9366

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 7, JULY 2024

Detection of Deepfake Videos Using
Long-Distance Attention

Wei Lu™, Member, IEEE, Lingyi Liu, Bolin Zhang™, Junwei Luo, Xianfeng Zhao™, Senior Member, IEEE,
Yicong Zhou™, Senior Member, IEEE, and Jiwu Huang™, Fellow, IEEE

Abstract— With the rapid progress of deepfake techniques in
recent years, facial video forgery can generate highly deceptive
video content and bring severe security threats. And detection of
such forgery videos is much more urgent and challenging. Most
existing detection methods treat the problem as a vanilla binary
classification problem. In this article, the problem is treated as
a special fine-grained classification problem since the differences
between fake and real faces are very subtle. It is observed that
most existing face forgery methods left some common artifacts in
the spatial domain and time domain, including generative defects
in the spatial domain and interframe inconsistencies in the time
domain. And a spatial-temporal model is proposed which has two
components for capturing spatial and temporal forgery traces
from a global perspective, respectively. The two components are
designed using a novel long-distance attention mechanism. One
component of the spatial domain is used to capture artifacts in
a single frame, and the other component of the time domain is
used to capture artifacts in consecutive frames. They generate
attention maps in the form of patches. The attention method has
a broader vision which contributes to better assembling global
information and extracting local statistic information. Finally,
the attention maps are used to guide the network to focus on
pivotal parts of the face, just like other fine-grained classification
methods. The experimental results on different public datasets
demonstrate that the proposed method achieves state-of-the-art
performance, and the proposed long-distance attention method
can effectively capture pivotal parts for face forgery.
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I. INTRODUCTION

HE deepfake videos are designed to replace the face

of one person with another’s. The advancement of gen-
erative models [1], [2], [3] makes deepfake videos become
very realistic. In the meantime, the emergence of some face
forgery applications [4], [5] enables everyone to produce
highly deceptive forged videos. Now, deepfake videos are
flooding the Internet. In the internet era, such technology can
be easily used to spread rumors and hatred, which brings great
harm to society. Thus the high-quality deepfake videos that
cannot be distinguished by human eyes directly have aroused
interest among researchers. An effective detection method is
urgently needed.

The general process of generating deepfake videos is shown
in Fig. 1. Firstly, the video is divided into frames and the face
in each frame is located and cropped. Then, the original face is
converted into the target face by using a generative model and
spliced into the corresponding frame. Finally, all frames are
serialized to compose the deepfake video. In these processes,
two kinds of defects are inevitably introduced. In the process
of generating forged faces, the visual artifacts in the spatial
domain are introduced by the imperfect generation model.
In the process of combining frame sequences into videos,
the inconsistencies between frames are caused by the lack of
global constraints.

Many detection methods are proposed [6], [7], [8] based
on the defects in the spatial domain. Some of the methods
take advantage of the defects of face semantics in deepfake
videos, because the generative models lack global constraints
in the process of fake face generation, which introduces some
abnormal face parts and mismatched details in the face from
a global perspective. For example, face parts with abnormal
positions [8], asymmetric faces [9], and eyes with different
colors [6]. However, it’s fragile to rely entirely on these seman-
tics. Once the deepfake videos do not contain the specific
semantic defects that the method depends on, the performance
will be significantly degraded.

There are also some “deep” approaches [7], [10], which
attempt to excavate spatial defects according to the charac-
teristics of the deepfake generators. However, compared with
image contents, the forgery traces in the spatial domain are
very weak, and the convolutional networks tend to extract
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Fig. 1. Generation process of deepfake videos. The original video is divided
into frames and cropped out of the faces. The target face is generated by
an encoder-decoder which introduces content defects. Then the target face is
spliced back to the original frame and inconsistencies are introduced. Finally,
all the frames are synthesized into a fake video.

image content features rather than the traces [11]. So blindly
utilizing deep learning is not very effective in catching fake
content [12].

Since the deepfake video is synthesized frame by frame, and
there is no precise constraint between the frame sequences,
the inconsistencies in the time domain will be introduced.
Some methods exploit these defects of the time domain. The
movements of eyes are exploited in [13]. Li et al. [14] use
the human blink frequency in the video to detect the deepfake
videos. The movement of lip [15] and the heart rate [16] are
also exploited as the identification basis between authentic
videos and deepfake videos in the time domain. The optical
flows and the movement patterns of the real face and fake face
are classified in [17] and [18], respectively.

All of the methods mentioned above take deepfake detection
as a vanilla binary classification problem. However, as the
counterfeits become more and more realistic, the differences
between real and fake ones will become more and more
subtle and local which makes such global feature-based vanilla
solutions work not well [19].

Similar problems have been studied in the field of fine-
grained classification. Fine-grained classification aims to clas-
sify very similar categories, such as species of the bird,
models of the car, and types of the aircraft [20]. Since
deepfake detection and fine-grained classification share the
same spirit, that learning subtle and discriminative features,
in [19], the deepfake detection is reformulated as a fine-grained
classification task. And a convolutional attention module with
1 x 1 is adopted to make a network focus on the subtle but
critical regions.

However, combining global semantics is just as important as
focusing on local areas. Because some defects are normal from
a local or isolated perspective, but abnormal from a global
perspective. For example, uncoordinated head postures [21],
mismatched facial expressions and head movements [22], and
mismatched eye details [23]. These kinds of defects exist
between different parts of the face at a long-distance. In other
words, the local areas of focus should be determined according
to the global semantics [24], and modeling long-distance
dependencies in both the spatial domain and time domain are
important. But it is not directly for the convolutional attention
mechanism, especially when the kernel is small. The global
pooling may be a choice for assembling global information,
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Fig. 2. Attention maps generated by the novel long-distance attention
mechanism. Pivotal facial regions are emphasized in patches by these maps.
The brighter and yellower the color, the more important it means to the
network.

however, the weak forgery clues will be averaged by this
operation, resulting in a loss of distinguishability [19].

Vision Transformer (ViT) [25] is a widely used model,
which can draw global dependencies and assemble global
information relying entirely on a self-attention mechanism.
However, in [25] the deficiencies are also presented. Firstly,
unlike convolutional networks, it does not intuitively feel
the relationships between adjacent pixels, and the position
relationship only exists between patches. Secondly, when
trained on mid-sized datasets, such as ImageNet, ViT yields
modest accuracies of a few percentage points below the SOTA
convolutional neural networks of comparable size [25]. Thus,
some methods [26], [27], [28], [29] modify the ViT to apply to
their own framework. In [26] and [27], the image is processed
by the convolutional network before being input into the ViT.
In [29], dual cross-modality attention is proposed to model
the interaction between the low-frequency textures and the
high-frequency noises. In [28], the transformer architecture
is used as the backbone to extract multiscale information.
Because we want to combine the advantages of convolu-
tional networks in feature extraction with the advantages
of ViT in constructing long-range dependencies, we draw
lessons from the fine-grained classification and propose a novel
long-distance attention mechanism according to the character-
istics of deepfake videos. The long-distance attention mech-
anism is designed to determine the pivotal parts of forgery
by assembling information from a global perspective. Long-
distance attention is adopted in our spatial-temporal model to
exploit the defects in the spatial domain and time domain. The
spatial-temporal model is used to generate attention maps in
the form of patches and guides the network to focus on pivotal
local parts of the face. An example of our attention maps is
shown in Fig. 2, different colors represent different levels of
importance to neural networks. From the color, we can see
that the brighter and yellower the color, the more important it
means to the network. More detailed attention maps are shown
in Section VI.

The contributions of this article are summarized as follows.
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1) The experience of the fine-grained classification field is
introduced, and a novel long-distance attention mecha-
nism is proposed that can generate guidance by assem-
bling global information.

2) The attention mechanism with a longer attention span
is more effective for deepfake detection tasks. This
combination form of a convolutional network and ViT
is beneficial to make full use of the advantages of
the two network architectures. And in the process of
generating attention maps, the nonconvolution module
is also feasible.

3) A spatial-temporal model is proposed to capture the
defects in the spatial domain and time domain, according
to the characteristics of deepfake videos, the model
adopts the long-distance attention as the main mech-
anism to construct multilevel semantic guidance. The
experimental results show that it achieves state-of-the-
art performance.

The remainder of this article is organized as follows.
In Section II, we first discuss the related work in the field
of fine-grained classification. Then, the classical ViT is intro-
duced briefly. In Section III, we analyze the defect character-
istics of deepfake videos. In Section IV, the proposed method
is introduced in detail. Section V discusses the experimental
results. The ablation analysis is given in Section VI. The
conclusion is presented in Section VII.

II. RELATED WORKS
A. Fine-Grained Classification

In the past few years, the performance of general image
classification tasks has been significantly improved. From the
amazing start of Alexnet [30] in Imagenet [31], the method
based on deep learning almost dominates the Imagenet compe-
tition. However, for fine-grained object recognition [32], [33],
[34], [35], there are still great challenges. The main reason
is that the two objects are almost the same from the global
and apparent point of visual. Therefore, how to recognize
the subtle differences in some key parts is a central theme
for fine-grained recognition. Earlier works [36], [37] leverage
human-annotated bounding box of key parts and achieve good
results. But the disadvantage is that it needs expensive manual
annotation, and the location of manual annotation is not always
the best distinguishing area [38], which completely depends
on the cognitive level of the annotator.

Since the key step of fine-grained classification is focusing
on more discriminative local areas [39], many weakly super-
vised learning methods [20], [38], [40] have been proposed.
Most of them use kinds of convolutional attention mechanisms
to find the pivotal parts for detection. Fu et al. [40] use a
recurrent attention convolutional neural network (RA-CNN)
to learn discriminative region attention. Hu et al. [41] propose
a channel-wise attention method to model interdependencies
between channels. In [38], a multiattention convolutional
neural network is adopted and more fine-grained features can
be learned. Hu et al. [20] propose a weakly supervised data
augmentation network using attention cropping and attention
dropping.
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Deepfake detection and fine-grained classification are simi-
lar, that attempt to classify very similar things. Thus we learn
from the experience in this field and leverage the attention
maps generated with long-range information to make the
networks focus on pivotal regions.

B. Vision Transformer

Transformer [42], a kind of self-attention architecture, is ini-
tially applied in natural language processing (NLP) and shows
excellent performance. Its variant in the field of computer
vision, ViT [25], is first proposed by the Google team in
2020 and attracts a lot of attention. In the vision, attention
is usually used as a component of convolutional networks
while keeping the overall structure. ViT shows that reliance
on CNNs is not necessary. To apply the transformer to images
directly, they first split the image into patches and project
the patches to linear embedding. As a classification model,
it generates a final discriminant vector through several stacking
layers of self-attention modules. The self-attention modules
are used to integrate the features of each patch with the
self-attention mechanism. The self-attention mechanism is a
stunning mechanism, which draws global dependencies and
assembles global information.

ViT is a good choice for tasks that require building
long-distance dependencies. For example, in temporal action
localization task [43], [44], [45], it is important to obtain
information from an action’s context. In [43], the dependencies
are modeled by a variant of ViT. It may be a promising
candidate to deal with the detection of deepfake videos since
the deepfake videos need to be considered from a global per-
spective and focused on the critical regions. However, we find
that it is not effective to apply ViT to deepfake detection
directly. Therefore, we learn from ViT and propose a novel
long-distance attention mechanism. It is used to guide the
backbone network to focus on critical regions by assembling
global information.

IIT. ANALYSIS OF DEEPFAKE

The deepfake videos, generated by GANs [1] and VAEs [2],
are formidably realistic and difficult for human eyes to
discriminate.

Since the differences between authentic videos and deepfake
videos are subtle, detectors that blindly utilize deep learning
are not effective in catching fake content [12]. Similar prob-
lems have been studied in the field of fine-grained classifica-
tion. A crucial experience is that using an attention mechanism
to make the network focus on pivotal local regions can greatly
improve classification performance.

The generative models also have some inherent defects,
which make deepfake detection possible. Whether it’s GANs
or VAEs, the generative networks will have an up-sampling
process in the generation process to generate high-resolution
images from latent coding [1], [2]. This allows the network
to fill in detail in the rough image. Deconvolution allows the
model to draw a larger square from a point in the small graph.
However, deconvolution is prone to uneven overlap, especially
when the kernel size cannot be divided by the step size.
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In theory, the neural network can learn the weight parameters
carefully to avoid this kind of defect, but in fact, the neural
network cannot completely avoid this kind of defect [46].
This overlapping style is reflected in two dimensions. The
uneven overlapping multiplication of two coordinate axes
results in the image block similar to chessboard [46], and
resulting in a loss of facial texture details. Liu et al. [47]
observe that up-sampling is a necessary step of most face
forgery techniques and utilizes phase spectrum to capture the
up-sampling defects of face forgery. Since the up-sampling
occurs between adjacent pixels, it is advantageous to capture
the local information and collect statistics by using small
blocks of appropriate size [48]. On the other hand, deep-
fake often generates abnormal face semantics. For example,
unconvincing specular reflections in the eyes, either missing
or represented as white blobs, or roughly modeled teeth, which
appear as a single white blob [23]. The semantics and textures
of the human face also appear in the form of the region [49].
Therefore, the processing of facial features in the form of
patches is conducive to extracting local statistical information
and capturing forgery traces. In long-distance attention, the
input image is divided into many nonoverlapping small patches
to collect local information.

However, some face semantics are normal from the local
perspective but abnormal from the global perspective. That’s
because the GANs lack global constraints which introduce
abnormal facial parts and mismatched details. It is observed
that the density distributions of normalized face landmark loca-
tions on real and GAN-synthesized fake faces are different [8]
because there is no coordination mechanism in the generation
process of face components. This also leads to the asymmetry
of the face [9]. In addition to the global structure as clues,
the difference in details between facial components is also
a key to the detection. For example, human eyes are always
separated by a certain distance and have the same color, but
the eyes of the fake face sometimes show a different color
[23]. An example of defects in the spatial domain is shown
in Fig. 3. The first row reflects defects in a local region,
and the next two rows reflect defects from a wider vision.
It is also observed that biological signals are not coherently
preserved in different synthetic facial parts [12]. Therefore,
assembling global semantic information and considering the
location relationship between facial components will help to
find these generative defects.

In addition to the generative defects in the spatial domain,
temporal defects also exist in deepfake videos. In [14], the
temporal inconsistencies are caught by the frequency of eye
blinking. The inconsistency is also reflected in the face motion.
The face motion patterns of real videos and deepfake videos
have some differences and can be used for classification [18].
Furthermore, there is a strong correlation between facial
expression and head movement [22]. Changing the former
without modifying the latter may expose a manipulation. It is
also observed that temporal consistencies of human biological
signals are not well preserved in GAN-erated content [12].
Thus, it is beneficial to modeling the continuity of the face in
the videos for deepfake detection. We exploit these inconsis-
tencies in the time domain with a temporal model.
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Fig. 3. Some typical defects of deepfake videos in the spatial domain. The
images in the first row reflect some local defects, i.e., obvious forgery clues
in the mouth of the left and middle pictures, and a strange facula near the
hair in the right picture. The second row contains faces with weird eyes.
The third row contains faces with abnormal face structures. (a) Local defects.
(b) Mismatched eyes. (c) Abnormal structures.

IV. PROPOSED METHOD
A. Overview

In this section, the motivation to use long-distance attention
is given first and then the proposed model is described briefly.

As aforementioned, there is no precise global constraint
in the deepfake generation model, which always introduces
disharmony between local regions in the face of forgery from
a global perspective. In addition to the artifacts that exist in
each forgery frame itself, there are also inconsistencies (e.g.,
unsmooth lip movement) between frame sequences because
the deepfake videos are generated frame by frame. To capture
these defects, a spatial-temporal model is proposed, which has
two components for capturing spatial and temporal defects
respectively. Each component has a novel long-distance atten-
tion mechanism that can be used to assembling the global
information to highlight local regions.

Based on the observation [50] that the artifacts caused by the
generation model are mainly preserved in textural information
of shallow features, the attention maps generated by the spatial
component are adopted to recalibrate the shallow features
maps which are generated by the first several convolutional
layers. As inconsistency occurs in relative high-level seman-
tic features, the attention maps generated by the temporal
attention component are used to guide the relative high-level
semantic features.

The framework of the spatial-temporal model is shown
in Fig. 4. Two essential components are integrated into the
backbone network: 1) a spatial attention component for cap-
turing spatial disharmony and focusing on shallow features
and 2) a temporal attention component for capturing tempo-
ral inconsistencies and focusing on mid-level features. Both
the attention maps are used to recalibrate the feature maps
and make the network focusing on pivotal local regions.
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Framework of the proposed method. There are two essential components in the framework. A spatial attention module for capturing the spatial

defects in a single frame, and a temporal attention module for capturing the temporal inconsistencies between consecutive frames. The components are used
to generate guidance to make the backbone network focus on pivotal local regions.

The backbone adopted is the Xception [51] which performs
well in the vision field.

About the loss function, considering that most of the public
datasets do not have a ground-truth of marked defect areas,
at the same time, in the real deepfake scenario, the highly
realistic forgery makes it difficult to mark valuable suspicious
areas even for a human. Thus we absorb the experience in the
fine-grained classification field to adopt a weakly supervised
learning way. This also brings some benefits. The proposed
attention module can be easily applied to more models as a
pluggable module, and the performance impact brought by the
attention module itself can be compared more fairly, rather
than influenced by the additional prior benefits brought by
annotation. In general, the loss function of the whole model
is a cross-entropy loss of the output of the network and the
label of the input.

B. Long-Distance Attention

In faces, a semantic region is a small area with rich infor-
mation, like human eyes. Based on the observation we have
mentioned, the long-distance attention mechanism is proposed
to model the interdependencies between the semantic regions
to perform feature recalibration mediately. It contributes to
using global information to selectively emphasize informative
regions and suppress regions that are useless for forgery
detection.

As the key parts of face forgery can be regarded as many
small areas with abnormal clues, the image is divided into
many nonoverlapping small patches. These patches contain the
local statistical information that might imply potential forgery
clues. And then the weight of fake confidence for a small area
corresponding to each patch is obtained which is achieved by
long-distance attention.

Denote the input image as [/ € , and the resolution
is H x W, C is the number of channels. The image is divided

RHXWXC

into a sequence of small patches P = [pi, p2,..., PN]-
Therefore, there will be N = H W /s patches, each one has
C channels and the resolution s x s. Then each patch is
flattened and mapped to a D dimension vector with a trainable
linear projection f;(P), which transfers patches to embedding
Z =1z1,22,...,2zn] for ease of processing [52]. Considering
that the position of each patch reflects the spatial relationship
between them, in order to reserve positional information, posi-
tion embedding is added to the patch embedding to compose
patch features [53]. The position embedding is shaped in
a learning way. To model the internal relationship between
the patch features, a necessary global forgery template ¢ is
utilized [24]. The template ¢ is used to model the global
association of a latent forgery property space. In order to
intuitively understand the so-called latent forgery property
space, an inaccurate example is the optical flow space of
the patches, the optical flow sometimes reflects an irregular
variation of the deepfake videos. Since there may be more than
one forgery property space, multiple templates are adopted.
At the same time, the patch features will be mapped to the
representations X = [x,X»,...,xy] in each latent space,
which is implemented with a learnable transformation matrix
U. Both the matrix and template are shaped in a learning way.
After that, the template in each latent forgery property space is
used to consult each representation to get the forgery property
activation [54]. The activation is treated as the attention
weight, and adopted to guide the feature maps.

As shown in Fig. 5, long-distance attention consists of three
main steps: 1) the patches are flattened to patch embedding Z
and added the position embedding to compose the patch fea-
tures; 2) the patch features are mapped to the representations
X =[xy, x2,...,xy] of a latent forgery property space, by a
learnable transformation matrix U; and 3) finally, the global
forgery template ¢ is used to consult each representation to
obtain the activation rate of each representation.
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Proposed long-distance attention mechanism. The image is split into small patches. The patches are linearly projected to patch embeddings and the

position embedding is added. Then, the embedding is transformed into representations in a latent space by a matrix. Lastly, a global forgery template rectified
by learning is used to activate the forgery property of each representation to generate attention maps.

Since the activation rates represent the confidence level of
each patch with the suspicious region, they are reshaped to an
attention map with the same resolution as the feature maps of
the backbone, and applied by elementwise multiplication to
emphasize pivotal regions.

As aforementioned, there are not only one forgery property
space, in fact, we adopt 12 such attention module to produce
different attention maps of different latent space, and linearly
combined into m final attention maps for a robust and efficient
reason [19], more discussion is given in VI-B.

C. Spatial Attention Model

In this section, we introduce the overall spatial attention
model in detail. The spatial attention model is designed
to capture the artifacts that existed in the spatial domain
with a single frame. As aforementioned, since there is no
precise global constraint between face parts which will intro-
duce disharmonious facial structures and mismatched texture
details [23], it is beneficial to generate guidance from a global
aspect. Most of the existing methods use pooling to deal with
the problem [41], such as global pooling, channel pooling,
and so on. However, compared with the local association,
the global association information is very weak and difficult
to be established [12]. On the other hand, defects such as
oversampling and insufficient texture appear in the local area,
so an appropriate size of the local receptive field is benefiting
for the collection of this statistical information. With the
long-distance attention mechanism, these problems can be well
balanced.

As we want to use the long-distance attention mechanism to
capture the defects of the spatial domain in a global perspec-
tive, a single frame of the tested video is used as the input. And
to recalibrate the importance between regions, the attention
maps generated by a single frame are adopted to the feature
maps of the backbone network. As textural features exist in

shallow features [19], we make the attention works with the
first several layers of the backbone. More specifically, the
input image / which is used for the backbone and the spatial
attention model is reshaped to the resolution 398 x 398 and
224 x 224 respectively. Then the convolutional feature maps
are extracted by the first several layers of the backbone. And
the spatial attention module receives a relatively small image
which is tackled by the attention mechanism we have described
above. Finally, the attention maps generated by the mechanism
are element-wise multiplied by shallow feature maps to get the
emphasized feature maps.

D. Temporal Attention Model

The movement of human faces is a complex and delicate
process. For example, the facial expressions and head move-
ments are strongly correlated [55] and changing the former
without modifying the latter may expose a manipulation [22].
However, since the deepfake videos are synthesized frame by
frame and do not precisely model the correlation between
frames, it almost inevitably introduces inconsistencies. In order
to capture these temporal inconsistencies, consecutive frames
of video are required. For the frame to be detected, the next n
frames are also utilized in the temporal attention model. The
number n is determined by experiments in Section VI-C. For
temporal attention, we care more about the variation of videos
in the time dimension, so we calculate the motion residuals
between adjacent frames as the inputs. The calculation of the
motion residual r’ can be formulated as

rt — ItJrl _ It.

The temporal difference operation is simple and does not
introduce any extra parameters but is capable of modeling the
temporal inconsistency efficiently [56]. As shown in Fig. 6,
the frame / and the motion residuals are split into patches,
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Fig. 6. Process of temporal attention generation. The image of the tested
video and its following motion residuals are used as inputs. Then the attention
maps are generated by the long-distance attention and adopted to guide the
mid-level feature maps.

and all of the patches are composed of a sequence to be the
input of the model. In this way, the template ¢ of the temporal
attention model is used to model the inconsistency between
frames and to obtain the activation rate of each region in a
latent inconsistency space. The activation rates are used as the
attention weights and represent the confidence of inconsistency
in each region. Since the inconsistency in the time domain is
relatively high-level semantics compared with the features in
the spatial domain, the temporal attention maps are applied
to relatively high-level feature maps. In the same way, the
attention maps are reshaped to the same size with relatively
high-level feature maps and element-wise multiplied.

V. EXPERIMENTS

In this section, the experiment setups are introduced first and
then we present extensive experimental results to demonstrate
the superiority of our method.

A. Datasets and Implementation Details

Two mainstream deepfake datasets are used in our experi-
ment, including FaceForensics++ (FF++) [57] and Celeb-DF
[58]. FaceForensics++ and Celeb-DF are both large-scale
datasets that are widely used in face forgery detection.
FaceForensics++ dataset consists of four kinds of face forgery
videos, which are generated by four state-of-the-art meth-
ods, i.e., DeepFake (DF) [4], FaceSwap (FS) [5], Face2Face
(F2F) [59] and NeuralTexture (NT) [60]. For each video of
FF++, it has two compression versions (i.e., HQ, LQ), which
are compressed by H.264 with constant rate quantization
parameters set by 23 and 40. Celeb-DF is a great challenge
to the current detection methods. It consists of more than
5000 deepfake videos, and the real videos are gathered from
social media. Benefiting from an elaborate generation model,
the generated videos are very realistic. For all video frames,
we use DIlib [61] to detect and crop faces. The aligned facial
images are resized to 398 x 398 for the backbone network
and 224 x 224 for attention modules respectively. And the
size of all patches is set to 16 x 16.
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TABLE I

QUANTITATIVE COMPARISONS AMONG RECENT METHODS AND THE
PROPOSED ON FACEFORENSICS++ DATASETS WITH LOW-QUALITY
(HEAVY COMPRESSION) AND HIGH-QUALITY (LIGHT
COMPRESSION). ACC(%) AND AUC(%) ARE ADOPTED, AND
THE BEST PERFORMANCES ARE MARKED AS BOLD

, LQ HQ
Methods ACC  AUC | ACC _ AUC
Steg. Features [62] 55.98 — 70.97 —
Cozzolino et al. [63] 58.69 — 78.45 —
Bayar et al. [11] 66.84 — 82.97 —
MesoNet [7] 70.47 — 83.10 —
Face X-ray [64] — 61.60 — 87.40
Two Branch [65] — 86.59 — 98.70
Xception [51] 86.86 89.30 95.73 96.30
EfficientNet-B4 [66] 86.67 88.20 96.63 99.18
Multi-attentional [19] 86.95 87.26 96.37 98.97
F3-Net [67] 90.43 93.30 97.52 98.10
M2TR [28] 92.35 94.22 98.23 99.48
Ours 95.81 98.49 99.51 99.88
TABLE I1

QUANTITATIVE COMPARISONS ON CELEB-DF DATASETS.
ACC(%) AND AUC(%) ARE ADOPTED

Methods ACC AUC
MesoNet [7] — 53.6
13D [68] 76.08 83.00
C3D [69] 78.67 84.00
FaceNetLSTM [70] | 79.83 —

Hu et al. [71] 80.74 87.00
Xception [51] 89.55 89.91
FakeCatcher [12] 91.50 —

XcepTemporal [72] 97.83 —

Ours 99.13 99.87

Xception [51] is the backbone we adopted which has
12 main blocks and some feature extraction layers at the begin-
ning. Our framework is implemented by PyTorch. During the
training phase, the backbone network is initialized randomly
and the ViT network in our long-distance attention mechanism
is initialized by its pre-trained weights. The batch size is set to
32. In our experiments, the learning rate is set as 0.0003, which
is determined by experiments. The networks are optimized by
SGD with momentum = 0.9. The total number of training
epochs is set to 20, and the learning rate is reduced to half
every five epochs. The quantity of attention maps is set by
experiments, and the default number is 4, more discussion is
given in Section VI-B.

Face forgery detection is a binary classification task, that
is, gives a judgment of the tested video whether it is fake or
real. Two evaluation metrics are adopted in our experiments,
Accurency rate (ACC) is the most intuitive evaluation metric.
AUC is another metric we adopted.

B. Comparison Experiments

Comparisons are conducted between current state-of-the-
art deepfake detection methods and the proposed method. For
deepfake video detection, there are frame-level and video-level
detection methods. The frame-level detection method can give
a decision for each frame of the video whether the frame has
been tampered while the video-level detection method can give
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TABLE III

QUANTITATIVE COMPARISON [FRAME-LEVEL ACC (%) AND AUC (%)] ON FACEFORENSICS++ WITH FOUR DIFFERENT MANIPULATION METHODS,
I.E., DEEPFAKES(DF) [4], FACE2FACE(F2F) [59], FACESWAP(FS) [5], NEURALTEXTURES(NT) [60]. THE PROPOSED METHOD IS CAPABLE OF
DEALING WITH DIFFERENT MANIPULATION METHODS

Methods DF [4] F2F [59] FS [5] NT [60]
ACC AUC ACC AUC ACC AUC ACC AUC
Steg. Features [62] 73.64 — 73.72 — 68.93 — 63.33 —
Cozzolino et al. [63] 85.45 - 67.88 - 73.79 — 78.00 —
Rahmouni et al. [73] 85.45 — 64.23 — 56.31 — 60.07 —
Bayar et al. [11] 84.55 — 73.72 — 82.52 — 70.67 —
C3D [69] 85.10 91.00 73.12 88.00 72.11 87.00 60.30 59.00
Hu et al. [71] 94.64 98.00 86.48 94.00 85.27 94.00 80.05 90.00
MesoNet [7] 87.27 - 56.20 - 61.17 — 40.67 —
Xception [51] 95.15 99.08 83.48 93.77 92.09 97.42 77.89 84.23
Spatial-phase [47] 93.48 98.50 86.02 94.62 92.26 98.10 76.78 80.49
FakeCatcher [12] 94.87 - 96.00 - 95.75 — 89.12 —
Ours 99.47 99.79 99.98 100.00 98.27 99.46 93.25 98.61
TABLE IV

QUANTITATIVE COMPARISON [VIDEO-LEVEL ACC (%) AND AUC (%)] ON FACEFORENSICS++ WITH FOUR DIFFERENT MANIPULATION METHODS,
I.E., DEEPFAKES(DF) [4], FACE2FACE(F2F) [59], FACESWAP(FS) [5], NEURALTEXTURES(NT) [60]. THE PROPOSED METHOD IS CAPABLE OF
DEALING WITH DIFFERENT MANIPULATION METHODS

Methods DF [4] F2F [59] FS [5] NT [60]
ACC AUC ACC AUC ACC AUC ACC AUC

Xception [51] 96.79 97.64 91.79 93.17 96.07 97.05 81.79 82.36
F3-Net [67] 97.14 97.85 94.64 95.60 97.14 97.48 83.57 84.64
High-frequency [29] 97.86 98.20 94.64 95.54 96.79 97.64 81.79 83.89
Multi-attentional [19] 98.57 99.07 93.93 95.46 97.86 99.05 85.00 87.94
Ours 99.29 99.64 99.64 99.75 98.58 99.81 94.29 96.31

a decision whether the video has been tampered [23], [74]. . ROC Curve
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ACC and AUC metrics. The experimental results indicate 021 ,/’

that the proposed method achieves state-of-the-art performance e e ton v = 0.96)

on both versions of FaceForensics++ [57]. In general, the O'O‘Ovo " o e Py s

performance of most methods in high-compressed video is not
as good as that in low-compressed video. This is because the
video will lose a lot of texture details after high compression,
which is one of the main pieces of information that networks
need to pay attention to. Since the proposed method takes
into account the inconsistencies of multiple frames in the time
domain, compared with the other methods, the performance
degradation is relatively small. Another noteworthy point is
that, compared with the backbone Xception [51], the proposed
method has a significant improvement as shown in Fig. 7,
which is benefiting from the spatial-temporal guidance.

The Celeb-DF [58] datasets are also adopted. As shown in
Table II, although the Celeb-DF is very realistic, the proposed
model can effectively capture the defects and achieve better
performance than the other methods.

To evaluate the spatial-temporal model’s ability to capture
defects introduced by different manipulation methods, the
model is trained and tested on different manipulation methods

False Positive Rate

Fig. 7. ROC curves for the Xception and spatial-temporal model on HQ of
FaceForensics++-.

TABLE V

COMPARISON OF SOME ATTENTION MODELS AND OUR
PROPOSED ON FACEFORENSICS++

Models \ ACC(%)
SENet [41] 78.22
Look closer [40] 87.47
MMAL [75] 92.33
WSDAN [20] 93.81
Ours 99.51

in FaceForensics++ [57]. As the results shown in Table III,
for different manipulation methods, our method achieves bet-
ter performances than the other methods. It confirms that
the proposed spatial-temporal model is capable of capturing
various kinds of defects introduced by different manipulation
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TABLE VI

CROSS-DATASET EVALUATION WITH AUC(%). TRAINED ON HQ AND LQ
OF FACEFORENSICS+-+ AND TESTED ON CELEB-DF. OUR METHOD
OUTPERFORMS MOST DEEPFAKE DETECTION METHODS

Methods FF++ Celeb-DF
Two-stream [10] 70.10 53.80
MesoNet [7] 84.70 54.80
FWA [76] 80.10 56.90
Xception [51] 99.70 48.20
Multi-task [77] 76.30 54.30
Capsule [78] 96.60 57.50
DSP-FWA [76] 93.00 64.60
Two Branch [65] 93.18 73.41
F3-Net [67] 98.10 65.17
M2TR [28] 99.50 65.70
Spatial-phase [47] 96.91 76.88
High-frequency [29] - 79.40
Multi-attentional [19] 99.80 67.44
Ours 99.97 70.33

methods. This may be because the defects introduced by these
operation methods have some common characteristics, and the
attention mechanism helps to excavate these characteristics.
We also conduct experiments for video-level prediction on
LQ(c40) versions of FaceForensics++ to decide whether a
video is fake or not. From Table IV we can see that due to our
spatial-temporal attention which takes inconsistency between
consecutive frames into account, our method achieves the best
performance on four different manipulation datasets.

As we treat the problem as a fine-grained classification
problem, we compare our model with some state-of-the-art
fine-grained classification models. The models are reproduced
and migrated to deepfake detection. As shown in Table V, the
performance is acceptable but not satisfactory compared with
the SOTA deepfake detection method.

C. Cross-Dataset Performance

In this part, the transferability of our framework is evalu-
ated. The cross-dataset result is shown in Table VI. To compare
with other methods, we train our model on both HQ and LQ
of FaceForensics++ [57] and tested on Celeb-DF [58]. Since
there are many differences between datasets, such as different
video compression methods, common scenes, camera angles,
and so on, it is a challenging task for most detection methods.
All the methods have different degrees of decline in the cross-
dataset task. As the experimental results show, although our
method is not specially designed for cross-dataset perfor-
mance, it still has a better performance than most methods.
Two-Branch [65] is elaborately designed for transferability and
achieves better results. However, our in-dataset performance is
better than theirs. The comparison with the backbone network
also confirms that our spatial-temporal model can effectively
emphasize local regions, thus improving transferability.

D. Ability of Capturing Defects

Since the defects in deepfake videos are subtle, it may not
be an initiative for human eyes to discriminate the differ-
ences between the attention maps generated by real and fake
faces. To intuitively understand how long-distance attention
works, we manually add the defects that we mentioned in
Fig. 3 to the frames of authentic videos and examine the
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Fig. 8.
highlighted area in the attention map is highly coincident with the tampered
area of the real face. (a) Capturing local defects. (b) Capturing mismatched
eyes. (c) Capturing abnormal structures.

Attention maps effectively emphasize the tampered region. The

differences between attention maps of the real and tampered
faces. Although deepfake videos generally do not produce such
obvious traces of forgery, the use of these obviously tam-
pered faces helps to intuitively understand how long-distance
attention can capture these local and global defects. As shown
in Fig. 8, the first column consists of real faces, the second
column consists of attention maps of the real faces, the third
column is the tampered version of the first column by a
certain manipulation, and the last column consists of attention
maps of the tampered faces. The areas highlighted in the
fourth column but not highlighted in the second column are
marked with red boxes, and it can be seen that they are
highly coincident with the tampering position in the face.
The first row is an example of local defects. The tampered
image is Gaussian blurred to simulate the texture defects in
deepfake videos. The mouth area of the real face is blurred,
and it can be seen that the attention map generated by the
tampered face highlights the corresponding area. The second
row is an example of mismatched eyes. The face’s right eye
pupil is painted red. Obviously, the area of the attention map
corresponding to the abnormal eye is highlighted. The last
row is an example of abnormal face structures. The mouth of
the face is distorted. Therefore, the generated attention map
highlights the corresponding area of this abnormal structure.
These results indicate that a long-distance attention mechanism
can capture the defects in local and global perspectives. Thus,
a long-distance attention mechanism is useful to generate
guidance from the local and global perspectives, and make
the backbone network focus on the pivotal regions.

E. Analysis on Failure Cases

Although it is difficult to pinpoint the logic of the neural
network and how it makes bad decisions, we did find some
typical errors in the detection process. As shown in Fig. 9,
they can be roughly classified into two categories, one is
abnormal inputs, such as incomplete faces, and sideways face,
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Fig. 9. Failure cases of our model and their corresponding attention
maps, which can be roughly classified into abnormal input (incomplete
face, excessive head angle) and abnormal attention. The model misclassifies
these real images as fake. (a) Incomplete face. (b) Excessive head angle.
(c) Abnormal attention.

and the other is abnormal processing of the model, such as
generating abnormal attentions. Attention maps generated by
our model assign lower weights to facial area and higher
weights at the frontier, which can hardly help the network
focus on important regions and make wrong predictions.
To deal with the abnormal inputs, as we know, the neural
network can handle the data is has “seen” very well, so it
will be helpful to manually eliminate the abnormal data to
improve the performance, or through data enhancement means
to increase the quantity of such data. To deal with the errors
of the model itself, it is helpful to introduce some additional
guidance and confrontation ideas to improve the robustness of
the model and improve cross-dataset performance, which is
also one of our future work directions.

FE. Comparison on Computation Complexity

As a deep neural network model, computational complexity
is an important measure. The flops (floating-point operations
per second) represent the amount of computing needed for
the network. The total params are also an import measure,
reflecting the size of the model. We compare our models
with Xception [51] and multiattentional [19] in flops, total
params, and accuracy (ACC) on HQ of FaceForensics++.
The results are shown in Table VII. The Xception is the
backbone we adopted. The multiattentional [19] is another
attention model for the deepfake detection task which shares
the same perspective with us from fine-grained classification
field. Compared with the backbone, our models have a signif-
icant performance improvement with an acceptable increment
of computational complexity. Compared to multiattentional,
although our models require a little extra computation, it has
a significant performance improvement which presents the
effectiveness of the novel long-distance attention mechanism.

VI. ABLATION ANALYSIS

In this section, we discuss the effectiveness of the temporal
attention model and the spatial attention model respectively,
and further discuss the influence of model parameters on
performance.
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TABLE VII

COMPARISON ON COMPUTATION COST AND ACC
ON HQ OF FACEFORENSICS++

Models | Flops (G) | Total params (M) | ACC (%)

Xception [51] 14.60 22.38 95.73

Multi-attentional [19] 14.61 21.00 96.37

spatial 14.92 23.17 99.11

temporal 15.41 24.74 98.80

spatial-temporal 15.82 25.57 99.51
TABLE VIII

MODELS ARE TRAINED AND TESTED ON FACEFORENSICS++ HQ, BOTH
SPATIAL MODEL AND TEMPORAL MODEL ARE EFFECTIVE AND
HAVE A SIGNIFICANT IMPROVEMENT, THE BEST PERFORMANCE IS
ACHIEVED BY THE SPATIAL-TEMPORAL MODEL

Models Xception [51]  spatial ~ temporal | spatial-temporal
ACC(%) 95.73 99.11 98.80 99.51
AUC(%) 96.30 99.76 99.85 99.88

A. Effectiveness of Spatial-Temporal Model

To evaluate the effectiveness of the spatial model and tem-
poral model, we separately use the spatial model, the temporal
model, and the combination of the two models to compare
the performance with the backbone. All of the models are
trained and tested on the FaceForensics++ [57] with ACC and
AUC metrics. The comparison results are shown in Table VIII.
It can be clearly seen that the proposed temporal model and
spatial model both have significant performance improvement
compared with the backbone. The best performance is present
by the spatial-temporal model, confirming that both the spatial
model and temporal model are effective. More specifically,
compared with the backbone network, each model has at least
3 percent performance improvement in ACC and AUC metrics,
and the combination of the two will have a better effect. At the
same time, it can be observed that the spatial model is slightly
better than the temporal model. We think this may be because
the defects in the spatial domain are more common in deepfake
videos.

In order to understand the guiding role of attention maps
intuitively, the attention maps produced by the model are
visualized. The spatial attention maps are shown in Fig. 10.
The first two columns of attention maps are generated from
real video frames, while the last two columns of attention maps
are generated from forged video frames. Although all attention
maps successfully capture the semantic regions of the human
face, the slight difference is that the highlight regions of spatial
attention maps from fake videos are more concentrated. This
phenomenon is also reflected in the temporal attention maps.
As shown in Fig. 11, the weight of temporal attention maps
generated by real video frames is more uniform, while the
temporal attention map generated by fake video focuses on a
few areas. We think it’s caused by irregular, tiny jitters that
often occur in deepfake videos, especially near the mouth and
the edge of the face. It is consistent with the highlight of the
temporal attention maps of fake.

B. Quantity of Attention Maps

In order to enhance the diversity of the guidance gener-
ated by the spatial model and temporal model, and avoid
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Fig. 10. Spatial attention maps generated by real videos and fake videos.
The highlighted regions represent potential artifacts in spatial domain and fake
videos are more concentrated. (a) reall. (b) real2. (c) fakel. (d) fake2.

TABLE IX

COMPARISON OF MODELS WITH DIFFERENT NUMBER
m OF ATTENTION MAPS

m 1 2 3 4 5
ACC(%) | 97.79 99.35 99.47 99.51 99.38
AUC(%) | 99.73 99.62 99.94 99.88  99.91

generating guidance limited from a single latent space, mul-
tiple long-distance attention modules are used in each model.
At the same time, in order to enhance the robustness and
stability of the guidance, 1 x 1 convolution kernel is used
to combine the guidance and generate m final attention maps.
To verify the effectiveness of the multiattention maps and
explore the optimal quantity of attention maps, experiments are
conducted on the influence of the quantity of attention maps
on the performance of the model. The models are trained on
FaceForensics++ [57] with the same hyper-parameters except
for the quantity of attention maps. As the result shown in
Table IX, since multiple attention maps provide more diversity
of guidance, the model using multiple attention maps has a
better performance than the model using a single attention
map, and the best ACC is obtained with m = 4, and the best
AUC is obtained with m = 3. When the number of maps
increases to a certain number, blindly increasing the number
cannot bring obvious performance improvement.

C. Quantity of Consecutive Frames

In the temporal model, multiple consecutive frames are used
to mine the inconsistencies. Although more consecutive frames
carry more temporal information, too many sequences will
make it difficult for the model to establish information asso-
ciation. In order to explore how many consecutive frames can
provide enough temporal information for the proposed model,
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Fig. 11. Temporal attention maps generated by real videos and fake
videos. The highlighted regions represent degree of inconsistency between
consecutive frames within that area in temporal domain and fake videos are
more concentrated. (a) reall. (b) real2. (c) fakel. (d) fake2.

TABLE X

COMPARISON OF MODELS WITH DIFFERENT NUMBER
n OF CONSECUTIVE FRAMES

n 2 3 4 5
ACC(%) | 99.33 99.561 99.48  99.12
AUC(%) | 99.85 99.88 99.93 99.76

the temporal models with different numbers of consecutive
frames are used to explore the optimal number of consecutive
frames. The experimental results of different numbers of
consecutive frames are shown in Table X. It can be seen that
three consecutive frames are enough for the proposed temporal
model to build the information association of the patches in
the time domain.

D. Resolution of Inputs

The image resolution is a factor that can affect the perfor-
mance of the neural network. The input of the long-distance
attention module is 224 x 224, which is the input requirement
of ViT since we need to load the pre-trained weights of ViT
partly, so the input size of this part is fixed. Meanwhile, the
attention map produced by the attention module represents
the importance of each patch. This also allows the network
to focus on the key areas, which is applied by element-wise
multiplication between feature maps and corresponding atten-
tion maps. We choose 398 x 398 resolution because of the
need for size correspondence when multiplying. With this
resolution, the size of the shallow feature map is exactly an
integer multiple of the size of the attention map, so we can
expand the attention maps linearly and project the attention
map onto the feature map, which is why our feature map
emphasizes the key areas in the form of patches. Without this
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TABLE XI

QUANTITATIVE COMPARISONS AMONG RECENT METHODS AND THE
PROPOSED ON CELEB-DF DATASETS WITH DIFFERENT RESOLUTION

Methods Resolution
256 x 256 | 299 x 299 | 398 x 398 | 448 x 448
High-Frequency 89.97 90.02 90.36 91.51
RFM 96.68 97.18 97.65 97.31
Multi-attentional 93.36 93.5 94.9 94.26
Xception 90.61 90.82 90.87 90.46
Ours 94.87 95.4 99.13 96.91

correspondence, we need to use adaptive averaging pooling to
match the sizes of the attention maps and the feature maps,
which will bring the loss of information and impact the cor-
respondence between the attention map and the feature map.
Furthermore, it will hurt the performance as well. Besides, for
fine-grained classification tasks, in order to make the features
after convolution still have sufficient identification, so as to
distinguish important local areas, the image resolution will be
higher. Higher resolution helps achieve higher performance
on fine-grained visual categorization datasets [79]. Therefore,
we absorbed their experience and used a relatively large image
resolution to ensure sufficient differentiation of the region and
granularity of the attention guidance.

In order to explore the influence of image resolution on
the current deepfake detection methods, experiments are con-
ducted on Celeb-DF with several SOTA methods at different
resolutions. For our method, since the size of the shallow
feature map obtained with other resolutions is not an integer
multiple of the size of the attention map, we use adaptive aver-
aging pooling to match the sizes of the attention maps and the
feature maps. The other methods are reproduced based on their
published code and modified as less as possible to adapt to the
inputs of different resolutions. It is worth pointing out that, all
of the methods use Xception [51] as the backbone to make
it easier to compare the effectiveness of modules. As shown
in Table XI, for most of them the effect of high resolution is
positive as more than one percent performance improvement
between large and small resolutions. The proposed method
achieves the best performance at 398 x 398 resolution and
is more affected by resolution. This is because, at resolution
398 x 398, the patch-based activation weights can affine into
patch-based attention maps. At the same time, the global
average pooling makes patch-based weak supervision less
feasible. Thus in order to play a better role in the proposed
module, the size of the shallow feature map should be exactly
an integer multiple of the size of the attention map.

VII. CONCLUSION

In this article, we detect deepfake video from the perspective
of fine-grained classification since the difference between fake
and real faces is very subtle. According to the generation
defects of the deepfake generation model in the spatial domain
and the inconsistencies in the time domain, a spatial-temporal
attention model is designed to make the network focus on
the pivotal local regions. And a novel long-distance atten-
tion mechanism is proposed to capture the global seman-
tic inconsistency in deepfake. In order to better extract the
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texture information and statistical information of the image,
we divide the image into small patches and recalibrate the
importance between them. Extensive experiments have been
performed to demonstrate that our method achieves state-of-
the-art performance, showing that the proposed long-distance
attention mechanism is capable of generating guidance from
a global perspective. Apart from the spatial-temporal model
and the long-distance attention mechanism, we think the main
contribution of this article is that we confirm not only focusing
on pivotal areas is important, but combining global semantics
is also critical. This is a noteworthy point, which can be a
strategy to improve current models.
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