
Pattern Recognition 155 (2024) 110640

A
0

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Few-shot image classification via hybrid representation
Bao-Di Liu a, Shuai Shao b,∗, Chunyan Zhao c, Lei Xing d, Weifeng Liu a, Weijia Cao e, Yicong Zhou f

a College of Control Science and Engineering, China University of Petroleum, Qingdao 266580, China
b Zhejiang Lab, Hangzhou, Zhejiang 311121, China
c Suzhou Centennial College, China
d Qingdao Chrystar Electronic Technology Co., Ltd, Qingdao 266580, China
e Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
f Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, China

A R T I C L E I N F O

Keywords:
Few-shot image classification
Specific representation
Shared representation

A B S T R A C T

Few-shot image classification aims to learn an embedding model on the base datasets and design a base learner
to recognize novel categories. The few-shot image classification framework is a two-phase process. First, the
pre-train phase utilizes the base data to train a CNN-based feature extractor. Next, in the meta-test phase,
the frozen feature extractor is applied to novel data with categories different from the base data. A base
learner is then designed for recognition. Several simple base learners, including nearest neighbor, support
vector machine, and logistic regression classifiers, have been recently introduced for few-shot learning tasks.
However, these base learners are separately designed to consider specific representations (e.g., the class center)
or shared representations (e.g., the boundaries). This paper mainly focuses on exploring the representation-
residual base learners, which aim to represent a query sample with the support set and predict the query
sample’s label based on the minimal residual error. We first introduce two representation-residual base learners:
a specific representation base learner and a shared representation base learner. Then, we propose a novel
hybrid representation base learner that combines both base learners to generate competitive representation.
Additionally, we extend our approach by incorporating a self-training framework to utilize the query data
fully. We evaluate our proposed method on several benchmark few-shot image classification datasets, such
as miniImageNet, tieredImageNet, CIFAR-FS, FC100, and CUB datasets. The experimental results indicate that
our proposed approach shows a significant performance improvement.
1. Introduction

Recently, deep learning has achieved impressive performance in
various visual recognition tasks, such as object detection [1,2], image
classification [3,4], or semantic segmentation [5]. This success typically
relies on a large number of labeled datasets. However, deep learning
typically relies on large labeled datasets, which can be costly to collect.
This is in contrast to the human visual recognition system, which
can learn a novel concept with only a few examples or a limited
amount of experience. Therefore, a recently emerging approach called
few-shot learning [6–11] has attracted increasing attention. Few-shot
learning aims to build a base learner for a novel concept from very few
labeled examples, making it a more cost-effective and efficient learning
method.

Recent efforts to solve few-shot learning problems usually uti-
lize learning-to-learn (i.e., meta-learning) approaches and the model-
classifier decoupling method. Typically, the meta-learning strategy

∗ Corresponding author.
E-mail addresses: thu.liubaodi@gmail.com (B.-D. Liu), shaoshuai0914@gmail.com (S. Shao), zhaocy@scc.edu.cn (C. Zhao), upc_xl@163.com (L. Xing),

liuwf@upc.edu.cn (W. Liu), caowj@aircas.ac.cn (W. Cao), yicongzhou@um.edu.mo (Y. Zhou).

comprises an embedding model that maps the input images into a
feature space and a base learner that associates the feature space with
various tasks. Meta-learning models are trained by a large number
of few-shot classification tasks that aim to make the base learner
generalize well to the novel cases. The model-classifier decoupling
strategy learns the embedding model without the base learner. Wang
et al. [12] found that learning a robust feature model with a softmax
layer was more effective than the complex meta-learning algorithm.
Instead of extracting the meta-task training model during training, they
used the classical neural network training method. During the meta-
testing stage, remove the softmax layer of the neural network as the
feature model and then use a robust classification to achieve excellent
classification performance. Therefore, the training embedding models
and designing base learners are equally important in the few-shot image
classification.
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Fig. 1. The framework of HY-RBL. The left is the specific representation base learner (SP-RBL), and the right is the shared representation base learner (SH-RBL). For the SP-RBL,
a query sample is represented by each specific class and would generate large weights for each support sample. It is reasonable if the label of the query sample is the same as
the label of support samples (e.g., if the label of the query sample is tiger, it would be represented well by the support samples from the tiger category.) For the SH-RBL, a query
sample is represented by all the support samples, and the weights for each support sample are different. The large weights would assign to the support samples similar to the
query. SP-RBL would generate the optimal representation (minimal residual) for each specific class, while SH-RBL would generate the optimal representation (minimal residual) for
all support samples. The HY-RBL combines SP-RBL and SH-RBL to generate competitive codes or representations. Concretely, the SP-RBL would prevent SH-RBL from generating
imprecise representation for each specific class, while SH-RBL would suppress large weights generated from SP-RBL.
Base learner design is one of the fundamental issues in computer vi-
sion areas. Snell et al. [13] utilized the nearest feature center classifier
to update the embedding model. Bertinetto et al. [14] learned a linear
regression classifier to obtain a classifier plane. These base learners
only consider the within-class information for each specific class. Lee
et al. [15] proposed to use a linear support vector machine (SVM),
which exploits the negative examples to learn class boundaries, as the
base learner. Simon et al. [16] proposed an adaptive subspace classifier,
which found a suitable subspace for each class, then measured the
distance in the subspace and predicted the label. Shao et al. [17]
proposed a multi-head feature collaboration method, which attempts
to represent samples by fusing multi-head features collaboratively. This
method helps strengthen the model’s efficacy and robustness.

In this paper, we mainly focus on exploring representation-residual
base learners for the model-classifier decoupling method. The designed
base learners are shown in Fig. 1. First, we introduce the specific
representation base learner (SP-RBL), which can be considered as rep-
resenting the query sample in each individual subspace (the support
samples in each specific class form a subspace). The query sample is
well represented in each subspace. Second, we present the shared rep-
resentation base learner (SH-RBL), which maps all the query samples in
the same subspace. The query sample’s representation usually assigns
a large weight to its neighbor support samples. Third, we propose a
novel hybrid representation base learner, combining the specific repre-
sentation base learner and the shared representation base learner. It can
combine the advantages of the specific representation base learner and
the shared representation base learner, representing the query sample
in the same subspace and holding each specific class’s description
ability to generate more discriminative representation. Moreover, we
extend the self-training framework to our approach to fully utilize the
query data. In summary, the main contributions are three-fold:

• We explore the representation-residual classifier and introduce
two types of representation-residual base learners: specific
representation-base learners and shared representation-base learn-
ers.

• We propose a novel hybrid representation base learner, which
considers specific description and shared correction.

• We propose a self-training few-shot learning method and expand
the self-training framework to our approach using query data. The
introduction of self-training improves the model’s generalizabil-
ity.

• We show that our proposed approach has achieved state-of-the-
art performance on several benchmark datasets compared with
few-shot classification approaches.
2

2. Related work

The idea of 𝑚𝑒𝑡𝑎-𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 has been widely explored in many ways;
these approaches for few-shot learning can be simply divided into three
categories:

(𝑖) Optimization-based methods. They aim to learn an automatic
initialization parameter instead of a handcrafted one relying on training
tasks. For instance, MAML [18] and Reptile [19] are the most typical
ones in these methods. MAML proposed a model-agnostic algorithm
that focused on the initialization for a variety of different learning
problems by using gradient descent, while Reptile paid attention to the
trained weights according to repeatedly sampling a task and training
on it. Es-MAML [20] presents a new framework based on evolutionary
strategy, which avoids the second derivative estimation problem and
can handle novel non-smooth adaptive operators.

(𝑖𝑖) Black-box adaption-based methods. They pay attention to learn-
ing a neural network by training tasks. The parameters of the neural
network always depend on the RNN-based model. Then the neural
network would be properly harnessed in testing tasks. In Snail [21],
they proposed a novel architecture to aggregate information for any
period. And Ravi et al. [22] proposed a model based on an LSTM
meta-learner to capture short-term and long-term knowledge.

(𝑖𝑖𝑖) Metric-based methods. The distance-based rules are exploited
to compare the difference between different samples. For example, the
samples in prototypical network [13] are mapped into the nearest-
neighbor-based metric space. Different from the prototypical network,
MetaOpt [15] uses the SVM base learner to separate samples of dif-
ferent classes into different subspaces. Then the reconstruction error
is used to update the network. DeepEMD [23] split the image into
multiple blocks, and then calculated the optimal matching cost between
the query set and the image block of the support set using the distance
of earth movement as the distance measure to represent the similarity.
TDE [24] embeds dictionary learning methods into few-shot learning
frameworks and maps feature embeds to more discriminative subspaces
to suit specific tasks.

Our work is related to the metric-based method. We mainly focus
on exploring the representation-residual base learner. We show that
representation-residual base learner methods can effectively improve
the performance of few-shot classification.

3. Problem setup

Let  be the inputs (e.g., images) and  be the corresponding
labels. Let  be a distribution over  × . Supervised machine learning
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algorithm typically aims to obtain a parameterized model  (𝜃(∙)) under
the training set 𝑡𝑟 =

{

(𝑥𝑛, 𝑦𝑛)
}𝑁
𝑛=1 at the learning stage. Here, 𝜃(∙)

represents the embedding model, and  is the base learner. At the
inference stage, for an image 𝑥∗, the predicted label is obtained via
𝑦∗ =  (𝜃(𝑥∗)).

Few-shot learning aims to efficiently update the parameterized
model so that the learned model can adapt to new tasks quickly.
Few-shot learning approaches usually include two stages: the pre-
training stage and the meta-testing stage. For the pre-training stage,
we suppose that 𝑡𝑟 =

{

(𝑥𝑛, 𝑦𝑛)
}𝑁
𝑛=1 contains thousands of images

for a large number of classes. For the meta-testing stage, we also
suppose that 𝑡𝑠 and 𝑡𝑠 represent the meta-testing set and meta-
testing tasks, respectively. Here, the 𝑡𝑟 and 𝑡𝑠 should be provided
the different categories and 𝑡𝑟 ∩ 𝑡𝑠 = ∅. The performance of few
shot classification on meta-testing is adopted to evaluate the meta-
learning approaches. We randomly choose a large number of tasks (or
episodes) 𝑡𝑠 =

{

𝑖 = (𝑇 𝑠𝑢𝑝𝑝𝑜𝑟𝑡
𝑖 , 𝑇 𝑞𝑢𝑒𝑟𝑦

𝑖 )
}𝑀

𝑖=1
, where 𝑀 represents the

number of tasks. For each task 𝑖, we represent the support set as
𝑇 𝑠𝑢𝑝𝑝𝑜𝑟𝑡
𝑖 =

{

(𝑥𝑛, 𝑦𝑛)|𝑛 = 1,… , 𝐾 × 𝐶, 𝑦𝑛 ∈ 𝐶
}

. It contains 𝐶 classes and
𝐾 images per class. 𝑇 𝑞𝑢𝑒𝑟𝑦

𝑖 =
{

(𝑥𝑛, 𝑦𝑛)|𝑛 = 1,… , 𝑄 × 𝐶, 𝑦𝑛 ∈ 𝐶
}

denotes
the query set with 𝐶 classes and 𝑄 images per class.

4. Methodology

This section introduces the proposed hybrid representation base
learner in detail. We first represent the base learner of the proposed
method in Section 4.1. Then the hybrid representation base learner is
elaborate in Section 4.2.

4.1. Base learner

Different few-shot learning approaches differ in the form of base
learner  or embedding model 𝜃(⋅). In this paper, we mainly study
the base learner  . Concretely, we focus on introducing two popular
few-shot learning approaches.

4.1.1. Nearest neighbor classifier based learner
Snell et al. [13] proposed the prototypical network. The prototypical

network is a type of the nearest neighbor classifier-based learner,
which can be considered a specific base learner approach since the
representation of each class (i.e., the mean vector) does not require the
participation of other classes. Given a query sample 𝑥∗, the base learner
can be written as Eq. (1)

 = argmax
𝑐

exp(−𝑑(𝜃(𝑥∗), 𝜇𝑐 ))
∑𝐶

𝑘=1 exp(−𝑑(𝜃(𝑥∗), 𝜇𝑘))
(1)

where 𝑑 is a distance metric, 𝜇𝑐 is the mean vectors of the embedded
features in the support set with the 𝑐𝑡ℎ label.

4.1.2. Linear classifier base learner
Lee et al. [15] proposed to obtain the linear classifier base learner.

The linear classifier base learner can be considered a shared base
learner since it mainly concerns class differences. Given a query sample
𝑥∗, the base learner can be written as Eq. (2).

 = argmax
𝑐

exp(𝜃(𝑥∗)𝑊𝑐 )
∑𝐶

𝑘=1 exp(𝜃(𝑥∗)𝑊𝑘)
(2)

where 𝑊 ∈ R𝐷×𝐶 is the classifier plane. 𝐷 is the dimension of the
mbedding features, and 𝐶 is the number of classes of the support set.

.2. Hybrid representation base learner

This section is composed of three parts: (𝑖) specific representation
ase learner; (𝑖𝑖) shared representation base learner; (𝑖𝑖𝑖) hybrid rep-
esentation base learner. Fig. 2 shows the characteristics of the three
pproaches.
3

.2.1. Specific representation base learner
The specific representation base learner assumes that the embedding

eatures of the query set are separately represented in each feature
ubspace of the support set. Specifically, we use the support set 𝜃(𝑋𝑐 ) to

fit the query set 𝜃(𝑋∗), where 𝜃(𝑋𝑐 ) represents the 𝑐𝑡ℎ class of support
set. The objective function is defined as Eq. (3).

arg min
𝑆1 ,…,𝑆𝐶

1
𝐶

𝐶
∑

𝑐=1

{

‖𝑆𝑐𝜃(𝑋𝑐 ) − 𝜃(𝑋∗)‖2𝐹 + 𝛾1‖𝑆
𝑐
‖

2
𝐹
}

(3)

where 𝑆𝑐 represents the fitting coefficient of 𝑋∗ with the 𝑐𝑡ℎ embedding
features 𝑋𝑐 . 𝛾1 is the regularization parameter to guarantee the closed
form solution when the matrix 𝜃(𝑋𝑐 )𝜃(𝑋𝑐 )𝑇 is not full rank. The Eq. (3)
as the closed form solution as Eq. (4).

𝑐 =
(

𝜃(𝑋∗)𝜃(𝑋𝑐 )𝑇
)

×
(

𝜃(𝑋𝑐 )𝜃(𝑋𝑐 )𝑇 + 𝛾1𝑈
𝑐)−1 (4)

In Eq. (4), the matrix 𝑈 𝑐 ∈ R𝐾×𝐾 is the identity matrix and 𝐾
epresents the number of images in the 𝑐𝑡ℎ class of support set. When
𝑐
𝑖 = [ 1

𝐾 ,… , 1
𝐾 ], the proposed specific representation base learner

degenerates to the prototypical networks. Compared with prototypical
networks, the proposed specific representation base learner can obtain
more optimal descriptions in each class.

4.2.2. Shared representation base learner
Unlike specific representation base learner, shared representation

base learner directly adopts all the support set embedding features to fit
the query set embedding features. The objective function is as Eq. (5).

argmin
𝑆

{

‖𝑆𝜃(𝑋) − 𝜃(𝑋∗)‖2𝐹 + 𝛾2‖𝑆‖
2
𝐹
}

(5)

here 𝛾2 is the regularization parameter to guarantee the closed-form
olution when the matrix 𝜃(𝑋)𝜃(𝑋)𝑇 is not full rank. The Eq. (5) has
he closed-form solution as Eq. (6).

=
(

𝜃(𝑋∗)𝜃(𝑋)𝑇
)

×
(

𝜃(𝑋)𝜃(𝑋)𝑇 + 𝛾2𝑈
)−1 (6)

In Eq. (6), the matrix 𝑈 ∈ R𝐼×𝐼 is the identity matrix and 𝐼
epresents the number of images in the support set. The shared rep-
esentation base learner can describe the query samples in the same
ubspace.

.2.3. Hybrid representation base learner
In this section, we propose combining the shared representation

ase learner and the specific representation base learner to formulate
he hybrid representation base learner. The objective function can be
ritten as Eq. (7).

rgmin
𝐒
𝛼‖𝜑(𝐗)𝐒 − 𝜑(𝐘)‖2𝐹 + 𝛾‖𝐒‖2𝐹

+𝜏
𝐶
∑

𝑐=1
‖𝜑(𝐗𝑐 )𝐒𝑐 − 𝜑(𝐘𝑐 )‖2𝐹

(7)

here 𝛼 and 𝜏 are the weights of the shared representation base learner
nd specific representation base learner, respectively. 𝛾 = 𝛼𝛾2+𝜏𝛾1 is the
egularization parameter. Let [0,… , 𝜃(𝑋𝑐 )⋯ , 0] be 𝜃(�̂�𝑐 ). The solution
f Eq. (7) can be easily solved as Eq. (8).

=
(

(𝛼 + 𝜏)𝜃(𝑋∗)𝜃(𝑋)𝑇
)

×
(

𝛼𝜃(𝑋)𝜃(𝑋)𝑇 + 𝛾𝑈 + 𝜏
𝐶
∑

𝑐=1
𝜃(�̂�𝑐 )𝜃(�̂�𝑐 )𝑇

)−1 (8)

Given a query sample 𝑥∗𝑖 , the base learner can be written as the
aximization of probability assigned to class 𝑐 using the softmax

unction as Eq. (9):

= argmax
𝑐

𝑝(𝑦∗ = 𝑐|𝜃(𝑥∗𝑖 )) (9)

Here we define 𝑝(𝑦∗ = 𝑐|𝜃(𝑥∗𝑖 )) as Eq. (10):

(𝑦∗ = 𝑐|𝜃(𝑥∗𝑖 )) =
exp (−‖𝜃(𝑥∗𝑖 ) − 𝑆𝑐

𝑖 𝜃(𝑋
𝑐 )‖)

∑𝐶 ∗ 𝑘 𝑘
(10)
𝑘=1 exp (−‖𝜃(𝑥𝑖 ) − 𝑆𝑖 𝜃(𝑋 )‖)
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Fig. 2. Illustration of the variation of sample distribution under different base learners. Different circles represent different subspaces. The specific representation base learner
represents the embedding feature of the query sample in each individual subspace (i.e., each specific class). However, overlaps or intersections among subspaces would lead to error
discrimination for predicting the label of the query sample. The shared representation base learner represents the embedding feature of the query sample in the same subspace.
However, it lacks the characteristics to describe each specific class, and the query sample’s representation usually assigns a large weight to its neighbor support samples. The
hybrid representation base learner represents the embedding feature of the query sample in the same subspace and holds the characteristics of each specific class.
Here, 𝑦∗ is the predicted label of image sample 𝑥∗𝑖 . 𝑆𝑖 =
[𝑆1

𝑖 ,… , 𝑆𝑐
𝑖 ,… , 𝑆𝐶

𝑖 ] represents the fitting coefficient vector of the sam-
ple 𝜃(𝑥∗𝑖 ) by the support set 𝜃(𝑋).

4.3. Hybrid representation base learner with self-training framework

We introduce a self-training framework to the HY-RBL, which is
composed of three steps:

(i) We construct a hybrid representation base learner by Eq. (7).
We obtain the fitting coefficient vector from Eq. (8) by support data 𝑋.
Then predict the label of query data 𝑥∗ by:

𝑝(𝑦∗ = 𝑐|𝜃(𝑥∗𝑖 )) =
exp (−‖𝜃(𝑥∗𝑖 ) − 𝑆𝑐

𝑖 𝜃(𝑋
𝑐 )‖)

∑𝐶
𝑘=1 exp (−‖𝜃(𝑥

∗
𝑖 ) − 𝑆𝑘

𝑖 𝜃(𝑋𝑘)‖)
(11)

where 𝑝(𝑦∗ = 𝑐|𝜃(𝑥∗𝑖 )) denotes predicted query datas’ soft-label matrices.
Following, predict the (label) category of 𝑥∗ by:

𝑦∗𝑛𝑒𝑤 = argmax
𝑐

𝑝(𝑦∗ = 𝑐|𝜃(𝑥∗𝑖 )) (12)

(ii) Rank the values in soft-label matrices, then select the high-
est confidence query feature embedding 𝜃(𝑥∗𝑛𝑒𝑤), then asserting them
corresponding label vectors 𝑦∗𝑛𝑒𝑤. We formulate this step as:
{

𝜃(𝑋) = [𝜃(𝑋), 𝜃(𝑥∗𝑛𝑒𝑤)]
𝒀 = [𝒀 , 𝒚∗𝑛𝑒𝑤]

(13)

where 𝒀 and 𝒚∗𝑛𝑒𝑤 denote the one-hot label matrices of support data.
(iii) Selecting one sample at a time and repeat (i), (ii) until all the

query data are selected.

5. Experiments

In this section, we mainly focus on showing and analyzing the
experimental results conducted on four benchmark image datasets to
demonstrate the superior performance to several state-of-art metric
learning based few shot learning approaches.

5.1. Experimental settings—image datasets

We evaluate our proposed approaches on four benchmark few-shot
image classification datasets: miniImageNet dataset [25], tieredIma-
geNet dataset [25], CIFAR_FS dataset [26] and FC100 dataset [26].

The miniImageNet dataset is a standard benchmark dataset for the
few-shot image classification task. It consists of 100 classes randomly
4

split into 3 sections: 64 classes for meta-training, 16 classes for meta-
validation, and 20 classes for meta-testing. The number of images for
each class is 600, and the size of each image is 84 × 84.

The tieredImageNet dataset is larger than the miniImageNet dataset
and has 608 classes grouped into 34 high-level categories. The number
of images for each class is 600, and the size of each image is 84 × 84.
The dataset is divided into 3 sections: 20 categories (351 classes)
for meta-training, 6 categories (97 classes) for meta-validation, and 8
categories (160 classes) for meta-testing.

The CIFAR_FS dataset consists of 100 classes and is. The number of
images for each class is 600, and the size of each image is 32 × 32. The
dataset is divided into 3 sections: 64 classes for meta-training, 16 classes
for meta-validation, and 20 classes for meta-testing.

The FC100 dataset has 100 classes grouped into 20 superclasses.
The number of images for each class is 600, and the size of each
image is 32 × 32. The dataset is divided into 3 sections: 12 super-
classes (60 classes) for meta-training, 4 superclasses (20 classes) for
meta-validation, and 4 superclasses (20 classes) for meta-testing.

5.2. Experimental settings—implementation details

For the feature embedding architecture, we adopt a ResNet-12
network and construct the self-supervision framework with rotation
loss following [24]. It consists of 4 residual blocks (3 × 3 convolution
layer, batch normalization layer, Leaky ReLU(0.1) layer), 4 2 × 2 max-
pooling layers and 4 Dropout layers. After the last residual block, we
apply a global average pooling and FC layer. The specific parameter
settings are the same as [24].

We adopt stochastic gradient descent (SGD) optimizer with Nes-
terov momentum (0.9) for the optimizer. The dynamic learning rate
is adopted during pre-training (The learning rate was initially set to
0.1, and then changed to 0.05, 0.025, and 0.0125 at epochs 30, 60,
and 90, respectively). We set the batch size to 6 and the max epoch to
120. To avoid overfitting, we adopt the weight-decay strategy and set
the parameter to 5×10−4. Moreover, we adopt horizontal flips, random
crop, and color-dithering data augmentation. The best model is chosen
according to the classification precision testing on the meta-training set.

For meta-test, We set the parameter 𝛾 = 1.7, 𝜏 = 0.7, 𝛼 = 0.3 for
miniImageNet dataset and 𝛾 = 0.9, 𝜏 = 0.7, 𝛼 = 0.9 for tieredImageNet
dataset. And we set the 𝛾 to 1.3, 𝜏 to 0.3, 𝛼 to 0.9 for CIFAR_FS dataset
and 𝛾 to 0.9, 𝜏 to 0.1, 𝛼 to 0.1 for FC100 dataset.
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Table 1
The 5-way few-shot classification accuracies on miniImageNet with 95% confidence
intervals over 600 episodes.

Method Venue Backbone miniImageNet

1-shot 5-shot

FEAT [27] CVPR,2020 CONV4 55.15 ± 0.20 71.61 ± 0.16
MELR [28] ICLR,2021 CONV4 55.35 ± 0.43 72.27 ± 0.35

HY-RBL – CONV4 𝟓𝟕.𝟑𝟎 ± 0.60 𝟕𝟐.𝟔𝟐 ± 0.45

Fine-tuning [29] ICLR,2020 WRN 65.73 ± 0.68 78.40 ± 0.52
S2M2⋆

𝐸 [30] WACV,2020 WRN 62.33 ± 0.25 79.35 ± 0.16
S2M2⋆

𝑅 [30] WACV,2020 WRN 64.93 ± 0.18 83.18 ± 0.11
AIM [31] ICCV,2021 WRN 71.22 ± 0.57 82.25 ± 0.34
PSST [32] CVPR,2021 WRN 64.16 ± 0.44 80.64 ± 0.32

HY-RBL – WRN 𝟕𝟐.𝟐𝟗 ± 0.55 𝟖𝟒.𝟑𝟓 ± 0.50

AFHN [33] CVPR,2020 ResNet18 62.38 ± 0.72 78.16 ± 0.56

HY-RBL – ResNet18 𝟔𝟕.𝟒𝟖 ± 0.92 𝟕𝟗.𝟓𝟐 ± 0.61

DSN-MR [16] CVPR,2020 ResNet12 64.60 ± 0.72 79.51 ± 0.50
ICI [12] CVPR,2020 ResNet12 66.80 79.26
ODE [34] CVPR,2021 ResNet12 67.76 ± 0.46 82.71 ± 0.31
CNL [35] AAAI,2021 ResNet12 67.96 ± 0.98 83.36 ± 0.51
SSR [36] NeurIPS,2021 ResNet12 68.10 ± 0.60 76.90 ± 0.40
MELR [28] ICLR,2021 ResNet12 67.40 ± 0.43 83.40 ± 0.28

HY-RBL – ResNet12 𝟕𝟐.𝟐𝟓 ± 0.81 𝟖𝟒.𝟎𝟐 ± 0.58

Table 2
The 5-way few-shot classification accuracies on tieredImageNet with 95% confidence
intervals over 600 episodes.

Method Venue Backbone tieredImageNet

1-shot 5-shot

MELR [28] ICLR,2021 CONV4 56.38 ± 0.48 73.22 ± 0.41

HY-RBL – CONV4 𝟔𝟖.𝟑𝟎 ± 0.75 𝟕𝟗.𝟏𝟑 ± 0.52

Fine-tuning [29] ICLR,2020 WRN 73.34 ± 0.71 85.50 ± 0.50
S2M2⋆

𝑅 [30] WACV,2020 WRN 73.71 ± 0.22 88.59 ± 0.14

HY-RBL – WRN 𝟖𝟏.𝟖𝟎 ± 0.80 𝟗𝟎.𝟎𝟑 ± 0.58

CTM [37] CVPR,2019 ResNet18 64.78 ± 0.11 81.05 ± 0.52

HY-RBL – ResNet18 𝟖𝟎.𝟐𝟓 ± 0.91 𝟖𝟖.𝟑𝟔 ± 0.65

DSN-MR [16] CVPR,2020 ResNet12 67.39 ± 0.82 82.85 ± 0.56
ICI [12] CVPR,2020 ResNet12 80.79 87.92
ODE [34] CVPR,2021 ResNet12 71.89 ± 0.52 85.96 ± 0.35
CNL [35] AAAI,2021 ResNet12 73.42 ± 0.95 87.72 ± 0.75
SSR [36] NeurIPS,2021 ResNet12 81.20 ± 0.60 85.70 ± 0.40
MELR [28] ICLR,2021 ResNet12 72.14 ± 0.51 87.01 ± 0.35

HY-RBL – ResNet12 𝟖𝟏.𝟗𝟖 ± 0.80 𝟖𝟗.𝟖𝟓 ± 0.57

Table 3
The 5-way few-shot classification accuracies on CIFAR-FS with 95% confidence intervals
over 600 episodes.

Method Venue Backbone CIFAR-FS

1-shot 5-shot

ProtoNet [15] CVPR,2019 CONV4 55.50 ± 0.70 72.00 ± 0.60
MAML [15] CVPR,2019 CONV4 58.90 ± 1.90 71.50 ± 1.00

HY-RBL – CONV4 𝟔𝟐.𝟏𝟐 ± 0.92 𝟕𝟒.𝟑𝟏 ± 0.61

Fine-tuning [29] ICLR,2020 WRN 76.58 ± 0.68 85.79 ± 0.50
S2M2⋆

𝑅 [30] WACV,2020 WRN 74.81 ± 0.19 87.47 ± 0.13
S2M2⋆

𝐸 [30] WACV,2020 WRN 72.63 ± 0.16 86.12 ± 0.26

HY-RBL – WRN 𝟕𝟖.𝟗𝟒 ± 0.82 𝟖𝟕.𝟕𝟕 ± 0.59

S2M2⋆
𝑅 [30] WACV,2020 ResNet18 63.66 ± 0.17 76.07 ± 0.19

S2M2⋆
𝐸 [30] WACV,2020 ResNet18 61.95 ± 0.11 75.09 ± 0.16

HY-RBL – ResNet-18 𝟖𝟎.𝟐𝟐 ± 0.90 𝟖𝟖.𝟕𝟓 ± 0.67

DSN-MR [16] CVPR,2020 ResNet12 75.60 ± 0.90 86.20 ± 0.60
SSR [36] NeurIPS,2021 ResNet12 76.80 ± 0.60 83.70 ± 0.40
TDE [24] Neurocomputing,2022 ResNet12 78.30 ± 1.13 87.17 ± 0.67

HY-RBL – ResNet12 𝟕𝟗.𝟔𝟔 ± 0.88 𝟖𝟖.𝟎𝟒 ± 0.65
5
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Table 4
The 5-way few-shot classification accuracies on FC100 with 95% confidence intervals
over 600 episodes.

Method Venue Backbone FC100

1-shot 5-shot

ProtoNet [15] CVPR,2019 CONV4 35.30 ± 0.60 48.60 ± 0.60

HY-RBL – CONV4 𝟑𝟖.𝟐𝟑 ± 0.92 𝟓𝟏.𝟔𝟔 ± 0.80

Fine-tuning [29] ICLR,2020 WRN 43.16 ± 0.59 57.57 ± 0.55

HY-RBL – WRN 𝟒𝟒.𝟎𝟓 ± 0.89 𝟓𝟖.𝟑𝟒 ± 0.75

HY-RBL – ResNet-18 𝟒𝟒.𝟒𝟔 ± 0.95 𝟓𝟖.𝟔𝟓 ± 0.81

TADAM [26] NeurIPS,2018 ResNet12 40.10 ± 0.40 56.10 ± 0.40
DenseCls [38] CVPR,2019 ResNet12 42.04 ± 0.17 57.05 ± 0.16
MetaOpt [15] CVPR,2019 ResNet12 41.10 ± 0.60 55.50 ± 0.60
MABAS [39] ECCV,2020 ResNet12 41.74 ± 0.73 57.11 ± 0.75

HY-RBL – ResNet12 𝟒𝟓.𝟒𝟐 ± 0.83 𝟔𝟎.𝟓𝟑 ± 0.79

5.3. Experimental results

We conduct plenty of experiments on four few-shot learning datasets
using different backbones (such as CONV4 [28], ResNet12 [24],
ResNet18 [40] and WRN [30]). We list the experimental results in
Table 1, 2, 3 and 4. For fairness, we compare our proposed HY-
RBL with several state-of-the-art methods under the same backbone.
We obtain the few-shot classification accuracies on all datasets with
95% confidence intervals over 600 episodes. The top two results with
different backbones are shown in 𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒 and 𝑏𝑜𝑙𝑑.

The performance of our proposed HY-RBL is better than other
methods to varying degrees on different datasets and backbones. (1)
To be more specific, in miniImageNet, our method exceeds others by
at least 1.95% on 5-way 1-shot case, 0.35% on 5-way 5-shot case with
he CONV4 backbone; in tieredImageNet, our method exceeds others
y at least 11.92% on 5-way 1-shot case, 5.91% on 5-way 5-shot case
ith the CONV4 backbone; in CIFAR-FS, our method exceeds others
y at least 3.22% on 5-way 1-shot case, 2.31% on 5-way 5-shot case
ith the CONV4 backbone; in FC100, our method exceeds others by at

east 2.93% on 5-way 1-shot case, 3.06% on 5-way 5-shot case with the
ONV4 backbone.

(2) in miniImageNet, our method exceeds others by at least 1.07%
nd 1.17% on 5-way 1-shot case and 5-way 5-shot case with the WRN
ackbone, respectively; in tieredImageNet, our method exceeds others
y at least 8.09% and 1.44% on 5-way 1-shot case and 5-way 5-shot
ase with the WRN backbone, respectively; in CIFAR-FS, our method
xceeds others by at least 2.36% and 0.30% on 5-way 1-shot case and
-way 5-shot case with the WRN backbone, respectively; in FC100, our
ethod exceeds others by at least 0.89% and 0.77% on 5-way 1-shot

ase and 5-way 5-shot case with the WRN backbone, respectively;
(3) our method exceeds others by at least 5.10% on 5-way 1-shot

ase, 1.36% on 5-way 5-shot case with the ResNet18 backbone in
iniImageNet; our method exceeds others by at least 5.47% on 5-
ay 1-shot case, 7.31% on 5-way 5-shot case with ResNet18 backbone

n tieredImageNet; our method exceeds others by at least 16.56% on
-way 1-shot case, 12.68% on 5-way 5-shot case with the ResNet18
ackbone in CIFAR-FS;

(4) our method exceeds others by at least 0.62% on 5-way 5-
hot case with ResNet12 backbone in the miniImageNet; our method
xceeds others by at least 0.78% on 5-way 1-shot case, 1.93% on 5-
ay 5-shot case with ResNet12 backbone in the tieredImageNet; our
ethod exceeds others by at least 1.36% on 5-way 1-shot case, 0.87%

n 5-way 5-shot case with ResNet12 backbone in the CIFAR-FS; our
ethod exceeds others by at least 3.38% on 5-way 1-shot case, 3.42%

n 5-way 5-shot case with ResNet12 backbone in the FC100.
(5) In few-shot learning tasks, four frequently used feature extrac-

ors are CONV4, ResNet12, ResNet18, and WRN. After comparing the

sage of these extractors on the same dataset, we discovered that
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Table 5
The computation cost comparison. All the complexity is the 5way-1shot case; the
number of the query is 15.

Method Computation cost

MetaOpt 𝑇 × 𝐶 × 𝑂(𝑛)
ProtoNet 𝑇 × 𝐶 × 𝑂(𝑛)
MAML 𝑇 × 𝐶 × 𝑂(𝑛)
DSN-MR 𝑂[𝑇 × 𝐶 × (𝑛 ×𝐾) + 𝑇 × 𝐶 ×𝐾]

HY-RBL 𝑂([(𝑇 × 𝐶 +𝑁 × 𝐶) × 𝑛 + (𝑁 × 𝐶×)(𝑁 × 𝐶)] × (𝑁 × 𝐶))

CONV4 produced the lowest while ResNet12 and WRN achieved the
highest results. Conv4, composed of only four convolutional layers,
leads to weaker feature extraction capabilities and poorer classification
performance than other extractors. On the other hand, ResNet12 and
WRN have more robust feature extraction capabilities due to their
deep network structures, rendering them advantageous for subsequent
classification tasks after sufficient training.

(6) Our proposed Hybrid Representation Base Learner (HY-RBL)
method performs better than the MetaOpt, a shared representation base
learner, and the Prototypical Network, a specific representation base
learner introduced in Section 4.1. HY-RBL combines both the specific
and shared representation base learners to leverage the advantages of
both classifiers, leading to superior performance in classification tasks.
The specific representation base learner learns distinctive features of
each class, while the shared representation base learner learns common
features across different classes. Combining these two methods makes
the classification process more accurate.

(7) The proposed hybrid representation based shared representa-
tion base learner and specific representation base learner is compared
to other metric learning methods, such as DSN-MR [16], ICI [12],
TDE [24], SSR [36]. The results show that HY-RBL outperforms these
methods in the ability to measure sample categories. In mini-ImageNet,
our method outperforms others at least 4.15% on 5-way 1-shot case,
4.51% on 5-way 5-shot case; in tiered-ImageNet, our method outper-
forms others at least 0.78% on 5-way 1-shot case, 1.93% on 5-way
-shot case. in CIFAR-FS, our method outperforms others at least 1.36%
n 5-way 1-shot case, 0.87% on 5-way 5-shot case. in FC100, our

method outperform others at least 4.32% on 5-way 1-shot case, 5.03%
n 5-way 5-shot case.

.4. Complexity of computation

Table 5 shows the computational complexity of our HY-RBL ap-
roach, which is 𝑂([(𝑇 ×𝐶+𝑁×𝐶)×𝑛+(𝑁×𝐶×(𝑁×𝐶))]×(𝑁×𝐶)), where

and 𝑁 are the numbers of query and support samples, 𝑛 denotes
he dimension of the data feature and 𝐶 represents the number of
ategories. Compared to the complexity of other methods, our method
s somewhat slower because our method is non-parametric, and the
upport set and query set are both involved in the calculation in the
lassification stage.
6
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.5. Ablation studies

.5.1. Comparison among three RBL methods
As shown in Fig. 3, SP-RBL performs better than CHS-RBL on

iniImageNet, tieredImageNet, and FC100 datasets on the 5-way 1-shot
ase, while it comes to the opposite except on the 5-way 5-shot case.
ortunately, HY-RBL combines the two methods above and achieves
etter precision than others with ResNet12 backbone on all datasets on
wo kinds of experiments.

.5.2. t-SNE visualization
We reduce the dimensionality using t-SNE to show the distribution

f the feature extracted from the query set in the miniImageNet dataset
ia these three approaches. As shown in Fig. 4, for the SP-RBL method,
he blue and purple categories are intertwined. For the SH-RBL method,
here is also a certain interweaving among classes. The HY-RBL method
hows a clear distinction among the categories.

.5.3. Influence of self-training framework
We propose a self-training few-shot learning method and expand

he self-training framework to our approach using query data. Fig. 5
emonstrates the effectiveness of the self-training framework on four
atasets. On all four datasets, the performance of HY-RBL with the
elf-training framework improved to varying degrees, especially in the
-way 1-shot case, which improved 𝟏𝟏.𝟔𝟐% on the miniImageNet.

.5.4. Influences of meta-testing shot
In the meta-test phase, the amount of support data is an essential

actor affecting classification performance. We further conducted exper-
ments on 5-way 2-shot, 10-shot, 15-shot, and 20-shot cases. As shown
n Fig. 6, the classification performance increases gradually with the
ncrease of shots, especially in 2-shot cases. While performance slowly
aturates on the 20-shot case.

.5.5. Influence of parameters
In the meta-test stage, the proposed HY-RBL base learner requires

anual adjustment of three key parameters: 𝛼, 𝜏, and 𝛾. To investigate
he impact of different parameter selections on the final classification
esults, we conducted experiments on the miniImageNet and tieredIma-
eNet datasets. Fig. 7 presents the experimental results under different
arameters. Notably, we found that the HY-RBL base learner is in-
ensitive to changes in parameter 𝛾, and we obtained similar final
lassification results for different parameter settings. As for parameter
, a gradual increase in the parameter leads to a gradual decrease in
he experimental results in the miniImageNet dataset. However, this
rend is prolonged, and the range of accuracy change is relatively
ow. Contrastingly, in the tieredImageNet dataset, the results show
n initial increase, reaching a maximum at 0.7 and then gradually
ecreasing. For parameter 𝛼, the experimental results’ overall change
ange is small, with a gradually decreasing trend as the parameter grad-
ally increases in the miniImageNet dataset. As for the tieredImageNet
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Fig. 4. The t-SNE visualization of query set in a 5-way problem under three different approaches.
Fig. 5. Influences of Self-training Framework.
Fig. 6. Comparison results with different meta-testing shot.
dataset, the experimental results remained almost unchanged despite
the parameter changes, indicating that the model is not sensitive to this
parameter.

5.5.6. Performance under domain shift
In this section, we evaluate the performance of our proposed class

hybrid representation base learning with ResNet12 backbone under
domain shift. We adopt the meta-training models on the miniImageNet
dataset and evaluate them on the CUB-200-2011 dataset [41]. Follow-
ing the evaluation protocol of [40], we randomly split the dataset into
100 base, 50 validation, and 50 novel classes. We use 50 validation
and 50 novel classes. Table 6 compares our proposed HY-RBL with
several typical methods. Experimental results show that our method has
excellent domain migration performance.

6. Conclusion

Designing a base learner is significant for few-shot image classi-
fication tasks. This paper examines the representation-residual base
learner and introduces two types of learners: specific representation-
base learner and shared representation-base learner. capable of com-
pleting the few-shot image classification task. Both are capable of
completing the task of few-shot image classification. Moreover, we
introduce a novel hybrid representation base learner which combines
7

Table 6
Details of four benchmark few-shot image classification dataset.
Method mini-ImageNet ⟶ CUB

5-way 1-shot 5-way 5-shot

TIM-GD [42] – 71.00
MatchNet [43] 51.65 69.14
ProtoNet [13] 50.01 72.02
MetaOpt [15] 44.79 64.98
KNN [44] 50.84 71.25
S2M2 [30] 48.24 70.44

TDE-FSL† 𝟓𝟖.𝟑𝟐 𝟕𝟔.𝟏𝟓

the benefits of both specific and shared representation base learner.
This hybrid learner can effectively prevent the over-summarization
of training samples and generalize better in the meta-test phase. The
specific and shared representation-based learners are integrated in a
unique way to create a more robust learning approach that is geared
towards achieving improved performance. The proposed methods have
achieved competitive performance with recent state-of-the-art few-shot
learning approaches by conducting experiments on several benchmark
datasets. The proposed HY-RBL presents some limitations that require
further examination: (1) In the meta-test stage, the proposed HY-RBL
has three parameters that need to be adjusted manually, and the
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Fig. 7. Comparison results with different parameters on miniImageNet and TieredImageNet dataset.
optimal parameters of different datasets are different, which limits
the usability of the method. (2) The proposed HY-RBL has a higher
time complexity. In the future, we plan to adopt the meta-learning
strategy to expand and improve the proposed method, and we will also
introduce HY-RBL to train the feature extractor in the meta-training
stage. Moreover, we will explore nonlinear base learners for future
work, such as kernel methods.
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