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Abstract— Subspace learning has been widely applied for joint
feature extraction and dimensionality reduction, demonstrating
significant efficacy. Numerous subspace learning methods with
diverse assumptions regarding the criteria for the target sub-
spaces have been developed to obtain compact and interpretable
data representations. However, when applied to image data,
existing methods fail to fully exploit the inherent correlations
within the image set. This paper proposes a Robust Discrim-
inative t-Linear Subspace Learning model (RDtSL) to tackle
this issue using t-product. The model mainly has four strengths:
1) Taking advantage of t-product, RDtSL learns the projection
basis directly from the image set while fully exploiting its
internal correlations; 2) Based on its energy preservation module,
RDtSL retains the primary energy of samples in the learned
subspace, maintaining satisfactory performance even with low
subspace dimensions; 3) Class-distinctive features are effectively
preserved in the learned representations due to the incorporation
of the classification module; 4) Relying on its graph embedding
module, RDtSL learns an affinity graph of samples adaptively
to enrich the data representations with locality and similarity
information. The harmonious balance maintained between the
three proposed modules helps RDtSL learn discriminative and
informative data representations. We also develop an iterative
algorithm to solve RDtSL. Extensive experiments on benchmark
databases demonstrate the superiority of the proposed model.

Index Terms— Dimensionality reduction, image feature extrac-
tion, subspace learning, t-product.

I. INTRODUCTION

WITH the rapid advancement in information collection
and storage capabilities, real-world data continue to

grow in size. Although high-dimensional data contain a wealth
of valuable information, an increase in dimensionality can
substantially compromise both the effectiveness and efficiency
of data processing algorithms. This phenomenon is commonly
referred to as the “curse of dimensionality”. Consequently,
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learning compact representations of high-dimensional data
becomes pivotal for subsequent analyses; this can be achieved
by extracting the most representative features from the sam-
ples.

In the past few decades, a wide range of feature extraction
methods have been proposed for various types of data. For
instance, in recent works by Wang et al. [1] and Qin et al. [2],
unsupervised class-wise clustering and supervised represen-
tation learning are blended in a synergy. Significant local
patterns are automatically identified to facilitate classification
decisions, and the supervisory signal from classification boosts
meaningful clustering and discriminative feature learning.
Moreover, recent studies conducted by Wen et al. [3] and
Hu et al. [4] focus on learning compact data representations
through adaptively learning and embedding the affinity graph
of samples. They also ensure inter-class separability through
the joint learning of a classification model. In another work
by Xiao et al. [5], a feature extraction method specifically
designed for color images based on quaternion algebra is pro-
posed. This approach considers the correlation between image
channels, enabling a more comprehensive representation of
color image features. Among the feature extraction methods,
subspace learning methods learn explicit projection bases with
specific physical interpretations and accomplish joint feature
extraction and dimensionality reduction by mapping high-
dimensional data samples into low-dimensional subspaces.
When compared to non-linear methods, particularly those
based on deep neural networks, subspace learning methods
offer significant advantages in terms of robust interpretability,
faster training and validation speed, and commendable perfor-
mance even with limited training data.To date, a variety of sub-
space learning methods [6], [7], [8], [9] have been developed,
with diverse assumptions regarding the criteria for the target
subspace. Principal Component Analysis (PCA) [10] aims to
maximize the post-projection variance to preserve the primary
energy of the samples; Locality Preserving Projection (LPP)
[11], Neighborhood Preserving Embedding (NPE) [12] and
Low-Rank Preserving Projections [13] assume that the affinity
of samples in the subspace is dependent on their similarity in
the original data space; Linear Discriminant Analysis (LDA)
[14] focuses on label information by maximizing inter-class
scatter and minimizing intra-class one; Low-Rank Embedding
(LRE) [15] aims to learn the projection basis by exploring the
underlying low-rank structure of samples.

In practical applications, classical subspace learning meth-
ods treat data samples as vectors and require that the samples
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be flattened into long vectors in advance when applied to
image data. However, image sets naturally possess a strong
spatial and cross-sample structure (a third-order structure);
simply stitching rows or columns of images into long vectors
and then forming them into matrices breaks down the spatial
coherency. As a result, the inherent correlations within the
image set are overlooked in the subsequent learning phase,
leading to deficiencies in data representations. Additionally,
massive computation of high-dimensional image vectors poses
various challenges, including the small sample size prob-
lem [16]. In response, Two-Dimensional PCA (2DPCA) [17]
was introduced to mitigate these negative impacts by pro-
cessing image columns or rows independently. Specifically,
either columns or rows are projected separately into the
target subspace, allowing for partial preservation of the spatial
structures. Furthermore, 2DPCA has the benefit of avoiding
the computation of high-dimensional vectors. Following the
same rationale, 2DLDA [18] and 2DLPP [19] were developed.
These 2D methods have proven more effective for processing
image data as they take the valued spatial structures into
consideration. However, since the 2D methods focus solely on
either row or column space, they are unable to fully explore
the third-order structure. To address this limitation, multi-
linear methods [20], [21] were introduced, solving it with
the aid of high-order tensors. When applied to image data,
multi-linear methods can take the correlations among rows,
columns, and samples into account, as they learn the projection
basis from the unfoldings of the high-order tensor along all
its directions. However, since the unfoldings are processed
individually, correlations across different modes cannot be
considered simultaneously, leading multi-linear methods to
typically converge to a local optimum.

Apart from the deficiency in processing images, the afore-
mentioned subspace learning methods mainly rely on the
squared l2-norm for measurement, which exacerbates the
impact of outliers on the subspace learning process. As a
result, these methods are highly susceptible to data cor-
ruption, such as noise and occlusions. To enhance robust-
ness, RLSL [22] employs a l1-norm-based reconstruction loss
term to fit noise, allowing the uncontaminated samples to
be adaptively recovered during the learning phase. Simi-
larly, RSLDA [23] and LLRSE [24] incorporate a l2,1-norm-
based reconstruction loss term into the LDA model [14]
and the low-rank embedding model [15], respectively, with
the same purpose. In addition to enhancing the robustness,
by minimizing the reconstruction loss, the primary energy
of data samples can be effectively preserved in the learned
subspace, even if the dimensionality of the target subspace is
low. Experimental results reported in [23] show that RSLDA
maintains satisfactory performance as the subspace dimension
decreases, demonstrating the beneficial effects of the energy
preservation module. In a similar vein, various subspace
learning methods [25], [26], [27], [28] employ robust estima-
tors to measure and minimize reconstruction loss, aiming to
mitigate the impact of data contamination while preserving
the primary energy of samples. Nevertheless, despite these
advancements, the aforementioned robust methods encounter
three limitations: 1) The similarity and locality information

of samples are ignored and are not retained in the learned
representations, which are crucial for subsequent processing
and analysis. 2) None of them addresses the deficiency of the
classical subspace learning methods in processing images. The
calculation of reconstruction loss also requires the vectoriza-
tion operation when applied to images. Therefore, they always
produce sub-optimal representations due to the irreversible
loss of spatial information and the extensive computations
of high-dimensional vectors. 3) Many of them incorporate
a regression-type classification module to further enhance
discriminative ability. However, due to this module, part of
them cannot be flexibly applied to dimensionality reduction
since they can only project the high-dimensional samples into
the C-dimensional label space, where C denotes the number
of classes. Besides, the classification module also requires the
samples to be flattened beforehand when applied to images,
thus neglecting the internal correlations.

To fully and simultaneously leverage the correlations
within the image set, a tensor-tensor product known as the
t-product was proposed [29], [30], providing a comprehensive
framework for executing any tensor linear transformations
and various tensor factorizations. By employing third-order
tensor representation in conjunction with the t-product, image
sets can be effectively represented and transformed without
breaking down their spatial structures, thereby enabling the
simultaneous exploitation of correlations within the image set
and eliminating the need for computations of high-dimensional
vectors. The t-product-based operations have been effectively
applied in various fields, such as image restoration [31], [32]
and clustering [33], [34], demonstrating superior performance
compared to matrix-based and multi-linear-based approaches.
To address the aforementioned limitations of existing sub-
space learning methods, this paper introduces the Robust
Discriminative t-Linear Subspace Learning model (RDtSL),
a novel t-linear subspace learning method for joint image
feature extraction and dimensionality reduction. The utilization
of third-order tensor representation and t-product sets RDtSL
apart from existing feature extraction methods [4], [6], [23],
[25]. Additionally, this approach simultaneously considers data
energy preservation, class-distinctive feature extraction, and
local pattern capture for discriminative feature learning. The
key contributions of this paper are highlighted as follows:

1) We propose the Robust Discriminative t-Linear Subspace
Learning model (RDtSL) for joint image feature extraction
and dimensionality reduction. By utilizing third-order tensor
representation in conjunction with the t-product, RDtSL can
fully exploit the inherent correlations within the image set
to enhance subspace learning while eliminating the need for
high-dimensional vector computations.

2) RDtSL effectively preserves the primary energy of image
samples within the reduced-dimensionality space by incorpo-
rating the proposed energy preservation module. We provide
both theoretical and experimental evidence to demonstrate
the feasibility of this module. Leveraging it, RDtSL main-
tains high levels of performance even with low subspace
dimensions.

3) The discriminative ability of RDtSL is enhanced by
incorporating the proposed classification module and graph
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embedding module. The graph embedding module further
enriches the representations with locality and similarity infor-
mation, allowing for the automatic mining of local patterns.

4) We develop an iterative algorithm to solve RDtSL and
theoretically analyze its computational complexity. Extensive
experiments demonstrate that RDtSL outperforms the state-of-
the-arts regarding discriminative ability and robustness.

The remainder of this paper is structured as follows.
Section II reviews closely-related works and provides the
preliminaries. Afterward, Section III introduces the proposed
model with the optimization algorithm. Then, Section IV
reports the experimental results and conducts a series of model
analyses. Finally, the paper is summarized in Section V.

II. NOTATIONS AND PRELIMINARIES

Throughout this paper, lowercase letters, bold lowercase let-
ters, and bold uppercase letters represent scalars, vectors, and
matrices, e.g., x , x, and X. X′ is the conjugate transpose of X.
∥X∥F , ∥X∥1 and ∥X∥2,1 denote the Frobenius norm (F-norm),
l1-norm and l2,1-norm of X, respectively. Third-order tensors
are denoted by calligraphy letters. To make it convenient to
represent the sub-modules, an indexing is devised for third-
order tensors. Given X ∈ Rn1×n2×n3 , X (i, j, :) denotes the
(i, j)-th tube; X (i, :, :),X (:, j, :), and X (:, :, k) represent the
i-th horizontal, j-th lateral, and k-th frontal slices, respectively.
X( j) and X (k) are interchangeable with X (:, j, :) and X (:, :, k)

for the ease of notation. X f ∈ Cn1×n2×n3 is obtained by
applying Discrete Fourier Transform (DFT) on X along its
third dimension. X f can be conveniently computed using the
Matlab command X f = f f t(X ,[],3). The inverse operation is
X = i f f t(X f ,[],3). Tensor conjugate transpose of X denoted
by X ′

∈ Rn2×n1×n3 is achieved by conjugate transposing each
frontal slice of X and then reversing the order of the slices
from two to n. I represents the identity tensor whose first
frontal slice is an identity matrix, while the others are all
zero matrices. If third-order tensor X ∈ Rn1×n1×n2 satisfies
X ′

∗ X = I and X ∗ X ′
= I, then X is an orthogonal

tensor. As for tensor norms, F-norm and l1-norm of X are
computed as ∥X∥F = (

∑
i, j,k |X (i, j, k)|2)

1
2 and ∥X∥1 =∑

i, j,k |X (i, j, k)|, respectively.
Next, we introduce the definitions associated with t-product.

First, three commonly used third-order tensor operators with
their notations are given as follows. For a third-order tensor
X ∈ Rn1×n2×n3 , the block circulant operator is defined as

bcirc(X ) =


X (1) X (n3) . . . X (2)

X (2) X (1) . . . X (3)

...
...

. . .
...

X (n3) X (n3−1) . . . X (1)

 ∈ Rn1n3×n2n3 , (1)

the block vectorizing operator and its inverse operator are

bvec(X ) =


X (1)

X (2)

...

X (n3)

 ∈ Rn1n3×n2 , bv f old(bvec(X )) = X ,

(2)

Fig. 1. squeeze and twist operators.

and the block diagonalizing operator is defined as

bdiag(X ) =


X (1)

X (2)

. . .

X (n3)

 ∈ Rn1n3×n2n3 . (3)

Then t-product is defined as follows.
Definition 1 (t-Product ∗ [29]): Given X ∈ Rn1×n2×n3 and

Y ∈ Rn2×n4×n3 , t-product between them is defined as

Z = X ∗ Y = bv f old(bcirc(X )bvec(Y)) ∈ Rn1×n4×n3 . (4)

It is well-known that a block circulant matrix can be block
diagonalized through Discrete Fourier Transform, thus we
have the following fact:

Fact 1 (Fourier Domain Connection): For third-order ten-
sor X ∈ Rn1×n2×n3 , the following connection exists:

bdiag(X f ) = (Fn3 ⊗ In1)bcirc(X )(F ′
n3

⊗ In2), (5)

where Fn3 ∈ Cn3×n3 represents the normalized Discrete
Fourier Transform matrix, and ⊗ denotes Kronecker product.

Fact 1 establishes a connection between X and X f . Based on
this fact, the following Lemma can be derived:

Lemma 1: Given two arbitrary tensors X ∈ Rn1×n2×n3 and
Y ∈ Rn2×n4×n3 . Let Z = X ∗ Y ∈ Rn1×n4×n3 , then

1) ∥Z∥
2
F = 1

n3
∥bdiag(Z f )∥

2
F ;

2) Z = X ∗ Y ⇐⇒ bdiag(Z f ) = bdiag(X f )bdiag(Y f ).
The second clause of Lemma 1 can be further derived as

Z = X ∗ Y ⇐⇒ Z(k)
f = X (k)

f Y(k)
f , k = 1, 2, . . . , n3. (6)

In most cases, due to the complex form of t-product,
real-valued objective functions of third-order tensor variables
can not be optimized directly. Fortunately, the original opti-
mization problem in the third-order tensor domain can be
transformed into an equivalent problem in the complex domain
using Lemma 1, which can be solved efficiently with the help
of Wirtinger derivative [35].

squeeze and twist operators are applied to arrange two-
dimensional data samples into third-order tensors. Given a
two-dimensional data sample X ∈ Rn1×n2 , the output of
twist (X) is a third-order tensor X ∈ Rn1×1×n2 , while squeeze
is its inverse operator as squeeze(X ) = X. The two mutually-
reversing operators are displayed in Fig. 1.
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III. PROPOSED METHOD

In this section, we first introduce the proposed modules
featuring different concerns. To fully utilize the inherent
correlations within the image set and to avoid the computation
of high-dimensional vectors, all the modules are constructed
using t-product. Afterward, we formulate the Robust Discrim-
inative t-Linear Subspace Learning model (RDtSL) based on
the proposed modules. Under the framework of Alternating
Direction Method of Multipliers (ADMM) [36], we develop
an iterative algorithm to optimize RDtSL. Finally, the compu-
tational complexity of the proposed algorithm is analyzed.

A. Energy Preservation Module

A subspace learning method that excels in joint image
feature extraction and dimensionality reduction should be
capable of preserving the primary energy of samples to ensure
that the discriminative information is effectively retained in the
learned representations, even when the target dimension is low.
To this end, we propose an energy preservation module.

Denote {Xi ∈ Rm×n
}
h
i=1 as the centralized image set. After

twisting each image sample, we stack them along the second
dimension to construct the data tensor as X ∈ Rm×h×n .
Motivated by the energy preservation property of PCA, we first
propose the t-product-based PCA model, which aims to max-
imize the post-projection variance of samples as:

max
R

h∑
i=1

∥R′
∗ X(i)∥

2
F s.t. R′

∗R = I, (7)

where R ∈ Rm×d×n is the projection tensor, and d is the
subspace dimension. Eq. (7) preserves the primary energy of
samples by retaining the variance after the tensorial projection.
However, the orthogonal constraint imposed on the projection
tensor makes it difficult to incorporate other regularizations.
To facilitate the inclusion of additional modules, we further
propose a variant of Eq. (7) as follows:

min
P,Q

∥X − P ∗Q′
∗ X∥

2
F + λ∥Q∥

2
F

s.t. P ′
∗ P = I, (8)

where Q ∈ Rm×d×n and P ∈ Rm×d×n denote the projec-
tion tensor and reconstruction tensor, respectively. Eq. (8)
preserves the primary energy of samples by minimizing the
t-product-based reconstruction loss. By relaxing the orthogonal
constraint imposed on Q, we can easily introduce additional
regularizations and modules. The following theorem demon-
strates the equivalence between Eq. (7) and Eq. (8).

Theorem 1: Denote X ∈ Rm×h×n as the centralized image
tensor and R̂ as the optimal solution of Eq. (7). Suppose P̂ ∈

Rm×d×n and Q̂ ∈ Rm×d×n satisfy

(P̂, Q̂) = arg min
P,Q

∥X − P ∗Q′
∗ X∥

2
F + λ∥Q∥

2
F

s.t. P ′
∗ P = I. (9)

Then, R̂( j) is proportional to Q̂( j) in t-linear space. In other
words, Q̂( j) = R̂( j)∗V j , where V j ∈ R1×1×h is a tubal-scalar,
and R̂( j) can be obtained by normalizing Q̂( j).

The proof of Theorem 1 is provided in the Appendix.
The equivalence between Eq. (7) and Eq. (8) leads us to
conclude that t-product-based PCA can be defined as both
maximizing post-projection variance and minimizing recon-
struction loss. Besides, the projection and reconstruction can
be achieved using two different projection bases. Eq. (8)
effectively preserves the primary energy of samples within
the learned representations and facilitates the straightforward
incorporation of additional regularizations and modules.

B. Subspace Representations Classification Module

While Eq. (8) effectively preserves the primary energy of
the samples, its main emphasis is on the statistical features of
the samples, and the learned representations are independent
of the class labels. Obviously, it is crucial to retain the distinc-
tive features that differentiate each class within the subspace
representations. To address this limitation, we propose the
t-product-based subspace representations classification mod-
ule, which creates a seamless link between the subspace
representations and their respective labels, thus enabling the
extraction of distinctive features across the classes. During the
training phase, subspace representations Q′

∗ X are fed into
the t-product-based classifier function f (input, T ) to optimize
the parameter tensor T ∈ RC×d×n , where C is the number of
classes. Q′

∗X is tightly coupled with the labels by minimizing
the classification error as:

min
T ,Q

h∑
j=1

L(Y( j), f (Q′
∗ X( j), T )), (10)

where X( j) is the j-th twisted image sample. For clarification,
1) the classifier function is based purely on t-product, which is
defined as f (input, T ) = T ∗ input . 2) Assume the label of
the j-th sample is C j , Y( j) is constructed by first initializing
it with all zeros, and then setting the first frontal slice of its
C j -th tube to 1. That is to say, set Y(C j , j, 1) to 1. With
this configuration, the equivalent problem of Eq. (10) in the
Fourier domain is a standard matrix-based regression model,
which maximizes the discriminative ability in our experiments.
3) L = ∥·∥

2
F measures the empirical classification error. Based

on the above definitions, Eq. (10) is equivalent to

min
T ,Q

∥Y − T ∗Q′
∗ X∥

2
F . (11)

C. Class-Oriented Graph Embedding Module

Both similarity and locality information of samples have
significantly influence on learning the latent pattern of data
distributions [3], [4], which are not taken into account by Eq.
(8) and Eq. (10). To address it, we propose the t-product-based
class-oriented graph embedding module, designed to capture
the affinities between image samples and consequently further
enrich the learned subspace representations, as follows:

min
Q,r

C∑
i=1

Ni

Ni∑
l ̸= j

(r i
j,l)

2
∥Q′

∗ X i
( j) −Q′

∗ X i
(l)∥

2
F

s.t.
Ni∑

l=1;

l ̸= j

r i
j,l = 1, r i

j,l ≥ 0, Q′
∗Q = I, (12)
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where X i
∈ Rm×Ni ×n is composed of the twisted samples

from class i , Ni is the number of samples in class i , and
r i

j,l is the learned similarity of the j-th and l-th samples
from class i . The graph embedding module as formulated
in Eq. (12) offers the following advantages: 1) Compared
to global affinity graphs without additional informative reg-
ularization, class-oriented graphs not only capture the locality
and similarity information of samples but also enhance the
discriminative ability by increasing intra-class compactness.
A global graph embedding module without the help of class
labels might place two samples from different classes close in
the learned subspace. 2) In contrast to pre-computed graphs
with fixed weights, learning and embedding the graph adap-
tively makes the module more robust and less susceptible to
noise.

D. Robust Discriminative t-Linear Subspace Learning

Based on the proposed modules, RDtSL is formulated as:

min
P,Q,E,T ,r

∥E∥1 +

Subspace Representations Classification︷ ︸︸ ︷
λ1∥Y − T ∗Q′

∗ X∥
2
F

+ λ2

C∑
i=1

Ni

Ni∑
l ̸= j

(r i
j,l)

2
∥Q′

∗ X i
( j) −Q′

∗ X i
(l)∥

2
F︸ ︷︷ ︸

Class-Oriented Graph Learning and Embedding

s.t. X = P ∗Q′
∗ X + E︸ ︷︷ ︸

Data Energy Preservation

, P ′
∗ P = I,

Ni∑
l=1,l ̸= j

r i
j,l = 1, r i

j,l ≥ 0, (13)

where X , P , Q, Y , T , r , C , and N have the same definitions
as in Eqs. (8), (11) and (12); λ1 and λ2 serve as the trade-
off parameters to balance the weights of the three modules.
Tensor E denotes the reconstruction error to fit the noise during
the learning phase. Notably, the energy preservation module
in Eq. (13) is slightly different from Eq. (8). The reason
for this modification is that squared F-norm is sensitive to
noise, which could potentially compromise the effectiveness in
preserving data energy. To enhance the robustness of RDtSL,
we reformulate the t-product-based energy preservation mod-
ule as demonstrated in Eq. (13). In this version, we utilize
tensor l1-norm to robustly measure the reconstruction loss.

For the ease of understanding, the primary structure of
RDtSL is illustrated in Fig. 2. As shown in the figure, RDtSL
connects the t-linear subspace representations Q′

∗ X with
the label tensor Y and the denoised image tensor (X − E)

using two learnable projection tensors, T and P . Therefore,
the primary energy and class-distinctive features will be
effectively preserved within the subspace representations to
minimize the classification and reconstruction loss. The graph
embedding module learns and embeds the affinity graph of
image samples within each class in an adaptive manner. As a
conclusion, the mutual balance maintained between the three
proposed modules helps RDtSL preserve more valuable infor-
mation in the learned representations and reach the optimal
solution.

E. Optimization of RDtSL

In this section, under the framework of ADMM [36],
we propose an iterative algorithm to solve RDtSL. The aug-
mented Lagrangian function of Eq. (13) is presented as

L(P,Q, E, T , r) = ∥E∥1 + λ1∥Y − T ∗Q′
∗ X∥

2
F

+ λ2

C∑
i=1

Ni

Ni∑
l ̸= j

(r i
j,l)

2
∥Q′

∗ X i
( j) −Q′

∗ X i
(l)∥

2
F

+
ρ

2
∥X − P ∗Q′

∗ X − E +
H
ρ

∥
2
F ,

s.t.
Ni∑

l=1,l ̸= j

r i
j,l = 1, r i

j,l ≥ 0, P ′
∗ P = I, (14)

where ρ > 0 is the penalty parameter, and H ∈ Rm×h×n

is the Lagrange multiplier. The variables will be alternatively
updated to optimize Eq. (14) until convergence as follows:

1) Subproblem-T : Focusing on T , Eq. (14) becomes

min
T

∥Y − T ∗Q′
∗ X∥

2
F . (15)

According to Lemma 1, Eq. (15) has an equivalent form in
the Fourier domain as

min
T f

n∑
k=1

∥Y(k)
f − T (k)

f Q(k)′

f X (k)
f ∥

2
F . (16)

Eq. (16) is a real-valued function of complex variables. Let
the Wirtinger derivative [35] of Eq. (16) with respect to T (k)

f

be zero, then the optimal T (k)
f is computed as

T (k)
f = (Y(k)

f X
(k)′

f Q(k)
f )(Q(k)′

f X (k)
f X (k)′

f Q(k)
f )−1,

k = 1, 2, · · · , n. (17)

T can be recovered by inverse DFT as T = i f f t(T f ,[],3).
2) Subproblem-P: Focusing on the parts related to P , Eq.

(14) is reduced to

min
P

∥X − P ∗Q′
∗ X − E +

H
ρ

∥
2
F

s.t. P ′
∗ P = I. (18)

Through calculation, we conclude that each frontal slice of I f
is an identity matrix. Thus, Eq. (18) is equivalent to minimize
n independent subproblems, and the k-th one is shown as

min
P(k)

f

∥X (k)
f − P(k)

f Q
(k)′

f X (k)
f − E (k)

f +
H(k)

f

ρ
∥

2
F

s.t. P(k)′

f P(k)
f = I, (19)

where I ∈ Rd×d represents the identity matrix. Eq. (19)
is a complex orthogonal Procrustes problem, which can be
addressed as

P(k)
f = UV′, k = 1, 2, · · · , n, (20)

where U and V are the left-singular and right-singular vectors

of (X (k)
f − E (k)

f +
H(k)

f
ρ

)X (k)′

f Q(k)
f . Once P f has been solved

slice by slice, P can be recovered as P = i f f t(P f ,[],3).
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Fig. 2. Framework of the RDtSL model. Images are arranged into a tensor in advance using the twist operator. All the linear transformations are performed
by t-product. The subspace representations Q′

∗X are regularized by the proposed modules for data energy preservation, class-distinctive feature extraction,
and affinity capture to search for the optimal projection tensor Q. The mutual balance between the modules helps RDtSL reach the optimal solution.

3) Subproblem-Q: By removing the terms that do not
involve Q, the objective function becomes

min
Q

λ1∥Y − T ∗Q′
∗ X∥

2
F

+ λ2

C∑
i=1

Ni

Ni∑
l ̸= j

(r i
j,l)

2
∥Q′

∗ X i
( j) −Q′

∗ X i
(l)∥

2
F

+
ρ

2
∥X − P ∗Q′

∗ X − E +
H
ρ

∥
2
F , (21)

which can also be divided into n independent subproblems.
The k-th one is shown as

min
Q(k)

f

λ1 ∥Y(k)
f − T (k)

f Q(k)′

f X (k)
f ∥

2
F

+ λ2 tr(Q(k)′

f M(k)
f Q

(k)
f )

+
ρ

2
∥X (k)

f − P(k)
f Q

(k)′

f X (k)
f − E (k)

f +
H(k)

f

ρ
∥

2
F , (22)

where

M(k)
f = X (k)

f L X (k)′

f , (23)

where L is the Laplacian matrix of the adaptive affinity graph.
By calculating the Wirtinger derivative with respect to Q(k)

f ,
and setting it to zero, we can obtain:

AQ(k)
f +Q(k)

f B = C, (24)

with

A = λ1N−1(
ρ

2
N + λ2M(k)

f ),

B = T (k)′

f T (k)
f ,

C = λ1N−1(
ρ

2
X (k)

f S′P(k)
f + λ1X (k)

f Y(k)′

f T (k)
f ), (25)

where N = X (k)
f X (k)′

f and S = X (k)
f − E (k)

f +
H(k)

f
ρ

. Eq. (24)
is a Sylvester equation that can be solved by the Hessenberg-
Schur algorithm [37]. After solving Q f slice by slice, Q can
be recovered by Q = i f f t(Q f ,[],3).

4) Subproblem-E: Fixing all the variables other than E , the
objective function becomes

min
E

∥E∥1 +
ρ

2
∥X − P ∗Q′

∗ X − E +
H
ρ

∥
2
F . (26)

According to [38], the closed-form solution of Eq. (26) is
given as

E = σ 1
ρ

[
X − P ∗Q′

∗ X +
H
ρ

]
, (27)

where σ 1
ρ
[x] = sign(x) max(|x | − ( 1

ρ
), 0) denotes the soft-

thresholding operator.
5) Subproblem-r: After removing the irrelevant terms,

the objective function can be divided in to C independent
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subproblems, and the i-th one is show as

min
r i

Ni∑
j,l=1,l ̸= j

(r i
j,l)

2 f i
j,l

s.t.
Ni∑

l=1;l ̸= j

r i
j,l = 1, r i

j,l ≥ 0, (28)

where f i
j,l = ∥Q′

∗X i
( j) −Q′

∗X i
(l)∥

2
F . Eq. (28) can be solved

using the following theorem.
Theorem 2 ( [39]): Denote f =

[
f1, · · · , fn

]
∈ R1×n as a

vector with all positive entries. Then the following problem

min
r

n∑
j=1

r2
j f j s.t.

n∑
j=1

r j = 1, r j ≥ 0, (29)

will reach its optimum at r j =
1
f j

(
∑

o
1
fo

)−1, for j = 1, · · · , n.
Based on Theorem 2, the optimal r i

j,l is computed as

r i
j,l =

1
f i

j,l
(

Ni∑
o ̸= j,o=1

1
f i

j,o
)−1. (30)

6) Multiplier and Penalty Parameter: The multiplier H and
the penalty parameter ρ are updated as follows:

H = H+ ρ (X − P ∗Q′
∗ X − E),

ρ = min{µρ, ρmax}, (31)

where µ and ρmax are constants and µ is empirically set to
1.1.

When res = ∥X −P ∗Q′
∗X − E∥F/∥X∥F is sufficiently

small, the iterative optimization algorithm will converge and
stop. The entire procedure is summarized as Algorithm 1.

Algorithm 1 Algorithm for Solving RDtSL
Input: data tensor X ; label tensor Y; parameters λ1, λ2
Output: projection tensor Q

Initialisation : Initialize P and Q using the result of Eq.
(7); initialize T and E to zero tensors; initialize ρ = 0.01,
µ = 1.1, ρmax = 105 and ϵ = 10−5.

1: repeat
2: Update T using Eq. (17).
3: Update P using Eq. (20).
4: Update Q by solving Eq. (24).
5: Update E using Eq. (27).
6: Update r using Eq. (30).
7: Update multiplier and penalty parameter using Eq. (31).
8: until res ≤ ϵ

F. Complexity Analysis

Computational complexity of basic operators is listed as
follows: 1) Given tensor X ∈ Rn1×n2×n3 , the computa-
tional complexity of applying (inverse) fast Fourier trans-
form along its third dimension is O(n1n2n3log(n3)). 2)
Given Y ∈ Rn2×n4×n3 , the computational complexity of
X ∗ Y is O(max(n1, n4)n2n3log(n3) + n1n2n3n4). 3) Given
X ∈ Cn1×n2 , the Hessenberg-Schur algorithm requires the

computational complexity of O(n3
1 + n3

2) for solving an
Sylvester equation. 4) The computational complexity of apply-
ing economic-sized SVD decomposition on X ∈ Cn1×n2 is
O(max(n1, n2)min(n1, n2)

2).
For the objective function Eq. (14), h is far greater than m,

C , and n in practical applications. C, d, m, n are comparable
and we assume C > m > n > d in calculations to simplify the
expressions. The computational complexity of each subprob-
lem within a single iteration is computed as: 1) Subproblem-
T consists of matrix product and matrix inverse, and the
total complexity is O(hCmn + hdmn). 2) Economic-sized
SVD, matrix product, and (inverse) FFT are essential for solv-
ing Subproblem-P . The overall computational complexity is
O(hdmn). 3) For updating Q, matrix product, matrix inverse,
Laplace matrix calculation, Hessenberg-Schur, and (inverse)
FFT are required. The total complexity is O(hmmn +hCmn).
4) For Subproblem-E , the computational cost of calculating
P ∗Q′

∗X is O(mhnlog(n)+hdmn). Time complexity of the
thresholding operator is negligible. 5) Compared with other
sub-problems, the cost of updating r , the multiplier and the
penalty parameter can be neglected. Above all, the complexity
of a single iteration is O (hmn (m + d + C)). Denote t as the
total number of iterations, the computational complexity of the
proposed iterative algorithm is O (thmn (m + d + C)).

IV. EXPERIMENTS

In this section, we evaluate the performance of RDtSL in
image feature extraction and dimensionality reduction through
face, object, and handwritten digital recognition. After outlin-
ing the experimental configurations, we compare RDtSL with
the state-of-the-arts in discriminative ability and robustness.
Subsequently, we conduct a series of model analyses, includ-
ing an ablation study, a parameter sensitivity analysis, and
a convergence analysis, to comprehensively demonstrate the
properties of RDtSL. All the experiments and visualizations
are conducted using MATLAB R2022b.

A. Experimental Setup

1) Database: The following five databases are chosen
for the model evaluation: three face databases (EYaleb,1

ORL,2 and UMIST3), an object database (COIL-1004), and
a handwriting digital database (USPS5). The Extended YaleB
database (EYaleb) comprises only frontal face images with
minimal variations in expression and pose, with some images
exhibiting changes in illumination. The ORL database is
similar to EYaleb but has fewer images and more variation
in facial expressions and head poses. The UMIST database
offers a collection of face images with consistent expressions
and poses, but captured from various angles. The COIL-100
database provides images of various kinds of objects (e.g.,
bottles, cups, building blocks) with a wide range of shapes. All
the objects are photographed from different angles. Lastly, the

1http://vision.ucsd.edu/ iskwak/ExtYaleDatabase/ExtYaleB.html/
2https://www.cl.cam.ac.uk/research/dtg/attarchive/facedataset.html
3https://cs.nyu.edu/ roweis/data.html
4https://www.cs.columbia.edu/CAVE/software/softlib/
5http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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Fig. 3. Representative samples of the databases.

TABLE I
SUMMARY OF DATABASES

USPS database is a collection of handwritten digits, consisting
of ten classes ranging from ’0’ to ’9’. The selected databases
are summarized in Table I, and representative samples are
displayed in Fig. 3. With the exception of the USPS database,
all the images are downsampled for efficiency.

2) Competing Methods: Deep Neural Networks-based
methods are not adopted in this comparison since they are
data-dependent and perform poorly on small-scale databases.
Thirteen linear feature extraction and classification methods
are selected for the evaluation. First, Kenel PCA [40] and
LRE [15] are set as the baselines; RLSL [22], RSLDA [23],
SALPL [27], LLRSE [24], and RALDA [28] are closely-
related matrix-based feature extraction methods that contain
a PCA-like data reconstruction constraint for energy preser-
vation; The state-of-the-arts include CDPL [41], JDLSL [25],
PRDR [42], DRAGD [3], and FDBRL [7]. All the competitors
are supervised methods except for Kernel PCA and LRE.

3) Parameter Settings: As illustrated in Eq. (13), there are
two trade-off parameters, λ1 and λ2, in RDtSL, which control
the weights of the classification module and the graph embed-
ding module, respectively. Since the required time of our
model for single training and validation is low, the technique

grid search is well-suited for exploring the optimal trade-off
parameters of RDtSL. Both parameters λ1 and λ2 are tuned
within the range of [10−3, 10−2, · · · , 103]. In addition to being
related to the trade-off parameters, dimension of the target
subspace (d) also has an impact on the recognition accuracy.
Suppose the size of an input image is m × n and the number
of classes is C . For SALPL, LLRSE, PRDR, and DRAGD, d
should be fixed to C . For the remaining competitors, d is tuned
within the range of [0, min(m × n, 250)] with a step size of
four. For RDtSL, d is adjusted within the range of [2, m] with
a step size of two. After the tuning process, each candidate
is evaluated and compared using the best-performing trade-off
parameters and subspace dimension.

4) Classification Configurations: The databases are parti-
tioned into separate training and testing sets. The training set
is employed to learn the projection matrix/tensor, while the
testing set is used for the evaluation. Once the projection basis
is computed, both training and testing samples are projected
onto the learned subspace. We then employ the 1-Nearest
Neighbor Classifier (1-NN) to classify the testing samples.
Classification accuracy is adopted as the metric for evaluation
and comparison. The process is repeated ten times to ensure
statistical stability, each with a different random seed. Finally,
we calculate and report the average classification accuracy,
along with the standard deviation.

B. Performance Comparison

To evaluate the competing methods, we perform face,
object, and handwritten digit recognition. Overall, RDtSL
demonstrates superior discriminative ability when facing clean
image samples, and exhibits strong robustness when handling
images that contain common corruptions.

1) Face Recognition: There are three face databases. For the
EYaleb database, ten images per class are randomly selected to
form the training set, while the remaining samples are used for
testing. For ORL, the database is randomly and evenly divided
into training and testing sets, each containing five samples
per class. UMIST has varying sample sizes for each class.
Similar to EYaleb, ten images per class are randomly chosen
to build the training set. We can notice that RDtSL outperforms
all its competitors across the three face databases, and it
achieves a 2.52% higher classification accuracy on the EYaleb
database than the second-place method, far surpassing all
other competing methods. PRDR and DRAGD alternate as the
second-best performers among the face databases, and both are
linear regression-based image classification methods. DRAGD
focuses on learning and embedding flexible graphs to capture
the local geometric structures of samples. PRDR attempts to
learn latent representations for labels to mitigate the negative
impacts of strict binary labels. These two classification method
provide potential directions for further improving the t-linear
subspace learning model.

2) Object Recognition: The COIL-100 database comprises
a total of 7,200 samples. Ten samples are randomly selected
from each class to construct the training set. Notably, the
testing set is substantially larger, containing 6,200 samples.
RDtSL achieves the highest classification accuracy among the
competing methods, with DRAGD ranking second. In contrast
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TABLE II
MEAN CLASSIFICATION ACCURACIES ± STANDARD DEVIATIONS (%) OF THE COMPETING METHODS ON DIFFERENT DATABASES

Fig. 4. Performance of the competing methods with different training sizes on the face, object, and handwriting databases.

to the face databases, objects in the COIL-100 database have
a wide range of shapes and are captured from different angles,
so the images are not aligned by pixels. RDtSL utilizes
t-product to mitigate the negative impact of complex geometric
structures on its discriminative ability.

3) Handwritten Digit Recognition: The USPS handwritten
digit database is randomly divided into training and testing
sets, with twenty image samples per class allocated for training
and the remainder for testing. RDtSL maintains its top ranking
among the competing methods, followed by PRDR. Combined
with the two experiments discussed above, we can conclude
that RDtSL is the best performer among all the selected
databases, showing exceptional discriminative and generaliza-
tion capabilities. These strengths stem from the exploitation
of t-product-based operations and the harmonious balance
maintained between the proposed modules.

4) Image Classification With Varying Training Sizes: To
assess the robustness of the competing methods to variations
in training sizes, we train the models using different numbers
of samples and compare their performance. The number of
training samples for each class of EYaleb, COIL-100, and
USPS are chosen from the sets {5, 10, 15, 20}, {5, 10, 15, 20},
and {10, 15, 20, 25}, respectively. The experimental results

are presented in Fig. 4. To enhance the clarity of the line
charts, we omit the four earlier methods with relatively poor
performance. Key observations are summarized as follows:
1) RDtSL exhibits superior performance with a limited number
of training samples, which underscores the advantages of
employing t-product in scenarios with small training sizes.
2) RDtSL consistently secures the top position across the
face, object, and handwriting digit databases, irrespective of
the number of samples used for training. This phenomenon
illustrates the robustness of RDtSL to variations in training
sizes. 3) DRAGD, PRDR, and FDBRL also exhibit resilience
to changes in training sizes. The three methods demon-
strate comparable performance with RDtSL when a sufficient
amount of training samples is available.

5) Contaminated Image Classification: In this experiment,
we introduce Gaussian noise and block occlusion separately to
the EYaleb database to evaluate the robustness of competing
methods to different types of synthetic corruption. Half of the
training samples are intentionally contaminated beforehand.
In order to generate image corruptions at different levels of
severity, we vary the variance of Gaussian noise across four
distinct levels and adjust the size of block occlusion within the
set {4 × 4, 8 × 8, 12 × 12, 16 × 16}. The experimental results
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Fig. 5. Robustness of the competing methods to varying degrees of image
corruptions. The x-coordinates of the two subfigures represent the area of
block occlusion and the variance of Gaussian noise, respectively.

are presented in Fig. 5. Key observations are summarized
as follows: 1) RDtSL demonstrates exceptional robustness
against synthetic corruptions, particularly block occlusions,
consistently outperforming all its competitors. 2) PRDR also
exhibits high resilience to different image corruptions, main-
taining stable performance even when the images are heavily
contaminated. 3) While LLRSE may not be as competitive in
terms of discriminative ability compared to the state-of-the-
arts, it shows excellent resilience to block occlusion, high-
lighting the strength of low-rank self-representation learning.

C. Model Analysis

In this section, we perform a series of model analyses
from different perspectives to comprehensively demonstrate
the properties of RDtSL.

1) Ablation Study: The ablation study is performed to
demonstrate the beneficial effects of the three proposed

TABLE III
ABLATION STUDY ON CLASSIFICATION MODULE (CLS)

AND GRAPH EMBEDDING MODULE (GE)

TABLE IV
ABLATION STUDY ON ENERGY PRESERVATION

MODULE (EP) WITH COIL-100

modules in RDtSL. We employ the EYaleB, COIL-100, and
USPS databases for this study and divide them into training
and testing sets using the same configuration described in
Sections IV-B.1, IV-B.2 and IV-B.3. First, we individually
deactivate the classification module and the graph embedding
module by setting their corresponding trade-off parameters
to zero. Subsequently, we compare their performance with
RDtSL. The experimental results are presented in Table III.
It is evident that the performance of RDtSL significantly
degrades when any of the two modules is removed, and the
graph embedding module has a more pronounced impact on
classification accuracy. The experimental results demonstrate
that the two modules work collaboratively to achieve the
optimal solution.

To illustrate the beneficial effects of the energy preservation
module, we begin by removing it from RDtSL, which involves
eliminating the data reconstruction constraint, the orthogonal
constraint, and the term ∥E∥1. These operations result in
RDtSL being reformulated as a graph-regularized regression
model. Subsequently, we compare the resulting model with
RDtSL using the COIL-100 and USPS databases. To more
convincingly demonstrate the effectiveness of this module,
we compare their performance across different subspace
dimensions. The experimental results are presented in Table IV
and Table V. As evident from our observations, RDtSL con-
sistently outperforms the graph-regularized regression model
across all evaluated dimensions, demonstrating remarkable
stability to variations in subspace dimension. As the dimen-
sionality decreases, the gap in classification accuracy between
the two models widens, affirming that the energy preservation
module effectively preserves the discriminative information
of samples in the learned subspace, even when the target
dimension is low. As a conclusion, the energy preservation
module equips RDtSL with an effective capability of carrying
out image dimensionality reduction.
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TABLE V
ABLATION STUDY ON ENERGY PRESERVATION

MODULE (EP) WITH USPS

Fig. 6. Performance of RDtSL with varying trade-off parameters on face,
object and handwriting databases.

2) Parameter Sensitive Analysis: There are two trade-off
parameters λ1 and λ2 in RDtSL to control the weights of the
classification and the graph embedding modules. Apart from
being related to the parameters, subspace dimension d also
impacts the recognition accuracy. In this study, we evaluate
the sensitivity of RDtSL to both of these factors.

a) Trade-Off Parameters: The two trade-off parameters
λ1 and λ2 are tuned within the range of [10−3, 10−2, · · · , 103].
To evaluate the sensitivity of RDtSL to parameter variations,
comprehensive experiments are conducted and the results are
demonstrated in Fig. 6. This figure visualizes the impact
of changes in the values of λ1 and λ2 on the performance
of RDtSL. All the databases are divided using the same
criteria outlined in Sections IV-B.1, IV-B.2 and IV-B.3. We can
observe:

• With the exception of the EYaleB database, the per-
formance of RDtSL exhibits minimal variations as the
trade-off parameters change. The classification accuracy
is maintained within a high range across the whole param-
eter range, suggesting that RDtSL is generally insensitive
to variations in the trade-off parameters in most scenarios.

• As depicted in the upper left panel of Fig. 6, the perfor-
mance of RDtSL is sensitive to variations in the trade-off
parameters on the EYaleb database. When both trade-
off parameters are small, the recognition rate drops to

Fig. 7. Classification accuracy with varying subspace dimensions.

51.42%, and it experiences a rapid improvement as the
trade-off parameters rise, which is entirely different from
the scenarios on the other three databases. Compared to
them, the EYaleb database exhibits significant variations
in illumination. The huge illumination variation affects
the ability of our energy preservation module to capture
the discriminant information of samples, as it also tends
to preserve the illumination variance. When both trade-off
parameters are small, the performance of RDtSL is com-
promised, as it heavily relies on the energy preservation
module. As the trade-off parameters increase, the per-
formance improves rapidly due to the increased weights
assigned to the other two modules. Therefore, RDtSL
exhibits a significant difference in parameter sensitivity
on the EYaleB database compared to the others.

• For UMIST, COIL-100, and USPS, the classification
accuracy is mainly affected by λ2, demonstrating the
effectiveness of the graph embedding module. Besides,
as λ1 increases, the classification accuracy increases
slowly, while it grows fast as λ1 rises on the EYaleb
database. This phenomenon arises from the fact that the
EYaleb database exhibits a significant intra-class variance.
Images with different illumination may display lower
similarity, even if they belong to the same class. The clas-
sification module is designed to capture class-distinctive
features in the learned representation. It focuses on
extracting the features that differentiate one class from the
others and is not concerned with similarity information
of the data samples. Therefore, this module can mitigate
the negative impact of high intra-class variance on the
feature extraction. This explains the rapid improvement
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Fig. 8. Empirical convergence curves of RDtSL.

in performance as the trade-off parameter λ1 increases on
the EYaleB database.
b) Subspace Dimension: In the ablation study, we empir-

ically demonstrate that RDtSL effectively preserves the pri-
mary energy of samples within the learned subspace and
maintains good performance even when the subspace dimen-
sion is low. To show in more detail the sensitivity of RDtSL
to variations in subspace dimensions, we evaluate its per-
formance across all potential subspace dimensions on the
COIL-100 and USPS databases and record the trends. The
experimental results are illustrated in Fig. 7. For COIL-100,
the classification accuracy remains satisfactory even when the
dimensionality is reduced to one. Regardless of the number
of image samples used for training, the classification accuracy
is maintained within a high range with a tendency of initially
growing and then falling. For the USPS database, the classifi-
cation accuracy stabilizes and remains at a high level when the
target dimensionality reaches four. These findings demonstrate
that the performance of RDtSL is not significantly affected by
variations in subspace dimensions, attesting to its effectiveness
and robustness in image dimensionality reduction. In addition,
this analysis further highlight the positive impact of the
proposed energy preservation module.

3) Convergence Analysis: We empirically analyze the con-
vergence behavior of RDtSL on the COIL-100 and USPS
databases. Leveraging a flexible penalty scheme to adaptively
adjust the penalty parameter ρ under the ADMM framework,
we can anticipate a rapid convergence rate. Fig. 8 presents
the plotted residual curves, which indicate the convergence
progress. It can be observed that the residuals rapidly descend
to below 10 to the power of negative five and stabilize

after 30 iterations, demonstrating that RDtSL exhibits a fast
convergence property in real-world scenarios.

V. CONCLUSION

This paper introduces RDtSL, a novel subspace learning
method designed for joint image feature extraction and dimen-
sionality reduction. The exceptional performance of RDtSL
arises from its capability to preserve the primary energy of
samples, extract class-distinctive features, and capture both
locality and similarity information. Moreover, its effectiveness
is further heightened by the utilization of t-product, which
enables RDtSL to comprehensively exploit correlations within
the image set during the learning phase.

The development of RDtSL extends the application of
this tensor linear algebraic system in feature extraction and
dimensionality reduction. Furthermore, each proposed module
presents an independent research avenue with the potential
for further investigation. For instance, in order to enhance
the interpretability of the energy preservation module and
further improve its effectiveness, it is highly desirable to
introduce the sparse constraint on the tensor projection basis,
thereby achieving the objective of feature selection. Moreover,
further enhancements can also be made to our classification
module through the design of appropriate label representations.
This is particularly important considering that hard labels can
be restrictive for regression models, potentially resulting in
overfitting and diminished performance. Our future research
will focus on investigating these topics.
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