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Bipartite Graph-Based Projected Clustering With
Local Region Guidance for Hyperspectral Imagery
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Abstract—Hyperspectral image (HSI) clustering is challenging
to divide all pixels into different clusters because of the
absent labels, large spectral variability and complex spatial
distribution. Anchor strategy provides an attractive solution to
the computational bottleneck of graph-based clustering for large
HSIs. However, most existing methods require separated learning
procedures and ignore noisy as well as spatial information. In this
paper, we propose a bipartite graph-based projected clustering
(BGPC) method with local region guidance for HSI data. To take
full advantage of spatial information, HSI denoising to alleviate
noise interference and anchor initialization to construct bipartite
graph are conducted within each generated superpixel. With
the denoised pixels and initial anchors, projection learning and
structured bipartite graph learning are simultaneously performed
in a one-step learning model with connectivity constraint to directly
provide clustering results. An alternating optimization algorithm
is devised to solve the formulated model. The advantage of BGPC
is the joint learning of projection and bipartite graph with local
region guidance to exploit spatial information and linear time
complexity to lessen computational burden. Extensive experiments
demonstrate the superiority of the proposed BGPC over the state-
of-the-art HSI clustering methods.

Index Terms—Hyperspectral imagery, bipartite graph,
projected clustering, superpixel segmentation.

I. INTRODUCTION

HYPERSPECTRAL imaging technique is well developed
to record the scenes from observation areas. Different

from RGB images with three channels [1], hyperspectral im-
ages (HSIs) obtained by hyperspectral sensors are with hun-
dreds of spectral signatures [2], [3]. They are always denoted by
three-order tensors to represent the detailed observations in two
spatial dimensions by using numerous wavelengths in one spec-
tral dimension. It is reasonable to analyze HSIs with abundant
spectral and spatial information to facilitate diverse applications
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for precision agriculture, urban planning and military defense.
Among diverse applications, the recognition of land-cover ma-
terials is a crucial learning task to identify human behaviours in
a natural environment [4], [5], [6].

Based on the learning scheme with labels or not, the recogni-
tion of land-cover materials can be partitioned into HSI classifi-
cation and clustering. As a supervised learning scheme, HSI clas-
sification develops learning models with labelled training pixels
and assigns an exclusive label to every testing pixel [7], [8], [9].
By contrast, as an unsupervised learning scheme, HSI cluster-
ing develops learning models with unlabelled pixels and tries to
partition all unlabelled pixels into different clusters without any
prior knowledge [10], [11], [12]. In reality, it is labor-intensive
and time-consuming for HSI annotation. Besides, HSI analy-
sis without label guidance is very difficult because of the large
spectral variability and complex spatial structure. Based on these
characteristics, HSI clustering is a challenging task in remote
sensing community.

According to the learning mechanism, HSI clustering can be
separated into centroid-based, density-based, biology-based and
graph-based methods [13]. Assume that pixels are distributed in
a sphere structure, centroid-based methods obtain the optimal
clusters by finding the minimum distance between pixels and
cluster centers. Typical methods include K-means [14], fuzzy
C-means (FCM) [15] and their variants. Based on the density
distribution, density-based methods identify different clusters
with high density that are partitioned by pixels with low density.
Representative methods are k nearest neighbor density cluster-
ing (KNNCLUST) [16] and density peak clustering (DPC) [17].
Inspired by biological theory, biology-based methods pursue
the optimal partition via adaptive evolutionary computation in
a heuristic manner. Typical examples are multiobjective parti-
cle swarm optimization (MOPSO) [18] and unsupervised arti-
ficial immune classifier (UAIC) [19]. The above three types of
methods generally utilize spectral signatures to generate clusters
without considering auxiliary spatial and structural information.
To solve this issue, graph-based methods explore the relation-
ships between pair-wise pixels with a weighted graph and then
conduct partition on the graph [20], [21]. After graph-cut learn-
ing, pixels are divided into disjoint subsets according to their
similarities.

Graph-based clustering is able to provide competitive results
for HSIs. As one of the promising styles, subspace cluster-
ing constructs a favorable affinity matrix to capture the ge-
ometric structure of data with their self-expressive relation-
ships [22], [23], [24]. In [22], Zhai et al. proposed an �2-norm
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Fig. 1. Different types of graph representations. A circle denotes a sample
and a square indicates an anchor. (a) Traditional graph. (b) Bipartite graph.
(c) Structured bipartite graph with three connected components.

regularized sparse subspace clustering (L2-SSC) method by in-
troducing spatial information. Further, Huang et al. [23] pre-
sented an adaptive regularized dictionary learning subspace clus-
tering (IDLSC) method to learn a concise dictionary from HSIs.
Based on structural information, Cai et al. [24] designed two
graph convolutional subspace clustering (GCSC) methods in the
original feature space and kernel space. In addition, deep sub-
space clustering methods are emerging by introducing different
components or strategies into autoencoder, such as contrastive
learning [25], low-rank graph convolution [26], collaborative
constrained multi-scale learning [27]. Given a dataset with N
samples and B features, these methods take O(N2) for storage
and require O(N2B) for computation to obtain the affinity ma-
trix. To identifyC different partitions on anN ×N graph shown
in Fig. 1(a), they need at least O(N2 C) or O(N3) for computa-
tion based on the eigen decomposition of the related Laplacian
matrix. Although these methods achieves promising results, they
still suffer from both heavy computation burden and huge mem-
ory consumption when solving the problems with large-scale
data.

To deal with this dilemma, efficient graph-based clustering
has been put forward in recent years. With different strate-
gies, efficient methods show their advantages in both time com-
plexity and memory requirement [28], [29], [30]. In [28], Cai
et al. proposed a neighborhood contrastive subspace clustering
(NCSC) network with superpixel pooling autoencoder to learn
superpixel-level representations for clustering. To leverage the
geometric structures, Zhao et al. [31] presented a global and
local similarity graph-based clustering (SGLSC) method by in-
troducing both global and local information at superpixel level.
Even though these superpixel-level methods achieve superior
performance at certain datsets, they heavily rely on the gen-
erated superpixels because pixel’s label assignment is achieved
with pixel-to-superpixel relationships. To perform efficient clus-
tering at pixel level, anchor strategy shown in Fig. 1(b) is
applied and takes the linear time complexity of O(NMB),
where M is the number of anchors and M � N . For instance,
in [29], Wang et al. proposed a fast spectral clustering with
anchor graph (FSCAG) method based on the original pixels
and the denoised pixels from mean filtering. Further, Wang
et al. [32] presented a spatial-spectral clustering with anchor
graph (SSCAG) method based on the original pixels and the de-
noised pixels from multi-scale weighted mean filtering. These
methods first learn the graph between pixels and anchors and

then separately perform clustering with spectral analysis. Their
performance is compromised because of the separated graph
learning and clustering. To solve this problem, in [33], Yang
et al. presented a fast spectral embedded clustering with struc-
tured graph learning (FSECSGL) method to directly output clus-
tering results from the embedded data. To assign the soft labels
for pixels, Yang et al. [30] further designed a fuzzy embed-
ded clustering with bipartite graph (FECBG) method to obtain
the clustering outcome by fuzzy clustering. These methods first
learn low-dimensional representations and then directly provide
clustering results based on graph learning. However, they ignore
spatial information and separate feature learning from cluster-
ing. Based on these observations, it is challenging to simultane-
ously perform efficient projection and clustering at pixel level
with spatial information in a one-step learning model.

In this paper, we propose a bipartite graph-based projected
clustering (BGPC) method with local region guidance for HSI
data. Based on the spatial structure, the HSI is partitioned into
multiple superpixels to reflect homogenous regions. To make
good use of spatial information, HSI denoising is achieved
with the pixel reconstruction by a weighted summation of
nearest neighboring pixels and anchor initialization is real-
ized with the average of all denoised pixels within each su-
perpixel. Compared to denoising across the entire HSI, the pre-
sented spatial denoising strategy constrains the selection range
of neighbors from the same superpixel with similar proper-
ties, thereby better preserving the edge information and miti-
gating its deterioration. Inspired by anchor strategy, projection
learning and structured bipartite graph learning are simulta-
neously conducted in a unified model with connectivity con-
straint to achieve efficient HSI clustering at pixel level. An
alternating optimization algorithm is devised to solve the for-
mulated problem. As shown in Fig. 1(c), the structured bipar-
tite graph with exactly connected components is learned to di-
rectly provide clustering results after one-step learning in lin-
ear time complexity. Extensive experiments demonstrate the su-
periority of our BGPC over the state-of-the-art HSI clustering
methods.

The contributions of this paper are highlighted as follows.
1) We propose a BGPC method for efficient HSI cluster-

ing. With local region guidance, projection learning and
structured bipartite graph learning are simultaneously con-
ducted to directly obtain optimal clustering with exact
pixel partition in a one-step learning model.

2) We introduce an effective denoising manner to reduce
noise interference and a useful anchor selection strategy
to cover all hyperspectral pixels to facilitate efficient clus-
tering. They take full advantage of plentiful spatial infor-
mation within the generated superpixels.

3) We present an alternating optimization strategy to solve
the proposed formulation and show its high efficiency with
linear time complexity.

The rest of this paper is structured as follows. Section II intro-
duces the related work. Section III presents the proposed BGPC
method for HSI clustering. Section IV describes the optimization
strategy and analyzes the computational complexity. Extensive
experiments and comprehensive comparisons on HSI datasets
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are provided in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORKS

A. Traditional Graph-Based Clustering

Traditional graph-based clustering methods are effective for
HSI data by exploring the relationships between pair-wise pix-
els [20], [21], [34]. Their performance depends on the quality
of the learned affinity matrix. In [20], Zhang et al. proposed
a spectral-spatial sparse subspace clustering method to learn a
more favorable affinity matrix from HSIs. Based on the parti-
tioned spectral bands and spatial features, Tian et al. [21] pre-
sented a spatial-spectral multi-view low-rank sparse subspace
clustering method to analyze HSI data. To explore the nonlin-
ear relationships, Li et al. [35] devised a deep mutual informa-
tion subspace clustering network by means of information and
deep learning theory. Apart from the graph-based methods in
a subspace clustering style, there are other effective methods
in different styles. For example, Murphy et al. [34] proposed a
spectral-spatial diffusion learning method to integrate geomet-
ric estimation with spectral and spatial information. To perform
HSI clustering, Kong et al. [36] desgined an unsupervised broad
learning method with a graph-regularized autoencoder.

Even though traditional graph-based methods yield superior
results for HSIs, they always ask for at least the quadratic time
complexity and memory requirement of O(N2). Thus, they are
inapplicable to the problems with large-scale data.

B. Efficient Graph-Based Clustering

Efficient graph-based clustering methods are emerging to
solve the bottleneck of traditional graph-based clustering [37],
[38], [39], [40]. They are superior in not only clustering per-
formance but also time complexity and memory consumption.
In [41], Ding et al. presented a graph convolution embedding
clustering network to reduce the learning scale to superpixel
level. Based on tree node partition and binary clustering, Shahi
et al. [38] proposed a hierarchical clustering method to effi-
ciently analyze HSI data at different levels. Anchor strategy pro-
vides a practical solution to learn clustering results at pixel level.
To handle large HSIs, Hassanzadeh et al. [39] devised a sequen-
tial spectral clustering method with sequential singular value
decomposition and bipartite graph represention. Utilizing both
spectral and spatial information, Huang et al. [40] presented a
coclustering method based on bipartite graph partition with joint
sparsity over dictionary learning. Based on Nyström extension,
Zhao et al. [42] designed a fast spectral clustering method with
the selected anchors. Without relying on additional clustering,
Wang et al. [37] proposed a scalable clustering method with
anchor graph and nonnegative relaxation.

Although efficient graph-based clustering methods with dif-
ferent strategies are flexible for large HSIs, they still show
the deficiency in some aspects, such as clustering with pixel-
to-superpixel memberships, neglecting spatial information and
separated learning procedures. To address the above-mentioned
problems, our proposed method belonging to efficient graph-
based clustering can simultaneously perform projection and

clustering at pixel level with spatial information in a one-step
learning model.

III. PROPOSED METHOD

A. Overview

The overall framework of the proposed BGPC is illustrated in
the Fig. 2. Based on the spatial distribution, the HSI is segmen-
tated into diverse superpixels with homogeneity. To alleviate
noise interference, HSI denoising is achieved by reconstructing
pixels with a weighted summation of nearest neighboring pix-
els within a same superpixel. To learn a bipartite graph, anchor
initialization is realized by averaging all denoised pixels within
each superpixel. For effective and efficient HSI clustering at
pixel level, projection learning and bipartite graph learning are
simultaneously conducted using the denoised pixels and initial
anchors in a unified optimization model with connectivity con-
straint. With local region guidance, spatial information can be
well exploited during clustering. After iterative optimization,
clustering results can be directly provided for all pixels accord-
ing to the exactly connected components in the learned bipartlte
graph.

B. Weighted Local Region Denoising

Due to the wicked observation condition and water absorp-
tion, noise interference may be introduced during HSI data col-
lection [29]. It is inevitable that the introduced noises could lead
to spectral distortion and degraded performance in subsequent
learning [32]. To eliminate the noises and improve the represen-
tation capability, it is reasonable to perform HSI denoising with
spatial information in local regions. Here, we present a weighted
local region denoising strategy containing local region genera-
tion and weighted spatial denoising.

1) Local Region Generation: In general, pixels with a same
label are always distributed in a homogenous region with high
probability [43]. Recent studies have shown that superpixel seg-
mentation technique is effective to uncover the spectral-spatial
structures of HSIs [44]. It is better to localize the homogene-
ity of HSI data for further analysis. Among many effective
segmentation methods, we adopt the entropy rate superpixel
(ERS) segmentation method [45] to adaptively generate ho-
mogenous regions with adaptive shapes and sizes based on the
complex spatial distribution and texture complexity. The ERS
segmentation method is originally designed for RGB image seg-
mentation. During the segmentation, ERS firstly converts RGB
images to grayscale images, and then conducts segmentation on
the grayscale images. That is to say, segmentation using ERS
is conducted on the image with one component instead of more
components. When there are more components within an HSI,
it is necessary to get the only one component before segmenta-
tion. Therefore, we only use the first principal component with
the primary knowledge of the HSI for segmentation. Assume
that an HSI is denoted by a third-order tensor X ∈ RW×H×B

with W ×H pixels and B bands, we reshape it into a matrix de-
noted by X̂ ∈ RB×N (N = W ×H). To achieve efficient HSI
segmentation, we first conduct principal component analysis
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Fig. 2. Overall framework of the proposed BGPC for HSI clustering. It performs superpixel segmentation on the HSI to obtain the segmented HSI. Based on the
generated superpixels, HSI denoising is first conducted and anchor initialization is then determined with spatial information guidance. Given the denoised pixels
and initial anchors, projection learning and structured bipartite graph learning are simultaneously conducted in a unified model with connectivity constraint to
directly provide clustering results after iterative optimization.

(PCA) [46] on X̂ to describe major information on the first prin-
cipal component If , and then perform ERS on If to generate M
homogenous regions as follows:

If =
M∪
i=1

Hi, s.t. Hi ∩Hj = ∅, (i �= j), (1)

where Hi is the i-th local region with the same segmentation la-
bel. The constraint Hi ∩Hj = ∅ means that any two generated
local regions are non-overlapping. Aligning the above segmen-
tation results to original HSI, we can acquire the segmented HSI
with all spectral bands to reflect multiple superpixels.

2) Weighted Spatial Denoising: Denoising is an effective
manner to reduce noise interference. It is harmful to directly
perform denoising on the entire HSI because the misleading in-
formation of different land covers may be introduced into the
denoised pixels. For HSIs, mean filtering is a traditional strat-
egy to perform denoising by averaging pixels within a small
square window [29]. It is obvious that such manner does not
work well because the complex spatial structures cannot be ef-
fectively extracted by a square window. Based on the homo-
geneity of HSIs, the pixels within a same superpixel exhibit
similar property. Compared to denoising on the entire HSI and
denoising within a square window, it is more effective to per-
form denoising within a superpixel based on the adaptive lo-
cal region information. It can smooth the homogenous regions
and preserve their edge information for HSIs. Given an origi-
nal pixel x̂i ∈ RB×1 within X̂, we confirm its K nearest spa-
tial neighbors within the same superpixel and denoted them by
Yi = {y1,y2, . . . ,yK} ∈ RB×K . To perform effective denois-
ing, we first calculate the weight to measure the spectral simi-
larity between x̂i and yj in Yi by

wj =
exp

(
−‖x̂i − yj‖22 /2t2

)
h

, j = 1, 2, . . . ,K, (2)

where the two control parameters are empirically determined
by t = (1/K)

∑K
j=1 ‖x̂i − yj‖22 and h =

∑K
j=1 exp(−‖x̂i −

yj‖22/2t2). Based on the reconstruction weights learned by (2),
we perform denoising for x̂i with itsK nearest spatial neighbors
by

xi =

K∑
j=1

wj × yj , i = 1, 2, . . . , N, (3)

where xi is the denoised and reconstructed pixel of x̂i by a
weighted summation of theK nearest spatial neighbors in a same
superpixel. After denoising, the spatial distribution of pixels is
in a good consistency and the representation capability of data
is greatly improved. Thus, we utilize the denoised data X =
{x1,x2, . . . ,xN} ∈ RB×N instead of the original data X̂ to
pursue better performance in subsequent learning.

C. Bipartite Graph-Based Projected Clustering

Traditional graph-based clustering methods are effective for
HSI analysis [22]. However, most of them are inapplicable to
large HSI data due to the high dimensionality and computation
burden [24]. To solve these problems, we formulate a bipartite
graph-based projected clustering model with local region guid-
ance. It can directly learn a much smaller structured graph for
efficient and effective HSI clustering based on spatial anchor
selection and structured bipartite graph learning.

1) Spatial Anchor Selection: For anchor-based methods, it is
vital to select a smaller number of anchors to uncover the distri-
bution of all samples [47]. The random and K-means strate-
gies are commonly used for anchor selection [37]. The ran-
dom strategy arbitrarily selects some original samples to be an-
chors, while the K-means strategy empirically learns the cluster
centroids as representative anchors. In reality, the two strate-
gies are unable to select high-quality anchors for HSIs, be-
cause they ignore the inherent spatial distribution of pixels.
To solve this issue, we select informative anchors for the HSI
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based on the denoised superpixels. By doing so, anchors gen-
erated from the corresponding superpixels contain spatial infor-
mation and are able to cover all pixels in the entire HSI, thus
leading to better results. Specifically, we denote an anchor ma-
trix containing a set of anchors by A = {a1,a2, . . . ,aM} ∈
RB×M . Given the denoised superpixels, we determine M an-
chors by averaging all denoised pixels in the same superpixel as
follows:

aj =
1

Nj

Nj∑
i=1

x̃j
i , j = 1, 2, . . . ,M, (4)

where x̃j
i denotes the i-th pixel in the j-th superpixel and Nj

indicates the number of pixels within the j-th superpixel. Thus,
N =

∑M
j=1 Nj . Compared to the random and K-means strate-

gies, (4) provides an advanced strategy to determine informative
anchors with spatial information based on the generated super-
pixels.

2) Structured Bipartite Graph Learning: Bipartite graph-
based clustering is a promissing learning paradigm to partition
samples into a group of clusters in an efficient way [47]. Com-
pared to traditional graph-based clustering required the time
complexity of O(N2) or O(N3), bipartite graph-based cluster-
ing is more efficient with the time complexity of O(N). Thus, it
is more applicable and flexible for large-scale HSI data. To learn
a bipartite graph Z ∈ RN×M for HSIs, the i-th denoised pixel
xi ∈ X should be connected to the j-th anchor aj ∈ A with a
probability zij to describe their “pixel-to-anchor” neighboring
relationship. Specifically, zij is an element in Z to denote the
connection probability between xi and aj . It is common knowl-
edge that the greater value of zij corresponds to the smaller
distance between xi and aj . Thus, bipartite graph learning for
Z can be achieved by adaptive assigning pixels to neighboring
anchors as follows:

min
A,Z

N∑
i=1

M∑
j=1

‖xi − aj‖22 zij + γ‖Z‖2F

s.t. zTi 1 = 1, zij ≥ 0, (5)

where ‖xi − aj‖22 represents the square of Euclidean distance
betweenxi andaj , ‖Z‖2F indicates the regularization term forZ,
and γ is an adaptive regularization parameter for the connection
sparsity control between pixels and anchors and avoiding the
trivial solution. Besides, zTi 1 = 1 and zij ≥ 0 are the normal-
ization and non-negative constraints on Z for sparsity control.

Compared to the images with serveral channels, HSIs with
hundreds of spectral channels may suffer from noise interfer-
ence and the curse of dimensionality. To alleviate these prob-
lems, it is reasonable to introduce projection learning into the
clustering process. By doing so, the data can be projected into
a low-dimensional feature space to reduce noise interference
and enhance feature representation, leading to better separabil-
ity during clustering. Thus, we introduce a projection matrix
W ∈ RB×R into bipartite graph learning of (5) to reduce the

spectral dimensionality from B to R in a new subspace as fol-
lows:

min
W,A,Z

N∑
i=1

M∑
j=1

∥∥WTxi −WTaj
∥∥2
2
zij + γ‖Z‖2F

s.t. zTi 1 = 1, zij ≥ 0,WTStW = I,St = XXT , (6)

where WTStW = I∈ RR×R indicates the subspace constraint
making that the projected data are statistically uncorrelated and
easily separated, andSt = XXT∈ RB×B denotes the total scat-
ter matrix to decrease the space complexity. Equation (6) is for-
mulated to learn bipartite graph in a projected subspace. By
introducing projection learning, clustering performance can be
further improved and convergence state can be achieved with
less learning iterations.

For HSI clustering, we desire to directly partition pixels into
C clusters. So far, bipartite graph projected learning of (6) relies
on an additional clustering step, so that it cannot directly pro-
vide clustering results. Compared to two-step learning, one-step
learning is more able to provide satisfactory results in a specific
task [48]. To achieve one-step learning, one ideal situation is
that the optimal neighboring anchor assignment leads to the C
exactly connected components in Z. As stated above, we denote
the augmented graph by P ∈ R(N+M)×(N+M) associated with
Z to show the block structure by

P =

[
Z

ZT

]
. (7)

Based onP, the degree matrixD ∈ R(N+M)×(N+M) consists of
diagonal elements dii =

∑N+M
j=1 pij . Thus, the corresponding

normalized Laplacian matrix is denoted by

LZ = I−D− 1
2PD− 1

2 . (8)

As noted in [49], if Z is non-negative, LZ∈ R(N+M)×(N+M)

exhibits the following important property.
Theorem 1: The multiplicityC of the eigenvalue 0 of the nor-

malized Laplacian matrix LZ equals the number of connected
components in the bipartite graph associated with Z.

In [49], Theorem 1 has been proved that the bipartite graph
associated with Z has C exactly connected components if
rank(LZ) = (N +M)− C. That is to say, N pixels and M
anchors can be directly partitioned into C clusters without an
additional clustering step. Inspired by Theorem 1, we intro-
duce the rank constraint rank(LZ) = (N +M)− C into (6)
to learn a structured bipartite graph. Thus, structured bipartite
graph learning can be formulated by

min
W,A,Z

N∑
i=1

M∑
j=1

∥∥WTxi −WTaj
∥∥2
2
zij + γ‖Z‖2F

s.t. zTi 1 = 1, zij ≥ 0,WTStW = I,St = XXT ,

rank(LZ) = (N +M)− C. (9)

It is noteworthy that the rank constraint on LZ is still very diffi-
cult to solve. To relax the rank constraint, we denote σi(LZ)
as the i-th smallest eigenvalue of LZ . Since LZ is positive
semi-definite, we have σi(LZ) ≥ 0. The rank constraint can be
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satisfied if
∑C

i=1 σi(LZ) = 0. Based on Ky Fan’s theorem [50],
we have

C∑
i=1

σi(LZ) = min
FTF=I

Tr(FTLZF), (10)

whereF ∈ R(N+M)×C is the embedding matrix with orthogonal
constraint FTF = I. Combining (10) into (9), the formulation
of the proposed BGPC is finally represented as follows:

min
W,A,Z,F

N∑
i=1

M∑
j=1

∥∥WTxi −WTaj
∥∥2
2
zij + γ‖Z‖2F

+ λTr(FTLZF)

s.t. zTi 1 = 1, zij ≥ 0,WTStW = I,St = XXT ,FTF = I,
(11)

where λ is an adaptive regularization parameter to control the
number of connected components in Z. When solving prob-
lem (11) with a large enough λ, the optimal Z can be achieved
with

∑C
i=1 σi(LZ) = 0. In practice, if the number of connected

components is not equal to C, the value of λ will be adaptively
adjusted. Thus, the optimalZ exactly containsC connected com-
ponents. Based on this, all pixels and anchors can be divided into
C clusters. The pixels within the same connected component are
assigned to the same clustering label. Thus, we can obtain the
clustering label for each pixel.

IV. ALGORITHM

A. Optimization Strategy

It is difficult to jointly update all variables in problem (11) be-
cause they are coupled together. Besides, the imposed contraints
are nonlinear and unsmooth. To achieve the optimal solution, an
optimization strategy is designed to alternately update each vari-
able while fixing others in the sub-problem. The update rules are
shown in the following descriptions.

Update Z: When F, W and A are fixed, the optimization
problem of Z becomes

min
Z

N∑
i=1

M∑
j=1

∥∥WTxi −WTaj
∥∥2
2
zij + γ‖Z‖2F

+ λTr(FTLZF)

s.t. zTi 1 = 1, zij ≥ 0. (12)

Note that LZ , D and P rely on Z making problem (12) difficult
to solve. Fortunately, according to the special structure of P, we
have the following relationship

Tr
(
FTLZF

)
=

1

2

N+M∑
i=1

N+M∑
j=1

pij

∥∥∥∥∥ fi√
di

− fj√
dj

∥∥∥∥∥
2

2

=

N∑
i=1

M∑
j=1

zijhij , (13)

Algorithm 1: Optimization Strategy for BGPC.

where hij = ‖ fi√
di

− fN+j√
dN+j

‖22, fi is the i-th row vector of F

and dj is the j-th row vector of D. With (13), problem (12) can
be solved by independent updating zi, i.e., the i-th row vector
in Z. Thus, the problem of zi can be transformed into

min
zi

M∑
j=1

(∥∥WTxi −WTaj
∥∥2
2
zij + γz2ij + λzijhij

)

s.t. zTi 1 = 1, zij ≥ 0. (14)

To solve problem (14), we denote a vector ei with the j-
th element eij = dxij + λhij , where dxij = ‖WTxi −WTaj‖22.
Then, problem (14) can be reformulated by

min
zT
i 1=1,zij≥0

∥∥∥∥zi + 1

2γ
ei

∥∥∥∥2
2

. (15)

Following [51], problem (15) can be solved by a closed-form
solution. Similar to [51], γ can be adaptively determined by

γ =
1

N

N∑
i=1

⎛
⎝P

2
ei,P+1 − 1

2

P∑
j=1

eij

⎞
⎠ . (16)

It is easy to allocate the size of nearest neighbouring anchors P
for the optimal Z when the rank constraint on LZ is satisfied,
i.e.,

∑C
i=1 σi(LZ) = 0.

Update F: When W, A and Z are fixed, the optimization
problem of F becomes

min
FTF=I

Tr(FTLZF). (17)

With (7) and (8), problem (17) can be transformed into

max
FTF=I

Tr

(
FTD− 1

2

[
Z

ZT

]
D− 1

2F

)
. (18)
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We can rewrite F and D with the block matrices

F =

[
U
V

]
, D =

[
DU

DV

]
,

where U ∈ RN×C , V ∈ RM×C , DU ∈ RN×N and DV ∈
RM×M . Based on the block structures ofF andD, (18) is equiv-
alent to

max
UTU+VTV=I

Tr
(
UTD

− 1
2

U ZD
− 1

2

V V
)
, (19)

where the constraintUTU+VTV = I is derived fromFTF =
I. The above problem can be solved with a closed-from solution

based on Lemma 1. According to Lemma 1, B = D
− 1

2

U ZD
− 1

2

V

is formulated for simplified calculation.
Lemma 1: GivenB ∈ RN×M ,U ∈ RN×C ,V ∈ RM×C , the

optimal solution to the problem

max
UTU+VTV=I

Tr
(
UTBV

)
areU =

√
2
2 U1,V =

√
2
2 V1, whereU1,V1 are the correspond-

ing C left and right singular vectors of B, respectively.
Update W: When A, Z and F are fixed, the optimization

problem of W becomes

min
WTStW=I

N∑
i=1

M∑
j=1

∥∥WTxi −WTaj
∥∥2
2
zij . (20)

Since ‖A‖22 = Tr(ATA), we have
n∑

i=1

m∑
j=1

∥∥WTxi −WTaj
∥∥2
2
zij

= Tr

⎛
⎝WT

n∑
i=1

m∑
j=1

(xi − aj) (xi − aj)
T zijW

⎞
⎠

= Tr
(
WT

(
XDUX

T − 2XZAT +ADV A
T
)
W

)
, (21)

where the diagonal matrices DU and DV are with their di-
agonal elements dUii =

∑M
j=1 zij and dVjj =

∑N
i=1 zij , respec-

tively. Letting G = (XDUX
T − 2XZAT +ADV A

T ), prob-
lem (20) can be simplified by

min
WTStW=I

Tr
(
WTGW

)
. (22)

To solve problem (22), we decompose the eigenvalue of S−1
t G.

The optimal W is composed of the eigenvectors corresponding
to the R smallest eigenvalues.

Update A: When Z, F and W are fixed, the optimization
problem of A can be solved by M decomposed problems

min
aj

N∑
i=1

∥∥WTxi −WTaj
∥∥2
2
zij . (23)

To solve problem (23), we first let J =
∑N

i=1 ‖WTxi −
WTaj‖22zij , and then calculate the derivative w.r.t ai and set
it to zero as follows

∂J
∂aj

=
N∑
i=1

2WT (xi − aj)zij = 0. (24)

TABLE I
INFORMATION OF IMPORTANT PARAMETERS FOR OUR BGPC

According to (24), the update rule of ai can be given by

aj =

∑N
i=1 zijxi∑N
i=1 zij

. (25)

In (11), LZ with the larger size of (N +M)× (N +M) is
related to the update rules of Z and F. Based on the special
block structure of LZ , the optimization of Z and F can be trans-
formed into the problems with smaller size as (15) and (19).
Thus, the proposed model still shows efficient computation to
handle large-scale HSI data. This can be also observed from
the near-linear time complexity of the update rules for Z and F
shown as in Section IV-B. To better illustrate the optimization
strategy, we summarize the update rules for solving problem
(11) in Algorithm 1.

B. Computational Complexity Analysis

The computational complexity of solving problem (11) with
Algorithm 1 is mainly attributed to the iterative learning pro-
cess to alternatively update each variable. The construction or
updating for F costs O(M3 +M2 N) by solving (19). When
W is updated by solving (22), the time complexity is O(B3)
because of matrix inversion and eigenvalue decomposition. The
time complexity of solving Z through a closed-form solution
to (15) is O(NMC +NMlog(M)). To update A with (25), it
needs the computational complexity of O(NMB). Since there
is a sub-alternating system in Algorithm 1, we denote the num-
ber of iterations for the inner loop by T1 and the outer loop
by T2. In summary, the computational complexity of BGPC
is O(((B3 +NMB +M2 N)T1 +NMB +M2 N)T2) be-
cause log(M) is small and M3 � M2 N . Denoting T = T1T2,
it can be further simplified asO(NMBT ) becauseM is approx-
imate toB andB � N . It is worth noting that the computational
complexity of BGPC is linear to N .

V. EXPERIMENTS

A. Datasets

The experiments are conducted on three public HSI datasets,
including Salinas, Pavia University and Pavia Center. Their false
color images and superpixel segmentation images are shown in
Fig. 3.

1) Salinas: This dataset was acquired by the Airborne Vis-
ible/Infrared Imaging Spectrometer (AVIRIS) sensor to record
the scene over the Salinas valley, Southern California, in 1998.
There are 512 × 217 pixels to archive the distribution of 16
land-cover categories with a spatial resolution of 3.7 m. After
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TABLE II
CLUSTERING PERFORMANCE COMPARISON OF DIFFERENT METHODS ON HSI DATASETS

TABLE III
p-VALUES OF SIGNIFICANT DIFFERENCE BETWEEN BGPC AND OTHER

METHODS ON HSI DATASETS

Fig. 3. False color images and their homogenous regions from superpixel
segmentation of HSI datasets. (a) and (b) Salinas. (c) and (d) Pavia University.
(e) and (f) Pavia Center.

discarding 20 water absorption bands, 204 spectral bands be-
tween 0.4 and 2.5 μm are left to describe this scene.

2) Pavia University: This dataset was gathered by the reflec-
tive optics system imaging spectrometer (ROSIS) sensor over the
University of Pavia, Italy, in 2002. After abandoning 12 noisy
and water absorption bands, there are 103 spectral bands left
from 0.43 to 0.86 μm to describe the scene with 610 × 340 pix-
els and 9 categories of land covers at a spatial resolution of
1.3 m.

3) Pavia Center: This dataset was also collected by the RO-
SIS sensor over the center of Pavia, Italy, in 2003. The original
image consists of 1096 × 1096 pixels at a spatial resolution of

1.3 m and 115 spectral bands between 0.43 and 0.86 μm. Since
there are a part of invalid pixels and low signal-to-noise ratio
(SNR) bands, we retain 1096 × 715 pixels with 9 land-cover
categories to be described by 102 spectral bands for experiment.
This is a large-scale HSI dataset with a total of 783640 pixels.

B. Compared Methods

To validate the effectiveness of the proposed BGPC, several
clustering methods are adopted for comparison.

1) K-means is a hard clustering method to pursue the minimum
distance between pixels and cluster centers.

2) FCM is a soft clustering method developed on K-means to
identify the membership between pixels and cluster centers.

3) FSCAG [29] is a fast spectral clustering method with anchor
graph by means of spatial neighbors.

4) SGCNR [37] is a scalable graph-based clustering method
with nonnegative relaxation to obtain clustering results.

5) HESSC [38] is a hierarchical sparse subspace cluster-
ing method to adaptively determine the number of clusters.
6) NCSC [28] is a neighborhood contrastive subspace clustering
network to rescale clustering at superpixel level.

7) SGLSC [31] is a superpixel-level global and local similarity
graph-based clustering to alleviate the computational burden for
large HSI data.

8) S3AGC [52] is an anchor graph-based clustering method
with spatial and structural information.

9) DSCRLE [53] is a deep spectral clustering method by com-
bining spectral graph theory and deep learning for HSI cluster-
ing.

C. Experimental Setup

There are several parameters in BGPC needed to determine
in advance. For the regularization parameters, γ is determined
by (16), while λ is initialized as γ and adaptively updated in a
heuristic way. In each iteration, the variation of λ is λ = λ ∗ 2 or
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Fig. 4. Clustering maps and ground truth (GT) of the Salinas dataset.

Fig. 5. Clustering maps and ground truth (GT) of the Pavia University dataset.

Fig. 6. Clustering maps and ground truth (GT) of the Pavia Center dataset.

λ = λ/2 if the number of the connected components in Z is less
or more than C. To find out a superior projection dimension, R
is tuned from 0.25B to 0.5B. For simplicity, K is set as 13 to
control the number of neighboring pixels during denoising, and
P is assigned as 5 to confirm the number of neighboring anchors
for (16). To exploit spatial information within HSIs, it is vital to
determine an appropriate scale for segmentation. Following [54],
the number of superpixels is adaptively determined based on the
texture of the HSI by

M = S
Nz

N
, (26)

where Nz denotes the number of non-zero elements in the de-
tected edge image,N represents the number of pixels, andS is an
adjustable parameter and default as 2000. The parameter setting
for our BGPC is shown in Table I. The hyper-parameters related
to other compared methods are set based on the suggestions in
original papers to show their best performance.

To quantify the clustering performance, we adopt six com-
monly used metrics for evaluation. They are overall clustering
accuracy (ACC), Kappa coefficient, normalized mutual informa-
tion (NMI), purity, adjusted rand index (ARI) and F-score. For
all these metrics, higher values signify better clustering perfor-
mance. Except for NCSC and DSCRLE implemented in Python
3.7.13, all methods are implemented in MATLAB R2020a. For

the implementation of our BGPC, the edge detection for HSI seg-
mentation is based on the Image Processing Toolbox in MAT-
LAB, while the connected component discovery for bipartite
graph is based on the Bioinformatics Toolbox in MATLAB. All
experiments are run on a machine with 3.00 GHz CPU and 64 G
RAM. To alleviate randomness, the experiments for each com-
pared method are repeated 10 times and their average results are
reported.

D. Experimental Results

Table II displays the clustering results of different methods
in terms of six evaluation metrics. The optimal results are in
bold font for emphasis. Based on Table II, the following ob-
servations can be given. First, K-means is superior to FCM
with 5.72% overall improvement for traditional clustering, while
SGLSC is better than FSCAG, SGCNR, HESSC and NCSC with
10.35%, 15.92%, 25.84% and 23.53% overall enhancement for
advanced clustering. Besides, traditional clustering methods are
inferior to advanced clustering methods in most cases. This is
because advanced clustering methods simultaneously consider
spectral and spatial information during learning while traditional
clustering methods only utilize spectral information. Second,
for pixel-level methods, FSCAG and SGCNR are superior to
HESSC on the Salinas dataset and inferior to HESSC on the
Pavia University and Pavia Center datasets. For superpixel-level
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TABLE IV
COMPUTATIONAL EFFICIENCY COMPARISON OF DIFFERENT METHODS ON HSI DATASETS (MEASURED BY SECOND)

Fig. 7. Performance variance of BGPC with respect to different settings for the parameter K, S, R and P on HSI datasets.

methods, SGLSC always provides better results compared to
NCSC. To obtain better performance for NCSC and SGLSC, it
is very important to generate the accurate superpixels. Third, it is
clear that our BGPC significantly outperforms other competitors
except for SGLSC in terms of NMI and DSCRLE in terms of
F-score. Compared to the second best method DSCRLE, BGPC
gains at least 1.64%, 5.64% and 6.07% improvement by averag-
ing six metrics on the three datasets, respectively. In comparison
with other superior methods, e.g, SGLSC and S 3 AGC, the en-
hancement of BGPC is even more evident. The superiority of
BGPC is attributed to the exploitation of spatial information in
denoising and anchor initialization for the joint learning of pro-
jection and optimal bipartite graph to directly obtain the cluster-
ing outcome after one-pass learning.

To demonstrate the significant difference between BGPC
and other methods from a statistical perspective, we utilize a
two-tailed t-test with 95% confidence for evaluation. Table III
presents the statistical results with respect to ACC. There is
a significant difference between two compared methods if their
p-value is smaller than 0.05. Based on Table III, it is obvious that
all p-values of comparisons between BGPC and other methods
are much smaller than 0.05 on the three HSI datasets. Recalling
Table II, we can find that BGPC always exhibits superior cluster-
ing performance with significant difference than other methods.
In addition, to visualize the clustering performance, we display
the clustering maps of the three HSI datasets obtained by differ-
ent methods in Figs. 4–6. As can be observed, the superiority of
BGPC is aligned with the aforementioned observations.

E. Computational Efficiency Analysis

To analyze the computational efficiency of all compared meth-
ods, we display their time complexities and corresponding run-
ning time in Table IV. About the notations of time complexity,
N , B, M , C and T denotes the number of pixels, bands, an-
chors/superpixels, clusters and learning iterations, respectively.

TABLE V
CLUSTERING PERFORMANCE OF BGPC WITH DIFFERENT SEGMENTATION

METHODS AND THEIR RUNNING TIME FOR SEGMENTATION ON HSI DATASETS

(MEASURED BY SECOND)

As can be observed, K-means, FCM, FSCAG, SGCNR, S3AGC,
DSCRLE and our BGPC show the linear time complexity for
the number of pixels, while NCSC and SGLSC represent the
quadratic time complexity for the number of superpixels. Be-
sides, HESSC demonstrates the efficiency between the linear
and quadratic time complexity for the number of pixels. It is
clear that our BGPC demonstrates the superiority in time com-
plexity.

As for running time, K-means, FCM, FSCAG, SGCNR and
S3AGC are more efficient among all compared methods due to
the linear time complexity. Compared to these five methods, our
BGPC requires more runing time for pursuing exactly connected
components. It is obvious that HESSC, NCSC and DSCRLE are
the most time-consuming methods because of the repeated tree
node partition and complex network training. For SGLSC, it
needs less running time on the Salinas dataset, but takes much
more running time on the Pavia University and Pavia Center
datasets. Since these datasets are with large sizes, the running
time of BGPC is reasonable in practice. In summary, our BGPC
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TABLE VI
ABLATION STUDIES OF OUR BGPC ON HSI DATASETS

not only shows superior clustering performance but also repre-
sents acceptable computational efficiency.

F. Parameter Sensitivity Study

For BGPC, the dimensionR is crucial for projection learning,
the parameterK is related to superpixel denoising, the parameter
P is relevant to update Z, and the parameter S is vital for su-
perpixel segmentation. To study their parameter sensitivities, we
report the performance variance by assigning different values for
them in Fig. 7. Specifically, R is tuned from 0.25B to 0.5B with
step 0.05B, K is varying from 5 to 19 with step 2, S is adjusted
from 500 to 2000 with step 250, andP is adapted from 3 to 9 with
step 1. With different values for them, BGPC shows different
clustering results. In detail, BGPC show superior performance
even when R is small. The performance variance with different
dimensions is attributed to the information discrepancy of dif-
ferent projected representations. The performance of BGPC is
superior when K is moderate, and the best results are obtained
when K = 13. The suitable value for K is conducive to perform
effective denoising for robust representation and further learn-
ing. Besides, BGPC demonstrates the best performance when
S = 2000, and displays inferior performance when S ≤ 1750.
The suitable value for S is beneficial to generating superpix-
els with well-exploited spatial information. The performance of
BGPC is fluctuant when setting different values for P , and the
optimal results are achieved when P = 5. The proper value for
P is more able to learn the sparsity and connected components
of the bipartite graph. The above observations also validate our
experimental setup.

G. Superpixel Segmentation Analysis

In our BGPC, ERS [45] is employed as a tool to localize the
homogeneity of HSI data and generate superpixels with spa-
tial information. Apart from ERS, many representative methods
are designed for superpixel segmentation, such as simple linear
iterative clustering (SLIC) [55] and linear spectral clustering
(LSC) [56]. In Table. V, we report the clustering performance
of our BGPC with three segmentation methods (SLIC, LSC and
ERS) and record the corresponding running time for segmenta-
tion. We can find that the three segmentation methods are very
efficient. With different segmentation methods, our BGPC rep-
resents different clustering results. It is clear that our BGPC
with ERS provides much better clustering results than the other

TABLE VII
CLUSTERING PERFORMANCE OF BGPC WITH DIFFERENT DENOISING

STRATEGIES ON HSI DATASETS

two settings. Thus, we utilize ERS in our setting because of its
potential in both effectiveness and efficiency.

H. Ablation Study

To investigate the effect of each component, we conduct abla-
tion study to show the degraded variants of BGPC with different
settings by removing different components. For the degraded
variants, we use the notations “

√
” and “✗” to indicate their set-

tings containing a specific component or not. As can be observed
from Table VI, the variant with setting “S1” shows the worst
performance without considering any components. Under local
region guidance, the variant with setting “S2” containing spatial
denoising is superior to the variant with setting “S3” contain-
ing spatial anchor selection in most cases. By introducing both
spatial denoising and spatial anchor selection, the variant with
setting “S4” significantly outperforms the variants with setting
“S2” and setting “S3”. It is clear that, compared to the second
best variant with setting “S4”, BGPC shows the best perfor-
mance with at least 10.76%, 22.24% and 14.48% improvement
on the three datasets by simultaneous considering all valuable
components for better HSI clustering.

To further validate the effect of our spatial denoising and an-
chor selection, we also use different denoising strategies [29]
and different anchor selection strategies [37] for substitution
and comparison. The results are presented in Tables VII–VIII.
Compared to denoising across the entire image and denoising
with a square window, our spatial denoising strategy with su-
perpixel is able to well utilize spatial information to achieve
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TABLE VIII
CLUSTERING PERFORMANCE OF BGPC WITH DIFFERENT ANCHOR

INITIALIZATION STRATEGIES ON HSI DATASETS

much higher clustering results. This is because HSI denoising
with spatial information is able to eliminate the noises and im-
prove the representation capability. Compared to random strat-
egy and K-means strategy, our spatial anchor selection strategy
with superpixel also exhibit better clustering performance with
the aid of spatial information. This can be demonstrated that an-
chor initialization with spatial information is good at selecting
high-quality anchors.

VI. CONCLUSION

In this paper, we proposed a bipartite graph-based projected
clustering (BGPC) method with local region guidance for HSIs.
Based on texture information, the HSI is partitioned into multi-
ple superpixels to reflect the spatial distribution of land covers.
For each superpixel, denoising is performed by reconstructing
pixels with a weighted summation of nearest neighboring pix-
els and anchor initialization is determined by averaging all de-
noised pixels. To facilitate efficient clustering, projection learn-
ing and structured bipartite graph learning is jointly formulated
into the optimization problem of the ideal and adaptive neighbor
assignment. An alternating optimization strategy is designed as
solution to the formulated problem. It can directly provide clus-
tering results with linear time complexity. Extensive experi-
ments have demonstrated the remarkable performance of our
BGPC by comparing the state-of-the-art HSI clustering meth-
ods.
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