
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 7, JULY 2024 7401

Lightweight Context-Aware Network Using
Partial-Channel Transformation for
Real-Time Semantic Segmentation

Min Shi , Shaowen Lin, Qingming Yi , Jian Weng , Senior Member, IEEE, Aiwen Luo , Member, IEEE,
and Yicong Zhou , Senior Member, IEEE

Abstract— Optimizing the computational efficiency of the
artificial neural networks is crucial for resource-constrained plat-
forms like autonomous driving systems. To address this challenge,
we proposed a Lightweight Context-aware Network (LCNet) that
accelerates semantic segmentation while maintaining a favorable
trade-off between inference speed and segmentation accuracy in
this paper. The proposed LCNet introduces a partial-channel
transformation (PCT) strategy to minimize computing latency
and hardware requirements of the basic unit. Within the PCT
block, a three-branch context aggregation (TCA) module expands
the feature receptive fields, capturing multiscale contextual
information. Additionally, a dual-attention-guided decoder (DD)
recovers spatial details and enhances pixel prediction accu-
racy. Extensive experiments on three benchmarks demonstrate
the effectiveness and efficiency of the proposed LCNet model.
Remarkably, a smaller model LCNet3_7 achieves 73.8% mIoU
with only 0.51 million parameters, with an impressive inference
speed of ∼142.5 fps and ∼9 fps using a single RTX 3090 GPU
and Jetson Xavier NX, respectively, on the Cityscapes test set
at 1024 × 1024 resolution. A more accurate version of the
LCNet3_11 can achieve 75.8% mIoU with 0.74 million parameters
at ∼117 fps inference speed on Cityscapes at the same resolution.
Much faster inference speed can be achieved at smaller image
resolutions. LCNet strikes a great balance between computational
efficiency and prediction capability for mobile application scenar-
ios. The code is available at https://github.com/lztjy/LCNet.

Index Terms— Real-time semantic segmentation, partial-
channel transformation, context-aware aggregation, reverse
attention, spatial attention.
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I. INTRODUCTION

SEMANTIC segmentation aims to classify each image
pixel into a specified semantic category, which is a

fundamental and vital task in computer vision. As a cru-
cial component in street scene understanding, vision-based
semantic segmentation is widely applied to identify the
surrounding environment for developing intelligent fully
autonomous vehicles to make reasonable decisions. Since
the fully convolutional network (FCN) [1] transformed the
semantic segmentation task into a pixel-by-pixel classifica-
tion problem, the deep-learning-based semantic segmentation
methods can be trained end-to-end to yield accurate accumu-
lated values to approximate the true values that it has achieved
rapid development. There are largely two development tenden-
cies for semantic segmentation networks: 1) high accuracy, and
2) fast speed.

The existing high-accuracy frameworks pursue powerful
feature expression capabilities by adopting deep backbones,
such as VGG [2] and ResNet [3]. However, these deep
convolutional neural network (CNN) frameworks with com-
plex architectures normally require tremendous computing
resources and lead to an undesired high latency. A Dual-
CNN [4] employs a high-resolution system for training
while a cost-effective standard-resolution system for infer-
ence, achieving a high quality estimation result. Recently, the
vision transformer (ViT) schemes [5], [6], [7] have lever-
aged the self-attention mechanism and large-scale data to
model long-range dependencies, capture spatial relationships,
and incorporate global context to pursue a higher accu-
racy. However, ViT-based approaches can be computationally
expensive since the self-attention mechanism on large-scale
datasets requires significant computational resources for model
training.

For real-time mobile applications such as street scene
parsing in automatic driving, an ideal semantic segmenta-
tion solution requires appropriate precision, fast processing
speed, and a small model size so that it meets the needs
of resource-constrained mobile application scenarios. Trans-
former knowledge distillation can be employed to build a
lightweight Transformer or CNN-based student model for
semantic segmentation [9], [10]. Nevertheless, the student
model in ViT-based models such as [11] and [12] should
be guided and supervised by a larger, more complex teacher
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Fig. 1. Comparison with state-of-the-art neural networks in terms of the
trade-off between accuracy and computing efficiency on the Cityscapes dataset
[8], where the parameter amount is indicated by the relative diameter of
bubbles.

model by transferring knowledge trained with large-scale
datasets. Apart from knowledge-distillation-based schemes,
many existing real-time CNN models [13], [14], [15], [16]
focus on miniaturizing network architecture and reducing com-
putational redundancy. For example, ENet [13] achieves 58.3%
mIoU and outperforms the SegNet [17] by reducing the model
parameters to about 0.4 Million using depthwise convolu-
tion (DwConv). ERFNet [18] employs factorized convolution
technology to reduce redundant computation. DABNet [19]
adopts an effective bottleneck to improve computing efficiency
while keeping a comparable accuracy. The above methods
inspire numerous subsequent studies but a better trade-off
between computing efficiency and prediction accuracy still
leaves much to be desired for practical mobile scenarios. In
this paper, we proposed a novel attention-guided Lightweight
Context-aware Network (LCNet) and achieved a remarkable
performance in balancing the inference speed, parameter num-
ber, and segmentation accuracy as illustrated in Fig. 1. Our
main contributions can be summarized as follows:

• A Three-branch Context Aggregation (TCA) module
is elaborately designed to capture the local features
and aggregate the surrounding contextual information
by skip-connection and dilated convolution with differ-
ent dilation rates, improving the segmentation accuracy
greatly at a very low computational cost.

• A lightweight basic block named Partial Channel Trans-
formation (PCT) is proposed for stacking a compact
two-stage encoder. The PCT transmits only partial chan-
nels of feature maps across the TCA branch and identifies
the rest channels to the output, significantly reducing the
computing redundancy.

• A novel Dual-attention-guided Decoder (DD) to empha-
size inter-class differences and intra-class boundaries by
refining shallow and deep hierarchy features adaptively
from the outputs of two stages in the encoder, achieving
accurate pixel-level predictions.

Finally, a highly efficient LCNet for fast semantic segmen-
tation is built by leveraging the above components using an
asymmetric encoder-decoder framework.

The remainder of this paper is organized as follows.
Section II introduces relevant research work on semantic

segmentation; Section III describes the architecture of each
core component and the overall structure of the proposed
semantic segmentation model of LCNet in detail. A series
of experiments are carried out to estimate the effectiveness
of LCNet on the powerful RTX 3090 GPU and a low-power
mobile GPU on Xavier NX in Section IV. Section V concludes
this paper.

II. RELATED WORK

A multitude of semantic segmentation techniques have been
devised towards achieving high computational efficiency while
maintaining remarkable accuracy within affordable resource
consumption for practical application scenarios.

A. Basic Stacking Unit Construction

The rational combination of various convolution techniques
to construct the basic stacking unit (e.g., block or bottleneck)
is critical for building new structures with fewer parameters
and faster processing speed. Four typical existing basic units
and our proposed basic block for semantic segmentation
networks are illustrated in Fig. 2. ResNet [3] proposes an
impressive bottleneck structure to greatly reduce the number
of model parameters for deep learning models. DABNet [19]
presents a depthwise asymmetric bottleneck (DAB) module
to greatly improve the accuracy with a small number of
parameters by integrating with depthwise-dilated convolu-
tion (DwDConv) and factorized convolution. LEDNet [20]
designs a split-shuffle-non-bottleneck (SS-nbt) to simplify
the computing operation for channel-width transformation,
facilitating information exchange between channels. However,
the essential spatial information necessary is ignored and
more convolutional layers are needed in the SS-nbt block.
Both DABNet and LEDNet employ factorized convolutions to
reduce the computational complexity but result in a potential
loss of modeling capability. LMFFNet [21] employs DwD-
Conv to reduce memory requirements. However, the skip
connection in the above four basic stacking blocks increases
the memory requirements for storing all channels of the
intermediate feature maps during both forward and backward
passes. To address these challenges, we propose a Partial
Channel Transformation (PCT) block as illustrated in Fig. 2 (e)
for building a fast, accurate, and lightweight backbone for
semantic segmentation.

B. Depthwise Convolution and Dilated Convolution

Depthwise convolution (DwConv) separates each input
channel for convolution operations and then combines the
outputs using pointwise convolution to obtain the final feature
maps. DwConv is often employed to significantly reduce the
computational complexity for lightweight CNNs [22], [23].
Instead of employing complex architectures, many lightweight
models such as ESPNet V2 [24], ESNet [25], and LEDNet [20]
utilize distributed dilated convolution (DConv) throughout
the encoding process to gain multiscale feature information
without additional parameter consumption. The DConv aims
to capture broader spatial context without increasing parameter
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Fig. 2. Architectures of five basic stacking units for the backbone networks: (a) Bottleneck of ResNet; (b) DAB module; (c) Split-shuffle-non-bottleneck
(SS-nbt); (d) SEM_B module; (e) Our Partial Channel Transformation (PCT) module. “DConv”, “DwConv” and “DwDConv” denote dilated convolution,
depthwise convolution, and depthwise-dilated convolution, respectively. “Core Conv” indicates the core convolutional layers for feature extraction in each
module. C is the number of input channels while P indicates the partial rate of feature channels transmitted to the TCA module of PCT.

amount or computational complexity with a larger receptive
field. For instance, Deeplab V3 [26] suggests using parallel
filters with different dilation rates in the Atrous Spatial Pyra-
mid Pooling (ASPP) module to capture multiscale receptive
features. Multishuffle-block dilated convolution (MSDC) is
reported in [27] to achieve more accurate detection by using
adaptive image segmentation. However, DConv can bring
extra computational burden to real-time networks, particularly
within a multi-branch structure to capture contextual informa-
tion across various receptive fields. And the grouping operation
in DwConv can destroy the channel correlation of the feature
maps. To address these challenges, ShuffleNet V2 [14] brings
in shuffle operation while DABNet [19], EPRNet [28], and
MinNet-v2 [15] choose to use the pointwise convolution to
re-establish the information exchange between channels. Care-
ful consideration is needed when incorporating DwConv and
DConv in network architecture to balance the computational
burden and the desired level of contextual information.

C. Attention Mechanism (AM)

AM refers to the phenomenon that human beings always
pay more attention to the most important part when viewing
an image. AM selectively captures important information in
different dimensions of the input feature maps in semantic
segmentation tasks. Normally, spatial attention (SA) [29] and
channel attention (CA) [30] are two typical AMs used for
achieving accurate CNNs. SA focuses on modeling rela-
tionships between spatial correlations of pixels while CA
focuses on correlations between feature channels. However,
SA involves modeling inter-dependencies between spatial
locations and thus leads to increased computational complex-
ity. CA can be more computationally efficient so it is more
widely used in various convolutional layers. For example,
DFN [31] designs a channel attention block (CAB) to apply
high-level semantic features to guide the selection of low-level
features. PANet [32] proposes a global attention upsample
(GAU) strategy to apply CA to the upsampling operation for
the sake of better detail recovery and lower computing latency.
A dual attention module (DAM) [33] is presented to integrate
a global attention block and local attention block for extracting
different scales of image features. Lin et al. [34] report a

dual-branch geometric attention network in 3D dental models
for accurate segmentation. Nevertheless, achieving accurate
semantic segmentation relies heavily on spatial information.
The conventional SA only focuses on spatial relationships of
relevant parts of the input feature maps. It may yield confusing
results in regions that are located at the boundaries between
two objects or between the objects and the background.
Chen, et al. [35] report a reverse attention (RA) mechanism
to discover the missing object parts and residual details for
salient object detection. The object regions are expanded pro-
gressively by the RA and gradually improve the segmentation
accuracy by capturing the salient differences between objects
as in RAN [36]. Inspired by these works, the conventional SA
and the recently introduced RA are incorporated to enable the
fusion of deep and shallow feature maps by the decoder in
our proposed model, thereby enhancing the segmentation of
object boundaries and the background more precisely.

D. Asymmetric Encoder-Decoder Architecture

The encoder-decoder framework allows for the extraction
of rich hierarchical features by progressively downsampling
and upsampling the input images, leading to accurate and
efficient semantic segmentation results. The encoder mainly
aims to generate feature maps containing essential seman-
tic information while the decoder is used to compensate
for the loss of spatial details in feature maps, restore
the image size, and predict the pixel label. Many exist-
ing approaches, such as ERFNet [18] and FDDWNet [37],
demonstrate that the asymmetric encoder-decoder architecture
is more computation-efficient than the symmetric architec-
ture mainly because the asymmetric architecture advocates
spending extremely low resources on the decoder. Similarly,
we place an adequate number of elaborated basic stacking
units in the encoder to enhance the model capacity for extract-
ing sufficient feature information and employ both SA and
RA mechanisms within the decoder to effectively improve the
prediction accuracy and minimize the computational cost.

III. PROPOSED METHOD

To achieve a better trade-off between accuracy and compu-
tational efficiency for real-time semantic segmentation tasks,
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Fig. 3. Overview architecture of the proposed LCNet model for semantic segmentation. Here, Stage ‘Ini’ denotes the initialization stage and SConv represents
a 3×3 standard convolution. The backbone includes two encoding stages, each of which starts with a downsampling module (DSM). An elaborately designed
block named Partial Channel Transformation (PCT) is applied to stack the backbone. A dual-attention-guided decoder (DD) is designed for final prediction.

we elaborately design a simple yet effective lightweight
context-aware network (LCNet) based on the asymmetric
encoder-decoder framework as illustrated in Fig. 3.

A. Three-Branch Context Aggregation (TCA)

To capture multiscale contextual information for accu-
rate semantic segmentation with less computational expense,
we propose an elaborately-designed three-branch context
aggregation (TCA) module as illustrated in Fig. 4. Different
from the widely-used yet costly-computed multiscale feature
extraction strategies, such as Gaussian or Laplacian image
pyramids, feature pyramids in FPN [38], and pyramid pooling
modules in PSPNet [39] and LAANet [40], etc., we use
a 3 × 3 standard convolution (SConv) to maintain affluent
information from the input feature map at the beginning.

The convolutional results are then transmitted to three
branches in TCA to capture different scales of contextual infor-
mation. Specifically, the first branch employs a 3×3 depthwise
convolution (DwConv) to extract the local contextual informa-
tion without using the convolution factorization. The second
branch apples the dilated convolution to the DwConv with
an assigned dilation rate to build the depthwise-dilated con-
volution (DwDConv) so that a larger receptive field can be
generated to extract surrounding context which is potentially
correlated to the pixel labels. The DwConv operates only on
the corresponding input channel to significantly reduce the
computational cost. However, it results in an unrecoverable
loss of partial information while stacking multiple DwConv
in the backbone since the information of an output channel in
DwConv is only derived from one input channel. Therefore,
we extend the identity mapping of the convolutional result
of the 3 × 3 SConv as the third branch to retain abundant
spatial detail, which preserves object boundaries in images
and thus avoids significant performance degradation due to
the parameter-reduced DwConv.

Finally, the context-aware TCA module jointly gathers three
different levels of local features and surrounding context from
three branches. The DwDConv layer generates a different scale
of feature representation from the DConv layer by assigning a
desired dilation rate D for a larger receptive field. The identity
mapping implemented by the shortcut connection avoids the
sub-optimal problem resulting from DwConv. Note that the

Fig. 4. Structure of the three-branch context aggregation (TCA) module.

output feature maps of our context-aware TCA module remain
the same size as input feature maps and thus can be plugged
easily into existing dense feature extraction architectures and
improve the performance of dense prediction by capturing
multiscale contextual information.

B. Partial Channel Transformation (PCT)

Instead of directly utilizing the TCA module as the basic
unit to build the backbone network for semantic segmentation,
we contemplate a computation-efficient block structure based
on a novel convolution strategy of partial channel transfor-
mation (PCT) as illustrated in Fig. 2 (e), aiming at achieving
an appropriate trade-off between computation cost and feature
representation capability. The ResNet bottleneck structure [3]
reveals that there are a lot of redundant computations in the
full channel convolution. Hence, we split the channels of the
input feature map into two parts and apply partial channels for
identity mapping while the others are used to extract multi-
scale context information by the context-aware TCA module.
In other words, partial input channels are identified to the
output feature maps, preventing the network model from seri-
ous gradient vanishing when the model deepens. Besides, the
shortcut branch concatenates with the preliminarily-aggregated
output results from the TCA branch to restore the channel
number as the input. Finally, one single 1 × 1 pointwise
convolution is preserved after feature concatenation to enable
feature interaction among all channels from two branches.

The PCT block brings two advantages to the proposed
model. First, it expands the collected contextual features and
lowers the over-fitting risk. Second, it makes the network
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model more compact and more efficient, resulting in an
accurate pixel-level prediction with fewer parameters and less
computational cost. The PCT strategy reduces the computing
complexity by replacing the dense convolution with a sparse
convolution using only a part number of channels. It takes less
processing time while the PCT block is placed at the deeper
layers of the backbone because the downsampling module
(DSM) reduces the resolution of feature maps. However,
the DSM is more computationally expensive than the PCT.
To make the encoder more efficient with fewer parameters, the
depth of the backbone network stacked by the PCT blocks and
DSMs should be carefully considered. In this work, affluent
context information is able to be captured by our elaborate
PCT block that a relatively shallow and lightweight backbone
network compared to the existing deep CNNs is built by
stacking a finite number of PCT blocks and two DSMs.
We investigate an appropriate network depth through extensive
ablation experiments in Section IV.

C. Dual-Attention-Guided Decoder (DD)

1) Reverse-Attention Guidance (RG): A confusing region
often emerges in the boundary of two different objects,
especially in scenarios where there is a complex mixture of
foreground and background. Rather than directly predicting
the class of the target object like many existing approaches,
we develop a compact reverse attention (RA) to guide the
learning of differences between objects. As illustrated in
Fig. 5, the feature map Y is transmitted from the backbone and
compressed by the pointwise convolution PWC(·) according
to Yc = PWC(Y ). Then, the compressed feature map Yc is fed
into an attention mask implemented by the Sigmoid function
Sig(·) to convert the compressed map into the range of [0, 1].
The attention-guided map is further converted to its opposite
so that the corresponding negative response Rneg is generated
by:

Rneg (Yc) = − Sig (Yc) . (1)

Compared to the complex RAN [36] which generates a
per-class mask to amplify the reverse-class response in the
confused region using three branches and yields the final
prediction based on the fused responses from three branches,
our RA uses a simpler structure to learn the attention of the
target classes and the reverse classes from the input feature Yc
in parallel, highlighting both positive and negative responses
in the input feature maps in forward propagation.

The reverse ground truth is learned and highlighted explic-
itly while the positive response for the ground truth is
suppressed by the RA mask. The original positive response
is assigned an attention-guided score by the Sigmoid atten-
tion mask and is combined with the negative response from
the reverse Sigmoid attention implemented by element-wise
product with ‘−1’, flipping the sign of the response score of
each pixel. Besides, we utilize another pointwise convolution
PWC(·) after the negative Sigmoid operation to apply a linear
transformation to amplify non-linearity and learn channel-wise
correlations and dependencies within the response scores. The
reweighted scores are then added to the original Yc and get the

accurate response for semantic segmentation tasks, where the
salient difference of objects is learned and highlighted. The
complete processing procedure of the reverse-attention guid-
ance (RG) is described as:

FRG(Y ) = Ups
(

Sig (Yc) ⊗ PWC
(
Rneg (Yc)

)
+ Yc

)
, (2)

where the upsampling operation Ups(·) is implemented by
a fast bilinear interpolation. The upsampling operation is
included in the RG branch to restore a 1/16-scale feature map
of the input resolution from 1/64-scale feature maps.

Since the RG branch learns the attention of target classes
and reverse classes from the input feature Yc in parallel, it adds
more relevant prediction guidance and amplifies the salient
boundaries of different objects, and finally makes the decoder
more discriminative.

2) Spatial-Attention Guidance (SG): Different from the RG
branch, we only use the Sigmoid function Sig(·) to transform
the 1/64 feature maps X from the shallow layers to keep more
spatial information by:

FSG(X) = Sig(X). (3)

The shallow features are rich in texture information which
retains accurate object boundaries. The Sigmoid function
converts these feature responses into probabilities of possible
labels for each pixel. Therefore, FSG is essentially a position
distribution of different objects in the images.

3) Dual-Attention-Guided Prediction (DP): In the final pre-
diction stage of the DD as illustrated in Fig. 5, the exact object
position provided by FSG and the class response provided by
FRG are combined by the element-wise product as:

F(X, Y ) = FSG(X) ⊗ FRG(Y ), (4)

where each element in the fused feature map F(X, Y ) denotes
the correlation degree between its location and a certain
class. A 3 × 3 depthwise separable convolution is applied
to the F(X, Y ) for further integrating local information.
Eventually, the decoder DD is elaborately designed using
the dual-attention mechanism to aggregate different levels of
features to make the prediction of pixel class more accurate.
Additionally, we also illustrate some examples of visualization
of attention maps in each layer of the dual-attention-guided
decoder (DD), as shown in Fig. 6.

D. Architecture of LCNet

A simple yet effective lightweight context-aware network
(LCNet) for real-time semantic segmentation tasks is finally
built on the asymmetric encoder-decoder framework and the
structure details of LCNet3_11 are summarized in Table I.

The encoder is stacked by three stages, including the com-
mon initialization stage ‘Ini’. The ‘Ini’ stage is composed of
three 3 × 3 SConvs, which are essential to extract sufficient
low-level features for the following two encoding stages.
We expand the input image channels from ‘3’ to ‘32’ for
collecting sufficient texture information from the input images
and set the stride of the first convolution in the ‘Ini’ stage to be
‘2’, significantly reducing the calculation cost of subsequent
stages and improving the computing speed of the network.
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Fig. 5. The overall structure of the dual-attention-guided decoder (DD). Here, ‘X’ denotes the input feature map from shallow layers while ‘Y’ represents
the feature map with larger receptive field from deep layers. ‘Negative’ means the multiplication operation with ‘−1’. ‘n’ represents the category number.

Fig. 6. Visualization of feature maps of various layers of DD. Here, P1 signifies a positive attention-guided result of the input feature maps Yc , while
P2 demonstrates the attention of non-strongly-expressed information by using a negative operation to suppress the positive response of Yc . P3 refers to the
element-wise product of P1 and P2. FRG (Y ) showcases the merged information of P3 and Yc after undergoing bilinear interpolation. FSG (X) represents the
resultant feature maps from the spatial-attention branch for processing shallower layers. Finally, F(X, Y ) denotes the fused feature maps aimed at enhancing
the prediction performance.

TABLE I
OVERALL STRUCTURE OF OUR PROPOSED LCNET3_11

As listed in Table I, Stages I and II start by using a
downsampling module (DSM), resulting in a much smaller res-
olution with less costly computation. We exploit an effective
downsampling structure referred to [13], which is integrated
with a max pooling and a SConv, leading to more channels
with a smaller volume in the output feature map. The encoder
extracts multiscale context information by stacking an appro-
priate number of PCT blocks with gradually-increased dilation
rates in each stage. Whereas, the appropriate number of encod-
ing stages with a suitable number of PCT blocks should be
determined properly. Thus, we conduct comprehensive experi-
ments in Section IV to find out the optimum model architecture
with a proper model size for achieving a decent trade-off
between computing efficiency and segmentation accuracy. The
experimental results confirm that a two-stage encoder that
combines with the initialization stage performs better since
it extracts high hierarchical contextual features on a smaller
model size. Two optimized versions LCNet3_7 and LCNet3_11
are respectively emphasized for computing-efficiency-oriented

and accuracy-oriented semantic segmentation tasks in this
paper.

In the decoder, both positive attention and reverse attention
are used for adaptive learning of the weights of multiscale fea-
tures from the encoder. On the one hand, we introduce reverse
attention to highlight the boundary between the ground-truth
class and the non-ground-truth classes from the semantic infor-
mation extracted by the deep layers in Stage II. On the other
hand, a long-range connection from the output feature maps of
the shallow layer in Stage I to the reverse-attention-guided pre-
diction from deep layers in Stage II is applied for recovering
spatial information in the decoder. The long-range connection
between feature maps in different resolutions has proved to be
of great significance for accurate boundary location detection.
However, the widely-used long-range connection strategy by
fusing the downsampled images in many existing state-of-the-
art approaches, such as DABNet [19], MSCFNet [41], and
LMFFNet [21], is not employed for feature enhancement in
our work due to its expensive computing cost.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we comprehensively evaluate the perfor-
mance of the proposed LCNet on three benchmark datasets
for urban driving scenes: Cityscapes [8], CamVid [42], and
BDD100K [43]. A series of ablation experiments on the
Cityscapes validation set are conducted to estimate each key
component of LCNet. We report the overall performance in
terms of parameter size, accuracy (mIoU), inference speed
(fps), and computational complexity (FLOPs) based on the
above three benchmark datasets. Finally, we compare the
performance of the proposed LCNet with multiple existing
state-of-the-art real-time semantic segmentation networks.
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A. Datasets

1) Cityscapes: As one of the most challenging semantic
segmentation benchmarks, the Cityscapes dataset contains
diverse high-resolution street scene images across 50 differ-
ent European cities. Specifically, 5,000 fine-annotated images
are separated into three groups: training set (2,975 images),
validation set (500 images), and testing set (1,525 images).
The Cityscapes dataset contains 30 class labels while only
19 semantic categories are considered for training and
validation.

2) CamVid: As another popular dataset of urban street
scenes in driving, CamVid contains a total number of
701 densely-annotated images with a resolution of 720 × 960.
Likewise, these images are divided into three sets: 367 images
for training, 101 images for validation, and 233 images for
testing. The ground-truth images of CamVid are annotated to
11 semantic categories for model training.

3) BDD100K: BDD100K is a large-scale driving video
dataset with 100K videos. Specifically, 8,000 images with fine-
grained pixel-level annotations are sampled and applied for
semantic segmentation evaluation, 7,000 of which are used
for training and 1,000 of which are applied for validation. The
class labeling of the BDD100K is compatible with Cityscapes
while the BDD100K is more challenging due to its scenario
diversity in geography, weather, time, scene types, and so on.

B. Implementation Protocol

All training experiments are performed on an
RTX 3090 GPU with CUDA 11.4 and cuDNN V8 using
the Pytorch platform. Specifically, our LCNet is trained
from scratch using the initialization manner [44]. Stochastic
gradient descent (SGD) [45] optimizer is employed as the
training optimization strategy. The initial learning rate is
set as 4.5e − 2 and the ‘poly’ learning rate decay policy
is adopted with a power of 0.9. Besides, the momentum
and weight decay are set to 0.9 and 1e − 4, respectively.
In particular, for CamVid dataset, the weight decay is set to
5e − 4. For all datasets, we adopt a batch size of 8 and set a
maximum of 1000 epochs for training.

For the data augmentation, the random horizontal flip, mean
subtraction and random scale are performed on the training
images in the preprocessing phase, where the random scale
factors are respectively set to {0.75, 1.0, 1.25, 1.5, 1.75, 2.0}.
For the Cityscapes dataset, we randomly crop the training data
into two resolutions of 512 × 1024 and 1024 × 1024. For the
CamVid dataset, we evaluate the model performance under
two resolutions of 720 × 960 and 360 × 480, respectively.
For the BDD100K dataset, we directly train and validate in
its original image resolution without any clipping. Moreover,
the online hard example mining (OHEM) [46] scheme is
employed to alleviate the category imbalance problem. The
OHEM loss (O L i, j ) of the pixel located at coordinate (i, j)
can be respectively assigned according to:

O L i, j =

{
C L i, j , C L i, j ≥ min

(
T, Top(C L , k)

)
,

0, otherwise.
(5)

where C L i, j represents the cross-entropy loss of the predicted
output to the corresponding pixel class at coordinate (i, j)
in the ground truth and the threshold T is empirically set
to 0.7 to filter easy examples while retaining hard exam-
ples. Top(C L , k) indicates the k largest values within the
cross-entropy loss matrix C L . Typically, k is set to 256 to
ensure at least k = 256 pixels are used for gradient back-
propagation. Besides, for training the network models more
properly, the class weight Wclass of each object category in
the datasets is set to be [ln (c + Pclass)]−1, where Pclass is the
label class distribution of each pixel in the image samples and
c is an adjustable hyper-parameter which is set to be 1.10 in
this work.

C. Comprehensive Evaluation Metric

The main evaluation indices of real-time semantic seg-
mentation tasks include model size in terms of parameter
amount, inference speed, and segmentation accuracy. In previ-
ous works, researchers generally tended to adopt the method of
subjective evaluation to select the optimal model. In this work,
we attempt to use another objective performance metric to
comprehensively evaluate the overall performance of network
models through three critical indicators of accuracy, param-
eter amount, and inference speed. The critical method [47]
comprehensively measures the objective weight of indicators
based on the contrast strength of evaluation indicators and the
conflict between indicators. By combining the three critical
indices, we propose a new fusion evaluation index, namely,
the critical index (CI):

C I = w1 × pnorm + w2 × snorm + w3 × anorm, (6)

where the normalized indicators can be respectively cal-
culated by pnorm =

pmax −p
pmax −pmin

, snorm =
s−smin

smax −smin
and

anorm=
a−amin

amax −amin
. Specifically, pmax and pmin respectively

denotes the maximal or minimal parameter amount; smax
and smin indicate the fastest inference speed and the slowest
speed; amax denotes the best accuracy while amin indicates the
worst accuracy. The objective weight wi of each index can be
calculated by wi = Ci/

∑3
j=1C j , where Ci (i ∈ 1, 2, 3) can be

calculated by: 
Ci = Si × Ri ,

Si = σ (Ii ) ,

Ri =

∑3

j=1

(
1 − ri j

)
,

ri j = corr
(
Ii , I j

)
.

(7)

The i-th index Ii (i ∈ 1, 2, 3) denotes the normalized
indicator of the parameter amount pnorm , inference speed
snorm , or accuracy anorm within all models for comparison.
σ (·) denotes the standard deviation of the corresponding index
and corr (·) indicates the correlation between two normalized
indices Ii and I j (i, j ∈ 1, 2, 3). The value range of CI
is [0, 1]. A higher CI value stands for the better trade-off
of network performance between the involved indices, i.e.,
parameter amount, inference speed, and accuracy.
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TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT BASIC UNITS

ON THE CITYSCAPES VALIDATION SET

D. Ablation Studies

1) Performance of Different Basic Units: The effectiveness
of different basic units for stacking the baseline framework of
the LCNet is respectively investigated in this work. We then
summarize the experimental results for indicating their con-
tributions in terms of accuracy, speed, parameter amount, and
floating-point operation (FLOPs) in Table II.

ResNet bottleneck [3] results in the smallest model size,
the fewest FLOPs, and the fastest speed at the expense
of significant accuracy loss. In contrast, the TCA module
leads to the largest model size and larger FLOPs number
since no remedial action for the three-branch architecture
has been taken. Nevertheless, the backbone network turns
out to be fairly compact when the TCA module is applied
as one of the two branches of the PCT block, letting only
a proportion (e.g., P = 50%) of the input channels pass
through the PCT. Although the introduction of additional
pointwise convolutions in PCT makes the computation a bit
slower than TCA, the parameter number (0.46 Million) and
FLOPs number (7.96 Giga) of PCT are both smaller than
those of TCA because only a part of the channels of the input
feature maps are convoluted in PCT. PCT achieves a smaller
model size and computational cost, faster processing speed,
and higher accuracy than the models using basic units of the
DAB module [19] and SS-nbt module [20].

Moreover, we have integrated the TCA module into the
basic stacking unit to replace the core convolutional layers
of ResNet, DABNet, LEDNet, and LMFFNet as illustrated in
Fig. 2, respectively, to evaluate the impact of TCA on existing
network models. Typically, the TCA module can enhance
various performance metrics in these models as demonstrated
in Table II. However, substituting the core convolutional layers
of the original SS-nbt module with the TCA incurs a decline
in both the accuracy and parameter amount of SS-nbt-TCA,
due to the possession of a greater number of convolutional
layers in the original SS-nbt. The PCT block, incorporating
the TCA module as one branch, achieves a reduction in
parameters, albeit with a slight accuracy decrease, as only
half of the input feature map channels undergo processing for
feature extraction. Note that the channel split operation and
concatenation in PCT may result in increased computation and
slower inference speed when compared to the TCA. In real-
time semantic segmentation tasks for mobile applications, the
PCT emerges as a preferable choice for building the backbone

TABLE III
EXPERIMENTAL RESULTS OF ENCODERS WITH DIFFERENT DEPTHS BUILT

BY 9 PCT BLOCKS ON THE CITYSCAPES VALIDATION SET

network to strike an optimal balance between accuracy and
computing efficiency.

2) Ablation Studies on Encoder Capacity: The encoder
structure in different depths with a different number of convo-
lution stages can determine the overall performance of the
whole network. To achieve a lightweight network model,
the backbone preferably includes no more than four stages
(excluding the initialization stage). Therefore, we construct
the backbone network with maximal four convolution stages
as LCNetS1_S2_S3_S4, where S1, S2, S3, and S4 indicate the
number of PCTs in stages I, II, III, and IV of the encoder,
respectively. Note that each encoding stage starts with a DSM
and is followed up by a set of PCT blocks.

To evaluate the impact of the encoder depth on the net-
work performance, we designate 9 PCT blocks which are
distributed to different stages in the encoder in four cases, and
summarize the experimental results in Table III. Specifically,
the LCNet9 indicates that the encoder contains only one
encoding stage which includes 1 DSM and 9 subsequent
successively-connected PCTs for feature extraction. LCNet3_6
combines two stages for the encoder where the first stage
S1 includes 1 DSM and 3 subsequent PCTs while the second
stage S2 includes 1 DSM and 6 PCTs. Likewise, LCNet3_3_3
and LCNet3_2_2_2 include three and four stages, respectively,
with the corresponding number of PCTs distributed in each
stage. Fewer stages always lead to fewer model parameters
and FLOPs as summarized in Table III since fewer convolu-
tion kernels are involved in the computation. The four-stage
LCNet3_2_2_2 results in the most parameters and the FLOPs
but the best accuracy performance when compared to other
shallow structures. In deeper LCNets, more DSMs with a
larger channel width are dragged on the inference speed
and model size. In contrast, the accuracy of lighter network
LCNet9 is much worse. The two-stage LCNet3_6 and the three-
stage LCNet3_3_3 obtain a better trade-off between accuracy
and computing efficiency while LCNet3_6 is more compact
with fewer parameters.

Obviously, deeper semantic features are important for
improving the segmentation accuracy. However, the deep net-
works lead to a larger model size as well. So, we further
investigate the performance of the mediate-size two-stage
encoder structure for LCNetS1_S2. We used the index CI
defined in (6) to select the most cost-effective regimen for
a lightweight yet accurate semantic segmentation network.
As depicted in Fig. 7, the two-stage encoder performs better
with a higher CI score when S1 = 3 in both cases with a fixed
S2 = 7 and S2 = 11. The peak point of the CI curve indicates
that the network model achieves a better comprehensive per-
formance of model size, accuracy and speed. Specifically, the
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Fig. 7. Variation of CI values with respect to different S1 and S2. Up: Fixed
S2 (S2 = 7) and varied S1; Middle: Fixed S2 (S2 = 11) and varied S1; Down:
Fixed S1 (S1 = 3) and varied S2.

TABLE IV
EXPERIMENTAL RESULTS WITH DIFFERENT S2 LENGTHS IN TWO-STAGE

LCNETS1_S2 ON THE CITYSCAPES VALIDATION SET

model LCNet3_7 (i.e., S1 = 3, S2 = 7) and LCNet3_11 (i.e.,
S1 = 3, S2 = 11) are two potential solutions for high-speed-
oriented and high-accuracy-oriented applications, respectively.

Besides, we summarize the experimental results for the
two-stage LCNetS1_S2 with a fixed S1 = 3 in stage I and
a variant S2 of PCTs in stage II in Table IV. The LCNet3_7
improves accuracy by 1.5% compared to LCNet3_6. As the
value of S2 increases, there is an observed improvement in
accuracy (mIoU), albeit at the cost of a larger model size,
more FLOPs computations and slower inference speed. For
instance, LCNet3_11 requires 0.74 M relatively high parameters
at only 136.8 fps inference speed. The inference speed of
LCNet3_12 has been reduced by one-third with about 71%
more parameters compared to LCNet3_6. However, it is still
meaningful to build a deeper encoder for certain practical
applications, given the substantial improvement in accuracy
performance it yields.

3) Impact of the Channel Width of PCT: In our work, the
channel width is changed by the DSM at the initialization
stage and then is doubled by the DSM in each encoding stage.
Besides, only partial channels of the input feature maps are
transferred to the TCA branch in the PCT for convolution
operation according to the PCT structure. Therefore, there
are two hyper-parameters in the encoder determining the final
channel width of each stage in the encoder, i.e., the channel
number at the initialization stage CI ni and the proportion P
of channel number of input feature maps passing through the
TCA branch of PCT.

We investigate the impact of channel width determined
by CI ni and P on the LCNet based on a two-stage model
LCNet3_7. We adjust the values of CI ni and P to observe the
variation of network capability and find out the appropriate

TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT CHANNEL NUMBER C I ni AT

INITIALIZATION STAGE AND CHANNEL PROPORTION P IN
PCT BLOCKS ON THE CITYSCAPES VALIDATION SET

CI ni and P for building an LCNet model with a better
balance between computing efficiency and accuracy. As the
experimental results summarized in Table V, the accuracy
(mIoU) increases when the CI ni is enlarged. Approximately
75.91% mIoU can be achieved while CI ni is set to 64 at the
expense of a significantly-declined inference speed because
a large CI ni in the initialization stage amplifies the volume
of feature maps of every following layer in the encoder.
A faster inference speed, a smaller model size, and fewer
FLOPs number can be achieved while CI ni or P decreases.
For a fixed CI ni (e.g., CI ni = 32), the accuracy increases
gradually while P increases from 0.25 to 1. P controls the
channel width of TCA and the computation time spent on
convolution. Therefore, both CI ni and P should be increased
if a higher segmentation accuracy is strongly desired while a
smaller CI ni and P should be assigned if a faster inference
speed with an ultra-small model size is preferred. And CI ni has
a greater impact on the performance of the whole network than
P . In this work, we set {CI ni = 32, P = 0.5} for the two-stage
encoder as the baseline to achieve a better trade-off between
accuracy and computation efficiency for mobile application
scenarios.

4) Ablation Study for the DD: To verify the effectiveness
of the dual-attention (DA) mechanism in the decoder, we have
investigated different strategies, including element-wise addi-
tion, point-wise convolution, and global attention upsample
(GAU) [32] for yielding a lightweight yet efficient decoder.
Element-wise addition indiscriminately blends two inputs for
feature fusion while point-wise convolution enhances partial
channel representation through inductive bias. In contrast, the
attention mechanism utilizes the input itself to improve the
feature expression and thus introduces higher adaptability to
the network. The GAU requires more computation operations
to collect global information. In the DA strategy, it is possible
to combine feature maps from different layers of the encoder
since there are two inputs (X , Y ) in DDX,Y for decoding the
final output result. As the experimental results demonstrated
in Table VI, GAU achieves higher accuracy compared to
the element-wise addition and point-wise convolution, but
the speed declines slightly with more model parameters and
higher FLOPs. Compared to GAU, the DA strategy fuses the
two levels of output features from the encoder and achieves
a faster processing speed and higher segmentation accuracy
while consuming 20% fewer model parameters.

We further investigate the performance of DD by blending
the feature maps from different levels. Since the encoder
LCNetS1_S2 includes one initialization stage ‘I ni’ and two
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TABLE VI
EXPERIMENTAL RESULTS OF DIFFERENT FEATURE FUSION SCHEMES IN

THE DECODER ON THE CITYSCAPES VALIDATION SET

TABLE VII
EXPERIMENTAL RESULTS OF USING DIFFERENT STRATEGIES FOR

THE DECODER ON THE CITYSCAPES VALIDATION SET

encoding stages of I and I I , two of three outputs from
these three stages can be combined to the inputs X and Y
for the DDX,Y . We evaluate structures of DDI ni,I I , DDI,I I
and the two-stage decoder “DDI,I I + DDI ni,O”, where O
denotes the output of the former DDI,I I . As the experimental
results summarized in Table VII, the accuracy performance
of three different DD solutions is better than the baseline
model without connecting any decoder. DDI ni,I I has a slight
improvement in accuracy but a significant drop in inference
speed compared to the baseline. DDI,I I results in 1.08% mIoU
improvement while incurring a marginal increase of merely
0.01 Million parameters and additional 0.15 Giga FLOPs
(GFLOPs). When multiple DDs are combined for prediction,
such as the “DDI,I I + DDI ni,O” strategy, the feature maps
from the ‘I ni’ stage provide negligible assistance for the accu-
racy improvement but introduce more model parameters and
computational operations, making the inference speed decline
significantly compared to using a single DDI,I I . Hence, the
single DDI,I I is preferred to be our final solution for building
the decoder.

Additionally, we also analyzed the DA mechanism through
examples of visualization of attention maps as shown in
Fig. 6. From the intermediate feature maps produced by the
RG branch, P1 exhibits a similar expression to Yc, while P2
captures the non-strongly-expressed information and supresses
the positive response in Yc through the Negative operation.
Consequently, the output of the RG branch, FRG(Y ), contains
a greater number of expressive features compared to Yc.
By fusing the details from FSG(X) and the richer semantic fea-
tures from FRG(Y ), the output feature map F(X, Y ) achieves
a higher prediction confidence for semantic segmentation.

E. Inference Speed With Varying Resolutions and GPUs

To comprehensively investigate the computing effiency in
terms of inference speed of our LCNet, we have deployed the

Fig. 8. Inference speed of LCNet on Jetson Xavier NX (a) and
RTX 3090 GPU (b) at different input resolutions with or without TensorRT
acceleration.

two versions of LCNet on the powerful RTX 3090 GPU and
the Jetson Xavier NX platform with an embedded GPU with or
without TensorRT acceleration engines, respectively. The Jet-
son Xavier NX is equipped with a 6-core Carmel ARM CPU,
a 384-CUDA-core GPU, 8 GB RAM, and two deep-learning
accelerator engines. Specifically, Fig. 8 (a) shows the infer-
ence speeds of LCNet3_7 and LCNet3_11 with floating 32-bit
operation on the embedded GPU while Fig. 8 (b) illustrates the
corresponding inference speeds evaluated on RTX 3090. The
experimental findings unequivocally illustrate that TensorRT
delivers improved speed when applied to input images of
diverse resolutions on both types of GPUs. When considering
128 × 256 resolution images, TensorRT yields a substan-
tial speed gain (1) of 216.9 fps on the embedded GPU.
Likewise, the utilization of TensorRT proves highly advan-
tageous in accelerating the speed of low-resolution images on
the 3090 GPU as well. However, it is observed that the speed
gains for high-resolution images are not as substantial as those
achieved for low-resolution images. The acceleration from
TensorRT is less pronounced for high-resolution inputs mainly
because the high-resolution images have larger spatial dimen-
sions, resulting in more computations and increased memory
space required for computing. Besides, high-resolution images
may push the hardware (RTX 3090 or embedded GPU on
Xavier NX) to its limits, limiting the speed gains achievable.

F. Performance Comparison With the State-of-the-Arts

In this section, we evaluate the overall performance of the
proposed LCNet model based on three dataset benchmarks:
Cityscapes, CamVid, and BDD100K. Two optimal model ver-
sions (i.e., the computing-efficiency-oriented LCNet3_7 and the
accuracy-oriented LCNet3_11) without pretrain and TensorRT
acceleration for real-time semantic segmentation are evaluated
and further compared with multiple existing state-of-the-art
semantic segmentation approaches.

1) Performance on Cityscapes: We estimate the exist-
ing state-of-the-art semantic segmentation networks and our
LCNet models in our local servers on the Cityscapes dataset.
The comprehensive comparison with existing state-of-the-
art semantic segmentation networks is illustrated in Fig. 1.
Table VIII summarizes the quantitative comparison of the
experimental results on the Cityscapes dataset.

Our LCNet3_7 achieves 73.8% mIoU with only 0.51 mil-
lion parameters while LCNet3_11 gains a higher mIoU of
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TABLE VIII
PERFORMANCE COMPARISON OF LCNETS AGAINST EXISTING SEMANTIC SEGMENTATION NETWORKS ESTIMATED ON THE CITYSCAPES DATASET

75.8% with 0.74 million parameters at the image resolution
of 1024 × 1024. The smaller model LCNet3_7 outperforms
other approaches in terms of the better trade-off between
accuracy and inference speed. The existing ultra-lightweight
networks such as ENet [13], ESPNet [54], and CGNet [55]
generate fewer parameters (<0.5 M) but their comprehensive
performance indicated by CI is unsatisfactory. Compared to
MiniNet-v2 [15], LCNet3_7 increases by 3.3% in mIoU and
40 fps in speed with a similar number of parameters. Com-
pared with the latest model MSCFNet [41], LCNet3_7 achieves
more than 3× faster speed and approximately 1.9% higher
testing accuracy by using only half the parameters. The deeper
version LCNet3_11 chases a higher accuracy improvement but
requires 0.23 M more parameters, which is still maintaining a
good trade-off in all respects. When compared to EPRNet [28]
and EACNet [62], LCNet3_11 reduces by 15% parameters and
nearly 30% GFLOPs while achieving a higher accuracy, which
is more favorable to resource-constrained applications.

Without great regularization in pretraining using Ima-
geNet [16], our LCNet3_11 remains >0.7% mIoU improve-
ment over RTHP-SIS [61] based on a smaller mode size
with only one-ninth of the parameters. With the same input
resolution of 512×1024, LCNet3_11 still maintains an accuracy
advantage over many existing lightweight networks such as
ESNet [25], LEDNet [20], and EDANet [57], increasing
by 3.6%, 5.1%, and 7.0% mIoU, respectively. Compared to

the AGLNet [60] with additional training data, LCNet3_11
achieves improved accuracy by 3.0% mIoU. The NDNet-18
[63], HoloSeg [64], DDRNet-23-slim [65], PIDNet-S [66] and
RegSeg [67] all achieve significantly high accuracy (>76.0%
mIoU) at the expense of increased parameter amount, con-
sequently leading to slightly smaller CI values compared to
our model. The LMFFNet-3-8 achieves a smaller CI value
compared to LCNet3_7 at the same input image resolution
of 512 × 1024. The LCNet3_7, in a smaller size, attains
an optimal accuracy-efficiency balance, as indicated by its
highest CI value. The larger LCNet3_11 obtains higher com-
putational efficiency with fewer GFLOPs at a resolution of
512×1024 compared to LMFFNet. Although the three-branch
network in PIDNet [66] can extract different kinds of features
for accuracy improvement, it also leads to lower inference
speed due to more model parameters and computing opera-
tions. RegSeg [67] stacks more dilated blocks into a deeper
backbone for getting a higher accuracy and it can run faster in
our RTX 3090 GPU. However, RegSeg [67] runs still much
slower compared to our LCNets with the same input image
size of 512 × 1024 due to its lower computing efficiency.

Moreover, we report the results for each category in detail
in Table IX. LCNet is superior to many existing networks in
most categories while maintaining an extremely lightweight
structure. These experimental results demonstrate that the
proposed LCNet model effectively encodes multiscale features
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TABLE IX
PRE-CLASS RESULTS (%) OF DIFFERENT SEGMENTATION MODELS ON THE CITYSCAPES TEST SET

TABLE X
PERFORMANCE COMPARISON OF LCNETS AGAINST EXISTING SEMANTIC SEGMENTATION NETWORKS ESTIMATED ON THE CAMVID TEST SET

Fig. 9. Qualitative results of LCNet compared to state-of-the-art methods on the Cityscapes validation set.

for variable scales in street scenes and gains a strong learning
ability. We also provide some examples of visualization results
of semantic segmentation using different network models on
the Cityscapes validation set as shown in Fig. 9.

2) Performance on CamVid: To demonstrate the effec-
tiveness and generalization ability of LCNet in various
benchmarks, we also evaluate the LCNet in the CamVid
dataset [42]. The experimental results of LCNet and other
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Fig. 10. Qualitative results of LCNet compared to state-of-the-art methods on the CamVid validation dataset.

state-of-the-art real-time semantic segmentation networks on
the CamVid test set are summarized in Table X.

Our LCNet3_7 and LCNet3_11 achieve 70.2% and 70.3%
mIoU without any pretraining for the input images in the res-
olution of 360 × 480. For higher-resolution images, LCNet3_7
and LCNet3_11 achieve testing accuracy of 70.7% mIoU
and 71.8% mIoU, respectively. The accuracy performance of
LCNet3_7 is 1.7% higher than MiniNet-v2 [15]. LCNet3_7
reaches a higher accuracy with <50% of parameters com-
pared to AGLNet [60] and MSCFNet [41]. LCNet3_11 further
enhances the segmentation accuracy performance. According
to the experimental results in Table X, the accuracy perfor-
mance of our LCNets on the CamVid test set is better than that
of most existing models in the same input image resolution.

About the inference speed, our LCNet3_7 and LCNet3_11
can respectively process at 187 fps and 140 fps for the images
in 360×480 resolution on a single RTX 3090 GPU. LCNet3_7
achieves sub-optimal inference speed while the ESPNet [54]
gains the fastest speed. However, the accuracy of LCNet3_7
increases by 14.6% mIoU compared to ESPNet. Even though
the greater model parameters of LCNet3_11 prolong the pro-
cessing time, it is still faster than many existing networks like
CGNet [55]. In brief, the experimental results show that both
LCNet3_7 and LCNet3_11 achieve a decent trade-off between
accuracy and inference speed with a low parameter amount.
Additionally, we exhibit some examples of the visualization
semantic segmentation results using different network models
in Fig. 10. We find that the LCNet can better discriminate
the boundaries between different objects on the CamVid
dataset.

3) Performance on BDD100K: To further verify the sta-
ble performance of LCNet, we also provide a quantitative

TABLE XI
EXPERIMENTAL RESULTS ON THE BDD100K TEST SET

estimation of the challenging BDD100K dataset [43].
The experimental results compared with existing real-time
approaches are summarized in Table XI. Compared to
lightweight network models using a smaller backbone without
pre-training, such as the ResNet18 [3] in DSMRSeg [68],
DLA-34 [69] backbone in [43], and MobileNetV2 in [70] and
[71], our proposed network LCNet3_11 still achieves a higher
accuracy and fewer model parameters. The pre-trained back-
bone ResNet101 [3] with strong learning ability in DeepLab
v3+ [72] indicates a progress of higher precision on the
BDD100K dataset. Although there are a large number of
images with multiple scenes in the challenging BDD100K
dataset, the proposed LCNet demonstrates competitive learn-
ing capabilities and obtains a significantly high accuracy while
utilizing fewer than 1 M parameters for semantic segmentation
tasks in complex scenes.

V. CONCLUSION

In this paper, we propose a real-time semantic segmen-
tation network named LCNet, achieving a better balance
between model size, segmentation accuracy, and inference
speed. Our approach involves the meticulous design of key
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components: a compact convolution unit called three-branch
context aggregation (TCA), a novel block incorporating a
partial-channel transformation (PCT) strategy with TCA, and
an ultra-lightweight dual-attention-guided decoder (DD). The
simple and shallow encoder, primarily composed of PCT
blocks, efficiently extracts and fuses multiscale contextual
features. The DD integrates dual-level features using different
attention masks. A comprehensive set of ablation experiments
conducted on the Cityscapes validation set confirm the effec-
tiveness of each component. Finally, we compare the overall
performance of the LCNet with existing real-time semantic
segmentation methods, summarize and briefly analyze the
experimental results. LCNet strikes a great balance between
computational resource consumption and pixel-level predic-
tion capability, particularly well-suited for mobile application
scenarios. In future work, our focus will be on enhancing the
interpretability of CNN-based lightweight architectures with
semantic information. Additionally, we plan to explore alterna-
tive solutions, such as vision transformer (ViT), to achieve an
optimal trade-off between accuracy and efficiency on mobile
GPUs.

REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015, arXiv:1409.1556.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[4] Y. Bai, Z. Zhang, Z. He, S. Xie, and B. Dong, “A dual-convolution-
neutral-network enhanced strain estimation method for optical coherence
elastography,” Opt. Lett., early access, pp. 1–4, Dec. 2023, doi:
10.1364/ol.507931.

[5] W. Zhang et al., “TopFormer: Token pyramid transformer for mobile
semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2022, pp. 12073–12083.

[6] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“SegFormer: Simple and efficient design for semantic segmentation with
transformers,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 12077–12090.

[7] Q. Wan, Z. Huang, J. Lu, Y. Gang, and L. Zhang, “SeaFormer: Squeeze-
enhanced axial transformer for mobile semantic segmentation,” in Proc.
Int. Conf. Learn. Represent., 2023, pp. 1–19.

[8] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 3213–3223.

[9] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, and J. Wang, “Structured knowl-
edge distillation for semantic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2599–2608.

[10] R. Liu et al., “TransKD: Transformer knowledge distillation for efficient
semantic segmentation,” 2022, arXiv:2202.13393.

[11] J. Zhang, K. Yang, A. Constantinescu, K. Peng, K. Müller, and
R. Stiefelhagen, “Trans4Trans: Efficient transformer for transparent
object and semantic scene segmentation in real-world navigation
assistance,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10,
pp. 19173–19186, Oct. 2022.

[12] C.-B. Wang and J.-J. Ding, “EffSegmentNet: Efficient design for real-
time semantic segmentation,” in Proc. Asia–Pacific Signal Inf. Process.
Assoc. Annu. Summit Conf. (APSIPA ASC), Oct. 2023, pp. 7423–7436.

[13] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A deep
neural network architecture for real-time semantic segmentation,” 2016,
arXiv:1606.02147.

[14] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 116–131.

[15] I. Alonso, L. Riazuelo, and A. C. Murillo, “MiniNet: An efficient
semantic segmentation ConvNet for real-time robotic applications,”
IEEE Trans. Robot., vol. 36, no. 4, pp. 1340–1347, Aug. 2020.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[17] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder–decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[18] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “ERFNet: Effi-
cient residual factorized ConvNet for real-time semantic segmentation,”
IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 263–272, Jan. 2018.

[19] G. Li, I. Yun, J. Kim, and J. Kim, “DABNet: Depth-wise asymmetric
bottleneck for real-time semantic segmentation,” in Proc. 30th Brit.
Mach. Vis. Conf. Durham, U.K.: BMVA Press, 2020, pp. 1–12.

[20] Y. Wang et al., “LEDNet: A lightweight encoder–decoder network
for real-time semantic segmentation,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2019, pp. 1860–1864.

[21] M. Shi et al., “LMFFNet: A well-balanced lightweight network for fast
and accurate semantic segmentation,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 34, no. 6, pp. 3205–3219, Jun. 2023.

[22] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

[23] M. Ma, F. Zou, F. Xu, and J. Song, “RTSNet: Real-time semantic
segmentation network for outdoor scenes,” in Proc. IEEE 9th Annu. Int.
Conf. CYBER Technol. Autom., Control, Intell. Syst. (CYBER), Jul. 2019,
pp. 659–664.

[24] S. Mehta, M. Rastegari, L. Shapiro, and H. Hajishirzi, “ESPNetv2:
A light-weight, power efficient, and general purpose convolutional neural
network,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 9182–9192.

[25] Y. Wang, Q. Zhou, J. Xiong, X. Wu, and X. Jin, “ESNet: An efficient
symmetric network for real-time semantic segmentation,” in Proc. Chin.
Conf. Pattern Recognit. Comput. Vis. Cham, Switzerland: Springer, 2019,
pp. 41–52.

[26] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.

[27] T. Liu, Z. He, Z. Lin, G.-Z. Cao, W. Su, and S. Xie, “An adap-
tive image segmentation network for surface defect detection,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Dec. 29, 2022, doi:
10.1109/TNNLS.2022.3230426.

[28] Q. Tang, F. Liu, J. Jiang, and Y. Zhang, “EPRNet: Efficient pyramid
representation network for real-time street scene segmentation,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 7008–7016, Jul. 2022.

[29] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu, “CCNet:
Criss-cross attention for semantic segmentation,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 603–612.

[30] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[31] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learn-
ing a discriminative feature network for semantic segmentation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1857–1866.

[32] H. Li, P. Xiong, J. An, and L. Wang, “Pyramid attention network for
semantic segmentation,” in Proc. Brit. Mach. Vis. Conf., 2018, pp. 1–13.

[33] Z. Lin et al., “Deep dual attention network for precise diagnosis of
COVID-19 from chest CT images,” IEEE Trans. Artif. Intell., early
access, Nov. 29, 2022, doi: 10.1109/TAI.2022.3225372.

[34] Z. Lin et al., “DBGANet: Dual-branch geometric attention network for
accurate 3D tooth segmentation,” IEEE Trans. Circuits Syst. Video Tech-
nol., early access, Nov. 8, 2023, doi: 10.1109/TCSVT.2023.3331589.

[35] S. Chen, X. Tan, B. Wang, and X. Hu, “Reverse attention for salient
object detection,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 234–250.

[36] Q. Huang, C. Wu, C. Xia, Y. Wang, and C.-C.-J. Kuo, “Semantic seg-
mentation with reverse attention,” in Proc. Brit. Mach. Vis. Conf., 2017,
pp. 1–13.

[37] J. Liu, Q. Zhou, Y. Qiang, B. Kang, X. Wu, and B. Zheng, “FDDWNet:
A lightweight convolutional neural network for real-time semantic
segmentation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2020, pp. 2373–2377.

[38] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 04,2024 at 01:34:45 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1364/ol.507931
http://dx.doi.org/10.1109/TNNLS.2022.3230426
http://dx.doi.org/10.1109/TAI.2022.3225372
http://dx.doi.org/10.1109/TCSVT.2023.3331589


SHI et al.: LCNet USING PCT FOR REAL-TIME SEMANTIC SEGMENTATION 7415

[39] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 6230–6239.

[40] X. Zhang, B. Du, Z. Wu, and T. Wan, “LAANet: Lightweight attention-
guided asymmetric network for real-time semantic segmentation,” Neur.
Comp. Appl., vol. 34, pp. 3573–3587, Jan. 2022.

[41] G. Gao, G. Xu, Y. Yu, J. Xie, J. Yang, and D. Yue, “MSCFNet:
A lightweight network with multi-scale context fusion for real-time
semantic segmentation,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 12, pp. 25489–25499, Dec. 2022.

[42] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in
video: A high-definition ground truth database,” Pattern Recognit. Lett.,
vol. 30, no. 2, pp. 88–97, Jan. 2009.

[43] F. Yu et al., “BDD100K: A diverse driving dataset for heterogeneous
multitask learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 2633–2642.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classifica-
tion,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034.

[45] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. 19th Int. Conf. Comput. Statist., Paris, France. Cham,
Switzerland: Springer, Aug. 2010, pp. 177–186.

[46] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based
object detectors with online hard example mining,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 761–769.

[47] D. Diakoulaki, G. Mavrotas, and L. Papayannakis, “Determining objec-
tive weights in multiple criteria problems: The critic method,” Comput.
Oper. Res., vol. 22, no. 7, pp. 763–770, Aug. 1995.

[48] M. Fan et al., “Rethinking BiSeNet for real-time semantic segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 9711–9720.

[49] J. Peng et al., “PP-LiteSeg: A superior real-time semantic segmentation
model,” 2022, arXiv:2204.02681.

[50] S. Zhao, Y. Liu, Q. Jiao, Q. Zhang, and J. Han, “Mitigating
modality discrepancies for RGB-T semantic segmentation,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Jan. 6, 2023, doi:
10.1109/TNNLS.2022.3233089.

[51] Z. Huang, Y. Wei, X. Wang, W. Liu, T. S. Huang, and H. Shi, “AlignSeg:
Feature-aligned segmentation networks,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 1, pp. 550–557, Jan. 2022.

[52] X. Li et al., “Multi-level feature fusion network for nuclei segmentation
in digital histopathological images,” Vis. Comput., vol. 39, no. 4,
pp. 1307–1322, 2023.

[53] M. Treml et al., “Speeding up semantic segmentation for autonomous
driving,” in Proc. Adv. Neur. Inf. Process. Syst., 2016, pp. 1–7.

[54] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,
“ESPNet: Efficient spatial pyramid of dilated convolutions for
semantic segmentation,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 552–568.

[55] T. Wu, S. Tang, R. Zhang, J. Cao, and Y. Zhang, “CGNet: A light-weight
context guided network for semantic segmentation,” IEEE Trans. Image
Process., vol. 30, pp. 1169–1179, 2021.

[56] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for real-time semantic
segmentation on high-resolution images,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 405–420.

[57] S.-Y. Lo, H.-M. Hang, S.-W. Chan, and J.-J. Lin, “Efficient dense mod-
ules of asymmetric convolution for real-time semantic segmentation,” in
Proc. ACM Multimedia Asia, Dec. 2019, pp. 1–6.

[58] M. Oršic, I. Krešo, P. Bevandic, and S. Šegvic, “In defense of pre-
trained ImageNet architectures for real-time semantic segmentation of
road-driving images,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 12599–12608.

[59] H. Li, P. Xiong, H. Fan, and J. Sun, “DFANet: Deep feature aggregation
for real-time semantic segmentation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 9514–9523.

[60] Q. Zhou et al., “AGLNet: Towards real-time semantic segmentation of
self-driving images via attention-guided lightweight network,” Appl. Soft
Comput., vol. 96, Nov. 2020, Art. no. 106682.

[61] G. Dong, Y. Yan, C. Shen, and H. Wang, “Real-time high-performance
semantic image segmentation of urban street scenes,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 6, pp. 3258–3274, Jun. 2021.

[62] Y. Li, X. Li, C. Xiao, H. Li, and W. Zhang, “EACNet: Enhanced
asymmetric convolution for real-time semantic segmentation,” IEEE
Signal Process. Lett., vol. 28, pp. 234–238, 2021.

[63] S. Li, Q. Yan, X. Zhou, D. Wang, C. Liu, and Q. Chen, “NDNet:
Spacewise multiscale representation learning via neighbor decoupling
for real-time driving scene parsing,” IEEE Trans. Neural Netw. Learn.
Syst., early access, Nov. 21, 2022, doi: 10.1109/TNNLS.2022.3221745.

[64] S. Li, Q. Yan, C. Liu, M. Liu, and Q. Chen, “HoloSeg: An efficient
holographic segmentation network for real-time scene parsing,” in Proc.
Int. Conf. Robot. Autom. (ICRA), May 2022, pp. 2395–2402.

[65] H. Pan, Y. Hong, W. Sun, and Y. Jia, “Deep dual-resolution networks for
real-time and accurate semantic segmentation of traffic scenes,” IEEE
Trans. Intell. Transp. Syst., vol. 24, no. 3, pp. 3448–3460, Mar. 2023.

[66] J. Xu, Z. Xiong, and S. P. Bhattacharyya, “PIDNet: A real-time
semantic segmentation network inspired by PID controllers,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 19529–19539.

[67] R. Gao, “Rethinking dilated convolution for real-time semantic seg-
mentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2023, pp. 4674–4683.

[68] M. Yang and Y. Shi, “DSMRSeg: Dual-stage feature pyramid and
multi-range context aggregation for real-time semantic segmentation,”
in Neural Information Processing (Communications in Computer and
Information Science). Cham, Switzerland: Springer, 2019, pp. 265–273.

[69] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2403–2412.

[70] J. Fan, F. Wang, H. Chu, X. Hu, Y. Cheng, and B. Gao, “MLFNet: Multi-
level fusion network for real-time semantic segmentation of autonomous
driving,” IEEE Trans. Intell. Vehicles, vol. 8, no. 1, pp. 756–767,
Jan. 2023.

[71] T. Singha, D.-S. Pham, A. Krishna, and T. Gedeon, “A lightweight multi-
scale feature fusion network for real-time semantic segmentation,” in
Proc. Int. Conf. Neural Inform., 2021, pp. 193–205.

[72] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder–decoder with atrous separable convolution for semantic image
segmentation,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 801–818.

Min Shi was born in Hubei, China. She received
the M.S. degree in electronic engineering from the
Wuhan University of Technology, Wuhan, China,
in 2002, and the Ph.D. degree in signal process-
ing and wireless communication from the South
China University of Technology, Guangzhou, China,
in 2005. She is currently an Associate Professor with
Jinan University and the Director of the Technology
Research Center for Satellite Navigation Chips and
Applications, Guangdong University. Her research
interests include machine learning, non-negative sig-

nal processing, image processing, and satellite navigation.

Shaowen Lin received the B.E. degree from Jinan
University, Guangzhou, China, in 2020, where he
is currently pursuing the M.S. degree. His current
research interests include computer vision, machine
learning, and deep learning.

Qingming Yi received the B.S. degree from Xiang-
tan University, China, in 1984, the M.S. degree
from Jinan University, China, in 1990, and the
D.Eng. degree from the South China University of
Technology, China, in 2008. She is currently a Full
Professor with Jinan University, Guangzhou, China.
Her research interests include image processing,
computer vision, multimedia security, and digital IC
design.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 04,2024 at 01:34:45 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2022.3233089
http://dx.doi.org/10.1109/TNNLS.2022.3221745


7416 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 7, JULY 2024

Jian Weng (Senior Member, IEEE) received the
B.S. and M.S. degrees in computer science and
engineering from the South China University of
Technology in 2000 and 2004, respectively, and the
Ph.D. degree in computer science and engineer-
ing from Shanghai Jiao Tong University in 2008.
From 2008 to 2010, he held a post-doctoral research
position with the School of Information Systems,
Singapore Management University. He is currently
a Professor, the Dean of the College of Information
Science and Technology, and the Vice-Chancellor of

Jinan University. His research interests include public key cryptography, cloud
security, blockchain, and artificial intelligence. He served as the PC co-chair or
a PC member for over 30 international conferences. He serves as an Associate
Editor for IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Aiwen Luo (Member, IEEE) received the D.Eng.
degree from Hiroshima University, Japan, in March
2018. From April 2018 to August 2019, she was
a Researcher with Hiroshima University. She is
currently a Faculty Member of Jinan University,
Guangzhou, China. Her research interests include
computer vision, pattern recognition, robotics, and
intelligent IC design.

Yicong Zhou (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Hunan
University, Changsha, China, and the M.S. and
Ph.D. degrees in electrical engineering from Tufts
University, Medford, MA, USA. He is currently a
Professor with the Department of Computer and
Information Science, University of Macau, Macau,
China. His research interests include image pro-
cessing, computer vision, machine learning, and
multimedia security. He is a fellow of the Society
of Photo-Optical Instrumentation Engineers (SPIE)

and was recognized as one of “Highly Cited Researchers” in 2020 and
2021. He received the Third Price of Macao Natural Science Award as a
Sole Winner in 2020 and a co-recipient in 2014. He has been the leading
Co-Chair of Technical Committee on Cognitive Computing in the IEEE
Systems, Man, and Cybernetics Society since 2015. He also serves as
an Associate Editor for IEEE TRANSACTIONS ON CYBERNETICS, IEEE
TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,
and IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 04,2024 at 01:34:45 UTC from IEEE Xplore.  Restrictions apply. 


