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Abstract— Recently, it has been shown that adversaries can
reconstruct images from SIFT features through reverse attacks.
However, the images reconstructed by existing reverse attack
methods suffer from information loss and are unable to suffi-
ciently reveal the private contents of the original images. In this
paper, a two-stage deep reverse attack model called Coarse-
to-Fine Generative Adversarial Network (CFGAN) is proposed
to more deeply explore the information in SIFT features and
further demonstrate the risk of privacy leakage associated with
SIFT features. Specifically, the proposed model consists of two
sub-networks, namely coarse net and fine net. The coarse net
is developed to restore coarse images using SIFT features,
while the fine net is responsible for refining the coarse images
to obtain better reconstruction results. To effectively leverage
the information contained in SIFT features, an efficient fusion
strategy based on the AdaIN operation is designed in the fine
net. Additionally, we introduce a new loss function called sift
loss that enhances the color fidelity of reconstructed images.
Extensive experiments conducted on various datasets verify that
the proposed CFGAN performs favorably against state-of-the-art
methods. The reconstructed images exhibit better visual quality,
less texture distortion, and higher color fidelity. Source code is
available at https://github.com/HITLiXincodes/CFGAN.

Index Terms— Data privacy, reverse attack, scale invariant
feature transform (SIFT), generative adversarial network (GAN).

I. INTRODUCTION

WITH the rapid growth of image information, image
retrieval techniques have been widely applied in vari-

ous fields [1], [2], [3]. The majority of related applications rely
heavily on the local features extracted from the queried images
[4], [5]. As one of the most popular local feature extraction and
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coding algorithms in computer vision, scale invariant feature
transform (SIFT) [6] exhibits excellent matching performance
when images undergo transformation or rotation [7]. In addi-
tion, SIFT is strongly robust to light changes and noise [8].

Due to the widespread usage of SIFT, the privacy and
security issues linked with SIFT have drawn significant atten-
tion [9]. As a kind of local feature derived from images,
the SIFT feature contains rich image content information
[10]. It has been shown that reverse attacks can reconstruct
original images from SIFT features [11]. Fig. 1 provides a
brief illustration about the process of image content leakage
caused by SIFT features. To fulfill image retrieval services,
the computational capacity limitation of local devices requires
users to transfer the queried SIFT features to remote service
providers [12]. As a result, the image features shared with
remote service providers can potentially be used to reconstruct
the original images through reverse attacks [13].

In order to reveal the information within local features and
evaluate the potential privacy risk caused by the abuse of
local features, many image restoration methods [14], [15],
[16], [17], [18], [19], [20], [21], [22] have been proposed to
recover images from local features. The pioneering work [14]
demonstrates that the reverse attack on feature descriptors is
achievable under a range of conditions and configurations.
Moreover, many different methods [15], [16], [17], [18] have
shown that reverse attacks can be applied to a wide range
of traditional image features, including SIFT, histogram of
oriented gradient (HOG), and bag-of-words (BoW). The afore-
mentioned approaches have demonstrated the possibility of
reverse attack on local features. But there are significant
disparities between the reconstruction results and the original
images, and it remains challenging to determine the security
risks caused by SIFT features.

With the development of neural network technology, recent
works [19], [20], [21], [22], [23] have focused primarily on
conducting image reverse attacks using convolutional neu-
ral networks (CNNs). Although these CNN-based models
outperform traditional models, they still fail to sufficiently
demonstrate the vulnerability of SIFT features. The images
reconstructed by existing CNN-based models frequently
exhibit severe edge artifacts or texture distortions, as well as
information loss in terms of image details. Moreover, there is
a noticeable disparity in color between the original images and
the reconstructed images. To solve these problems, we propose
an efficient image reconstruction model called Coarse-to-Fine
Generative Adversarial Network (CFGAN). The two-stage
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Fig. 1. Illustration of private image content leakage resulting from the misuse of SIFT features. While users upload queried features to remote service
providers, attackers might abuse these features to reconstruct the original image, which leads to the leakage of private information. The attacker can be either
a malicious hacker or the insider of an untrustworthy remote service provider.

reconstruction method used in CFGAN effectively alleviates
the issues of edge artifacts and texture distortions, thereby sig-
nificantly improving the quality of the reconstructed images.
Additionally, a novel feature fusion strategy built on the
AdaIN [24] operation is proposed in the fine net, which
greatly optimizes the quality of the reconstructed image
details. Furthermore, a new loss function named sift loss is
designed for the purpose of enhancing the color accuracy of
the reconstructed images.

In this paper, our major contributions are as follows:
• We propose a novel coarse-to-fine GAN-based model

(CFGAN) for recovering latent images from SIFT fea-
tures. The two-stage reconstruction method employed in
the model not only significantly raises its capacity to
recover image details but also effectively mitigates the
issues of edge artifacts and texture distortions.

• A novel feature fusion strategy that uses the AdaIN oper-
ation is designed to perform multi-scale fusion between
SIFT features and image features, which greatly improves
the quality of reconstructed images.

• From the perspective of the similarity of SIFT feature
descriptors, a new loss function called sift loss is pro-
posed to improve the color consistency between the
reconstructed images and the original images. The visual
quality of the reconstructed images significantly benefits
from the utility of sift loss.

• Extensive comparison experiments show that CFGAN
outperforms state-of-the-art methods across a variety of
datasets, while comprehensive ablation studies verify the
effectiveness of each model component.

The rest of this paper is organized as follows: Section II
provides a brief introduction to the SIFT algorithm, generative
adversarial network (GAN), and existing reverse attack meth-
ods on image features. The process of reconstructing images
from SIFT features by CFGAN is elaborated in Section III.
Experimental setup and the analysis of experiment results are
described in Section IV. In Section V, we draw a conclusion
about this paper.

II. RELATED WORK

In this section, we first briefly explain the SIFT fea-
ture extraction process. Then, the concept and structure of

generative adversarial network (GAN) are described. At last,
we introduce some important reverse attack methods on image
features.

A. Extraction of SIFT Features

The extraction of SIFT features mainly involves four steps:
establishment of the scale-space, accurate keypoint localiza-
tion, orientation assignment, and construction of the local
image descriptor.

1) Establishment of the Scale-Space: To establish a
multi-level scale space, the Gaussian-blurred image L(x, y, σ )

can be calculated as

L(x, y, σ ) = I (x, y)⊗G(x, y, σ ), (1)

where I (x, y) denotes the pixel value of image I at position
(x, y), ⊗ represents convolutional operation, and G(x, y, σ )

is the Gaussian kernel at scale σ .
2) Accurate Keypoint Localization: The candidate set of

feature points is obtained by comparing the values of 8 sur-
rounding pixels at the same scale of the sampling points in the
difference of Gaussian (DoG) pyramid and 9 pixels at adjacent
scales.

3) Orientation Assignment: An orientation histogram is
constructed by gathering the orientations within a localized
region centered on SIFT keypoints. The maximum value in the
orientation histogram is determined as dominant orientation.

4) Construction of the Local Image Descriptor: A
128-dimensional feature descriptor f is finally generated by
calculating the gradient information of 8 directions in a 16×16
local area centered at the feature point.

B. Generative Adversarial Network

Generative adversarial network (GAN) is a machine learn-
ing framework first proposed by Goodfellow et al. [25], which
consists of a generator and a discriminator. The generator is
responsible for generating new data, while the discriminator
evaluates the authenticity of the data in training samples.
After the continuous optimization during the confrontation, the
generator is capable of producing visually authentic images,
while the discriminator is proficient in accurately distinguish-
ing counterfeit images.
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The exceptional performance of GAN networks has led to
their widespread utilization in feature inversion tasks, resulting
in the development of various GAN model variations [26],
[27], [28], [29]. In order to improve the results of feature inver-
sion, GleaD [26] focuses on addressing the issue of fairness
between the generator and the discriminator in GAN networks.
PadInv [27] uses the padding space of the generator to provide
spatial information to the latent space, allowing the induction
bias of pre-trained models to be suitably adjusted to each
individual image. WaveGAN [28], a frequency-aware model
for few-shot images, effectively synthesizes high-frequency
signals with fine details. The model proposed in [29] develops
a dual-path inpainting network with an inversion path and a
feed-forward path, where the inversion path provides auxiliary
information to help the feed-forward path. The success of these
GAN models effectively demonstrates their superior capacity
to perform feature inversion. Hence, selecting the GAN model
as the tool for SIFT feature inversion work is a viable option.

C. Reverse Attacks on Image Features

The concept of reversing image features to obtain original
images has been explored in recent years as image features
play an increasingly important role. Various reverse attack
methods have been proposed [14], [15], [16], [18] to recover
original images from image features. Weinzaepfel et al. [14]
first demonstrated the feasibility of restoring images from
SIFT features. They used an exterior database of image
patches for reconstructing original images. Angelo et al. [15]
proposed an inverse optimization framework that is capable of
recovering images only relying on the information carried by
feature descriptors. Vondrick et al. [16] proposed a dictionary-
learning-based approach to visualize HOG descriptors, which
shows high transferability across a variety of different local
features. Kato and Harada [18] showed that it is possible to
recover some of the original image structures from sparse local
descriptors in bag-of-words (BoW) representation.

With the prevalence of deep convolutional neural net-
works, many deep learning-based reverse attack methods [19],
[20], [21], [22], [23] have been proposed. Mahendrand
and Vedaldi [19] proposed a general framework based
on neural networks to recover images, which significantly
improves image recovery performance. The model proposed
by Dosovitskiy and Brox [20] adopts an encoder-decoder
structure to reconstruct images from local features. Further-
more, this model has been successfully applied to high-level
features derived from convolutional neural networks. Pit-
taluga et al. [21] trained a cascade network with the structure
of U-Net to reveal scenes from local features. The network
effectively handles highly sparse and irregular 2D point dis-
tributions as well as inputs with missing point attributes.
Wu and Zhou [22] improved image restoration performance
by employing GANs architecture as the model backbone.
Additionally, local binary pattern (LBP) features were utilized
to compensate for the limitations of SIFT features in repre-
senting image spatial structures. A recent work by Pittaluga
and Zhuang [23] proposed two novel inversion attacks, which
show the feasibility of recovering the original image contents

from after-processed image features. Although these methods
achieve superior results to traditional approaches, they still
have limitations in sufficiently revealing the information con-
tained in SIFT features, and the quality of the reconstructed
images is unsatisfactory.

III. PROPOSED METHOD

The overall architecture of CFGAN is first depicted in this
section. Subsequently, each module in CFGAN is introduced
in detail. Finally, we describe the loss functions used for
CFGAN training.

A. Overview of CFGAN

As shown in Fig. 2, CFGAN consists of two sub-networks,
namely coarse net and fine net. Both of the sub-networks
follow the GAN model architecture, which includes a gener-
ator and a discriminator. However, each sub-network serves a
different purpose. Specifically, the coarse net directly recovers
image contents from the input SIFT feature S instead of
converting the SIFT feature to LBP feature first as in [22].
The transformation from SIFT feature to LBP feature results
in the loss of image information, and such information loss
can be avoided if we directly restore the coarse image from
the given SIFT features. For this reason, the coarse net is
designed to directly restore image contents. However, the
distribution of SIFT feature points is unbalanced, with a large
concentration in certain image regions and an absence in
others [30]. Consequently, the coarse image Ic reconstructed
by the coarse net may exhibit distortion and deformation in
terms of detailed texture, even a lack of content in some
areas. Therefore, we design the fine net to further optimize
the coarse image Ic. The fine net takes SIFT feature S and
reconstructed coarse image Ic as inputs, aiming to improve
the color accuracy and texture details of the coarse image.
In the following, we will introduce the implementation details
of these two sub-networks separately.

B. Coarse Net

The coarse net, depicted within the purple box in Fig. 2,
is a convolutional encoder-decoder network. The encoder is in
place for encoding the input SIFT features to obtain high-level
feature maps, while the decoder performs decoding operations
based on these feature maps to predict pixel values and
reconstruct the target images. We adopt the U-Net architecture
[31] for the structures of the encoder and decoder. Because
it has been empirically demonstrated that the U-Net archi-
tecture is quite suitable for image generation [32]. The skip
connection operation employed in U-Net accomplishes the
direct transmission of low-level details from the encoder to
the corresponding section of the decoder, thereby effectively
improving the quality of reconstructed images.

First of all, it is worth mentioning the scale modification
for the input SIFT feature. The number of SIFT feature
points extracted from an image is small in comparison to
the number of pixels. This means that a significant portion
of the SIFT feature space is empty and dispensable for
image recovery. To reduce the redundant information of input
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Fig. 2. Architecture of the proposed coarse-to-fine generative adversarial network (CFGAN). CFGAN is composed of two sub-networks: the coarse net,
represented within the purple box, and the fine net, represented within the blue box. Both sub-networks consist of a generator and a discriminator.

SIFT feature, we propose a simple compression operation.
Firstly, the SIFT feature is partitioned into small blocks of
size 2 × 2. Subsequently, we compute the count of feature
points within each block. If a block contains no feature
point, its value is assigned as 0. If a block contains multiple
feature points, a representative point is chosen randomly. This
simple compression operation halves the input SIFT scale
from 256 × 256 to 128 × 128. Experiments demonstrate that,
despite a small loss in the number of feature points, the use
of the proposed compression operation leads to a desirable
reduction in computation and enhances recovery performance.
Experimental results and analyses will be described in detail
in the ablation study section.

The encoder of the coarse net is composed of a series of
encoder blocks and down-sampling layers. Each encoder block
with a down-sampling layer halves the scale of feature both
in height and width. The size of the input SIFT feature is
128×128 with a total of 128 channels. After being processed
by the encoder, the scale of the final high-level feature is
2 × 2 with 512 channels. The structure of the encoder block
is displayed in Fig. 3. Two types of convolutional layers are
utilized in the encoder block, one with a kernel size of 3 × 3,
a stride of 1, a padding of 1, and the other employs a kernel
size of 1 × 1 and a stride of 1. Each convolutional layer is
followed by a batch normalization (BN) layer and a leaky
rectified linear unit (LeakyReLU) layer. In order to alleviate
the issue of gradient vanishing, we adopt the short-circuit
connection introduced in ResNet [33] within the encoder
block. Inspired by [34], we implement our down-sample
operation using average pooling, which is beneficial to reduce
the parameter count of the model.

Fig. 3. Details of the encoder block and the decoder block. For convenience,
batch normalization layers and activation functions are omitted.

The decoder of the coarse net consists of a range of
up-sample layers and decoder blocks. The architecture of the
decoder block is shown in Fig. 3. Compared with the encoder
block, the decoder block uses an additional convolution layer
with a kernel size of 3 × 3, along with a BN layer and
a LeakyReLU layer. This is because we believe that incor-
porating a deeper network in the decoder part will help to
better restore image content. To make the scale of feature
maps double in both width and height, we employ the nearest-
neighbor up-sampling layers.

The structure of the discriminator is comparatively simpler
than that of the generator. Following the classic discriminator
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structure design, we use a series of convolutional layers to
encode the input images. At last, a fully connected layer and
the sigmoid function are applied to compute the probability
values that represent the authenticity of images. The convolu-
tional layers used in the discriminator are all identical, with a
kernel size of 3 × 3, a stride of 1, and a padding of 1, except
for the last one, whose kernel size is 4×4 and has no padding.
The BN layer and the LeakyReLU layer are employed after
each convolutional layer. The down-sampling operation in the
discriminator is also performed by average pooling to help
reduce the number of model parameters.

C. Fine Net

The architecture of the fine net is exhibited within the
blue box of Fig. 2. The fine net comprises a generator
and a discriminator, while the structures of the decoder and
discriminator are consistent with the coarse net. However,
in contrast to the coarse net, the encoder of the fine net
is composed of two parts that share the same structure but
different functions. The first part is responsible for encoding
the input SIFT features, while the second part encodes the
coarse images reconstructed by the coarse net. The encoder
of the fine net is designed in this manner for two specific
purposes. On one hand, there exist significant differences in
terms of content and dimension between the SIFT features
and the coarse images. The SIFT features include a series
of key points, most of which appear at the edges of the
objects within images. The coarse images contain abundant
content information, which can clearly represent the color and
texture of objects in images. On the other hand, the design
of two independent encoder components facilitates a more
flexible adjustment of the size and dimensions of both the
SIFT features and the coarse images.

D. Fusion Strategy

The proposed fusion strategy plays an essential role in
enhancing the capability of the fine net to improve the quality
of image details. Inspired by [24] and [35], we employ
the AdaIN operation as the fundamental component of our
fusion strategy. The AdaIN operation itself, unlike widely
used convolutional-based fusion modules [36], [37] and
attention-based fusion modules [38], [39], does not introduce
any extra parameter. It avoids the increase in model parameters
caused by the addition of the fusion module. As can be seen
from Fig. 2, we use the AdaIN operation to fuse the features
obtained from each down-sample layer in the SIFT feature
encoder and the coarse image encoder, as well as the features
that are transmitted to the decoder. The AdaIN operation is
formulated as follows:

AdaIN(s, c) = σ(c)
(

s − µ(s)
σ (s)

)
+ µ(c), (2)

where s and c denote the feature maps encoded from the SIFT
feature and the coarse image, respectively. Here, µ indicates
the mean value of feature maps, and σ represents the standard
deviation value of feature maps.

The purpose of integrating these two types of features at
different spatial scales is to enhance the comprehensiveness

of the fusion. As is widely acknowledged, the key points of
SIFT features indicate the salient areas in the image. The
multi-scale fusion technique effectively utilizes the indication
information of SIFT features to reconstruct image details and
rectify feature maps of coarse images at different scales,
thereby achieving better detail recovery performance.

E. Loss Function

In order to optimize the CFGAN network, we use a com-
bination of various loss functions. In particular, we design a
new loss function named sift loss for our specific task that
reverses SIFT features into images. Both the coarse net and
the fine net share the same objective function.

1) Pixel Loss: We use the pixel-level loss function to con-
strain low-level information between the ground truth and the
reconstructed image, which is consistent with many existing
GAN models [22], [40]. The pixel loss is formulated as

Lpix =
1
N

N∑
i=1

||I i
0 − I i

g||1, (3)

where I0 denotes the ground truth, Ig denotes the reconstructed
image, and N represents the total number of pixels in the
image. The notations for the ground truth and reconstructed
image in the subsequent formulas remain consistent.

2) Perceptual Loss: The purpose of utilizing perceptual loss
is to improve the visual quality of the reconstructed image.
Specifically, we use a pre-trained VGG19 [41] to extract
features about the ground truth and the reconstructed image.
Therefore, the similarity between the ground truth and the
reconstructed image can be calculated at the feature-level. The
specific calculation formula for perceptual loss is defined as

Lper =

L∑
l=1

||ξ l(I0) − ξ l(Ig)||2, (4)

where ξ l indicates the l-th feature extraction layer in VGG,
and L denotes the total number of feature extraction layers.

3) Adversarial Loss: The principle of GAN is that the
generator desires to produce images that look real, while
the discriminator makes an effort to distinguish fake images.
Therefore, we adopt the adversarial function used in RaGAN
[42], which can be defined as follows:

Ldis = −EI0 [log(D′(I0))] − EIg [log(1 − D′(Ig))], (5)

Ladv = −EIg [log(D′(Ig))] − EI0 [log(1 − D′(I0))], (6)

where

D′(Ig) = sigmoid(D(Ig) − EI0 [D(I0)], (7)
D′(I0) = sigmoid(D(I0) − EIg [D(Ig)]. (8)

4) Sift Loss: It is widely acknowledged that SIFT feature
based image matching mainly depends on the similarity exhib-
ited by feature descriptors. The feature descriptors are capable
of capturing local gradient information surrounding feature
points. So we assume that the similarity of SIFT features can
also reflect the similarity of image contents. Based on this
idea, we design a new loss function called sift loss to quantify
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TABLE I

QUANTITATIVE COMPARISONS OF DIFFERENT METHODS OVER CELEBA-HQ [44], FFHQ [35], LSUN BIRD AND LSUN DINING ROOM [45] AMONG

IVR [20], INV [21], SLI [22], GLEAD [26], EVDVAE [46] AND THE PROPOSED CFGAN. ↑ MEANS HIGHER IS BETTER, AND ↓ MEANS LOWER
IS BETTER. THE BEST RESULTS ARE EMPHASIZED IN BOLD

the distance between the original image and the reconstructed
image by evaluating their disparities at the SIFT feature level.
The sift loss can be formulated as

Lsi f t =
1
M

M∑
j=1

||K(I j
0 ) −K(I j

g )||1, (9)

where K denotes the SIFT feature extraction operator included
in the package of kornia [43] and M is the amount of SIFT
feature points.

Finally, the generator of CFGAN is optimized by mini-
mizing the function LG , while the discriminator of CFGAN
is optimized by minimizing the function LD . The overall
objective functions are defined as

LG = λpixLpix + λperLper + λadvLadv + λsi f tLsi f t , (10)
LD = Ldis, (11)

where λpix , λper , λadv , and λsi f t show the parameters of the
pixel loss, the perceptual loss, the adversarial loss, and the sift
loss, respectively.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We utilize four publicly available datasets
CelebA-HQ [44], FFHQ [35], LSUN dining room, and LSUN
bird [45] for training and evaluating the proposed model. The
CelebA-HQ contains 30,000 images, each of which features
a human face as the main focus against a simple backdrop.
We randomly divide them into training, validation, and testing
sets in an 8:1:1 ratio. The FFHQ is a high-quality facial
dataset, from which 3000 samples are chosen at random to
evaluate the generalization ability of the model trained on
the CelebA-HQ. The LSUN dining room consists of various
complex living room images with no clear distinctions between
the subjects and the background. A total of 50,000 images are
randomly selected and divided into training, validation, and
testing sets in an 8:1:1 ratio. The LSUN bird includes images
with clean backgrounds as well as those with complicated
backgrounds. We also randomly select 50,000 images in a
distribution ratio consistent with the LSUN dining room. All
the selected samples are resized to 256 × 256 pixels before
training or testing.

2) Implementation Details: We implement our model using
the PyTorch framework. All experiments are performed on
two RTX 4090 GPUs. Meanwhile, we optimize our model
by Adam [47], whose parameters are set as β1 = 0.9 and
β2 = 0.999. The learning rate is set to 1 × 10−4. We train
the model with a batch size of 8, and the parameters trading
off different terms in the loss functions are empirically fixed
to be λpix = 1, λper = 0.01, λsi f t = 0.01, and λadv = 0.02.
To improve the reconstruction performance and stabilize the
training process of the model, we first train the coarse net
to make sure that it can stably generate coarse images. Then,
we employ the pre-trained coarse net to help train the fine net.

3) Evaluation Metrics: In order to objectively evaluate the
quality of reconstructed images, we have selected three widely
used image quality assessment metrics: peak signal-to-noise
ratio (PSNR), structural similarity (SSIM) [48], and fréchet
inception distance (FID) [49].

B. Comparisons With Other Methods

In this part, we compare the image reconstruction perfor-
mance of CFGAN with other state-of-the-art (SOTA) methods,
including three SIFT-based image reconstruction methods IVR
[20], INV [21], SLI [22] as well as two general image
generation methods GleaD [26] and EVDVAE [46]. We re-
implement the IVR and INV according to the descriptions in
the papers, and we adopt the released codes of SLI, GleaD,
and EVDVAE for training and testing. For fair comparisons,
all models are trained and tested on the same datasets.

1) Quantitative Comparisons: The quantitative compar-
isons with other SOTA methods are presented in Table I.
As can be seen, the CFGAN model outperforms all competing
algorithms across four datasets, which strongly demonstrates
its superior capability and remarkable effectiveness.

From the perspective of datasets, the proposed CFGAN
model surpasses other approaches by a clear margin, especially
in the LSUN bird and the LSUN dining room. As mentioned
in the experimental setup, images in the LSUN dining room
all contain a large number of objects, which implies that
the SIFT features extracted from these images will contain
plentiful parameters. It is undoubtedly more challenging to
restore intricate object details in complex scenes based on
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Fig. 4. Visual comparisons of different methods. From top to bottom, the images in each pair of rows are sourced from CelebA-HQ [44], FFHQ [35], LSUN
bird, and LSUN dining room [45], respectively. Within each row, the sequence is as follows: ground truth, SIFT feature, results reconstructed by IVR [20],
INV [21], SLI [22], GleaD [26], EVDVAE [46] and CFGAN.

large amounts of SIFT features compared to only restoring
the main content of images with simplistic backgrounds.
Therefore, the experimental results in the LSUN dining room
demonstrate that CFGAN exhibits superior capabilities in
restoring complex image details compared to the competing
models. In terms of the LSUN bird, it contains both simple and
complex images, which means that the number of input SIFT
feature points varies significantly, ranging from hundreds to
thousands. The results obtained from the LSUN bird indicate
that CFGAN shows exceptional adaptability to diverse input
scenarios, thereby enhancing its practical applicability.

Considering the experimental results obtained on these
four datasets, the proposed CFGAN is capable of conducting
reverse attacks on SIFT features in various situations. Even if
the original image exhibits a complicated scene, the reverse
attack might still be able to recover much of the scene content,
including tiny details. This illustrates that the reverse attack
on SIFT features can be achieved regardless of the type of
the original image, which further demonstrates the potential
image privacy leakages caused by the SIFT features.

From the perspective of evaluation metrics, the proposed
CFGAN model shows the most significant improvement in
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TABLE II
COMPARISONS OF THE MODEL PARAMETERS, FLOPS, AND

INFERENCE TIME ON DIFFERENT METHODS

terms of the FID metric, illustrating that the distribution of
reconstructed images closely approximates the original image
distribution. Clear improvements can also be observed in
SSIM and PSNR across multiple datasets, which reflect the
enhancement in the visual quality of the images. It indicates
that the images restored by CFGAN are better aligned with
the original images in terms of color, brightness, and content.
Moreover, the images reconstructed by CFGAN exhibit high
quality. It shows that the reverse attack on SIFT features
is capable of recovering the majority of the original image
content, including the information that is associated with user
privacy. This emphasizes the existence of the risk of image
privacy leakage associated with SIFT features.

Supplementary information about each compared method is
listed in Table II, which includes the model parameters, the
FLOPs, and the inference time required for a single image.
Although IVR and INV require fewer model parameters and
require less inference time than CFGAN, the quality of the
images reconstructed by these two methods is far from satis-
factory. In addition, CFGAN holds a slightly higher number of
model parameters than GleaD and a slightly slower inference
speed than SLI, but CFGAN shows better reconstruction
performance than these two models. Furthermore, EVDVAE
is more complex than CFGAN in terms of model architecture,
but its reconstruction performance is inferior to CFGAN,
which also illustrates the superiority of CFGAN.

2) Qualitative Results: The reconstructed samples by com-
petitive methods and CFGAN are presented in Fig. 4, which
enable us to make a more intuitive comparison of the recon-
struction performance displayed by these models. The IVR
model can reconstruct the overall contour information of the
subjects. However, there are noticeable areas of blurriness and
a significant lack of details in the reconstructed images. The
images generated by the INV model and the SLI model show
a high degree of similarity in terms of content to the original
images. But noticeable distortions still exist in edge positions
and areas with significant variations in brightness. Addi-
tionally, these images exhibit an issue of color degradation.
Both the GleaD model and the EVDVAE model have made
considerable advancements in processing image details, but
there are still limitations in terms of image color. Compared
to the aforementioned models, the images reconstructed by the
proposed CFGAN model exhibit minimal distortion and defor-
mation in terms of object edges and textures, which greatly

TABLE III
VERIFY THE EFFECTIVENESS OF COMPRESSION OPERATION.

THE BEST RESULTS ARE EMPHASIZED IN BOLD

enhances their visual coherence with the original images.
Besides, the CFGAN model shows a commendable ability
to accurately reconstruct tiny objects within intricate scenes,
indicating that CFGAN can deal with more challenging image
reconstruction tasks. Furthermore, the images reconstructed
by the CFGAN model hold more accurate color consistency
with the original images, which significantly enhances their
visual quality. Visual comparisons in Fig. 4 show that the
images reconstructed by the proposed model are quite similar
to the original images, involving the reconstruction of small
objects in a living room scenario or significant facial features.
It validates the feasibility of restoring the private content of the
original image from SIFT features via reverse attacks. In other
words, if the SIFT features extracted from the original images
are exposed to an untrusted third party, it may cause serious
privacy disclosure.

C. Ablation Study

In this part, we independently examine each model com-
ponent to ensure its validity. The experimental results and
analysis of the compression operation on input SIFT features
are presented first. In order to confirm the effectiveness of the
proposed network architecture, we then look at the individual
contribution of each structure component in the absence of
sift loss. Finally, we incorporate the sift loss into each ablation
model to evaluate the impact of the sift loss function on model
reconstruction capability.

1) Study of the Compression Operation: To validate the
effectiveness of the proposed compression operation on input
SIFT features, we designed two comparative models based
on the CFGAN architecture. The first model, marked as “w/o
compression”, does not use the compression operation. The
second model, marked as “w compression”, employs the pro-
posed compression operation. Experiment results are listed in
Table III, which demonstrate the effectiveness of the compres-
sion operation across all three evaluation metrics. Additionally,
compressing the scale of input SIFT features allows us to
reduce the number of network layers in the CFGAN encoder,
which lowers the model parameters and speeds up computa-
tion. We consider that the compression operation effectively
reduces a large amount of redundant information in the origi-
nal SIFT features, which mitigates the sparsity issue inherent
to the SIFT features and directs the model to concentrate on
areas with more abundant information.

2) Study of the Two-Stage Reconstruction Method: CFGAN
utilities a two-stage reconstruction method to recover the
original images. In this part, we conduct a set of experiments to
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TABLE IV
STUDY OF THE PROPOSED TWO-STAGE RECONSTRUCTION METHOD. THE BEST RESULTS ARE EMPHASIZED IN BOLD

Fig. 5. Visual results on the ablation study of the proposed two-stage
reconstruction method. The images are organized into two groups, with the
first three rows comprising one group and the last three rows forming the
other. In each group, images within the first row are ground truths, images
reconstructed by the model “w/o fine net” are shown in the second row, and
images reconstructed by the model “w fine net” are shown in the third row.

demonstrate the effect of this method. Specifically, we design
two ablation models with different architectures. Model 1,
denoted by “w/o fine net”, removes the whole fine net.
Model 2, denoted by “w fine net”, retains the complete fine
net structure. From Table IV, it can be observed that the
incorporation of fine net significantly improves the model
performance, which strongly demonstrates the effectiveness of
the proposed two-stage reconstruction method. Some recon-
struction examples are provided in Fig. 5. It is clearly shown
that the coarse net is able to reconstruct the basic content
of images, while the fine net effectively enhances image
details, which leads to fewer texture distortions and artifacts.
This further proves that adopting the two-stage reconstruction
method can well improve the quality of reconstructed images.

3) Study of the Proposed Fusion Strategy: The proposed
fusion strategy is the most critical part of fine net, which is
designed to facilitate multi-level fusion of SIFT features and
coarse images. To verify the effectiveness of the fusion strat-
egy, we carry out a series of ablation experiments in this part.
The first model, denoted by “w/o fusion”, replaces the AdaIN
based fusion module with a simple concatenation operation

Fig. 6. Loss changes of the models “w/o fusion” and “w fusion” in initial
thirty epochs during the training process.

that combines the SIFT feature and the coarse image at the
input of fine net. The second model, denoted by “ w fusion”,
employs the proposed fusion strategy. Quantitative results are
provided in Table V. The importance of the proposed fusion
strategy is demonstrated by the fact that applying the feature
fusion strategy can significantly improve model performance.

The analysis of the training losses may provide insight
into the effect of the fusion strategy. As is shown in Fig. 6,
the training loss about the “w/o fusion” model descends
quite rapidly and tends to stabilize in the first few epochs,
while the training loss about the “w fusion” model declines
gently. It indicates that the “w/o fusion” model appears to
converge quickly, and the SIFT features input in the fine net
are disregarded and make no contribution to the optimization
of coarse images. We consider that the fine net without the
fusion module plays the same role as the coarse net in
optimizing the objective function. Because the incomplete fine
net and the coarse net share the same network structures. The
proposed fusion strategy is able to reorganize the SIFT features
and coarse image features across different scales, thereby
altering the direction of information flow and improving model
performance. It further substantiates the indispensability of the
fusion strategy in fine net as it effectively enhances the image
reconstruction capability of the proposed model.

4) Effectiveness of the Sift Loss: In order to test the
effectiveness of the sift loss and compare its effect with the
style loss proposed in [22], we conduct an ablation study
by designing two sets of comparative experiments. The first
set includes three models, where model one is marked as
“Lpix+per+adv(c)”, model two is marked as “w Lstyle(c)” and
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TABLE V
STUDY OF THE PROPOSED FUSION STRATEGY. THE BEST RESULTS ARE EMPHASIZED IN BOLD

TABLE VI
STUDY OF THE LOSS FUNCTION. THE BEST RESULTS ARE EMPHASIZED IN BOLD

Fig. 7. Qualitative results of the ablation study that tests the effec-
tiveness of sift loss. (a) Original images. (b) Results from the model
Lpix+per+adv(c). (c) Results from the model w Lsi f t (c). (d) Results from
the model Lpix+per+adv(c&f). (e) Results from the model w Lsi f t (c&f).
Please zoom in for better observation.

model three is marked as “w Lsi f t (c)”. All models employ
the coarse net as the network framework. The distinction is
that model one lacks style loss and sift loss, whereas model
two includes style loss and model three includes sift loss.
The second set consists of models four, five, and six, which
are labeled as “Lpix+per+adv(c&f)”, “w Lstyle(c&f)” and
“w Lsi f t (c&f)”, respectively. CFGAN serves as the network
architecture in all three models, with the only difference being
that model four lacks the style loss and sift loss, model
five includes the style loss, and model six includes the sift
loss. The quantitative results are given in Table VI. We can
notice that the incorporation of sift loss leads to a significant
enhancement in the performance of both the coarse net and
CFGAN. However, adding style loss will result in a clear
decline in the performance of both the coarse net and CFGAN,
which suggests that style loss is not suitable for CFGAN.

Notably, the most significant improvement is observed in
terms of the SSIM metric, which indicates that the employment
of sift loss enables the model to reconstruct images with better
visual quality. As shown in Fig. 7, the qualitative results
also serve to verify the effectiveness of sift loss. The sift
loss not only helps the model to better reconstruct image
details but also significantly improves the color fidelity of
reconstructed images. The enhancement of color fidelity in the
reconstructed images brings them closer to the original images
in terms of visual perception. We consider that the sift loss
can modify the color of reconstructed images by quantifying
the disparity between the SIFT feature descriptors extracted
from the reconstructed images and original images, which is of
benefit to improving color fidelity in the reconstructed images.

V. CONCLUSION

In this work, we have proposed a novel deep generation
model called Coarse-to-Fine Generative Adversarial Network
(CFGAN) to reveal the latent information in SIFT features
and assess the privacy risk that may arise from the leakage
of SIFT features. CFGAN provides a two-stage reconstruc-
tion approach to recover the original images. Specifically,
the first stage concentrates on the reconstruction of primary
image content, while the second stage further enhances image
details. To better utilize the SIFT feature information, we have
introduced an efficient fusion strategy that employs the AdaIN
operation. Furthermore, a new loss function named sift loss has
been designed to improve the color fidelity of reconstructed
images. Extensive experiments have demonstrated that the
proposed CFGAN model outperforms the existing methods on
four benchmark datasets.

However, there are certain limitations with the CFGAN
model, primarily with regard to its generalizability and capac-
ity for handling images with complex content. Improvements
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will be made in our future work to overcome these limitations.
First, in order to enhance generalization ability, we can explore
various mappings between samples through transfer learning.
In addition, designing more effective loss functions may also
be an alternative way to enhance the capacity of the model to
reconstruct images with more details.
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