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Abstract— Due to the high cost of pixel-level labels required
for fully-supervised semantic segmentation, weakly-supervised
segmentation has emerged as a more viable option recently. Exist-
ing weakly-supervised methods tried to generate pseudo-labels
without pixel-level labels for semantic segmentation, but a
common problem is that the generated pseudo-labels contain
insufficient semantic information, resulting in poor accuracy.
To address this challenge, a novel method is proposed, which
generates class activation/attention maps (CAMs) containing
sufficient semantic information as pseudo-labels for the semantic
segmentation training without pixel-level labels. In this method,
the attention-transfer module is designed to preserve salient
regions on CAMs while avoiding the suppression of inconspic-
uous regions of the targets, which results in the generation
of pseudo-labels with sufficient semantic information. A pixel
relevance focused-unfocused module has also been developed for
better integrating contextual information, with both attention
mechanisms employed to extract focused relevant pixels and
multi-scale atrous convolution employed to expand receptive field
for establishing distant pixel connections. The proposed method
has been experimentally demonstrated to achieve competitive
performance in weakly-supervised segmentation, and even out-
performs many saliency-joined methods.
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I. INTRODUCTION

SEMANTIC segmentation aims to predict object class
labels and pixel-specific object masks, which can locate

different types of objects that exist in various images. It has
become one of the most important, complex and challenging
fields in computer vision research. With the advancement
of Convolutional Neural Networks (CNNs), numerous fully-
supervised semantic segmentation models have been proposed
in recent years, which makes the segmentation accuracy be
greatly improved. Due to the data-hungry nature of deep
CNN, segmentation requires a large number of training images
with ground truth labels, which are typically manually anno-
tated. This is particularly true for segmentation tasks, as they
necessitate time-consuming and costly pixel-level labeling for
effective training. This leads to constraints on the availability
of annotated data for existing models.

Weakly supervised learning is an approach to address
these limitations, which employs supervision in the form of
image-level labels that are less precise but more economical
than semantic segmentation masks [1]. In recent years, various
forms of image-level labels have been investigated for the pur-
pose of weakly-supervised semantic segmentation, including
image-level labels, point labels, scribbles and bounding boxes.
These works aim to achieve fully supervised segmentation
while only employing weakly semantic segmentation with
image-level classification labels, which could be obtained at a
low annotation cost. To achieve this goal, high-quality pseudo-
labels are generated by neural networks as a substitute for
manual labels in our work. Then the generated pseudo-labels
are employed to train the semantic segmentation network.

Most of weakly-supervised segmentation methods attempt
to extract semantic information from image-level labels [2].
The mainstream of them rely on class attention/activation maps
(CAMs) [3], as the representation of locating targets. CAMs
are usually generated based on the classification network,
where the classifier focuses on salient regions of recognizable
objects and aims to effectively classify them into different
categories. Riding on the success of these advanced methods,
our approach also tries to generate CAMs as pseudo-labels
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for the training of semantic segmentation. The boundaries and
details of targets in existing weakly-supervised segmentation
methods are usually not accurate enough, which limits the
performance of the trained semantic segmentation network.
Although the leveraging of CAMs significantly improves the
performance of weakly-supervised segmentation, there is still
a large gap with the fully-supervised segmentation method
which uses accurate pixel-level labels.

To further improve the performance of weakly-supervised
segmentation, a novel method is proposed by generating the
CAMs as pseudo-labels for the training of semantic seg-
mentation, which could activate the regions of recognizable
targets with accurate boundaries. The recognizable targets cor-
respond to image-level classification labels, and corresponding
pixels can provide higher activation scores for the classifi-
cation network compared with those for background pixels.
The pixels with respect to recognizable targets, suppressing the
background pixels, could be regarded as pseudo-labels. The
modules, i.e., the attention transfer module and the pixel
relevance focused-unfocused module, are designed to improve
the quality of pseudo-label generation in our method.

Inspired by contrastive learning, we propose the attention
transfer module to generate better CAMs, which effectively
extracts and activates hidden pixels of targets, transferring
salience attention to overall target attention in a self-supervised
manner. We first apply image augmentation techniques to
adjust the contrast and brightness of the original image before
inputting it into the classification network. Then we merge
the output CAMs with the original image CAM to transfer
classifier attention. The reason why we adjust only the contrast
and brightness is that this strategy can optimize the quality
of generated CAMs in certain aspects without changing the
semantic content of the images. Enhancing contrast and bright-
ness makes the important features of objects in the generated
CAMs more salient, leading to accurate localization of the
target. Decreasing contrast and brightness enriches the seman-
tic of targets in the generated CAMs, making the semantic
information more comprehensive. By merging enhanced and
weakened CAMs, the network can be trained to simultaneously
learn more accurate target localization and more complete
semantic information. Finally, we define a similarity loss
function to optimize the classification network, making the
final used CAM closer to ground truth. The proposed attention
transfer module enables the classifier to not only attend to
salient object regions, but also capture suppressed activation
regions which belongs to targets.

Furthermore, to enhance the framework’s capacity of
extracting features while avoiding the loss of details caused
by convolution operations, an effective pixel relevance
focused-unfocused module has also been designed to generate
higher-quality CAMs. For the pixel relevance focused com-
ponent in this module, channel attention and spatial attention
mechanisms are employed to extract pixel relationships and
acquire finer pixel-wise information. In this way, the frame-
work is capable of accurately focusing on important features
and achieving accurate locating of objects. For the unfocused
component of pixel relevance, an improved 4-layer multi-scale
atrous convolution is employed to expand the receptive field,

while preventing the excessive loss of details. Unlike previous
atrous convolutions, the improved 4-layer multi-scale atrous
convolution employed in the framework has different dilation
factors for each layer, allowing for better extraction of global
information. Context association is also employed to build
connections between pixels, facilitating a better understanding
of features.

Our method overcomes the limitations that existing CAMs
only focuses on salient object regions, while generating
pseudo-labels which represents complete semantic informa-
tion with accurate boundaries of targets. The generated
pseudo-labels can be used in training more accurate seman-
tic segmentation models, further narrowing the gap between
semantic segmentation in weakly-supervised manner with
image-level labels and fully-supervised manner with pixel-
level labels. The contributions are summarized as follows:

• The novel framework employing an effective self-
supervised training strategy is proposed to generate
pseudo-labels for semantic segmentation. The framework
learns accurate localization of important object features
and complete semantic information while preserving
the original semantics, which is capable of generating
high-quality class attention maps as pseudo-labels.

• An effective pixel relevance focused-unfocused module
is designed in the framework, which adopts channel
and spatial attention mechanisms to focus on important
features, alone with the improved 4-layer multi-scale and
context association to expand the receptive field. This
module significantly improves the capacity of framework
in deeply extracting semantic information, while avoiding
excessive loss of details.

• The proposed method has been experimentally
demonstrated to achieve competitive performance
in weakly-supervised segmentation on the PASCAL
VOC 2012 dataset [4], and even outperforms many
saliency-joined methods.

II. RELATED WORK

This section reviews semantic segmentation models closely
related to our method. We first introduce the existing
weakly supervised approaches for the task, and then discuss
self-supervised learning works. Finally, we discuss the advan-
tage and drawbacks of traditional atrous convolution.

A. Weakly Supervised Semantic Segmentation

Unlike fully-supervised semantic segmentation, which
requires pixel-wise labels for images, weakly-supervised
semantic segmentation methods employ low-cost labeling,
such as bounding boxes, scribbles, and image-level classifi-
cation labels. Weakly-supervised semantic segmentation has
been significantly boosted by employing CAMs to generate
pseudo labels [5]. Considering that the bounding boxes gen-
erated by classification network contain abundant semantic
and objective information [6], most existing weakly-supervised
semantic segmentation methods refine the CAMs generated by
the image classifier to approximate the segmentation mask.
Proposed by Ahn et al. [7], AffinityNet trains an additional

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 14,2024 at 00:53:45 UTC from IEEE Xplore.  Restrictions apply. 



QIN et al.: ENHANCED PSEUDO-LABEL GENERATION WITH SELF-SUPERVISED TRAINING 7019

network to learn similarities between the pixels, which often
generates a transition mix and multiplies with CAM to adjust
its activation coverage. Also proposed by Ahn et al. [8], IRNet
generates a transition matrix from the boundary activation map
and extends the method to achieve weakly supervised instance
segmentation and weakly-supervised semantic segmentation.
Hao et al. [9] proposed a novel network that establishes
context correlation through CAMs to achieve efficient video
segmentation. Chen et al. [10] proposed an effective method
of reactivating the converged CAM with binary cross-entropy
loss by using softmax cross-entropy loss, improving the
quality of CAMs generation while reducing computational
overhead. Proposed by Wang et al. [11], SEAM aims to
refine CAMs using a pixel correlation module that captures
context appearance information for each pixel and alters
the original CAMs by using learned affinity attention maps.
Proposed by Sun et al. [12], SSA directly utilizes semantic
structural information to expand CAM during the inference
stage, resulting in high-quality CAMs without incurring any
additional training cost. Proposed by Li et al. [13], a novel
and interesting context-based tandem network is designed for
semantic segmentation by effectively exploring the channel
context and the spatial context, which significantly improves
the segmentation performance. Proposed by Sun et al. [14],
a novel strategy that decompose the backbone parameters into
three matrices, and one of these matrices is fine-tuned by
adjusting its singular values while keeping the other two frozen
during training, addressing over-fitting in weakly supervised
semantic segmentation.

In general, current weakly supervised semantic segmenta-
tion methods still rely on generating CAMs as pseudo-labels
to train semantic segmentation networks. The improvements
are mostly centered around enhancing the quality of generated
CAMs. However, previous methods often struggle to optimize
the accuracy of focusing on key features while enriching the
completeness of semantic information. To address this issue,
we integrate adjusted CAMs to possess both comprehensive
semantic information and accurate important feature localiza-
tion simultaneously.

B. Self-Supervised Learning

Instead of using massive annotated labels to train network,
self-supervised learning approaches aim at designing pretext
tasks to generate labels without additional manual annotations,
which is applied in relative position prediction, spatial transfor-
mation prediction, image inpainting [15], image colorization
and seismic image analysis [16]. Proposed by Qian et al. [17],
FR-Net is designed to separate and remove footprint noise
from the image in self-supervised manner, which can be
regarded as an important application of self-supervised learn-
ing. To some extent, the generative adversarial network can
also be regarded as a self-supervised learning approach that
the authenticity labels for discriminator do not need to be
annotated manually [18]. Labels generated by pretext tasks
provide self-supervision for the network to learn a more robust
representation [19]. The feature learned by self-supervision
can replace the feature pretrained on some tasks, such as

detection and part segmentation. Proposed by Liu et al. [20],
a novel method for self-supervised time series anomaly detec-
tion and clustering is designed. Proposed by Zhou et al. [21],
a novel strategy is adopted to transform the input data into
meaningful representations, hidden representation, reconstruc-
tion residual vector, and reconstruction error that could be used
for anomaly detection in self-supervised manner.

Overall, self-supervised methods come in various forms, but
their common objective is to generate labels from existing
images without relying on manual annotations, serving to
economize the cost of manual labeling. In our work, to train
our Attention Transfer Module for generating higher-quality
CAMs without manual labeling, we adjust the contrast and
brightness of the original images to generate corresponding
CAMs as supervision. Specifically, CAMs generated after
enhancing contrast and brightness exhibit more accurate local-
ization of key features, while those generated after decreasing
contrast and brightness contain more comprehensive seman-
tic information. By combining these two types of CAMs,
we obtain high-quality CAMs as ground truth, which are used
to supervise the training of the CAMs generation network in
the Attention Transfer Module.

C. Atrous Convolution In Weakly-Supervised Methods

Many weakly-supervised semantic segmentation methods
prefer using atrous convolution in stead of ordinary con-
volution in the classification network as the backbone in
order to capture richer semantic information and achieve
better performance. The fully convolutional approach has been
proved to be effective for semantic segmentation, but frequent
max-pooling and striding may lead to a severe reduction in
the spatial resolution of the obtained feature maps. Proposed
by Noh et al. [22], deconvolution has been used to restore
the spatial resolution, but the holes convolution should be
advocated because the receptive field of atrous convolution
is larger. When the amount of parameters is certain, ordinary
convolution [23] can only extract features of small blocks,
while hole convolution can increase the hole rate to make
more overlapping sampling areas on the input feature map for
each sampling, so as to obtain denser characteristic response.
However, atrous convolution also has some drawbacks, such
as the inability to extract some key local information and poor
performance in object segmentation for small targets. There-
fore, we have improved the traditional atrous convolution,
as illustrated in III-C. Unlike traditional atrous convolution
that use fixed dilation rates, our approach employs a 4-layer
multi-scale atrous convolution with varying dilation factors
in the convolutional layers. Moreover, the dilation rates are
progressively increased with the network depth. This allows
our network to significantly expand the receptive field of
the convolutional kernels, enabling a better understanding
of global information without adding extra parameters or
computational load. As a result, this enhances the performance
and generalization capabilities of the network.

In summary, atrous convolution is widely employed in
weakly supervised methods. Many weakly supervised methods
build upon traditional dilated convolutions to further reduce
computational cost or increase receptive fields. In our work,
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Fig. 1. The overall structure of the proposed method. In this figure, the shared network refers to a network with the same structure as the focused-unfocused
module, taking adjusted image as input. In the structure, the backbone is a classification network used to generate CAMs after training. In focused-unfocused
module, the focused part is used to help backbone focus on important salient regions, while the unfocused part is used to expand the receptive field of
backbone. The attention transfer module adopts data augmentation operation and fuses enhanced and decreased CAMs to obtain the merged CAMs with richer
semantics, which are used to retrain the backbone for generating CAMs with more complete semantics as pseudo-labels. The generated CAMs are used to
train semantic segmentation networks.

a 4-layer multi-scale atrous convolution is employed, which
significantly expands the receptive field of the convolutional
kernel without increasing parameters or computational load.
This allows for better extracting of global information, lead-
ing to improved network performance and generalization
capabilities.

In our work, we ameliorate the issues of inaccurate fea-
ture localization and incomplete semantic information in the
generation of CAMs from previous related work by design-
ing a self-supervised training attention transfer module. This
module, in conjunction with the focused-unfocused module
that focuses on context and key features, aids in the improved
extraction of features.

III. METHODOLOGY

This section introduces the proposed method in details.
Firstly, we present the preliminary of our work. Then we
introduce the proposed attention transfer module. The designed
focused-unfocused module is integrated into the network to
further improve the consistency of prediction. Finally, the loss
design of our network is discussed. The overall structure of
our method is shown in Fig. 1.

Channel and spatial attention mechanisms are employed to
focus on important features in the Focused-Unfocused module,
which also incorporates multi-scale atrous convolution and
context association to expand the receptive field for providing

inconspicuous semantic information. This assists the Attention
Transfer module in generating CAMs with precise feature
information, addressing the issues of important features being
overlooked and incomplete semantic information of target that
exist in previous CAMs generation methods.

A. Preliminary

The conventional CAM of a single image highlights the
most representative areas of each class. Therefore, when
generating the CAM of the same class for image patches, the
model focuses on finding the key features of the class based
on partial observation of the object.

For a class c, the CAM is a feature map indicating the
discriminative regions of the image which helps the classifier
to make the decision that whether the target object belong
to class c. As an activation map, the confidence of CAM at
location (x, y) is calculated as follows:

Mc(x, y) =

∑
k

wc
k fk(x, y) (1)

where fk(x, y) denotes the activation of a channel k in the
last convolutional layer at location (x, y), and wc denotes the
weights from fk(x, y) via global average pooling by SoftMax
function. In the classification task, a higher value of CAM
indicates a greater contribution for classification.

However, it is easy to find that the properties of classifica-
tion and segmentation function are different. The classification

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 14,2024 at 00:53:45 UTC from IEEE Xplore.  Restrictions apply. 



QIN et al.: ENHANCED PSEUDO-LABEL GENERATION WITH SELF-SUPERVISED TRAINING 7021

Fig. 2. The structure of the proposed attention transfer module elaborated in III-B and the designed loss functions illustrated in III-D. In this figure, image
has been enhanced with contrast and brightness, and enhanced CAM is the CAM generated from the enhanced image. Decreased image has been decreased
with contrast and brightness, and decreased CAM is the CAM generated from the decreased image. Merged CAM combines the strengths of both enhanced
and decreased CAMs for supervising the generation of CAMs.

task focuses on the salient area of the object, so the CAMs
generated by the single classification network will activate
the most recognizable area of the object and suppress other
areas of the target. This does not meet the goals of the seg-
mentation task. Semantic segmentation focuses on the target
as a whole, not just salient regions. Therefore, the attention
transfer module is designed to activate other inhibited areas
of the target, combining with the focused-unfocused module
to extract refined features and expand the receptive field,
to obtain optimized CAMs with more semantic information
that can be used as pseudo-labels for the training of semantic
segmentation.

B. Attention Transfer Module

To allow the CAMs preserving target salient regions while
avoiding suppressing semantic segmentation focus regions, the
attention transfer module is proposed, which adopts image
augmentation strategy to provide richer semantic information
for semantic segmentation task in self-supervised manner. The
structure of the proposed attention transfer module is shown
in Fig. 2.

Since we only used image-level labels, the information
obtained from labels is insufficient to support the semantic
segmentation task. To solve this, the image augmentation
processing is adopted, including two operations: enhancing
image contrast and brightness, and decreasing image contrast
and brightness. For a single pixel (x, y) in the image, the
adjustment of new pixel value g′(x, y) is formulated as
follows:

g′(x, y) = αg(x, y) + β (2)

where g(x, y) denotes the original pixel value. α is used to
control the intensity of contrast between pixels, and β is used
to adjust the brightness of the picture. The visualization of
CAMs adjustment is shown in Fig. 3. As is evident from

Fig. 3. The visualization of CAMs adjustment. The left column is the CAMs
generated from original images, the middle column is generated from images
with decrease of contrast and brightness, and the right column is generated
from images with enhancement of contrast and brightness.

the figure, the enhancement makes the distinction between
the instance area more obvious, which enables the network
to learn the information of the target area and boundary more
clearly. Decrease significantly reduces the recognition degree
of significant regions, which also reduces the dependence on
significant regions, activating the suppressed regions.

Based on the aforementioned analysis, the CAM with
enhancement has higher activation scores in the most recogniz-
able regions and boundaries of the target, while the CAM with
decrease partly activates other regions which are important for
semantic segmentation. The combination of these two CAMs
outputs the semantic information needed for the semantic
segmentation task. For a point x in the merged CAM, the
confidence calculation of x belonging to category C can be
divided into four cases:

The first case is when point x of both enhanced CAM Me(x)

and decreased CAM Md(x) belongs to category C , the confi-
dence that corresponding point x of the merged CAM belongs
to category C is calculated as P = max(Pe(x),Pd(x)). where
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Fig. 4. The structure of the proposed focused-unfocused module. In this module, D in 3×3 Conv denotes dilation factor, and B N denotes batch normalization.
The focused part adopts channel and spatial attention mechanisms to focus on important features, and the unfocused part adopts multi-scale atrous convolution
and context association to expand the receptive field for providing inconspicuous semantic information.

Pe(x) and Pd(x) denote the confidence of x belonging to
this category in the adjusted CAM. The second case is when
point x of Me(x) or Md(x) belongs to category C , while
the maximum values of Pe(x) or Pd(x) is greater than 0.5,
P = max(Pe(x),Pd(x)). The third case is when point x of
Me(x) or Md(x) belongs to category C , but the values of
both Pe(x) and Pd(x) are smaller than 0.5, P = 0. The
fourth case is when point x of neither Me(x) nor Md(x)

belongs to category C , P = 0. In this way, the merged CAMs
can be obtained to supervise the final generated CAMs as
pseudo-labels for the training of semantic segmentation in
weakly-supervised manner.

In the absence of pixel-level labels as semantic segmentation
supervision, the processed CAMs are adopted as supervision
to narrow the supervision gap between self-supervision and
fully-supervision, obtaining more semantic information.

In the previous operation, we can obtain the CAM Me
generated from image with enhancement, the CAM Md gen-
erated from image with decrease, the CAM Mo generated
from original and the CAM M̂o combined of Me and Md .
In feature space, Me and Md should be similar to and tend
to be consistent with M̂o, because only the contrast and
brightness of the image are adjusted, with the information
contained in image unchanged. Therefore, a similarity loss
Ls is proposed to better extract the semantic features of
images. Furthermore, background similarity between Mo and
M̂o is also used for self-supervised learning. We activate
the background regions of Mo and M̂o with background
activation scores reassigned. For the foreground, activation
scores of the most recognizable pixel are maintained, and
the scores of remaining points are set to 0. It is supposed
that the background regions and target regions in Mo and
M̂o are the same. Based on the above design, a background
similarity loss Lbs is also proposed, with Ls illustrated in
subsection III-D.

C. Focused-Unfocused Module
In general, the results of semantic segmentation are posi-

tively related to the information provided by labels. However,
without pixel-level labeling, image-level classification labeling
can provide very limited useful information. Therefore, the
focused-unfocused module is designed to further explore the
semantic information of pixels, as shown in Fig. 4.

The channel attention mechanism [24] and spatial atten-
tion mechanism [25] are introduced in the network to focus
on important feature information. Meanwhile, a multi-scale
atrous convolution layer [26] is also introduced to expand the
receptive field of the remaining regions, i.e., expanding the
receptive field of remaining regions to alleviate the influence
of insufficient semantic information from its image-level label.
However, traditional atrous convolution has defects, such as
the lack of partial local information and difficulties in estab-
lishing the association of remote features, which is limited
in the segmentation of small targets. Therefore, following the
hybrid dilated convolution [27], a 4-layer multi-scale atrous
convolution with dilation factors of 0, 1, 2, 3 is designed. Each
layer is designed with an atrous convolutional followed by
an activation function, which activates important regions and
suppress irrelevant regions.

To further explore the semantic information for segmen-
tation from images without pixel-level labels, we design
a context association submodule, for exploring the context
relation of pixels in a deep level with semantic information
expanding. The cosine distance is also adopted to measure
pixel context similarity. The detailed design is presented as
follows. First, the feature map after the designed 4-layer multi-
scale atrous convolution is reshaped, with dimension reduced
from H ×W ×C to H W ×C ′. The reshaped feature map F0 is
transposed to get FT

0 , with size of C ′
× H W . Then the cosine

distance between pixels of F0 and FT
0 is calculated, with

activation and normalization operations to suppress irrelevant
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regions, for obtaining the context relation weight map Mc,
with size of H W × H W . The calculation of cosine distance
between pixel Vm and pixel Vn is shown in formulation 3,
where 8 denotes the reshaping process. Finally, input features
are multiplied with Mc to get the weighted feature map, with
size of H W ×C , followed by reshaped to H × W ×C as final
feature map.

θ(Vm, Vn) =
8(Vm)T 8(Vn)

|8(Vm)| × |8(Vn)|
(3)

By introducing channel attention mechanism, spatial atten-
tion mechanism, 4-layer multi-scale atrous convolution and
context association submodule, we explore more semantic
information from images without pixel-level labels, optimizing
the generated CAMs as illustrated in subsection III-B, for bet-
ter serving as pseudo-labels to guide the training of semantic
segmentation task.

D. Loss Functions

1) Classification Loss: Since the provided labels are
image-level for classification, we select the classification net-
work ResNet50-FPN [28] as the backbone in our framework.
Accordingly, the cross entropy loss is adopted to train the
classification network, and both the original images and the
adjusted images are input as training data. The classification
loss is formulated as follows:

Lcls = −
1
n

∑
x

[y ln a + (1 − y) ln(1 − a)] (4)

where n denotes the number of samples, and x denotes the
prediction vector dimension. y denotes the real value after
one-hot coding corresponding to the label on x dimension,
with the value of 1 as truth or 0 as false, and a denotes the
prediction label, with the range of 0 to 1.

2) Similarity Loss: It is a common truth that adjusting the
image contrast and brightness does not change the semantic
information of the image. Therefore, when projected into
feature space, the CAM Mo generated from original image,
the CAM Me generated from image with enhancement and
the CAM Md from image with decrease should be consistent.
We use L1 loss to train the network, making the network
extract obvious features in the image, as well as improving the
robustness of network in contrast and brightness, as formulated
as follows:

Ls =
∥Mo − Md∥1 + ∥Mo − Me∥1

2
(5)

3) Background Similarity Loss: CAMs are generated by
classification network and iteratively optimized by classifica-
tion loss of foreground target. However, since the training is
based on image-level labels, it is inevitable that the semantic
information of many pixels will be ignored, which are learned
as background pixels and set as zero vector. In this way,
the gradient cannot be generated to learn feature represen-
tation through back propagation, leading that a great deal
of information provided by background pixels is ignored.
Therefore, we design the background similarity loss to explore
the semantic information of background. For the CAM Mo

generated from original image and the CAM M̂o combined of
Me and Md , as illustrated in subsection III-B, we segment the
background for Mo and M̂o to get the background activation
map, Mb and M̂b, respectively. L1 loss is also used as the
background similarity loss, formulated as follows:

Lbs = ∥Mb − M̂b∥1 (6)

By jointly considering classification loss, similarity loss and
background similarity loss, the overall loss L for optimizing
the architecture weight is formulated as follows:

L = Lcls + λs Ls + λbs Lbs (7)

where λs and λbs denote the hyper-parameters to balance
overall loss. Lcls is used for roughly locating target regions.
Ls is used for providing additional supervision and narrowing
the gap with fully-supervision. Lbs is used for combining
background regions with salient regions to obtain the ignored
information of original CAM Mo.

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed method for semantic segmentation. We first briefly
introduce the dataset used in experiments, and illustrate
the implementation details including parameter settings and
data preprocessing. We then evaluate the performance of
the proposed method and compare with other state-of-the-art
methods. Finally, we present ablation studies to demonstrate
the contribution of different components in our method.

A. Datasets

Our experiments were conducted on the PASCAL
VOC 2012 dataset [4], which contains the images and labels
needed for the classification task, detection task, segmentation
task, behavior recognition and human layout detection task.
This dataset consists of 21 categories, including 20 foreground
pixel categories and 1 background pixel category, where
images are divided by authority, with 1,464 used for training,
1,449 for verification and 1,456 for testing.

Furthermore, following the general experimental strategy of
semantic segmentation, we extract additional labels from SBD
dataset [47] and extend the original training set from SBD
dataset. According to statistics, 11,355 images in the SDB data
set are actually included in the VOC 2012 dataset, but only
1,462 images in the VOC 2012 dataset can be used to train
the semantic segmentation task. After introducing the data of
SDB dataset, 10,582 images with image-level labels were used
for training and 1,449 images for validation in total.

B. Implementation Details

In the image augmentation process as illustrated in
subsection III-B, we set α = 1.5 and β = 300 for the
formulation 2 to enhance the image contrast and brightness,
and we set α = 0.8 and β = 150 to decrease the image
contrast and brightness.

Our framework was trained with 10,582 images with
image-level classification labels from the designed training-set.
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In this process, the poly strategy is adopted, for dynamically
adjusting the learning rate, which is formulated as follows:

lr = lr0 × (1 −
epoch

max_epoch
)m (8)

where lr0 denotes the initial learning rate, set as 0.1, and
m is the momentum, set as 0.9. epoch denotes to the current
number of iterations, and max_epoch denotes the number of
iterations required to complete the training. In this way, the
update of the last iteration is taken into account to accelerate
the learning and reduce the oscillation phenomenon in the
process of model convergence.

To evaluate the effect of the proposed weakly-supervised
learning method, we use the pseudo-labels generated by our
method to train a fully-supervised semantic segmentation
network, where the DeepLab v2-ResNet50 [23] is adopted
as the semantic segmentation network to evaluate the qual-
ity of generated pseudo-labels. The semantic segmentation
accuracy with respect to the model pretrained with generated
pseudo-labels can be used to evaluate the performance of our
method. In the training of semantic segmentation network,
10,582 images from the designed training-set were also used
for training, but the labels were replaced with generated
pseudo-labels. The hyper-parameters λs and λbs in the overall
loss are set to 0.5 each, in order to balance the overall loss.

C. Benchmarks

Following the commonly used semantic segmentation eval-
uation scheme [48], the main evaluation metric is Mean
Intersection over Union (mIoU), with the tests performed on
20 categories and background of the PASCAL VOC 2012
dataset. We compared multiple state-of-the-art methods for
semantic segmentation in weakly-supervised manner, which
is performed on PASCAL VOC 2012 dataset, as illustrated
in Table I.

In the Table I, saliency denotes the additional supervi-
sion of significance regions joined in the weakly-supervised
training, which theoretically results in a better performance
than methods without saliency. However, our method not only
outperformed the compared methods without saliency, but also
achieved the competitive performance compared with those of
saliency-joined methods.

To demonstrate that our methods achieves competitive
performance for objects with different shapes and sizes,
we also performed the quantitative comparison with other
weakly-supervised semantic segmentation methods on 20 cat-
egories and background category, where the test images are
from the validation set of Pascal VOC 2012 dataset, as illus-
trated in Table II.

As shown in Table II, the performance of our method
is superior to those of other compared weakly-supervised
semantic segmentation methods on accuracy in many cate-
gories of semantic segmentation, where these categories have
different shapes and sizes. Due to differences in the size,
shape, texture, feature patterns, and surrounding environments
of different object categories, the significant difference exists
in the segmentation accuracy of these categories. The semantic

TABLE I
QUANTITATIVE COMPARISON OF WEAKLY-SUPERVISED SEMANTIC

SEGMENTATION METHODS ON PASCAL VOC 2012 DATASET,
WHERE MIOU IS ADOPTED AS THE EVALUATION METRIC

segmentation results of our method and compared state-of-the-
art weakly-supervised methods are also provided, to further
illustrate that our method has achieved excellent performance,
as shown in Fig. 5.

D. Ablation Studies

In this subsection, we performed ablation studies on the two
core modules of our method, i.e., attention transfer module
and focused-unfocused module to evaluate the contribution of
them in our method.

1) Effect of the Attention Transfer Module: As illustrated
in subsection III-B, we adjust the contrast and brightness
of the image, obtaining CAM Me generated from image
with enhancement and CAM Md generated from image with
decrease. To evaluate the contribution of introducing adjusted
CAMs to the training of our framework for generating final
CAMs as pseudo-labels, we introduce Me separately, Md
separately, and both Me and Md to the base model to compare
the quality of pseudo labels generated under different condi-
tions, respectively. The quality of generated pseudo-labels is
evaluated by comparing with semantic segmentation ground
truth labels, as illustrated in Table III.

The evaluation in Table III shows the contribution of intro-
ducing Me and Md , which obviously improve the quality of
pseudo-labels. Note that, the base model of this ablation study
was based on the introduction of complete focused-unfocused
module, and only used Mo to generate pseudo-labels. Further-
more, the visualization of loss convergence curves is provided
in Fig. 6. Obviously, after introducing Me and Md , the loss
convergence curve in network training is smoother and the
amplitude of oscillation is reduced, indicating that the training
process is more stable.

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 14,2024 at 00:53:45 UTC from IEEE Xplore.  Restrictions apply. 



QIN et al.: ENHANCED PSEUDO-LABEL GENERATION WITH SELF-SUPERVISED TRAINING 7025

Fig. 5. The visualization of the semantic segmentation performance of our method. Some state-of-the-art weakly-supervised semantic segmentation methods
in recent years were compared with our method, and experiments were implemented on PASCAL VOC 2012 dataset, with four typical categories selected to
show the effect.

TABLE II
QUANTITATIVE COMPARISON OF WEAKLY-SUPERVISED SEMANTIC SEGMENTATION METHODS ON 21 CATEGORIES FROM PASCAL VOC 2012 DATASET

TABLE III
ABLATION STUDY OF THE ATTENTION TRANSFER MODULE COMPONENTS

TABLE IV
ABLATION STUDY OF THE FOCUSED-UNFOCUSED MODULE COMPONENTS

In addition, we also performed an ablation study to evaluate
the effect of hyper-parameters λs and λbs on the quality
of CAMs generation. The quality of generated CAMs as
pseudo-labels is evaluated by comparing with semantic seg-
mentation ground truth labels, as illustrated in Table V. Based

Fig. 6. The visualization of loss convergence curves in ablation study for
attention transfer module. The horizontal axis denotes steps and the vertical
axis denotes loss.

on the comparison, we found that setting hyper-parameters
λs and λbs to 0.5 each resulted in the highest quality of
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TABLE V
ABLATION STUDY OF THE HYPER-PARAMETERS λs

AND λbs FOR PSEUDO-LABELS QUALITY

TABLE VI
ABLATION STUDY OF THE DIFFERENT ATTENTION

MECHANISMS FOR PSEUDO-LABELS QUALITY

Fig. 7. The visualization of loss convergence curves in ablation study
for multi-scale atrous convolution and context association submodule. The
horizontal axis denotes steps and the vertical axis denotes loss.

generated CAMs. Therefore, we used this configuration in our
training.

2) Effect of the Focused-unFocused Module: The focused-
unfocused module contains three components, i.e., attention
mechanisms, multi-scale atrous convolution and context asso-
ciation submodule, where attention mechanisms consist of
channel attention and spatial attention. We first performed an
ablation study on multi-scale atrous convolution and context
association submodule to illustrate their contributions to the
framework, as shown in Table IV, followed by a separate
ablation study on the two attention mechanisms to illustrate the
contribution of each adopted attention, as shown in Table VI.

As shown in Table IV, the multi-scale atrous convolution
and context association submodule obviously improve the
quality of generated pseudo-labels, with the loss convergence
curves shown in Fig. 7. Note that, the base model of this
ablation study only used Mo generated from original images.

The ablation study on the introducing of different attention
mechanisms is illustrated in Table VI. From the results, we can

Fig. 8. The visualization of loss convergence curves in ablation study for
attention mechanisms. The horizontal axis denotes steps and the vertical axis
denotes loss.

see the channel attention and spatial attention both improve the
quality of generated pseudo-labels, with the loss convergence
curves shown in Fig. 8. Note that, the base model of this
ablation study only used Mo generated from original images,
without the introducing of multi-scale atrous convolution and
context association submodule.

V. CONCLUSION

To improve the performance of weakly-supervised seg-
mentation, a novel method is proposed, which generates
class activation/attention maps (CAMs) containing sufficient
semantic information as pseudo-labels for the semantic seg-
mentation training without pixel-level labels. In this method,
the attention-transfer module is designed to guide the CAMs
focus on both salient and inconspicuous regions of the
targets, with sufficient semantic information extracted for
pseudo-labels. A pixel relevance focused-unfocused module
has also been developed for better integrating contextual
information, with both attention mechanisms employed to
extract focused relevant pixels and multi-scale atrous con-
volution employed to expand receptive field for establishing
distant pixel connections. The proposed method has been
experimentally demonstrated to achieve competitive perfor-
mance in weakly-supervised segmentation on PASCAL VOC
2012 dataset, and even outperforms many saliency-joined
methods. This method that employs neural networks to gener-
ate pseudo-labels, offers an alternative solution for obtaining
annotations in the field of semantic segmentation, leading to
substantial savings in human labor costs. It also suggests a
potential way for future developments in the AIGC field,
expanding AIGC technology to a broader range of tasks
through the generation of auxiliary information.

REFERENCES

[1] S.-J. Zhang, J.-H. Pan, J. Gao, and W.-S. Zheng, “Semi-supervised action
quality assessment with self-supervised segment feature recovery,” IEEE
Trans. Circuits Syst. Video Technol., vol. 32, no. 9, pp. 6017–6028,
Sep. 2022.

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 14,2024 at 00:53:45 UTC from IEEE Xplore.  Restrictions apply. 



QIN et al.: ENHANCED PSEUDO-LABEL GENERATION WITH SELF-SUPERVISED TRAINING 7027

[2] Z. Li, H. Tang, Z. Peng, G.-J. Qi, and J. Tang, “Knowledge-guided
semantic transfer network for few-shot image recognition,” IEEE Trans.
Neural Netw. Learn. Syst., 2023, doi: 10.1109/TNNLS.2023.3240195.

[3] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921–2929.

[4] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The PASCAL visual object classes chal-
lenge: A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136,
Jan. 2015.

[5] L. Ru, H. Zheng, Y. Zhan, and B. Du, “Token contrast for weakly-
supervised semantic segmentation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 3093–3102.

[6] C. Song, W. Ouyang, and Z. Zhang, “Weakly supervised semantic
segmentation via box-driven masking and filling rate shifting,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 12, pp. 15996–16012,
Dec. 2023.

[7] J. Ahn and S. Kwak, “Learning pixel-level semantic affinity with
image-level supervision for weakly supervised semantic segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4981–4990.

[8] J. Ahn, S. Cho, and S. Kwak, “Weakly supervised learning of instance
segmentation with inter-pixel relations,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2209–2218.

[9] Y. Hao et al., “Attention in attention: Modeling context correlation for
efficient video classification,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 32, no. 10, pp. 7120–7132, Oct. 2022.

[10] Z. Chen, T. Wang, X. Wu, X.-S. Hua, H. Zhang, and Q. Sun, “Class re-
activation maps for weakly-supervised semantic segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 969–978.

[11] Y. Wang, J. Zhang, M. Kan, S. Shan, and X. Chen, “Self-supervised
equivariant attention mechanism for weakly supervised semantic seg-
mentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 12275–12284.

[12] Y. Sun and Z. Li, “SSA: Semantic structure aware inference for weakly
pixel-wise dense predictions without cost,” 2021, arXiv:2111.03392.

[13] Z. Li, Y. Sun, L. Zhang, and J. Tang, “CTNet: Context-based tandem
network for semantic segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 12, pp. 9904–9917, Dec. 2022.

[14] Y. Sun et al., “Singular value fine-tuning: Few-shot segmentation
requires few-parameters fine-tuning,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 35, 2022, pp. 37484–37496.

[15] S. Xu, D. Liu, and Z. Xiong, “E2I: Generative inpainting from edge
to image,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 4,
pp. 1308–1322, Apr. 2020.

[16] F. Qian, Y. He, Y. Yue, Y. Zhou, B. Wu, and G. Hu, “Improved
low-rank tensor approximation for seismic random plus footprint noise
suppression,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–19, 2023,
doi: 10.1109/TGRS.2023.3243831.

[17] F. Qian et al., “Unsupervised seismic footprint removal with physical
prior augmented deep autoencoder,” IEEE Trans. Geosci. Remote Sens.,
vol. 61, pp. 1–20, 2023, doi: 10.1109/TGRS.2023.3277973.

[18] S. Li, Z. Yu, M. Xiang, and D. Mandic, “Reciprocal GAN through
characteristic functions (RCF-GAN),” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 2, pp. 2246–2263, Feb. 2023.

[19] S. Li, Z. Yu, M. Xiang, and D. Mandic, “Reciprocal adversarial learning
via characteristic functions,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, 2020, pp. 217–228.

[20] Y. Liu, Y. Zhou, K. Yang, and X. Wang, “Unsupervised deep learning
for IoT time series,” IEEE Internet Things J., vol. 10, no. 16, pp. 14285-
14306, 2023, doi: 10.1109/JIOT.2023.3243391.

[21] Y. Zhou, X. Song, Y. Zhang, F. Liu, C. Zhu, and L. Liu, “Feature
encoding with autoencoders for weakly supervised anomaly detection,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 6, pp. 2454–2465,
Jun. 2022.

[22] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1520–1528.

[23] L. C. Chen, G. Papandreou, and I. Kokkinos, “DeepLab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 834–848, Jun. 2017.

[24] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[25] X. Zhu, D. Cheng, Z. Zhang, S. Lin, and J. Dai, “An empirical study
of spatial attention mechanisms in deep networks,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., Oct. 2019, pp. 6688–6697.

[26] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” 2015, arXiv:1511.07122.

[27] P. Wang et al., “Understanding convolution for semantic segmentation,”
in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2018,
pp. 1451–1460.

[28] T. Y. Lin, P. Dollàr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 2117–2125.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[30] Z. Huang, X. Wang, J. Wang, W. Liu, and J. Wang, “Weakly-supervised
semantic segmentation network with deep seeded region growing,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7014–7023.

[31] Q. Hou, P. Jiang, Y. Wei, and M.-M. Cheng, “Self-erasing network
for integral object attention,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, 2018.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2018/file/c042f4db68f23406c6cecf84a7ebb0fe-Paper.pdf

[32] W. Shimoda and K. Yanai, “Self-supervised difference detection for
weakly-supervised semantic segmentation,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 5208–5217.

[33] J. Fan, Z. Zhang, T. Tan, C. Song, and J. Xiao, “CIAN: Cross-image
affinity net for weakly supervised semantic segmentation,” in Proc. AAAI
Conf. Artif. Intell., vol. 34, 2020, pp. 10762–10769.

[34] T. Zhang, G. Lin, W. Liu, J. Cai, and A. C. Kot, “Splitting vs. merging:
Mining object regions with discrepancy and intersection loss for weakly
supervised semantic segmentation,” in Proc. Eur. Conf. Comput. Vis.
(ECCV). Switzerland: Springer, 2020, pp. 663–679.

[35] G. Sun, W. Wang, J. Dai, and L. Van Gool, “Mining cross-
image semantics for weakly supervised semantic segmentation,” in
Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2020,
pp. 347–365.

[36] L. Chen, W. Wu, C. Fu, X. Han, and Y. Zhang, “Weakly supervised
semantic segmentation with boundary exploration,” in Proc. Eur. Conf.
Comput. Vis. (ECCV). Cham, Switzerland: Springer, 2020, pp. 347–362.

[37] Y.-T. Chang, Q. Wang, W.-C. Hung, R. Piramuthu, Y.-H. Tsai,
and M.-H. Yang, “Weakly-supervised semantic segmentation via sub-
category exploration,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 8991–9000.

[38] X. Wang, S. Liu, H. Ma, and M.-H. Yang, “Weakly-supervised semantic
segmentation by iterative affinity learning,” Int. J. Comput. Vis., vol. 128,
no. 6, pp. 1736–1749, Jan. 2020.

[39] N. Araslanov and S. Roth, “Single-stage semantic segmentation from
image labels,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 4253–4262.

[40] J. Fan, Z. Zhang, C. Song, and T. Tan, “Learning integral objects with
intra-class discriminator for weakly-supervised semantic segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 4283–4292.

[41] D. Zhang, H. Zhang, J. Tang, X.-S. Hua, and Q. Sun, “Causal inter-
vention for weakly-supervised semantic segmentation,” in Proc. NIPS,
2020, pp. 655–666.

[42] P.-T. Jiang, L.-H. Han, Q. Hou, M.-M. Cheng, and Y. Wei, “Online
attention accumulation for weakly supervised semantic segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 7062–7077,
Oct. 2022.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[44] Y. Su, R. Sun, G. Lin, and Q. Wu, “Context decoupling augmentation
for weakly supervised semantic segmentation,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 6984–6994.

[45] L. Ru, Y. Zhan, B. Yu, and B. Du, “Learning affinity from attention: End-
to-end weakly-supervised semantic segmentation with transformers,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2022, pp. 16846–16855.

[46] E. Xie et al., “SegFormer: Simple and efficient design for semantic
segmentation with transformers,” in Proc. Adv. Neural Inf. Process. Sys.
(NIPS), vol. 34, Dec. 2021, pp. 12077–12090.

[47] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in Proc. Int. Conf. Comput. Vis.,
Nov. 2011, pp. 991–998.

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 14,2024 at 00:53:45 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2023.3240195
http://dx.doi.org/10.1109/TGRS.2023.3243831
http://dx.doi.org/10.1109/TGRS.2023.3277973
http://dx.doi.org/10.1109/JIOT.2023.3243391


7028 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 8, AUGUST 2024

[48] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[49] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level
labeling with convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1713–1721.

[50] A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain:
Three principles for weakly-supervised image segmentation,” in Proc.
Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer, 2016,
pp. 695–711.

[51] Y. Wei, J. Feng, X. Liang, M.-M. Cheng, Y. Zhao, and S. Yan,
“Object region mining with adversarial erasing: A simple classification
to semantic segmentation approach,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1568–1576.

Zhen Qin (Member, IEEE) received the Ph.D.
degree from the University of Electronic Science
and Technology of China (UESTC) in 2012. He is
currently a Professor with the School of Informa-
tion and Software Engineering, UESTC. He was a
Visiting Scholar with the Department of Electrical
Engineering and Computer Science, Northwestern
University. His research interests include data fusion
analysis, mobile social networks, wireless sensor
networks, and image processing.

Yujie Chen received the bachelor’s degree from the
University of Electronic Science and Technology of
China (UESTC) in 2020, where she is currently
pursuing the master’s degree with the School of
Information and Software Engineering. Her research
interests include semantic segmentation and instance
segmentation.

Guosong Zhu received the B.S. degree (Hons.) in
software engineering from the University of Elec-
tronic Science and Technology of China (UESTC)
in 2019, where he is currently pursuing the Ph.D.
degree with the School of Information and Soft-
ware Engineering. He has served as a principal
investigator in major national research instru-
ment development projects. His research interests
include image processing and multidimensional
reconstruction.

Erqiang Zhou received the Ph.D. degree from
the Dublin Institute of Technology (currently Tech-
nological University Dublin) in 2011. He is an
Associate Professor with the School of Information
and Software Engineering, University of Electronic
Science and Technology of China (UESTC), where
he joined in 2012. His research interests are mainly
in the fields of password security, compiler optimiza-
tion, and intelligent systems in education.

Yingjie Zhou (Member, IEEE) received the Ph.D.
degree from the School of Communication and
Information Engineering, University of Electronic
Science and Technology of China (UESTC), China,
in 2013. He is currently an Associate Professor with
the College of Computer Science, Sichuan Univer-
sity (SCU), China. He was a Visiting Scholar with
the Department of Electrical Engineering, Columbia
University, New York. His current research interests
include behavioral data analysis, machine learn-
ing, network management, and resource allocation.

He received the Best Paper Awards at IEEE HPCC and IEEE MMSP in
2022. He has served as the Program Vice-Chair for IEEE HPCC; the Local
Arrangement Chair for IEEE BMSB; and a TPC Member for many major
IEEE conferences, such as GLOBLECOM, ICC, ITSC, MSN, and VTC.

Yicong Zhou (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Hunan
University, Changsha, China, and the M.S. and Ph.D.
degrees in electrical engineering from Tufts Univer-
sity, Medford, MA, USA.

He is a Professor with the Department of Com-
puter and Information Science, University of Macau,
Macau, China. His research interests include image
processing, computer vision, machine learning, and
multimedia security.

Dr. Zhou is a fellow of the Society of Photo-
Optical Instrumentation Engineers (SPIE). He was recognized as one of the
highly cited researchers in 2020, 2021, and 2023. He serves as an Associate
Editor for IEEE TRANSACTIONS ON CYBERNETICS, IEEE TRANSACTIONS
ON NEURAL NETWORKS AND LEARNING SYSTEMS, and IEEE TRANSAC-
TIONS ON GEOSCIENCE AND REMOTE SENSING.

Ce Zhu (Fellow, IEEE) received the B.S. degree in
electronic and information engineering from Sichuan
University, Chengdu, China, in 1989, and the M.Eng.
and Ph.D. degrees in electronic and information
engineering from Southeast University, Nanjing,
China, in 1992 and 1994, respectively.

He was a Post-Doctoral Researcher with The Chi-
nese University of Hong Kong, Hong Kong, in 1995;
the City University of Hong Kong, Hong Kong;
and The University of Melbourne, Melbourne, VIC,
Australia, from 1996 to 1998. He was with Nanyang

Technological University, Singapore, from 1998 to 2012, for 14 years, where
he was a Research Fellow, a Program Manager, an Assistant Professor, and
then promoted to an Associate Professor in 2005. Since 2012, he has been
with the University of Electronic Science and Technology of China, Chengdu,
as a Professor. His research interests include video coding and communica-
tions, video analysis and processing, 3D video, and visual perception and
applications.

Dr. Zhu was a co-recipient of multiple paper awards at international
conferences, including most recently the Best Demo Award in IEEE MMSP
2022 and the Best Paper Runner-Up Award in IEEE ICME 2020. He has
served on the editorial boards for a few journals, including an Associate
Editor for IEEE TRANSACTIONS ON IMAGE PROCESSING, IEEE TRANS-
ACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, IEEE
TRANSACTIONS ON BROADCASTING, and IEEE SIGNAL PROCESSING LET-
TERS; an Editor for IEEE COMMUNICATIONS SURVEYS AND TUTORIALS;
and an Area Editor for Signal Processing: Image Communication. He has
also served as a Guest Editor for a few special issues in international
journals, including a Guest Editor for IEEE JOURNAL OF SELECTED TOP-
ICS IN SIGNAL PROCESSING. He was an APSIPA Distinguished Lecturer,
from 2021 to 2022, and an IEEE Distinguished Lecturer of Circuits and
Systems Society, from 2019 to 2020.

Authorized licensed use limited to: Universidade de Macau. Downloaded on August 14,2024 at 00:53:45 UTC from IEEE Xplore.  Restrictions apply. 


