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Gradient Learning With the Mode-Induced Loss:
Consistency Analysis and Applications
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and Feng Zheng , Member, IEEE

Abstract— Variable selection methods aim to select the key
covariates related to the response variable for learning problems
with high-dimensional data. Typical methods of variable selection
are formulated in terms of sparse mean regression with a
parametric hypothesis class, such as linear functions or additive
functions. Despite rapid progress, the existing methods depend
heavily on the chosen parametric function class and are incapable
of handling variable selection for problems where the data
noise is heavy-tailed or skewed. To circumvent these drawbacks,
we propose sparse gradient learning with the mode-induced
loss (SGLML) for robust model-free (MF) variable selection. The
theoretical analysis is established for SGLML on the upper bound
of excess risk and the consistency of variable selection, which
guarantees its ability for gradient estimation from the lens of
gradient risk and informative variable identification under mild
conditions. Experimental analysis on the simulated and real data
demonstrates the competitive performance of our method over
the previous gradient learning (GL) methods.

Index Terms— Gradient learning (GL), learning theory, mode-
induced loss, Rademacher complexity, variable selection.

I. INTRODUCTION

DUE to the demand of computation feasibility and
result interpretability, variable selection associated with

high-dimensional data has attracted increasing attentions in the
statistics and machine learning communities [1], [2], [3], [4].
There is a wide spectrum of variable selection methods, which
can be divided mainly into linear models, nonlinear additive
models, and partial linear models (PLMs). Under linear model
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assumption, active variables are selected directly by the infor-
mation metric of covariates (e.g., the Bayesian information cri-
terion (BIC) [5] and Akaike information criterion (AIC) [6]),
or by Tikhonov regularization schemes with sparse penalty
on regression coefficients (e.g., least absolute shrinkage and
selection operator (LASSO) [1], smoothly clipped absolute
deviation (SCAD) [7], and least angle regression (LARS) [8]).
As a natural extension of linear models, additive models are
proposed for nonlinear approximation and variable selection
[9], [10], [11], where popular algorithms include component
selection and smoothing operator (COSSO) [12], nonparamet-
ric independence screening (NIS) [13], sparse additive models
(SpAM) [14], GroupSpAM [15], and sparse modal additive
model (SpMAM) [16], [17]. As a tradeoff between the linear
and nonlinear models, PLMs assume some covariates are
linearly related to the response while the others are nonlinear
[18]. Some efforts have been made for the PLM-based variable
selection and function estimation, such as linear and nonlinear
discoverer (LAND) [19], the model pursuit approach [20], and
the sparse PLMs [21].

Although the methods mentioned above have shown promis-
ing performance in some applications, their success is limited
by the assumption of parametric function class and its interplay
with the intrinsic target function. In real-world applications,
it may be difficult to know the prior structure of the target
function. Naturally, the previous models may deteriorate seri-
ously in settings of model misspecification.

Unlike the previous strategy depending on parametric
hypothesis, the gradient learning (GL) method can be con-
sidered as a model-free framework [26], [27], which learns
the gradients of target function for variable selection [22],
[28], [29], [30], [31]. Several GL algorithms have been pro-
posed including sparse gradient learning (SGL) [23], model-
free (MF) variable selection [24], and robust GL (RGL)
[25]. The sparse regularization in reproducing kernel Hilbert
space (RKHS) is integrated into GL [23] for selecting active
variables. Different from data-independent RKHS used in [22],
[23] and [26], MF [24] is associated with data-dependent
hypothesis space, where the gradients belong to the coefficient-
based representation. Moreover, the variable selection strategy
of GL is applied to the correntropy regression [25] and the
multitask learning [30].

Although the GL algorithms enjoy the model-free property,
most of them are sensitive to non-Gaussian noises due to
using the square loss [11], [32], [33], which is associated
closely with the conditional mean. Different from that, the
conditional mode is usually robust to the heavy-tailed noise,
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TABLE I

PROPERTIES OF DIFFERENT GL MODELS

the skewed noise, and outliers [34], [35]. Therefore, in this
article, we consider an RGL scheme motivated by the mode-
induced loss (refer to (12)).

The mode-induced loss has been used for modal regression,
which aims to estimate the conditional mode of response with
given covariates [35]. The empirical results verify its effec-
tiveness and robustness for sparse linear regression [36], the
atomic representation-based classification [37], the multi-view
learning [38], and the multitask additive models [16].

Inspired from [16], [24], we propose SGL with the mode-
induced loss (SGLML) for variable selection, where the reg-
ularization penalty is incorporated into the GL scheme with
data-dependent hypothesis space. The mode-induced loss is
used for improving robustness, and the sparse regulariza-
tion helps conduct variable selection for addressing inter-
pretability. As a robust extension of MF [24], the proposed
SGLML enjoys the model-free flexibility and the robustness
to non-Gaussian noises simultaneously. Indeed, RGL [25] can
be considered as a special case of our SGLML using Gaussian
kernel for density estimation [16], [35].

The main contributions of this article are summarized as
below.

1) A new GL scheme, called SGLML, is proposed to
mitigate the drawbacks of previous variable selection
methods, e.g., relying on specific model assumption [1],
[14], [16] and lacking the robustness to non-Gaussian
noises [22], [23], [24]. To the best of our knowledge,
the GL working together with the mode-induced loss
has not been investigated before.

2) Learning theory analysis for SGLML is established
on the excess risk bound and variable selection con-
sistency by developing the error decomposition [16],
[36] and the concentration estimation techniques [23],
[24]. Theoretical results demonstrate that our estima-
tor achieves the consistency in terms of generalization
ability when the sample size goes to infinity, as well
as identifies the active variable under proper parameter
conditions. In particular, the current analysis fills partly
the theoretical gap for RGL in [25].

3) Empirical evaluations on the simulated and real-word
data show satisfactory performance of our approach over
the existing GL methods under non-Gaussian noises’
setting.

To better highlight our contribution, we present Table I to sum-
marize the properties of the gradient algorithms from both the
model design (hypothesis space, loss function, and regularizer)
and theoretical foundations (error bound and variable selection
consistency).

The rest of this article is organized as follows. Section II
recalls the background and related works of GL. Section III
formulates our SGLML and presents its computing algorithm.
Section IV states the main theoretical results on the asymp-
totic estimation and variable selection consistency. Section V
reports the experimental analysis of our approach. Finally,
Section VI closes this article.

II. PRELIMINARIES AND RELATED WORKS

Let X ⊂ R
p be a compact input space and Y ⊂ R be an

output space. Denote (X,Y ) as the pair of explanatory and
response variables taking values in X × Y . Assume that we
are given a training set of i.i.d. observations D = {(xi , yi)}n

i=1
that are generated by

Y = f ∗(X)+ ε (1)

where f ∗ : X → Y is an intrinsic target function, and ε is
a random noise satisfying some certain conditions, e.g., the
zero-mean noise assumption E(ε|X) = 0 or the zero-mode
noise condition in (9). For the feasibility of the theoretical
analysis, we denote ρ over Z := X × Y as an intrinsic prob-
ability distribution with respect to the sampling process (1),
and ρX as the corresponding marginal distribution of X . Let
L2
ρX be the function space of the square-integrable functions

with respect to ρX .

A. Gradient Learning

The regularized GL model is proposed in [22] for variable
selection, which removes parametric assumption on f ∗. Let
x = (x1, x2, . . . , x p)

T ∈ X . If the partial derivatives of f ∗
exist, we define its gradient ∇ f ∗ as the vector of functions

∇ f ∗ =
(
∂ f ∗

∂x1
, . . . ,

∂ f ∗

∂x p

)T

.

The relevance between each coordinate element xl and f ∗ can
be evaluated by the norm of a partial derivative ‖(∂ f ∗/∂xl)‖
(e.g., ‖(∂ f ∗/∂xl)‖L2

ρX
= (

∫
X |((∂ f ∗(x))/∂xl)|2dρX (x))1/2 as

(∂ f ∗/∂xl) ∈ L2
ρX ), where a large norm implies a large change

in the function f ∗ with respect to the lth coordinate [22]. This
fact gives an intuitive motivation for GL.

According to the first-order Taylor series expansion,
we know f ∗(x) ≈ f ∗(u) + ∇ f ∗(u)T (x − u) for u in the
neighborhood of x, and xandu are the interior points of X .
The empirical risk ẼD(g) for an estimator g of ∇ f ∗ is defined
as

ẼD(g) = 1

n2

n∑
i, j=1

wi j

(
yi − y j − g

(
x j
)T (

xi − x j
))2

(2)
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where wi j := w(xi , x j ) serves as a weight in local regression.
A typical choice for wi j is given by exp{−‖xi − x j‖2/2s2}
with s > 0, e.g., [23], [24], and [25].

Denote the RKHS associated with a Mercer kernel K as
HK , its norm as ‖·‖K , and Hp

K = HK ×· · ·×HK as the pfold
product of HK . Let g = (g1, . . . , gp)

T be a vector function in
Hp

K with gl ∈ HK for l = 1, . . . , p. GL [22] aims to get the
estimator ĝ by the following regularized optimization problem

ĝ = arg min
g∈Hp

K

{
ẼD(g)+ λ

p∑
l=1

‖gl‖2
K

}
(3)

where λ > 0 is a regularization parameter, and the regular-
ization term

∑p
l=1‖gl‖2

K is the square of the 2-norm of the
vector (‖g1‖K , . . . , ‖gp‖K )

T ∈ R
p. Besides the experimental

validation, the error analysis demonstrates the convergence of
the empirical estimator (3) to ∇ f ∗ [22].

B. Sparse GL

Following the research line of GL [22], Ye and Xie
[23] propose the SGL to further address the sparsity for
high-dimensional variable selection. The SGL [23] is formu-
lated as

ĝ = arg min
g∈Hp

K

{
ẼD(g)+ λ

p∑
l=1

‖gl‖K

}
(4)

where the sparse regularization is the 1-norm of
(‖g1‖K , . . . , ‖gp‖K )

T ∈ R
p. The theoretical analysis

assures the convergence of the estimator (4) to ∇ f ∗ in both
the Euclidean and the manifold setting. Empirical examples
verify its utility for variable selection [23].

C. Coefficient-Based SGL

According to the representer theorem in RKHS (see
e.g., [24], [39], and [40]), the minimizer ĝ = (ĝ1, ĝ2, . . . , ĝ p)

T

of (3) or (4) satisfies

ĝl(x) =
n∑

t=1

α̂lt K (x, xt), α̂lt ∈ R, l = 1, 2, . . . , p.

Inspired from the above representing property, Yang et al. [24]
use the data-dependent hypothesis space

Hp
K ,D =

{
g = (

g1, g2, . . . , gp
)T :

gl(x) =
n∑

t=1

αlt K (x, xt), 1 ≤ l ≤ p

}
(5)

for GL, where αlt ∈ R. It should be noted that Hp
K ,D depends

on observations D and is a subspace of Hp
K .

Let �(gl) = inf{‖αl‖2 : gl(x) = ∑n
t=1 αlt K (x, xt) ∈

HK ,D}, where ‖αl‖2 = (
∑n

t=1 |αlt |2)1/2 is the standard 2-norm
of the vector αl = (αl1, αl2, . . . , αln)

T ∈ R
n.

Observe that gl ≡ 0 is equivalent to ‖αl‖2 = 0. Then, it is
natural to impose a coefficient-based sparse penalty on Hp

K ,D
as

�(g) =
p∑

l=1

πl�(gl) (6)

where πl, l = 1, . . . , p, are the adaptive parameters. Let

A = (
α1,α2, . . . ,α p

) ∈ R
n×p (7)

and let K = (K (xi , x j))
n
i, j=1 ∈ R

n×n. The j th column of K is
denoted by K j ∈ R

n . For g ∈ Hp
K ,D , the empirical risk ẼD(g)

can be rewritten as

ẼD(g) = 1

n2

n∑
i, j=1

wi j
(
yi − y j − KT

j A
(
xi − x j

))2
.

The optimization scheme of MF [24] is formulated as

ĝ = arg min
g∈Hp

K ,D

{ẼD(g)+ λ�(g)
}
. (8)

Different from Hp
K used in GL [22] and SGL [23],

MF searches the gradient function g in the data-dependent
hypothesis space Hp

K ,D . The statistical analysis is provided
in [24] to guarantee the effectiveness of MF on regression
estimation and active variable discovery under Gaussian noise
setting.

D. Robust GL

The maximum correntropy criterion (MCC) [41], [42], [43]
is incorporated into the GL in [25] to improve its robustness
to complex noises. The MCC-based regression estimates the
target function by

fD,σ = arg max
f ∈H

1

n

n∑
i=1

Kσ (yi , f (xi)), σ > 0

where Kσ is the Gaussian kernel, and H is a hypothesis space.
Correspondingly, the correntropy-induced loss 
σ is defined as


σ (yi , f (xi)) = σ 2(1 − Kσ (yi , f (xi))), σ > 0

and the correntropy regression scheme can be rewritten as

fD,σ = arg min
f ∈H

1

n

n∑
i=1


σ (yi , f (xi)).

Naturally, the empirical GL risk with the correntropy-induced
loss 
σ can be denoted by

ĒD(g) = 1

n2

n∑
i, j=1

wi j
σ

(
yi , y j + g

(
x j
)T (

xi − x j
))
.

Based on the hypothesis space Hp
K ,D in (5), the RGL [25]

is formulated as

ĝ = arg min
g∈Hp

K ,D

⎧⎪⎨⎪⎩ĒD(g)+ λ

p∑
l=1

(
n∑

t=1

|αlt |q
) q′

q

⎫⎪⎬⎪⎭, q, q ′ ≥ 1.

Naturally, we can set (q, q ′) ∈ {(2, 1), (2, 2), (1, 1)} with
respect to the 2, 1-norm, the 2-norm, and the 1-norm regu-
larization, respectively. Although the computing algorithm and
empirical evaluations are provided in [25], there is no learning
theory analysis for RGL that we are aware of.
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III. SPARSE GL WITH THE MODE-INDUCED LOSS

A. Proposed SGLML

Under the zero-mean noise assumption E(ε|X) = 0, the
intrinsic regression function f ∗(x) in (1) can be rewritten as
the conditional mean E(Y |X = x), that is,

f ∗(x) = E(Y |X = x ) =
∫
Y

ydρ(y|X = x )

where ρ(y|X = x) is the conditional distribution of y given
X = x. Under this setting, it is well-known that f ∗ is the
minimizer of expected risk

∫
Z(y − f (x))2dρ(x, y) over the

measurable function space [44], [45].
However, when data contain non-Gaussian noises, the target

function f ∗ becomes inconsistent with the conditional mean
E(Y |X = ·). Accordingly, the existing GL methods [22], [23],
[24] may suffer from the degraded performance on variable
selection. Different from the zero-mean noise assumption,
the zero-mode noise condition assumes the mode of the
conditional density of the noise to be zero, i.e.,

mode(ε|X = x) := arg max
t∈R

pε|X (t|X = x) = 0 ∀x ∈ X (9)

where pε|X is the conditional density of ε conditioned
on X . Indeed, the zero-mode condition is satisfied for many
non-Gaussian noises [35]. Performing the mode operator on
both sides of (1), we observe that the modal regression
function fM is equivalent to f ∗ [35], i.e.,

fM (x) := arg max
t∈R

pY |X (t|X = x) = f ∗(x) ∀x ∈ X (10)

where pY |X denotes the conditional density of Y given X .
Throughout this article, we assume the existence and unique-
ness of f ∗ [16], [17], [34], [35]. Obviously, this assumption
holds if the global mode of pε|X exists and is unique.

Under the zero-mode noise condition, the modal regression
metric R( f ) is defined in [35] as

R( f ) =
∫
X

pY |X ( f (x)|X = x)dρX (x).

It can be verified that f ∗ in (10) is the maximizer of R( f ) over
all the measurable functions. However, it is difficult to max-
imize R( f ) directly due to the unknown conditional density
pY |X . A surrogate modal regression criterion is introduced by
converting the estimation of pY |X into the density estimation
of 1-D random variable E f := Y − f (X) [35]. Theorem 5.1 in
[35] states

pE f (0) = R( f )

where pE f is the density function of E f . Therefore, f ∗ is
also a maximizer of pE f (0), which can be approximated by
the kernel density estimation (KDE) technique. Particularly,
a kernel for estimating pE f (0) is called a modal kernel Kσ :
R × R → R

+ [35], and the estimator of pE f (0) is

p̂E f (0) = 1

nσ

n∑
i=1

Kσ (yi , f (xi)) := Rσ
D( f ).

For feasibility, we set

φ

(
yi − f (xi)

σ

)
:= Kσ (yi , f (xi)) (11)

and denote the expectation form of Rσ
D( f ) as

Rσ ( f ) := 1

σ

∫
X×Y

φ

(
y − f (x)

σ

)
dρ(x, y).

Theorem 9 in [35] assures that Rσ ( f ) will converge to R( f )
when σ → 0. By imposing certain conditions on the density of
ε conditioned on X (see Assumption 3 in [35]), Theorem 19 in
[35] states that ‖ f − f ∗‖L2

ρX
can be bounded by R( f ∗)−R( f )

with a constant multiplier.
Following this line, [16] further introduces the

mode-induced loss ψσ : R → [0,+∞) for robust variable
selection, which is defined as

ψσ (y − f (x)) = 1

σ

(
φ(0)− φ

(
y − f (x)

σ

))
. (12)

Based on ψσ , we introduce the mode-induced gradient loss


(g, (x, y), (u, v))=w(x,u)ψσ
(
y − v − g(u)T (x − u)

)
(13)

where (x, y), (u, v) ∈ Z and w(x,u) = exp{−‖x−u‖2/2s2} is
an adaptive weight. Subsequently, we define the corresponding
expectation and empirical risks, respectively, as

E(g) =
∫
Z

∫
Z

(g, (x, y), (u, v))dρ(x, y)dρ(u, v)

and

ED(g) = 1

n2

n∑
i, j=1



(
g, (xi , yi),

(
x j , y j

))
.

Therefore, an empirical estimator of ∇ f ∗ can be obtained via
the SGLML formulated by

ĝ = arg min
g∈Hp

K ,D

{ED(g)+ λ�(g)} (14)

where λ > 0 is a parameter measuring the tradeoff between
the empirical risk ED(g) and the sparsity penalty �(g) defined
in (6).

Remark: The differences between our method and
RGL [25] are threefold. 1) Our approach depends on the
mode-induced loss [16], [35], while the one in [25] is asso-
ciated with the correntropy-induced loss lσ under the MCC
[43]. 2) The RGL [25] can be considered as a special case
of SGLML when Gaussian kernel is used for KDE. Indeed,
the error metric (12) used in our method generalizes the
correntropy-induced loss to general setting, since the candidate
kernels for KDE also include Sigmoid kernel, Logistic kernel,
etc. Refer to Remark 2 in [16] for the plots of loss functions
with different modal kernels. 3) Our work establishes the
analysis on excess risk bound and variable selection consis-
tency, which fills the theoretical gap in part for RGL [25].

B. Computing Algorithm

For A defined in (7), denote ‖A‖2,1 = ∑p
l=1(

∑n
t=1 |αlt |2)1/2

and

E(A) = 1

n2σ

n∑
i, j=1

wi j
(
φ(0)− φ

(
Zi j

/
σ
))
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with

Zi j = yi − y j − KT
j A
(
xi − x j

)
. (15)

Then, the minimization problem (14) can be rewritten as

min
A∈Rn×p

{E(A)+ λ‖A‖2,1
}
. (16)

Following [25], we can estimate A iteratively by

At+1 = arg min
A∈Rn×p

1

2

∥∥ξ t+1 − A
∥∥2

F
+ λγ ‖A‖2,1 (17)

where ξ t+1 = At − γ∇E(At), t is the iterative number, and γ
is the step size.

A standard approach to solve (17) is using a soft threshold-
ing operator Sλγ [46] such that

At+1 = Sλγ
(
ξ t+1

) := (
Sλγ

(
d t+1

1

)
, Sλγ

(
d t+1

2

)
, . . . , Sλγ

(
d t+1

p

))
where ξ t+1 = [d t+1

1 , . . . , d t+1
p ] ∈ R

n×p and

Sλγ
(
d t+1

l

) =

⎧⎪⎨⎪⎩
0 if

∥∥d t+1
l

∥∥
F

≤ λγ∥∥d t+1
l

∥∥
F

− λγ∥∥d t+1
l

∥∥
F

d t+1
l otherwise.

The computing steps of SGLML are summarized as below.

Algorithm 1 Iterative Optimization for SGLML
Require: Data D = {xi , yi}n

i=1, weight matrix
W = (w(xi , x j))

n
i, j=1 ∈ R

n×n, kernel matrix K =
(K (xi, x j ))

n
i, j=1 ∈ R

n×n, regularization parameter λ > 0,
step size γ > 0.
Initial A0 = [α0

1, . . . ,α
0
p] with α0

l ∈ R
n for l = 1, . . . , p,

representing width σ > 0, stopping threshold ε0 > 0.
Ensure: Coefficient matrix At+1 = [αt+1

1 , . . . ,αt+1
p ] and the

SGLML estimator

ĝ(x) =
(

n∑
i=1

αt+1
1i K (x, xi), . . . ,

n∑
i=1

αt+1
pi K (x, xi)

)T

.

while ‖At+1 − At‖F ≥ ε0 do
1) Compute Zi j = yi − y j − KT

j At(xi − x j).
2) Compute gradient ∇E(At ) and the descent step

ξ t+1 = At − γ∇E(At
)
.

3) Perform the soft threshold Sλγ on ξ t+1 to obtain At+1

by At+1 = Sλγ (ξ t+1).
end while

Without loss of generality, we state the convergence analysis
of Algorithm 1 for the mode-induced gradient loss (13)
associated with the Gaussian kernel. Under this setting, E(A)
can be further written as

E(A) = 1

n2

n∑
i, j=1

wi j

(
1 − exp

(
− Z 2

i j

2σ 2

))
and its gradient

∇E(A) = 1

n2σ 2

n∑
i j=1

wi j exp

(
− Z 2

i j

2σ 2

)
Zi j

(
x j − xi

)
KT

j .

It is easy to check that ∇E(A) is Lipschitz continuous
with constant L (also see Section III in [25]). Let At be
the sequence generated by Algorithm 1 with (1/γ ) > L.
According to Theorem 1 in [25], we know that the limit of
{At}t≥1 is a stationary point of (16).

IV. LEARNING THEORY ANALYSIS

This section establishes our main theoretical results on the
asymptotic estimation and variable selection consistency of the
proposed SGLML.

The following assumptions are required for our analysis,
which have been used extensively in machine learning litera-
tures, e.g., [24] and [35].

Assumption 1: Assume that Y ⊂ [−M,M],
supx,x′ w(x, x′) ≤ 1, and there exists a constant C̃ such
that supx ‖x‖ ≤ C̃ . Also, the kernel function involving in
RKHS satisfies supx |K (x, x)| ≤ 1 and the largest eigenvalue
of kernel matrix K = (K (xi , x j))

n
i, j=1 is of order O(nμ)

with μ ∈ [0, 1).
Assumption 2: The function φ defined in (11) satisfies the

following conditions: 1) ∀u, φ(u) = φ(−u), φ(u) ≤ φ(0),
and

∫
R
φ(u)du = 1; (ii) φ is bounded and differentiable with

‖φ′‖∞ < ∞; and (iii)
∫

R
u2φ(u)du < ∞.

Assumption 2 holds true for the Gaussian kernel, the logistic
kernel, and the Sigmoid kernel [16], [35], [36].

Assumption 3: The probability density p(x) exists and sat-
isfies

|p(x)− p(u)| ≤ CdX (x,u)θ ∀x,u ∈ X

where dX is the Euclidean distance on X , and Candθ are
positive constants.

Assumption 3 introduces a Lipschitz condition on p(x) to
assure the smoothness of the marginal distribution ρX , which
is a natural condition for learning gradient [22], [23], [24].

Assumption 4: Assume that the target gradient g∗ ∈ Hp
K .

Since SGLML depends on a subspace of RKHS, it is natural
to require g∗ = ∇ f ∗ ∈ Hp

K , which is consistent with [22],
[23], [24].

Inspired from the error decomposition in [16] and [24],
we introduce the following stepping-stone function

ḡ = arg min
g∈Hp

K

{
ED(g)+ λ

p∑
l=1

πl‖gl‖2
K

}
. (18)

The representer theorem of kernel methods yields ḡ =
(ḡ1, ḡ2, . . . , ḡ p)

T with ḡl(·) = ∑n
t=1 ᾱlt K (·, xt), ᾱlt ∈ R for

each l ∈ {1, . . . , p}.
The regularization risk of SGLML can be decomposed as

below.
Proposition 1: Let Assumption 4 be true. For the

SGLML-based estimator ĝ in (14), there holds

E(ĝ)+ λ�(ĝ) ≤ {E(ĝ)− ED(ĝ)} + {ED
(
g∗)− E(g∗)}

+ λ�(ḡ)+
{
E(g∗)+ λ

p∑
l=1

πl

∥∥g∗
l

∥∥2
K

}
.
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Proof: Based on the definitions of ĝ in (14) and ḡ in (18),
we have

E(ĝ)+ λ�(ĝ)

= E(ĝ)− ED(ĝ)+ ED(ĝ)+ λ�(ĝ)

≤ E(ĝ)− ED(ĝ)+ ED(ḡ)+ λ�(ḡ)

≤ E(ĝ)− ED(ĝ)+ ED(ḡ)+ λ�(ḡ)+ λ

p∑
l=1

πl‖ḡl‖2
K

≤ E(ĝ)− ED(ĝ)+ ED
(
g∗)+ λ

p∑
l=1

πl

∥∥g∗
l

∥∥2
K

+ λ�(ḡ)

= E(ĝ)− ED(ĝ)+ ED
(
g∗)− E(g∗)+ λ�(ḡ)+ E(g∗)

+ λ
p∑

l=1

πl

∥∥g∗
l

∥∥2
K
,

where the last inequality follows from Assumption 4. This
completes the proof.

In the sequel, we focus on bounding λ�(ḡ), E(ĝ)− ED(ĝ),
and ED(g∗)− E(g∗), respectively.

Proposition 2: Under Assumptions 1–3, there holds

λ�(ḡ) ≤ pC̃
∥∥φ′∥∥∞
σ 2

√
n

.

Proof: Denote ᾱl = (ᾱl1, ᾱl2, . . . , ᾱln)
T . Since ḡ is the

minimizer in (18) involving the loss function (12), we deduce
that

ḡ
(
x j
) = (

KT
j ᾱ1,KT

j ᾱ2, . . . ,KT
j ᾱ p

)T

with

λπlKᾱl − 1

n2

n∑
i, j=1

wi jψ
′
σ

(
Zi j
)
K j
(
xil − x jl

) = 0

∀l ∈ {1, . . . , p}.
Observe that

1

n2

n∑
i, j=1

wi jψ
′
σ

(
Zi j
)
K j
(
xil − x jl

)
= 1

n2
K

(
n∑

i=1

w1iψ
′
σ (Zi1)

(
xil − x jl

)
, . . . ,

n∑
i=1

w1iψ
′
σ (Zin)

(
xil − x jl

))T

.

Based on the positive definiteness of K, we have

λπl ᾱtl = 1

n2

n∑
i=1

witψ
′
σ (Zit )(xil − xtl) ∀t ∈ {1, . . . , n}.

Then, by direct computation, we have

λ�(ḡ) =
p∑

l=1

πl

√√√√ n∑
t=1

∣∣∣∣∣ 1

n2πl

n∑
i=1

witψ ′
σ (Zit )(xil − xtl)

∣∣∣∣∣
2

≤
p∑

l=1

√√√√ n∑
t=1

(
n∑

i=1

C̃‖φ′‖∞
n2σ 2

)2

= pC̃
∥∥φ′∥∥∞√
nσ 2

where the inequality follows from Assumption 2.
Now we recall McDiarmid′s inequality [47].

Lemma 1: Let z1, . . . , zn and z′
i be independent random

variables with values in Z . For any i ∈ {1, 2, . . . , n},
if f : Zn → R satisfies supz1,...,zn ,z′

i ∈Z | f (z1, . . . , zn) −
f (z1, . . . , z′

i , . . . , zn)| ≤ Ci , then

Prob{ f (z1, . . . , zn)−E f (z1, . . . , zn)> t}≤exp

{
− 2t2∑n

i=1 Ci
2

}
.

Define the sphere with radius r as

Gr = {
g ∈ Hp

K ,D : �(g) ≤ r
}

and

S(D, r) := sup
g∈Gr

|E(g)− ED(g)|.

Lemma 2: Let Assumption 1 be true. For any given D =
{(xi , yi)}n

i=1 and ĝ in (14), there holds ĝ ∈ Gr with r =
(φ(0)/(λσ)).

Proof: Following the definition of ĝ, we get

ED(ĝ)+ λ�(ĝ) ≤ ED(0)+ λ�(0) ≤ 1

σ

(
φ(0)− φ

(
2M

σ

))
≤ φ(0)

σ
.

It yields �(ĝ) ≤ ((φ(0))/(λσ)).
Proposition 3: Under Assumptions 1–4, for any δ ∈ (0, 1),

we have

ED
(
g∗)− E(g∗) ≤ 4φ(0)

σ

√
ln(1/δ)

n

with confidence at least 1 − δ.
Proof: Let z′

i = (x′
i , y ′

i) be an observation drawn from
the distribution ρ and independent of zi = (xi , yi ), 1 ≤
i ≤ n. Recall that D = {zi }n

i=1 and denote Di =
{z1, . . . , zi−1, z′

i , zi+1, . . . , zn}.
Observe that

ED
(
g∗) = 1

n2

⎧⎨⎩
n∑

k �=i, j �=i



(
g∗, zk, z j

)+
n∑

j=1



(
g∗, zi , z j

)

+
n∑

k=1



(
g∗, zk, zi

)⎫⎬⎭.
By direct computation, we get

ED
(
g∗)−EDi

(
g∗)= 1

n2

⎧⎨⎩
n∑

j=1

(


(
g∗, zi , z j

)− 

(
g∗, z′

i , z j
))

+
n∑

k=1

(


(
g∗, zk, zi

)− 

(
g∗, zk, z′

i

))⎫⎬⎭.
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Moreover,∣∣ED
(
g∗)− EDi

(
g∗)∣∣

≤ 1

n2

⎧⎨⎩
n∑

j=1

∣∣
(g∗, zi , z j
)− 


(
g∗, z′

i , z j
)∣∣

+
n∑

k=1

∣∣
(g∗, zk, zi
)− 


(
g∗, zk, z′

i

)∣∣}

≤ 2

n2

n∑
j=1

‖
‖∞ ≤ 2φ(0)

nσ
:= C̃i .

This verifies the bounded difference property of
f (z1, . . . , zn) := ED(g∗). Then, according to Lemma 1,
we have

Prob
{ED

(
g∗)− E(g∗) ≥ ε

} ≤ exp

{
− 2ε2∑n

i=1 C̃2
i

}
.

Setting δ = exp{−((2ε2)/(
∑n

i=1 C̃2
i ))}, we get the desired

result.
Now we recall a basic result for Rademacher complexity,

which is a natural extension of Lemma 22 [48].
Lemma 3: Let the kernel K be defined on X ×X satisfying

supx K (x, x) ≤ 1. Let � be a feature map from input X
to Hilbert space H with inner product < ·, · > such that
K (x, x′) =< �(x),�(x′) > for all x, x′ ∈ X . Denote

F =
{

h : X → R : h(·) =
n∑

t=1

βt K (·, xt ), ‖h‖K ≤ B

}
.

Then, F ⊂ {x →< w,�(x) >: ‖w‖ ≤ B} and the
Rademacher complexity Rn(F) ≤ (B/

√
n).

Now we state the upper bound of E(ĝ)− ED(ĝ).
Proposition 4: Under Assumptions 1–3, for any δ ∈ (0, 1),

we have

E(ĝ)−ED(ĝ)≤ 4φ(0)

σ

√
ln (1/δ)

n
+ 2φ(0)

σ
√

n
+ 4

∥∥φ′∥∥∞φ(0)C̃n
μ
2√

nλσ 3 min j π j

with confidence at least 1 − δ.
Proof: Lemma 2 assures that ĝ ∈ Gr with r :=

((φ(0))/(λσ)). Similar to the proof of Proposition 3, we can
obtain that

|ED(g)− EDi (g)| ≤ 2φ(0)

σn
. (19)

Considering S(D, r) = supg∈Gr
|E(g) − ED(g)|, we can

deduce that∣∣S(D, r)−S
(
Di , r

)∣∣≤ sup
g∈Gr

||E(g)− ED(g)| − |E(g)− EDi (g)||

≤ sup
g∈Gr

|ED(g)− EDi (g)| ≤ 2φ(0)

σn
.

Applying McDiarmid’s inequality in Lemma 1 to
f (z1, z2, . . . , zn) = S(D, r), we have

Prob{S(D, r)− ES(D, r) ≥ ε} ≤ exp

{
− nε2σ 2

4φ2(0)

}
.

Setting δ = exp{−((nε2σ 2)/(4φ2(0)))}, we get ε =
((2φ(0))/σ )(((ln(1/δ))/n))1/2. Then,

S(D, r) ≤ ES(D, r) + 2φ(0)

σ

√
ln(1/δ)

n
(20)

with confidence at least 1 − δ.
The rest part is to bound ES(D, r) with analysis techniques

in [48] and [23]. We can verify that

S(D, r) ≤ sup
g∈Gr

∣∣∣∣∣∣E(g)− 1

n

n∑
j=1

E(x,y)

(
g, (x, y),

(
x j , y j

))∣∣∣∣∣∣
+ sup

g∈Gr

∣∣∣∣∣∣1n
n∑

j=1

E(x,y)

(
g, (x, y),

(
x j , y j

))− ED(g)

∣∣∣∣∣∣
≤ S1 + S2 (21)

where

S1 = sup
g∈Gr

E(x,y)

∣∣∣∣∣∣E(u,v)
(g, (x, y), (u, v))

− 1

n

n∑
j=1



(
g, (x, y),

(
x j , y j

))∣∣∣∣∣∣
S2 = 1

n

n∑
j=1

sup
g∈Gr

sup
(u,v)∈Z

∣∣∣∣∣∣E(x,y)
(g, (x, y), (u, v))

− 1

n

n∑
i=1,i �= j


(g, (xi , yi), (u, v))

∣∣∣∣∣∣.
Let εi , 1 ≤ i ≤ n, be independent Rademacher variables.

In terms of the properties of Rademacher complexities in [23],
[48], we have

ES1 ≤ 2 sup
(x,y)

E sup
g∈Gr

∣∣∣∣∣∣1

n

n∑
j=1

ε j

(
g, (x, y),

(
x j , y j

))∣∣∣∣∣∣
= 2 sup

(x,y)
E sup

g∈Gr

∣∣∣∣∣∣1

n

n∑
j=1

ε jw
(
x, x j

)
×
[
ψσ

(
y − y j − g

(
x j
)T (

x − x j
))

−ψσ
(
y − y j

)+ ψσ
(
y − y j

)]∣∣∣∣∣∣
≤ 2 sup

(x,y)
E sup

g∈Gr

∣∣∣∣∣∣ 1

nσ

n∑
j=1

ε jw
(
x, x j

)
×
[
ψσ

(
y − y j − g

(
x j
)T (

x − x j
))

−ψσ
(
y − y j

)]∣∣∣∣∣∣+ 2φ(0)

σ
√

n

≤ 2
∥∥φ′∥∥∞
σ 2

sup
(x,y)

E sup
g∈Gr

∣∣∣∣∣∣1

n

n∑
j=1

ε j g
(
x j
)T (

x − x j
)∣∣∣∣∣∣+ 2φ(0)

σ
√

n
.
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Based on Assumption 1, for any g ∈ Gr

‖g‖K ≤
p∑

l=1

‖gl‖K ≤ n
μ
2

p∑
l=1

‖αl‖2 ≤ n
μ
2 r

min j π j
.

Then, from Lemma 3 and Theorem 12 in [48], we get

sup
(x,y)

E sup
g∈Gr

∣∣∣∣∣∣1n
n∑

j=1

ε j g
(
x j
)T (

x − x j
)∣∣∣∣∣∣ ≤ n

μ
2 φ(0)C̃

min j π j
√

nλσ
.

Integrating the above estimations, we have

ES1 ≤ 2
∥∥φ′∥∥∞n

μ
2 φ(0)C̃

min j π j
√

nλσ 3
+ 2φ(0)

σ
√

n
.

Similarly, we can get the statement

ES2 ≤ 2
∥∥φ′∥∥∞n

μ
2 φ(0)C̃

min j π j
√

nλσ 3
+ 2φ(0)

σ
√

n
.

The desired result follows by combining the above upper
bounds of ES1,ES2 with (20) and (21).

It is a position to state the upper bound on E(ĝ)+ λ�(ĝ).
Theorem 1: Let Assumptions 1–4 be true. For any

0 < δ ≤ 1, with confidence at least 1 − δ, there holds

E(ĝ)+ λ�(ĝ)−
{
E(g∗)+ λ

p∑
l=1

πl

∥∥g∗
l

∥∥2
K

}

≤ 2 p
∥∥φ′∥∥∞C̃

σ 2
√

n
+ 8φ(0)

σ

√
ln(2/δ)

n
+ n

μ−1
2 φ(0)C̃

λσ 3 min j π j
.

Moreover, setting λ = n−ν and σ = n−ζ with positive η, ζ ,
and 3ζ + ν < 1 − μ, we have

E(ĝ)+ λ�(ĝ)−
{
E(g∗)+ λ

p∑
l=1

πl

∥∥g∗
l

∥∥2
K

}
≤ Cn− 1−μ−3ζ−ν

2 ln(2/δ)

with confidence at least 1 − δ, where C is a positive constant
independently of nandδ.

Proof: Combining Propositions 1-4, we have

E(ĝ)+ λ�(ĝ) ≤ 2 p
∥∥φ′∥∥∞C̃

σ
√

n
+ 10φ(0)

σ

√
ln(2/δ)

n

+ n
μ−1

2 φ(0)C̃

λσ 3 min j π j
+ E(g∗)+ λ

p∑
l=1

πl

∥∥g∗
l

∥∥2
K

with confidence 1−δ. Putting the selected parameters into the
above inequality, we get the desired result.

Theorem 1 establishes the concentration estimation of
the data-dependent regularization risk of our estimator (14)
to the data-free regularization risk of g∗. When E(g∗) +
λ
∑p

l=1 πl‖g∗
l ‖2

K ≤ O(n−((1−μ−3ζ−ν)/2)), the mode-induced
gradient risk E(ĝ) tends to zero with polynomial decay rate
O(n−((1−μ−3ζ−ν)/2)) under proper parameters. As a byproduct,
our result also fills the gap of learning theory analysis to RGL
[25] partly.

Under the Gaussian noise condition, Lemma 1 in [24]
illustrated the relationship between the minimizer of risk
functionals and the true gradient of regression function in
probability. However, the convergence stated in Theorem 1

does not imply the consistency of the learned function to the
true conditional mode function. It may be a challenge to get
the function approximation guarantee directly under the zero-
mode assumption. We leave it for future work.

The following theorem characterizes the properties of
nonzero α̂l associated with SGLML (14).

Theorem 2: Let {α̂l}p
l=1 be the coefficients associated with

ĝ in (14). For l ∈ {1, . . . , p} satisfying ‖α̂l‖2 �= 0, there holds∥∥∥∥∥∥ 1

σ 2n2

n∑
i, j=1

w
(
xi , x j

)
φ′(Zi j

)
K j
(
xil − x jl

)∥∥∥∥∥∥
2

= λπl

where Zi j is defined in (15).
Proof: According to (14), we know that {α̂l}p

l=1 are with
respect to the minimizer of

C(α)= 1

n2
wi jψσ

(
yi − y j − g

(
x j
)T (

xi − x j
))+λ

p∑
l=1

πl‖αl‖2

where ψσ is defined in (12), and wi j = w(xi , x j ).
For each ‖αl‖2 �= 0, we take partial derivative of C(α) with

respect to αl and get

1

σ 2n2

n∑
i, j=1

wi jφ
′(Zi j

)
K j
(
xil − x jl

) = λπlαl

‖αl‖2
. (22)

The desired result follows by taking 2-norm on the both sides
of (22).

Theorem 2 provides the necessary condition for the nonzero
coefficient of SGLML, which can also be used as the stepping
stone to our selection consistency analysis.

Without loss of generality, denote

J ∗ = {
1, 2, . . . , p∗}

as the index set of truly informative variables and let the active
set identified by SGLML be

Ĵ = {l : ‖α̂l‖2 ≥ vn}
for a threshold vn ≥ 0. In applications, vn can be obtained in
terms of the stability-based selection strategy [49].

Theorem 3: Let Assumptions 1 and 2 be true.
If λπlσ

2n−(1/2) > C̃‖φ′‖∞ for j > p∗, there holds
Ĵ ⊂ J ∗ for any D ∈ Zn .

Proof: Suppose that ‖α̂l‖2 �= 0 for some l > p∗. It is
easy to check that∥∥∥∥∥∥ 1

n2σ 2

n∑
i, j=1

wi jφ
′(Zi j

)
K j
(
xil − x jl

)∥∥∥∥∥∥
2

≤ C̃
∥∥φ′∥∥∞
σ 2n

n∑
j=1

∥∥K j

∥∥
2

≤ C̃
∥∥φ′∥∥∞

√
n

σ 2
.

Combining this inequality with Theorem 2, we obtain that
λπl ≤ ((C̃‖φ′‖∞

√
n)/σ 2). This contradicts with the para-

meter condition λπlσ
2n−(1/2) > C̃‖φ′‖∞. Hence, we know

‖α̂l‖2 = 0 for any l > p∗. This completes the proof.
Theorem 3 extends the analysis of variable selection con-

sistency for the existing GL (8) (e.g., Theorem 3 in [24]) to
the RGL setting.
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TABLE II

FIVE NOISES USED IN THE SYNTHETIC DATA

V. EXPERIMENTAL ANALYSIS

This section evaluates the robustness of the proposed
SGLML to non-Gaussian noises.

For feasibility, we denote SGLML associated with the
Gaussian kernel, Logistic kernel, and Sigmoid kernel in KDE
as SGLMLGau, SGLMLLog, and SGLMLSig, respectively. The
Gaussian kernel Kh(x,u) = exp{−‖x − u‖2/2h2} is used to
construct the data-dependent hypothesis space Hp

K ,D and h is
set as the median pairwise distance of {xi}n

i=1 [25]. We choose
each weight w(xi , x j ) = exp{−‖xi − x j‖2/2s2} with s = h
and consider each πl as 1 for simplicity. The baseline models
are SGL [23], MF [24], and RGL [25].

For all l ∈ {1, . . . , p}, the variable importance is measured
by rl = ((‖gl‖2

K )/(
∑p

l=1 ‖gl‖2
K )) for SGL [23] and by r ′

l =
((
∑n

t=1 |αlt |2)/(∑p
l=1

∑n
t=1 |αlt |2)) for MF [24], RGL [25] and

our SGLML in (14).

A. Parameter Tuning and Evaluation Metrics

The SGLML and RGL contain two tuning parameters
(the regularization parameter λ and the bandwidth σ in the
mode-induced loss), while SGL and MF just involve λ. The
bandwidth parameter σ plays a key role in KDE, which
controls the smoothness of the estimated curve. As stated
in [25], the variable selection results are usually not very
sensitive to the choice of the regularization parameter λ when
λ ∈ [10−8, 10−2].

Following [16] and [24], we select the optimal parameters
for each method using the stability-based selection criterion
[49]. The stability criterion sλ,σ measures the stability of
variable selection results and is estimated by

ŝλ,σ = 1

T

T∑
t=1

κ
(Â1t , Â2t

)
where Â1t and Â2t are two selected variable sets, κ is
the Cohen kappa coefficient [50] measuring the similarity
between two selected variable sets, and T is the repeated
times. The optimal parameters are selected by maximizing
ŝλ,σ . Considering the probability of underfitting, we choose
the one producing both the maximum number of iterations
and the maximum kappa coefficient from the above selected
parameters.

For the simulated data, seven metrics are adopted to measure
the performance of all the methods, including size (the average
number of selected variables), TP (the average number of
selected truly relevant variables), FP (the average number of

selected truly irrelevant variables), and C (the times of correct-
fitting), U (the times of under-fitting), O (the times of over-
fitting), and stability criterion ŝλ,σ . For the real-word data,
we only consider the stability criterion ŝλ,σ as the performance
measurement because truly informative variables are unknown.

B. Experiments on Simulated Data

Inspired from the simulated experiments in [25] and [51],
we consider the regression model

y = f ∗(u)+ ε, u = (
u1, . . . , u p

) ∈ R
p

under the following two settings.
Example 1: The additive regression function

f ∗(u) = −2 tan(0.5u1)+ u2 + u3 + exp(−u4).

Example 2: The nonadditive regression function

f ∗(u) = (2u1 − 1)(2u2 − 1).

We refer to [24] for the process of generating variables.
Let xi = (xi1, xi2, . . . , xip)

T and xi j = ((Wi j + ηUi)/(1 +
η)), where Wi j and Ui are independent of U(−0.5, 0.5)
for i = 1, 2, . . . , n and j = 1, 2, . . . , p. For each
example, we consider η = 0, 1 for noncorrelated features
and correlated features. We generate data with (n, p) =
(100, 50), (100, 100), (100, 150) corresponding to n > p, n =
p, and n < p, respectively. To estimate ŝλ,σ , we sample
data S1t and S2t with the same size, and then apply the
variable selection methods on each data to get active sets
Â1t and Â2t . The average stability ŝλ,σ is obtained with
T = 10. The evaluated results are obtained by applying each
method with the selected parameters on the testing data. After
50 repetitions, we state the average results on size, TP, and
FP and report the happening times of C, U, and O.

Table II summarizes the noises explored in the simulated
experiments. To better evaluate the robustness of learning mod-
els, we report the variable selection results in Tables III and IV
for data with the non-Gaussian noises, where SGLML usually
can achieve the competitive performance than SGL and MF.
As a special case of the SGLML associated with Gaussian
kernel for KDE, the RGL also enjoys a similar performance.

For completeness, additional evaluations for no noise and
Gaussian noise settings are stated in Appendix, where our
SGLML shows comparable performance with other methods.

C. Experiments on Real-World Data

We apply the proposed SGLML to select the active variables
associated with the arrival time of coronal mass ejections
(CMEs). CME data (https://cdaw.gsfc.nasa.gov/CME_list/)
contain 193 observations with 21 variables, including center
projection angle (CPA), angle width (AW), linear speed (LS),
SND speed final (SSF), SND speed 20RS (SSRS), ACCEL,
MASS, kinetic energy (KE), measurement position angle
(MPA), field magnitude average (FMA), BX, BY, BZ, speed
(S), VX, VY, VZ, proton density (PD), temperature (T), flow
pressure (FP), and plasma beta (PB). Considering the missing
values in some covariates (especially for ACCEL), we remove
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TABLE III

AVERAGED PERFORMANCE OF VARIABLE SELECTION UNDER NON-GAUSSIAN NOISES (EXAMPLE 1)
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TABLE IV

AVERAGED PERFORMANCE OF VARIABLE SELECTION UNDER NON-GAUSSIAN NOISES (EXAMPLE 2)
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TABLE V

VARIABLE SELECTION RESULTS AND STABILITY CRITERION ON REAL DATA

the feature of ACCEL first, and then delete the instances with
other missing feature. Twenty irrelevant variables are gener-
ated from the uniform distribution U(−0.5, 0.5) to enlarge the
features, which are denoted as irre1, . . . , irre20. The remaining
134 observations with 40 variables are considered for our
analysis.

To estimate ŝλ,σ , we randomly divide the data equally
into two parts with ten repetitions. The noise from
(�×N (0, 3)+ (1 −�)×N (0, 1)) is added to the data, where
its strength is controlled by � ∈ [0, 1].

The variable selection results are presented in Table V.
When � = 0, all the methods have similar performance, while
SGLML behaves more stable as it has the maximum ŝλ,σ .
For SGL and MF, some irrelevant variables are selected when
� = 0.1 and fail to select active variables when � = 0.5. How-
ever, the SGLML can achieve satisfactory variable selection
performance under different noise levels.

VI. CONCLUSION

This article formulated a class of model-free variable selec-
tion models by integrating SGL and mode-induced loss into
the Tikhonov regularization scheme. The effectiveness of the
proposed approach is validated by the theoretical analysis on
error bound and variable selection consistency, as well as
experimental analysis on the simulated and real data.

APPENDIX

The experimental results for the simulated data under no
noise and Gaussian noise settings.
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