computational complexity, only
a few scholars have tried to estimate the visual/laser odometry
in the continuous-time SLAM framework until recent years.
For instance, Mueggler et al. [37] adopted the continuous-time
representation to develop visual-inertial odometry for event
cameras, Mo and Sattar [38] employed the pose nodes from
the visual odometry to optimize the continuous-time trajectory,
and Lv et al. [39],li-calib adjusted the trajectory by optimizing
the geometric distances between the points and the correspond-
ing surfaces. Recent relevant studies focused on improving
the efficiency of optimizing continuous-time trajectories. For
example, Sommer et al. [41] proposed a recursive formula
for conveniently computing the derivatives of continuous-time
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B-splines with respect to time. In [42], Hug and Chli proposed
a non-uniform continuous-time B-spline split interpolation
approach to improve the computation efficiency.

III. METHODOLOGY

A. Framework Overview

The overall framework of our Ct-LVI is illustrated in
Fig. 1(b). In preprocessing, the incoming LiDAR, IMU, and
camera data will be spatial-temporally associated and de-
skewed, used to roughly fit the trajectory, and tracked by
their features, respectively. In the front-end, the results of
scan matching, the IMU readings, and the depth initialized
visual features will be jointly optimized with the continuous-
time trajectory, conducting sliding-window laser-visual-inertial
odometry. At the backend, we conduct laser-visual fused loop
detection and build a global sparse pose graph to eliminate the
drift in time.

B. Notation and Trajectory Representation

1) Notation: A quantity in the world frame Fw, the body
frame (IMU frame) Fb, the camera frame Fc, and the LiDAR
frame Fl are denoted by (·)w, (·)b, (·)c, and (·)l , respectively.
A rotation matrix R ∈ R3×3(det(R) = 1), or a unit quaternion
q = [qw, qT

v ]
T
∈ R4 (qv ∈ R3, ∥q∥ = 1) is indistinguishably

utilized to denote a 3D rotation.
2) Trajectory Representation: In our case, on the one hand,

it is cumbersome to establish the constraints among multiple
discrete nodes for multi-source measurements that are not
hardware synchronized. On the other hand, the frequencies
of multi-source measurements are quite high (e.g., 400 Hz
for the IMU and higher than 100,000 Hz for single-point
acquisitions of the LiDAR). Therefore, we would like to have
a unified representation of the trajectory, which facilitates the
querying of the poses at arbitrary timestamps, the construction
of laser-visual-inertial constraints, and the de-skewing of the
LiDAR points. Also, since the high-frequency sensor data
needs to be processed in real time, we hope that the trajectory
representation has the merit of locality, that is, the update of
the local trajectory will not affect the rest. Besides, to calculate
the state conveniently, the trajectory representation should be
analytically second-order derivable. To meet the abovemen-
tioned requirements, a B-spline with order d + 1 is an ideal
choice with such properties since it is a piecewise polynomial
with degree d and is Cd−1 continuous [43].

According to [43], for a given control point set { pi } ∈

R3 with size N + 1 (i, N ∈ Z+ and 0 ≤ i ≤ N ), its
corresponding B-spline over knots domain [t0, tN+d+1) is
defined by,

p(t) =
N∑

i=0

Bi,d(t) pi , (1)

where Bi,d(t) are the B-spline basis functions which are given
by Cox-de Boor recursion formula,

Bi,0(t) =

{
1 if t ∈ [ti , ti+1),

0 otherwise.
(2)

Bi,d(t) =
t − ti

ti+d − ti
Bi,d−1(t)+

ti+d+1 − t
ti+d+1 − ti+1

Bi+1,d−1(t).

(3)

By denoting,

B̃i,d(t) =
N∑

s=i

Bs,d(t), (4)

Eq. 1 can also be given in a cumulative form,

p(t) = B̃0,d(t) p0 +

N∑
i=1

B̃i,d(t)( pi − pi−1). (5)

Analogically, for a given control quaternion set {qi }, 0 ≤
i ≤ N , in the special orthogonal group SO(3), its
corresponding B-spline is defined by [44],

q(t) = q B̃0,d (t)
0 ⊗

N∏
i=1

exp(log(q∗i−1 ⊗ qi )B̃i,d(t)), (6)

where q∗i−1 is the conjugate quaternion of qi−1, ⊗ means the
quaternion multiplication, exp(·) maps an element in so(3)

(the Lie algebra of SO(3)) to SO(3), and log(·) is the inverse
operator of exp(·).

In our framework, the individual sensors do not need to
be hardware time-synchronized. Their measurements will be
associated with two continuous-time B-splines with time as
the variable. One is the position trajectory, the other is the
rotation trajectory. At any timestamp, the carrier’s pose can
be queried from these trajectories, thus obtaining the sensor’s
observation pose using sensor-to-sensor extrinsics. In this way,
the objective to be optimized is transformed into the local
segments of these trajectories instead of a discrete-time pose.

C. System Initialization

Reasonable initialization is necessary for a laser-visual-
inertial SLAM system. On the one hand, since the IMU
acceleration reading is coupled with gravity, the direction
of gravity needs to be determined via initialization, so that
the estimated trajectory is consistent with the actual physical
movement of the carrier. On the other hand, as there are many
variables to be estimated, we need to estimate the carrier
state at the beginning reasonably, so as to ensure the quick
convergence of the state estimator.

Via experiments, we find that the laser odometry is with
higher accuracy and stability than the visual one when the
carrier works in slow motion. Therefore, we extend the
initialization of laser-inertial odometry in discrete-time rep-
resentation to that in continuous-time. Specifically, for the
multi-frame point clouds and IMU readings in the time
window, we first resort to Normal Distribution Transform
(NDT) [45] to obtain the relative motion of the multi-frame
point clouds in a short-period time window, and at the
same time obtain the IMU pre-integration values resorting
to Forster’s theory [46]. Subsequently, the relative state of
the laser odometry is combined with the corresponding state
quantity of the IMU pre-integration to obtain the gravity
and velocities, so as to align the LiDAR poses to the world
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coordinate system according to the gravity. After that, the
continuous-time trajectory in the initialization window is fitted,
employing the discrete-time states as its control points.

D. Preprocessing

1) Trajectory Fitting With IMU Readings: For the incoming
IMU data, we begin with the last estimated state and integrate
the IMU readings to propagate state anchors for a specific
interval. By this way, the R3 and SO(3) B-spline estimation
can be converted into a curve fitting problem according to
Eq. 5 and Eq. 6. The error terms of such a curve fitting
problem are composed of two parts. One is the position-related
(orientation-related) term stemming from the trajectory and the
integration, and the other is the acceleration-related (angular
rate-related) term derived from the trajectory and the raw IMU
readings.

2) LiDAR Data Synchronization and De-Skewing: A beam
of point clouds is scanned point by point by a laser emitter.
If the scanning process of a beam of point clouds is accompa-
nied by the movement of the carrier, the sampling pose of each
point will be different. Therefore, if a beam of point clouds
is processed according to the same time and pose, the point
clouds will be distorted. In today’s LiDAR, each laser point
has its corresponding time stamp, which makes it possible to
correct the distortion according to the movement of the carrier,
thereby improving the accuracy of registration and mapping.

Assuming that there are one primary LiDAR and several
auxiliary LiDARs, we regard the starting and ending time
stamps of the incoming scan from the primary LiDAR as a
reference, and merge all the cached points from the auxiliary
LiDARs whose time stamps are in the reference time interval
to obtain the fused point cloud in a chronological order
(as shown in “‘Association and De-skewing” of Fig. 1(b)).
Subsequently, according to the extrinsics among LiDARs, all
the auxiliary points are first transformed to the primary LiDAR
frame Fl p . To further remove the distortion, we retrieve the
sampling pose of each point from the fitted trajectory and
transform all points to the world frame Fw. That is, a point
pla

t with a sampling time t in the auxiliary LiDAR frame Fla
will be transformed to Fw by, pw

t = Tw
b T b

l T l
la pla

t , where ()

returns the corresponding homogeneous coordinate; Tw
b , T b

l ,
and T l

la ∈ SE(3) are the predicted pose of Fb, the offline
calibrated extrinsics of the primary LiDAR to the IMU, and
the extrinsics of the auxiliary LiDAR to the primary LiDAR,
respectively.

3) Visual Feature Extraction and Tracking: For each input
image, in order to make the framework robust to illumination
changes, we first homogenize its pixels with CLAHE his-
togram equalization [47]. Since an image contains millions of
pixels, it’s impractical to incorporate all the dense visual data
in estimation. To lower the computation load, we extract its
FAST [48] corners and track these feature points from frame
to frame via Lucas-Kanade optical flow [49]. In this way, the
key points detected in a certain time window can be efficiently
and stably associated to avoid complicated feature matching.

Fig. 2. Continuous-time laser-visual-inertial odometry.

E. Front-End: Continuous-Time Laser-Visual-Inertial
Odometry

In the front-end, we aim to fuse all the sensor data into a
unified framework and perform a tightly-coupled estimation
of the carrier trajectory, map points as well as sensor states.

1) Formulation: Denote the LiDAR data, the image fea-
tures, and the IMU measurements by L, V , and I, respectively.
The variables to be jointly estimated in Ct-LVIO are the R(3)

and SO(3) B-splines (C), the visual map points (M), and the
extrinsics along with the IMU biases (T ). The objective of
Ct-LVIO is to maximize the posterior probability, i.e.,

{C,M, T }∗ = arg max
C,M,T

p(C,M, T | L,V, I). (7)

According to Bayes law, p(·) can be reformulated as,

p(C,M, T |L,V, I) =
p(C,M, T )p(L,V, I |C,M, T )

p(L,V, I)
.

(8)

LiDAR data are associated with extrinsics and trajectories,
while IMU observations are only associated with the tra-
jectories. Further, via preprocessing and offline calibration,
we already have reasonable estimates for the trajectories,
visual points, and extrinsics. Hence, they can be considered
as independent prior terms in Eq. 8, leading to,

p(C,M, T | L,V, I)

∝ p(C)p(M)p(T )p(L | C, T )p(V | C,M, T )p(I | C),
(9)

where the first three terms are the prior terms, and the last
three are the posteriors of the LiDAR, camera and IMU,
respectively. In Maximum A Posterior estimation, these poste-
rior terms are modeled as the corresponding high-dimensional
Gaussian distributions characterized by their means and
covariances. Thus, the optimization objective of our front-end
can be equated with minimizing the sum of the quadratic error
terms, i.e.,

{C,M, T }∗ = arg min
C,M,T

(L eT QL
L e

+
V eT QV

V e+ I eT Q I
I e), (10)

where L e, V e, and I e are the laser, visual, and inertial error
terms, and QL , QV , and Q I are their corresponding covari-
ance matrices. To perform the joint optimization, we need to
construct the concrete forms of L e, V e, and I e first.
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2) Laser Error Term: Different types of LiDAR often have
different scanning patterns. Up to now, almost all of the
existing laser-visual-inertial SLAM approaches are based on
feature points, lines, or planes of a scan for a specific type
of LiDAR. This kind of methods has the advantage that
the geometric constraints can be conveniently established,
bringing fairish results. However, such feature-based methods
usually suffer from poor scalability and are sensitive to noise.
Therefore, we seek a more general and robust way to perform
point cloud registration. Inspired by the probabilistic submap
representation [30], [50], we register a scan to a submap by
finding the highest cumulative hit probability of the raw point
cloud in the probability map. Accordingly, the optimization
objective is,

{qs
l , ps

l }
∗
= arg max

qs
l , ps

l

∑
i

p(R(qs
l ) pl

i + ps
l ), (11)

where pl
i is the i-th point of the point cloud in LiDAR frame,

qs
l and ps

l are the orientation and position of the LiDAR in
the submap, R(·) converts a quaternion to the corresponding
rotation matrix, and p(·) returns the submap probability at
the associated voxel. Such a way avoids feature extraction
and matching, and the registration efficiency is very high if
a reasonable initial value is available. Hence, on the premise
of predicting the approximate pose from IMU readings, we can
register the synchronized point cloud to the submap to obtain
the registered pose. Afterwards, to fuse it with IMU and
camera data, we uniformly sample pose anchors between the
starting and ending timestamps of the scan to construct laser
error terms.

Assume that the poses of the k-th frame and the k + 1-th
frame obtained by the aforementioned scan registration are
(qs

k , ps
k) and (qs

k+1, ps
k+1). The anchor pose at t ∈ (tk, tk+1)

can be obtained by position and quaternion interpolation,

pt = pk +
t − tk

tk+1 − tk
( pk+1 − pk), (12)

qt = qk ⊗ (q∗k ⊗ qk+1)
t−tk

tk+1−tk . (13)

Thus, the error terms between the anchor pose and the
trajectory can be defined as,

L ep,t = pt − p(t), (14)
L eq,t = log(qt

∗
⊗ q(t)). (15)

3) Visual Error Term: To keep the computation bounded,
we only reserve the visual feature points in a local time win-
dow to construct visual error terms. We initialize the depth of a
visual feature point in two ways. One is to associate the depth
from the point cloud map that has been registered nearby. The
other is to estimate the initial depth via triangulation based
on multiple observation frames of the point in the past time
window. Note that a point is only triangulated when its parallax
in keyframes reaches a certain threshold. Assume the k-th
feature point p̆i

i,k of the i-th frame is subsequently observed
by the j-th frame and its estimated depth is di,k . According to
the epipolar geometry, the reprojection error V ei, j,k between
the i-th and the j-th frame regarding ( p̆i

i,k, di,k) is defined as,

V ei, j,k= p̆ j
i,k−π(T c

b Tw
b

T
(t j )Tw

b (ti )(Rc
b

T pci
i,k), K ), (16)

where K is the camera intrinsic matrix, T c
b (Rc

b) is the
IMU-to-camera extrinsics which are obtained beforehand by
calibration, and π represents the projection of the associated
3D spatial visual point to the 2D image plane.

4) Inertial Error Term: Each IMU reading contains 3-axis
acceleration and 3-axis angular velocity. Our goal is to adjust
the R3 and SO(3) trajectories so that the acceleration and
angular velocity calculated from them are close to those
measured from IMU. At time t , the carrier pose ( pw

b (t), qw
b (t))

can be directly queried from the trajectories. The acceleration
and angular velocity of the carrier at time t can be deduced
from the second-order derivative of the R3 trajectory ( p̈w

b (t))
and the first-order derivative of the SO(3) one (q̇w

b (t)), respec-
tively. Thus, the loss term between the IMU reading at (ωt )
at time t and the R3 (SO(3)) trajectory can be defined as,

I ea,t = at − R(qw
b (t))T

( p̈w
b (t)−gw)− a b (17)

I eω,t = ωt − R(qw
b (t))T

(q̇w
b (t))− ωb, (18)

where gw is the gravity vector; a b and ωb are the biases of
the accelerator and gyroscope, respectively.

5) Laser-Visual-Inertial Joint Optimization: In a local time
window of the front-end, after the constraints among different
sensors are established, we can jointly optimize all the vari-
ables resorting to common mathematical tools. Those variables
include the extrinsics (Rb

c , pb
c , Rb

l and pb
l ), the IMU biases

(a b and ωb), the inverse depths of all the 3D visual points (d),
and the control points of the trajectories (R c and p c), resulting
in a compact vector,

x = [Rb
c

T
, pb

c
T
, Rb

l
T
, pb

l
T
, a bT

, ωbT
, dT , R cT

, p cT
]
T .

With the error terms defined above, the concrete loss function
can be formulated as,

F(x) =
∑
∥

L ep,t∥QL +

∑
∥

L eq,t∥QL +

∑
i, j,k

∥
V ei, j,k∥QV

+

∑
∥

I ea,t∥Qa +

∑
∥

I eω,t∥Qω , (19)

in which ∥e∥Qα =
1
2 eT Q−1

α e, α ∈ {L , V, a, ω}, and QL , QV ,
Qa , and Qω are the measuring covariances of the LiDAR,
camera, accelerator, and gyroscope, respectively. Accordingly,
the optimization objective is defined as,

x⋆
= arg min

x
F(x). (20)

To find the optimal solution, we start from the esti-
mated initial values and resort to the Levenberg-Marquardt
algorithm [51], [52] to solve the problem. Specifically, suppose
that all the elements of L ep,t ,

L eq,t ,
V ei, j,k,

I ea,t , and I eω,t
are rearranged into a stacked function vector f (x). Denote
J T Q−1 J and J T Q−1 f by H and δ respectively, where
J = d f (x)

dx , Q is the concatenated covariance matrix, and
f is the error of the current iteration. The compact variable x
can be updated via,

x ← x ⊖ (H + γ I)−1δ, (21)

where γ is the damping coefficient of the current iteration, I
is the identity matrix which has the same dimension as H ,
and ⊖ means the minus operation on the manifold.
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Fig. 3. (a) Submap projection. (b) Visual relocalization.

F. Backend: Pose Graph Adjustment via Laser-Visual Loop
Constraints

1) Laser Loop Constraint: The sparseness of the point
cloud brings challenges to the algorithm design of laser loop
detection. In addition, the establishment of accurate loop
constraints is equally important for the backend. Considering
that the multi-frame point cloud with pose information can
better reflect the location characteristics stably, we project the
point cloud of a submap onto the horizontal plane to detect
the loop from submap to submap. At the same time, the
transformation relationship between submaps can be obtained
by extracting and matching feature points from the projected
submaps.

When detecting laser loops, whenever a new 3D submap
construction is completed, the submap-to-submap loop detec-
tion will be launched. That newly finished submap will be
matched with all historical submaps one by one to find the
possible loop closure.

Specifically, assume that we are going to determine whether
there is a loop closure between the 3D submap 3Sa and 3Sb
or not. The 2D submaps, 2Sa and 2Sb, will be obtained by
projecting 3Sa and 3Sb along the gravity, respectively. During
projection, the probability of each grid is the sum of the
probabilities of all voxels corresponding to it in the direction
of gravity (as Fig. 3 (a) illustrates). In this way, each grid
reflects the richness of ground objects in the vertical direction
at that position.

After that, we extract SURF corners and calculate the
corresponding feature descriptors [53] of 2Sa and 2Sb. When
performing the loop detection, we match the SURF corners
of 2Sa with those of 2Sb using their descriptors by FLANN
search [54] under Lowe’s strategy [55]. If the number of suc-
cessfully matched points is larger than an acceptable threshold
(5 in our setting), a similarity transformation will be further
estimated between these matched points. When the scale value
s of the estimated transformation is close to 1 (s ∈ [0.9, 1.1]),
it is regarded that there is a loop between 3Sa and 3Sb.

To further establish the scan-to-submap loop constraint,
we first calculate the initial value of the point cloud under
the target submap where the loop occurs. Assuming that
the poses of 3Sa and 3Sb are Tsa and Tsb , respectively,
and that the pose of a point cloud in 3Sb is T sb

l , the
pose of the point cloud in 3Sa can be obtained as T sa

l
according to the 3D coordinate transformation rule. Moreover,
since the scale-determined similarity transformation between
2Sa and 2Sb is only 3-DoF, the translation value z in T sa

l
is left undetermined. To obtain a proper estimate of z,

we resort to branch-and-bound searching as the practice
of [50].

2) Visual Loop Constraint: Compared with laser loop
detection, the visual one is relatively mature. We resort to
DBoW2 [18] to detect visual loops. Since the error and noise
of visual positioning are larger than those of laser, we first
roughly locate the loop pose from the visual features and
subsequently refine it by matching the point cloud to the
submap.

Specifically, we set two relative position (rotation) thresh-
olds, coarse and fine, for keyframe selection. The coarse
threshold is used for loop detection, and the fine one is
set for caching keyframes for relocalization. When a loop
is detected, we take out several keyframes near the loop
frame from the cached keyframes. Next, one-to-one feature
point matching is carried out among these keyframes, and
the common-view feature points are triangulated. Afterwards,
Perspective-n-Point [56] relocalization can be performed by
using the feature points observed in the loop frame. To further
improve the repositioning accuracy, after the successful reposi-
tioning of Perspective-n-Point, all the observations in the local
window will be further constructed as a bundle adjustment
problem [57] (as Fig. 3(b) shows). If the solving of the bundle
adjustment converges, it is considered that the visual loop
is successfully found and a reasonable repositioning pose is
obtained. At last, we convert the relocated pose into the scan-
to-submap pose and employ the scan-to-submap registration
to refine the positioning.

IV. EXPERIMENT

A. Datasets, Metrics, and Implementation

1) Datasets: Public Dataset. The public dataset VIRAL
[58] was taken for experimental verification, whose acquisition
platform was a DJI M600 UAV, which was equipped with
two OS1-16-gen-1 LiDARs (the horizontally mounted one was
utilized), two uEye-1221-LE cameras (the left one was used),
and a VectorNav-VN100 IMU.

a) Self-collected dataset: To gather multi-sensor data for
experiments, we developed a handheld device as shown in
Fig. 1(a), which includes a ROBOSENSE 16-beam LiDAR
and a ZED binocular camera (its left eye was used), in which
a consumer-grade IMU is embedded. To test the performance
of our framework in various scenes, we collected rich data in
structured scenes (around buildings) and unstructured scenes
(around rivers and bushes), HD-1∼HD-4 as Table I shown.
Besides, four sequences when the carrier was in fast motion
were also gathered from two places (HD-5∼HD-8). During
acquisition, these series were accompanied by continuous
intense motion (their highest angular velocities were over
200◦/s).

2) Metrics:
a) Absolute Positioning Error (APE): VIRAL’s absolute

position of the carrier was provided by a Leica tracker. During
evaluation, we first aligned the estimated trajectory with the
ground truth by Umeyama algorithm [59], and then calculated
the average position deviation between the two trajectories as
APE.
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TABLE I
DETAILS OF HD DATASET. “TRAJ. LEN.”, “LIN. VEL.”, AND “ANG. VEL.”

ARE ABBREVIATIONS OF TRAJECTORY LENGTH, LINEAR VELOCITY,
AND ANGULAR VELOCITY, RESPECTIVELY

b) Relative Revisiting Error (RRE): Due to the obstruc-
tion of tall buildings and trees in the gathering environment
of the self-collected dataset, the GNSS signal was extremely
unstable. Therefore, we regarded the relative pose as the
ground truth to evaluate the accuracy of the algorithm on our
HD dataset. Specifically, to automatically generate the ground
truth, we first selected out the point clouds around a revisited
location, resulting in historical point clouds Ph and revisit-
ing ones Pr . After that, we conducted Normal Distribution
Transform (NDT) [45] registration between Ph and Pr and
manually checked whether the registration succeeded or not.
If a pair of point clouds was successfully registered, the 6-DoF
relative pose of the revisiting point cloud in the historical one
would be regarded as the ground truth. By repeating the above
procedures over all the revisited locations and all the data
sequences, we established our HD dataset with 6-DoF ground
truth.

3) Implementation: All modules in Ct-LVI were imple-
mented in C++. With the help of Ceres-Solver,1 we
constructed and solved the front-end laser-visual-inertial joint
optimization problem and the backend pose graph optimiza-
tion problem. Message communication among processes was
fulfilled by the popular Robot Operating System (ROS).2

The noise statistics of IMU were measured by IMU-utils.3

The extrinsics among the LiDAR, camera, and IMU were
calibrated by LVI-ExC [60]. The number of scans contained
in a submap was empirically set to 100. The threshold of
well-matched pairs of feature points for judging that there
was a loop closure between two submaps was assigned as 5.
A submap’s resolution (voxel size) was set to 0.2m. In com-
parative experiments, for all the competing rivals (R2LIVE [9],
R3LIVE [10], LVI-SAM [11], D-LIOM [30], Fast-LIO2 [26],
and LIO-Mapping (LIOM for short) [28]), involved in the
comparisons, we adopted their corresponding open-source
implementations, and the parameters of these competitors were
set in accordance with their original papers except for the
adaption of the sensor related configurations.

All experiments were carried out on a notebook computer
with the configuration of “Intel(R) Core(TM) i7-8750H CPU
@ 2.20 GHz × 2” and 16GB RAM.

1http://ceres-solver.org/
2http://wiki.ros.org/
3https://github.com/gaowenliang/imu_utils

TABLE II
APES (m) OF LASER-VISUAL-INERTIAL ODOMETRY FRAMEWORKS
ON VIRAL. “W-AVG” IS THE WEIGHTED AVERAGE ERROR OF THE

RELEVANT SEQUENCES

B. Results of Laser-Visual-Inertial Odometry

We first investigate the performance of the proposed
LiDAR-Visual-Inertial Odometry (Ct-LVIO) in the indoor
structured environment on VIRAL. On nine data series cover-
ing three scenes, the APEs of Ct-LVIO and its counterparts
were evaluated and recorded in Table II. From Table II,
in terms of APE, compared with the existing state-of-the-
art laser-visual-inertial odometry approaches, R2LIVE [9] and
R3LIVE [10], our Ct-LVIO has achieved the best results
in most sequences. Notably, its “w-avg” error on VIRAL
measured by APE is 9cm lower than R3LIVE. From the per-
spective of stability, R2LIVE achieves an accuracy of 0.13m
in “eee2”, but it also produces a huge error of 1.23m in the
same scenario. Likewise, R3LIVE [10] fluctuates from 0.12m
to 0.77m in “sbs”. By contrast, our Ct-LVIO is much more
robust, producing more consistent results in different scenes
with various moving trajectories. Besides, one phenomenon
that Ct-LVIO performs less effectively on a few sequences
needs to be further discussed. The underlying reason may lie
in the manner of scan-to-scan association. The VIRAL dataset
is collected from low-speed moving drones and its collection
scenarios are small structured scenes such as indoor halls
or enclosed courtyards. Under such conditions, R2LIVE and
R3LIVE associate point clouds using laser geometric features,
making it easier to establish precise geometric constraints.
Relatively speaking, our Ct-LVIO associates point clouds
using probability submaps, which may drop some geometric
detail due to the voxelized submap representation.

To compare the performance of Ct-LVIO with state-of-
the-art approaches more intuitively, we also provide detailed
qualitative experimental results. First, we align their posi-
tioning trajectories on “eee1”, “nya2”, and “sbs3” with the
ground-truth ones and draw them in Fig. 4. It can be seen that
R2LIVE produces large deviations on all the three sequences.
Likewise, R3LIVE only performs well on “eee1”, but deviates
largely from the ground-truth on “nya2” and “sbs2”. By con-
trast, our Ct-LVIO obtains the best estimation results, which
are in good agreement with the actual motion trajectories
on all the sequences. In addition, we also generated the
corresponding point cloud maps of the three sequences under
the trajectories estimated by Ct-LVIO. As shown in Fig. 5, the
maps constructed by Ct-LVIO can accurately reconstruct the
overall structure as well as local details of these scenes, which
verifies the high accuracy of Ct-LVIO’s trajectory estimation.

C. Mapping Improvement With Laser-Visual Loop
Constraints

To corroborate the effectiveness of the laser-visual fused
loop detection strategy, the global mapping results are
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Fig. 4. Estimated trajectories. Subfigures from top to bottom plot the trajectories estimated by R2LIVE [9], R3LIVE [10], and our Ct-LVIO respectively.

Fig. 5. Point cloud maps built by Ct-LVIO in which the points are colored by their z values gradually from red to blue.

evaluated both quantitatively and qualitatively. We collected
two types of outdoor data. One is the mixed data of structured
and unstructured scenes (HD-1, HD-2, and HD-3) gathered
along campus roads, and the other is the data collected
in an unstructured jungle (HD-4). The former can test the
performance of Ct-LVI in large-scale scenes, and the latter
can assess Ct-LVI in unstructured scenes.

The top row of Fig. 6 shows the overall mapping results of
the full framework Ct-LVI (with Ct-LVIO in the front-end and
laser-visual loop constraint construction in the backend) when
the carrier works outdoors. It can be seen that Ct-LVI can

build high-precision maps with global consistency, whether in
hybrid scenes or completely unstructured scenes, which shows
its adaptability to complex environments.

Under the same outdoor sequences, we also evaluated
the revisiting errors of competing odometry approaches
(R2LIVE [9] and R3LIVE [10]), and LVI-SAM [11] which is
the only existing LVI-SLAM framework with a loop closure
detection at its backend. The obtained results are listed in
Table III and the positioning trajectories of the compared
methods are also drawn in the bottom row of Fig. 6. It can
be seen that when only the front-end odometry is carried out,
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Fig. 6. Mapping results built by Ct-LVI (the top row) and the estimated trajectories of competing laer-visual-inertial odometry/SLAM frameworks (the
bottom row) in large-scale structured scenes (HD-1, HD-2, and HD-3) and an unstructured area (HD-4).

TABLE III
RRES (m) OF COMPETING LASER-VISUAL-INERTIAL ODOMETRY/SLAM

FRAMEWORKS ON THE OUTDOOR DATASET. ✗ MEANS
“FAILED”. CT-LVIvl /CT-LVIll DENOTES CT-LVI

WITH VISUAL-ONLY/LIDAR-ONLY
LOOP CONSTRAINTS AT THE
BACKEND, RESPECTIVELY

our Ct-LVIO and R3LIVE have large cumulative drifts when
long-term mapping in large-scale scenes, let alone the quick
divergences of R2LIVE on these challenging sequences. When
the backend laser-visual loop detection is turned on, Ct-LVI
successfully reduced the revisiting error to the decimeter level,
ensuring the global consistency of mapping. As for LVI-SAM,
although its positioning results on HD-1 and HD-2 are close
to Ct-LVI, its result on HD-4 is one order lower than ours and
it encounters a divergence on HD-3, showing lower stability.

Additionally, we also perform ablation studies on the visual
and laser loop constraints at the backend. The results for
Ct-LVIvl (Ct-LVIO + visual loop constraints) as well as
Ct-LVIll (Ct-LVIO + laser loop constraints) are provided in
Table III. It can be seen that when only visual loop constraints
are constructed, Ct-LVIvl successfully eliminates the cumula-
tive error on HD-1 and HD-2, but exhibits significant drifts
on HD-3 and HD-4. Comparatively, the laser loop constraints
are successfully established by Ct-LVIll on all the sequences,
showing greater stability. From the results of Ct-LVI, it can be
observed that when both the visual and laser loop constraints
take effect, the system can achieve the best performance to
construct global consistency maps with high precision.

D. Performance Under Fast Motion

In order to evaluate the effectiveness of IMU fusion,
we evaluated Ct-LVIO and its competing methods on the
collected fast-moving dataset. The relative revisiting errors

TABLE IV
RRES (m) UNDER FAST CARRIER MOTION. ✗ MEANS “FAILED”

of the compared methods on the four fast-moving sequences
are presented in Table IV. The results clearly indicate that
Ct-LVIO maintains a high level of positioning accuracy even
in scenarios involving fast carrier motion, thereby demon-
strating its successful fusion of IMU data. Furthermore, it is
noteworthy that the laser feature-based approaches (R2LIVE,
R3LIVE, and LVI-SAM) are highly susceptible to failure when
the carrier undergoes rapid rotation. Conversely, the proposed
Ct-LVIO consistently achieves successful localization. This
can be attributed to the difficulty in extracting stable features
during rapid carrier rotation, which subsequently impedes
the establishment of accurate scan-to-scan correspondences.
In contrast, the probabilistic map-based point cloud alignment
employed in Ct-LVIO exhibits greater resilience to outliers in
fast-moving scenarios, thus ensuring robust state estimation
and precise reconstruction.

To intuitively showcase the positioning and mapping effects
of Ct-LVIO when the carrier is moving rapidly, we plot the
estimated trajectories of the carrier, the 6-DoF errors of the
estimated poses against the ground truth, the built maps by
Ct-LVIO on HD-5∼HD-8, and the corresponding gyroscope
reading profiles during the data acquisitions in Fig. 7. From
the profiles of the gyroscope readings and the moving tra-
jectories of the carrier, the complexity of the motion can be
readily observed. Nevertheless, the relatively low magnitudes
of the 6-DoF errors in the estimated poses provide evidence
of Ct-LVIO’s ability to achieve highly accurate localization
even in such challenging cases. Furthermore, the point cloud
maps constructed reveal the capacity of Ct-LVIO to accurately
capture the overall structures of buildings as well as the
finer details such as windows, columns, and trunks. This
observation serves as confirmation that Ct-LVIO is capable
of producing high-quality scene reconstructions even in the
presence of fast carrier motion.
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Fig. 7. Results under fast carrier motion. The first row: the estimated trajectories by Ct-LVIO when the handheld device moves intensely. The second row:
the 6-DoF errors of the estimated poses against the ground truth. The third row: the corresponding profiles of the raw gyroscope readings, where the segments
with large angular velocities are highlighted. The last row: the point cloud maps built by Ct-LVIO in which the points are colored by their z values gradually
from red to blue.

TABLE V
APES (m) WHEN THE CAMERA/LIDAR DEGENERATES. CT-LIO IS THE

ABBREVIATION OF CONTINUOUS-TIME LIDAR-INERTIAL ODOMETRY.
CT-LVIO-BL DENOTES RUNNING CT-LVIO WHILE THE LIDAR IS

OCCASIONALLY BLOCKED

E. Sensor Degeneration Study

One of the advantages of multi-sensor fusion is that the
system can still work when one sensor fails occasionally.
In this subsection, we evaluate the performance of Ct-LVIO
when the LiDAR’s/camera’s data is lost.

1) Camera Degeneration : Regarding the scenario of cam-
era degradation, we evaluate the ability of our system under
such a case by conducting experiments under extreme condi-
tions where the camera is completely blocked throughout the
SLAM cycle, rendering image data entirely unavailable. When
the functionality of the camera deteriorates, the front-end

of the system will automatically transition to a laser-inertial
odometry approach (termed as Ct-LIO). In the real case,
camera degradation can be judged by the tracking results of
the image. Specifically, we consider the camera to be degraded
when there are insufficient points successfully tracked or
insufficient points successfully triangulated. Under such a
situation, the visual constraints will no longer take effect.

To investigate the system performance when the camera
deteriorates, we evaluate Ct-LIO and three other laser-inertial
odometry frameworks (LIOM [28], D-LIOM [30], and Fast-
LIO2 [26]), using the VIRAL dataset [58] as a benchmark. The
obtained results are presented in Table V. Although our system
was not specifically designed for laser-inertial odometry, it can
be seen from Table V that Ct-LIO can still run reliably and
achieve high levels of positioning accuracy. Also, Ct-LIO’s
performance is competing even compared with those pure
laser-inertial odometry frameworks.

2) LiDAR Degeneration: As our system design priori-
tises the LiDAR as the principal sensor, we anticipate the
visual-inertial odometry to assume responsibility when the
LiDAR degrades momentarily. To substantiate this capability,
we examined Ct-LVIO on VIRAL’s sequences and manually
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Fig. 8. LiDAR degeneration cases. Top: the carrier’s moving trajectory (blue
curves) and the positions where the LiDAR is manually blocked (purple
pentagrams, “w/o” is the abbreviation of “without”). Bottom: two typical
real-world degeneration cases encountered amid the collection of HD-1 and
HD-4 where the white points stand for the incoming point cloud while the
colored ones represent the previously built map.

blocked the LiDAR to simulate scenarios of LiDAR degra-
dation. As depicted in the top row of Fig. 8, we demonstrate
the distributions of manually blocked LiDAR segments on two
sequences, namely eee1 and sbs2. Specifically, the purple pen-
tagrams denote the locations where the LiDAR point clouds
were deliberately discarded. The system front-end which runs
under occasionally blocked LiDAR is named Ct-LVIO-BL.
The localization accuracies of Ct-LVIO-BL are enumerated in
Table V. It can be discerned that Ct-LVIO-BL still achieves
satisfactory localization accuracy despite the artificial LiDAR
degradations, demonstrating robustness in such extreme cases.

It is worth underscoring that, in addition to the simulation
test of manually blocking the LiDAR, we also have several
real-world cases of LiDAR degradation in the dataset actually
collected. As exhibited in the bottom row of Fig. 8, two degra-
dation cases encountered in HD-1 and HD-4 acquisitions are
illustrated wherein the LiDAR scanning direction is approx-
imately perpendicular to the ground, causing most nearby
points to lie in the same plane. Conversely, distant points
are sparse and principally leafages, rendering it difficult to
extract meaningful features from them and resulting in a lack
of constraints on the carrier pose. Nevertheless, as analyzed in
Sec. IV-C, the mapping results with strong global consistency
on HD-1 and HD-4 shown in Fig. 6 and the corresponding
low revisiting errors listed in Table III also corroborate that
our Ct-LVI has the faculty to address real-world cases of
degradation.

F. Time Cost

In this part, we investigate the time efficiency of our
framework. As shown in Table VI, we respectively list the
time consumption of each frame of data (point cloud or image)
processed by each main module in the front-end and backend
of the system.

TABLE VI
TIME COSTS (MS)

It can be seen that the frame rate of the front-end is
about 10 frames per second, which ensures the real time
processing efficiency for most of the existing LiDARs (for
example, the frame rates of Velodyne, Robosense, Ouster,
and Livox are all 10 frames). This should be attributed to
the fact that the registration strategy based on probability
maps avoids time-consuming feature extraction and matching,
and the direct pose constraint also saves the time cost of
continuous-time trajectory optimization. For the image data,
although most cameras can provide frame rates higher than
10, to ensure sufficient parallax, the front-end actually only
requires a lower image frame rate. In our implementation,
we track the image keypoints at the raw frequency but set the
triangulation frequency for the feature points to one-third of
the raw frequency to avoid unnecessary computation. In addi-
tion, since the joint optimization of the front-end is triggered
by the incoming point cloud and the processing time of each
image is mainly in the preprocessing, the front-end can also
process image data with high efficiency.

At the backend, the framework takes about 54 milliseconds
to establish a laser loop constraint, while it takes about
80 milliseconds to completely construct a visual loop. Thus,
the processing efficiency of the backend of Ct-LVI is compa-
rable to that of its front-end. Besides, most of the data sent
to the backend will be quickly screened when there is no
candidate loop closure. Therefore, the processing efficiency
of the backend is actually much higher, which is of great
significance for eliminating accumulated errors in time.

V. CONCLUSION

In this article, we propose a continuous-time laser-visual-
inertial SLAM framework Ct-LVI. Its front-end Ct-LVIO per-
forms tightly coupled state estimation by integrating the loss
terms of LiDAR, camera, and IMU with the continuous-time
trajectory representation, supporting multi-sensor inputs with-
out time synchronization as well as multi-LiDAR inputs
in arbitrary scanning patterns. Ct-LVI’s backend conducts
pose graph optimization to eliminate accumulated drifts via
laser-visual fused loop detection and constraint construction,
ensuring a long-term mapping consistency. The effectiveness
of Ct-LVI is corroborated on both the public dataset and the
self-collected challenging dataset. Compared with its state-of-
the-art counterparts, Ct-LVI produces more consistent maps in
large-scale outdoor scenes and performs much more robustly
when the carrier works with fast motion. In future work,
we will devote our efforts to further improve the scalability of
our framework, e.g., to make it support multi-camera inputs.
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