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Abstract— Anomaly detection for hyperspectral images (HSIs)
is a challenging problem to distinguish a few anomalous pixels
from a majority of background pixels. Most existing meth-
ods cannot simultaneously explore both structural and spatial
information from global and local perspectives. In this let-
ter, we propose a stacked graph fusion denoising autoencoder
(SGFDAE) for hyperspectral anomaly detection. Specifically, the
global and local graphs are constructed from an HSI to explore
potential structural and spatial information. With the designed
graph fusion strategy, an advanced graph denoising autoencoder
with deep architecture is developed in a hierarchical manner.
To achieve better reconstruction and detection, a greedy layerwise
unsupervised pretraining strategy is presented for network train-
ing. Experiments show that SGFDAE achieves 97.17%, 98.43%,
and 98.90% detection accuracies by averaging the results of the
datasets from three different scenes and outperforms the state-
of-the-art methods.

Index Terms— Anomaly detection, denoising autoencoder,
graph neural network, hyperspectral imagery.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are always represented
by 3-order tensor and provide abundant spatial and

spectral information for Earth observation [1]. As an essential
application for HSIs, anomaly detection is to identify very lim-
ited anomalous pixels that significantly deviate from dominant
background pixels [2]. It is a challenging research hotspot and
earns much attention from researchers.

To uncover anomalous pixels, many effective methods have
been proposed [3]. As an important category, shallow learning
methods come from traditional machine learning that can be
roughly divided into statistics-based and representation-based
methods. Based on the Gaussian distribution assumption,
statistics-based methods perform detection with the dis-
tance measure, e.g., the Reed–Xiaoli (RX) detector [4] and
its variants [5]. Representation-based methods distinguish
background pixels and anomalies based on the constructed
dictionary or decomposed sparse matrix, e.g., collaborative
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representation-based detectors [6], sparse representation-based
detectors [7], and tensor-based detectors [8].

Differently, deep learning models are based on neural
networks to detect anomalies. Self-supervised learning-based
networks have been recently proposed to detect anoma-
lies for HSIs. For example, pixel-shuffle downsampling
blind-spot reconstruction network [9], and blind-spot self-
supervised learning network [10] perform detection based on
self-supervised learning technique and blind-spot architecture.
For HSIs, global and local information can be a complemen-
tarity for each other to promote detection. Jiang et al. [11]
proposed a low-rank embedded network to learn global fea-
tures for detection without considering local characteristics.
Furthermore, Lu et al. [12] detected anomalies based on
a manifold-constrained autoencoder with both global and
local reconstruction errors. They exploit global and local
information at feature level without exploring the complex
relationships among pixels. Graph neural network can be a
good detector due to its superior ability of exploring the
potential relationships between normal and anomalous pix-
els [13], [14]. To achieve better detection, Fan et al. [13]
and Li et al. [14] presented advanced graph autoencoders by
exploring pixel relationships with local spatial information in
graph structures. However, they do not pay attention to global
information in graph construction, limiting their performance
enhancement.

Motivated by these observations, we propose an SGFDAE
for hyperspectral anomaly detection, as shown in Fig. 1.
Based on the global and local graphs, an advanced graph
autoencoder is developed with graph fusion and random cor-
ruption. A greedy layerwise unsupervised pretraining strategy
is presented to train the deep architecture. The advantage of
SGFDAE is that structural information and spatial consistency
are exploited from global and local perspectives to promote
detection.

The contributions of this letter are outlined as follows.
1) We propose an SGFDAE detector by considering

structural and spatial information from global and
local perspectives. The optimal network is learned
with a greedy layerwise pretraining strategy for better
detection.

2) The local graph is constructed with the guidance of
diverse homogenous regions. It can be treated as the
complementarity of the global graph to provide addi-
tional useful information for further learning.

3) A graph fusion strategy is devised to fuse the global
and local graphs into a unified graph for the proposed
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Fig. 1. Overview of the proposed SDGDAE detector. Given an HSI, the global and local graphs are constructed to explore the relationships among all pixels
and the pixels within the same local region, respectively. Fusing the global and local graphs, a deep graph denoising autoencoder is developed and trained
with a greedy layerwise pretraining strategy for anomaly detection.

detector. It provides global context information and local
spatial information in an individual graph structure.

II. PROPOSED METHOD

A. Graph Construction

To explore structural information, we construct graph struc-
tures from both global and local perspectives that can provide
complementary information for each other.

1) Global Graph Construction: It is common to measure
the neighborhood relationship between two pixels within k
nearest neighbors of each other based on the spectral similar-
ity [15]. Assume that the HSI cube with W × H pixels and
B bands is denoted as X ∈ RW×H×B , we reshape it into a
matrix X ∈ RN×B (N = W × H). To construct the graph,
we treat each pixel as a node and the relationship between two
pixels as an edge. Given any two pixels xi and x j , we define
the global graph Aglobal ∈ RN×N by traversing the whole HSI
to record structural information as

Aglobal(i j) =

{
1, xi ∈ Nk

(
x j

)
or x j ∈ Nk(xi )

0, otherwise
(1)

where Nk(xi ) denotes the set of k nearest neighboring pixels
of xi . Specifically, two pixels with neighborhood relationship
should be connected by an edge if they belong to the k nearest
neighboring pixel set of each other. Otherwise, there is no
connecting edge between them.

2) Local Graph Construction: Spatial information of local
regions reflecting the land-cover distribution is important for
HSI analysis. To localize s homogenous regions, we first
perform principal component analysis (PCA) [1] on X to
obtain the first principal component If with major informa-
tion, and then conduct the simple linear iterative clustering
(SLIC) method [16] on If according to the texture complexity
and spatial consistency. Mapping the segmentation labels to
original HSI, we can obtain s nonoverlapping superpixels with
all different bands as

X = {Pu}
s
u=1 (2)

where Pu is the uth superpixel containing pixels with similar
spectral signatures and neighboring spatial distribution.

To construct the graph with local spatial consistency,
we also treat each pixel as a node and discover the relationship
between two pixels as an edge according to the segmentation
results. Given any two pixels xi ∈ Pu and x j ∈ Pv , we define
the local graph Alocal ∈ RN×N based on each superpixel to
explore spatial consistency as

Alocal(i j) =

{
1, u = v and

(
xi ∈N u

k

(
x j

)
or x j ∈N u

k (xi )
)

0, otherwise

(3)

where N u
k (xi ) represents the set of k nearest neighboring pix-

els of xi in the uth superpixel. Different from (1), the pixelwise
relationships are explored within the same superpixel.

B. Stacked Graph Fusion Denoising Autoencoder Detector

With Aglobal and Alocal, we design a graph fusion strategy to
obtain a unified fusion graph and develop an SGFDAE detector
with greedy layerwise unsupervised pretraining strategy.

1) Graph Fusion Strategy: The construction of Aglobal
depends on the nearest spectral similarity of pairwise pixels by
traversing the entire image without considering local spatial
information. In contrast, the construction of Alocal relies on
the relationship of pairwise pixels within each homogenous
region but ignores the situation that two highly related pixels
are spatially located far away. It has been verified that local
spatial information within homogenous regions is beneficial
for HSI analysis. When using both the global and local graphs,
they can provide complementary information for each other to
enhance detection performance.

Thus, we design a graph fusion strategy to fuse Aglobal and
Alocal into a unified fusion graph A ∈ RN×N as

A = Aglobal ∨ Alocal (4)

where ∨ denotes the OR logical operation. In (4), A is obtained
by performing OR logical operation on elements in the same
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position of Aglobal and Alocal. With this fusion strategy, A
shows the graph structure of pixels with both global and local
information.

2) Network Architecture: Compared with traditional net-
works [17], graph networks are good at learning informative
representations of samples/nodes based on their neighborhood
information [13]. With the graph structures as prior knowl-
edge, graph networks are more able to learn global and local
features.

To improve the generalization and robustness, we design an
advanced graph autoencoder by introducing random feature
corruption and using the fusion graph for HSI reconstruction
and detection. The denoising process can be regarded as a
regularization for the network to achieve better reconstruction.
Suppose that X is randomly corrupted, we can get its corrupted
matrix X̃ ∈ RN×B . Specifically, each element in X may be
corrupted by setting as 0 with a probability p (0 < p < 1).
To reconstruct X with A from X̃, we formulate the graph fusion
denoising autoencoder with only one layer as

L(W) =

∥∥∥X − f
(

X̃, A
)∥∥∥2

F
=

∥∥∥X − X̂
∥∥∥2

F

=

∥∥∥X − f
(

D̃−1/2ÃD̃−1/2X̃W
)∥∥∥2

F
(5)

where f (·) is the activation function, W ∈ RB×B is the weight
matrix, and X̂ = f (X̃, A) is the reconstruction of X learned
from X̃. Besides, Ã = A + IN is the fusion graph matrix with
self-loops and D̃ is the degree matrix with diagonal elements
D̃i i =

∑N
j=1 Ãi j .

Equation (5) can be used as a building block to construct a
deep architecture by stacking it layer by layer. For example,
we take X as the input to learn H(1) as the output for the
first layer. Then, we use H(1) as the input to learn H(2) as
the output of the second layer. Given l layers, we regard the
feature representation of the lth layer H(l) as the output of
the whole network that is learned from the (l − 1)th layer.
Thus, we can obtain the proposed SGFDAE with deep archi-
tecture for anomaly detection. Since the proposed detector uses
neighborhood information to learn the reconstructed pixels,
it can well-reconstruct background pixels while anomalies are
not and achieve superior detection, because the connected
pairwise pixels in the global and local graphs belong to
background pixels with higher probability than anomalous
pixels. The underlying reason for this situation is that the
fixed size of neighborhoods for constructing the global and
local graphs may introduce improper connections between
background pixels and anomalous pixels due to the very
limited size of anomalous pixels and a large proportion of
background pixels.

3) Network Training: Here, we adopt a greedy layerwise
unsupervised pretraining strategy to learn the optimal network.
In this strategy, pretraining is to learn the predefined weights
as network initialization instead of using randomly generated
weights, while fine-tuning is to learn to optimal weights based
on pretrained initialization.

For the pretraining stage, network weights of each layer
are determined by the reconstruction of a single-layer graph
denoising autoencoder. Given H(i) as the input for the i th

layer, we first get its corrupted matrix H̃(i) and then learn its
reconstruction Ĥ(i) with A from H(i) via the transformation
fi (·) as

L
(
W(i))

=

∥∥∥H(i)
− fi

(
D̃−1/2ÃD̃−1/2H̃(i)W(i)

)∥∥∥2

F
(6)

where W(i)
∈ RB×B is the pretrained weight matrix for

the i th layer. In (6), we hope Ĥ(i)
= fi (H̃, A) could be

well-reconstructed from Ĥ(i)
= H(i) as possible, where Ĥ(0)

=

X. After the reconstruction, we can get W(i) to learn the feature
representation for the next layer as H(i+1)

= fi (H(i), A).
Network pretraining can be achieved in such a manner layer
by layer. Finally, we can obtain H(l)

= fl−1(H(l−1), A) as the
output of the whole network with l layers.

For the fine-tuning stage, the pretrained {W(i)
}
(l−1)
i=0 are used

as initialization. Taking X̂ = H(l) as the deep reconstruction
of X, we formulate the loss function of SGFDAE as

L
({

W(i)}(l−1)

i=0

)
=

∥∥X − H(l)
∥∥2

F =

∥∥∥X − X̂
∥∥∥2

F
. (7)

Equation (7) describes the reconstruction error between the
input X and it final deep reconstruction H(l). To achieve
the optimal reconstruction, we adopt the backpropagation
algorithm to fine-tune all the weight matrices. Compared
with random initialization, the pretrained initialization is more
easily fine-tuned to reach the optimal state when training
network.

C. Anomaly Detection

After network training, we measure the difference between
the original pixel xi ∈ X and the reconstructed pixel x̂i ∈ X̂
to detect anomalous pixels from an HSI. The degree of xi to
be anomalous can be quantified by

di =
∥∥xi − x̂i

∥∥
2 (8)

where di is the anomalous degree of xi . The higher value of di

indicates the higher probability of xi being an anomaly. Poten-
tial anomalies can be identified with a predefined threshold.

III. EXPERIMENTS

A. Experimental Setup

1) Datasets: We use 13 HSI datasets for anomaly detec-
tion.1 There are four images for the airport scene, four images
for the beach scene, and five images for the urban scene. These
datasets are with the size of 100 × 100 or 150 × 150.

2) Compared Methods: To verify the effectiveness of our
SGFDAE, we use several state-of-the-art methods for compar-
ison. The four learning-based methods are RX [4], FrFE [18],
GTVLRR [7], and PTA [8], while the five network-based
methods are RGAE [13], LREN [11], Auto-AD [19], PDB-
SNet [9], and GT-HAD [20].

3) Evaluation Metrics: To measure the detection perfor-
mance, we adopt three well-accepted metrics for evaluation,
i.e., receiver operating characteristic (ROC) curve, area under
ROC curve (AUC) value, and separability map between
anomaly and background.

1http://xudongkang.weebly.com/data-sets.html
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TABLE I
COMPARISON OF AUC VALUES ACROSS DIFFERENT ANOMALY DETECTION METHODS ON HSI DATASETS. THE OPTIMAL

RESULTS ARE SHOWN IN BOLD

Fig. 2. ROC curves of different methods. (a) Airport(2). (b) Beach(4).

4) Parameter Settings: There are four hyperparameters in
SGFDAE. In our setting, k and s are both chosen from
{50, 100, 150, 300}, l varies from {2, 3, 5}, and p is tuned from
{0, 0.1, 0.2, 0.3}. For other compared methods, the hyperpa-
rameters are set as suggested in original papers. The reported
results are obtained by averaging ten repeated trials with the
optimal parameter setting.

B. Results and Analyses

1) Detection Performance: The AUC results of differ-
ent detection methods are shown in Table I. Except for
the Airport(1), Beach(2), and Beach(3) datasets, SGFDAE
consistently shows superior performance than the competi-
tors. Compared with the superior methods (PDBSNet and
GT-HAD), SGFDAE still obtains at least 4.19% and 3.36%
average enhancements on the airport scene datasets. The
superiority of SGFDAE over other competitors demonstrates
its capability of anomaly detection by integrating the effective
graph fusion strategy into the deep denosing architecture to
simultaneously explore structural and spatial information in
global and local perspectives.

Fig. 2 presents the ROC curves of different methods to
investigate the detection performance with different thresholds.
Compared with the competitors, SGFDAE always acquires
higher values of higher true positive rate (TPR) with different
values of false-positive rate (FPR) or obtains a higher TPR
even when FPR is extremely low. To survey the ability
of separating anomalies from background pixels, we show
the anomaly–background separability maps in Fig. 3. The
anomaly and background boxes of SGFDAE are completely or

Fig. 3. Separability maps of different methods. (a) Airport(2). (b) Beach(4).

TABLE II
COMPARISON OF RUNNING TIME ACROSS DIFFERENT METHODS ON HSI

DATASETS FROM THE AIRPORT SCENE (MEASURED BY SECONDS)

better separated, while those of other methods are overlapped
more or less. This indicates that SGFDAE shows the supe-
rior anomaly–background separation ability by highlighting
anomalies and suppressing background pixels. In summary,
SGFDAE is a good anomaly detector for HSIs.

2) Running Time Study: Table II shows the running time
of all the compared methods on the airport scene datasets.
It is clear that RX requires the minimum runtime because
of its simple calculation and noniterative property. Among the
network-based methods, SGFDAE requires the second shortest
runtime behind GT-HAD, showing its high efficiency due to
the simple network design.

3) Ablation Study: To investigate the effect of the graph
fusion strategy, we develop two variants of SGFDAE for
ablation study. The one is SGGDAE integrating with only the
global graph Aglobal, and the other is SLGDAE embedded with
only the local graph Alocal. As shown in Table III, SGFDAE
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Fig. 4. Effect of different parameters for SGFDAE on HSI datasets from the
urban scene. (a) Effect of k. (b) Effect of s. (c) Effect of l. (d) Effect of p.

TABLE III
COMPARISON OF AUC VALUES ACROSS SGFDAE AND ITS VARIANTS ON

HSI DATASETS. THE OPTIMAL RESULTS ARE SHOWN IN BOLD

shows superior performance than the two variants in most
cases. SGFDAE obtains 6.50% improvement compared with
SGGDAE on the Airport(1) dataset. Similar improvements
can also be found on other datasets. This demonstrates the
advantage of the designed graph fusion strategy to treat global
and local information as the complementary materials in a
geometric structure for superior anomaly detection.

4) Parameter Sensitivity Study: To study the parameter
sensitivity of SGFDAE, we alternately vary one parameter and
fix others as default values. The variation in AUC on the urban
scene datasets is reported in Fig. 4. It is noted that the AUC
values are varying with different parameter settings. Thus, it is
necessary to allocate appropriate values for the four parameters
to pursue better detection performance.

IV. CONCLUSION

In this letter, we proposed an SGFDAE for hyperspectral
anomaly detection. To explore geometric structures, the global
graph is constructed by traversing the whole image and
the local graph with spatial consistency is constructed by
traversing each superpixel individually. With the global and
local graphs, a graph fusion strategy is designed to generate
a unified fusion graph. Based on the fusion graph, SGFDAE
is designed and trained with a greedy layerwise unsupervised
pretraining strategy for reconstruction and anomaly detection.

Experiments on HSI datasets have demonstrated the superior-
ity of SGFDAE.
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