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Understanding crowd mobility is critical for many applications. In this paper, we propose CrowdMirage, a WiFi positioning-
based crowd mobility digital twin for smart campuses. Specifically, we first design an end-to-end human mobility trace
extraction pipeline from the comprehensive but noisy WiFi connection logs on a university campus. We then design two
predictive and simulative models for the crowd flow prediction and simulation tasks, respectively. Considering the particularity
of on-campus mobility, we propose a cross-grained crowd flow prediction model to forecast crowd flow at both building
and floor levels. For crowd flow simulation, we design a conditional generative model based on conditional diffusion to
simulate the crowd flow under given mobility-related contexts that are systematically identified. We evaluate CrowdMirage on
two-year WiFi connection logs collected at our university. The results show that CrowdMirage achieves superior performance
in both crowd flow prediction and simulation tasks. Our case studies show that CrowdMirage cannot only accurately forecast
cross-grained crowd flow across different cases, but also simulate interpretable crowd flow under previously unseen conditions.
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1 INTRODUCTION
The study of crowdmobility is essential across various fields, such as urban planning [59], public health [62], social
sciences [46], and environmental sustainability [6], and disaster management [65] etc. On one hand, modeling
comprehensive crowd flow can support predictive analysis forecasting future crowd flow based on past crowd flow
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Table 1. Statistical comparison of datasets

Dataset #Users/Devices #Check-ins #POIs Sampling Rate Activity Scale Duration

GeoLife [75] 182 24.9M - 1-5s City 54 months
Lausanne MDC [33] 200 95.4M - 1-15mins Country 18 months
Copenhagen CNS [57] 700 7.6M - 5mins City 4 weeks
Gowalla [10] 196.6K 6.4M 1.3M 4.59h (median) Global 21 months
Brightkite [10] 58.2K 4.5M 773K 3.25h (median) Global 31 months
Foursquare [66] 2.7M 90M 11.1M 22.18h (median) Global 22 months
CrowdMirage 81.8K 4.2B 8K 27s (median) Campus 24 months

history [74], providing invaluable insights for making informed decisions and implementing proactive policies.
On the other hand, crowd flow simulation [23] generates crowd flow under given scenarios to answer “what-if”
queries, which can be used as an effective sandbox for benchmarking mobility-related applications/policies. Both
predictive and simulative analyses are critical for crowd mobility studies, which are thus the key ingredients in
the development of a so-called mobility digital twin, serving as a holistic digital replica of crowd mobility.
In the current literature, existing works mainly focus on proposing algorithmic solutions addressing either

predictive or simulative tasks in an ad-hoc manner without building an end-to-end framework [40]. They mostly
resort to existing mobility datasets publicly available online, which are usually collected on a small scale or suffer
from low data quality. On one hand, lab-controlled data collection schemes using specific hardware can obtain
high-quality but small-scale mobility datasets, which are usually limited to hundreds of users. For example, as
shown in Table 1, GeoLife dataset [75] contains detailed trajectories of 182 users in Beijing over a period of more
than 4 years, with a pre-defined sampling rate of every 1-5 seconds or every 5-10 meters per point; the Lausanne
Mobile Data Challenge (MDC) [33]) dataset is limited by 200 users in a country scale with a pre-defined sampling
rate of 1-15 minutes per point; the Copenhagen Networks Study (CNS) [57] involves over 700 university students
over a period of four weeks, with a sampling rate of GPS every 5 minutes. However, such a small sample size
makes it difficult to infer broad mobility patterns or perform downstream tasks. It is also unclear if these samples
are representative of the entire population.
On the other hand, user-shared mobility data on social media or mobile networks contains large-scale but

low-quality data. For example, the widely used Gowalla [10], Brightkite [10] and the Foursquare dataset [66]
include 6.4 million, 4.5 million, and 90 million check-ins at 1.3M, 773K, and 11.1M Point of Interests (POIs) by
196.6K, 58.2K and 2.7M users on a global scale, respectively. However, user voluntarily shared check-ins on social
media platforms imply intrinsic biases due to user preferences, and also suffer from severe data sparsity issues, as
evidenced by the median time between successive check-ins being over 4 hours, 3 hours, and 22.18 hours for the
three datasets, respectively.
These limitations introduce inevitable biases to the downstream predictive and simulative analyses, which

thus hinder the development of a holistic mobility digital twin.
In this paper, we design and develop CrowdMirage, an end-to-end mobility digital twin framework for smart

campuses. It serves as a digital replica of on-campus crowd flow, which not only senses and monitors the
comprehensive crowd flow via WiFi Access Points (APs) deployed on a university campus, but also supports
both predictive and simulative analyses of on-campus crowd mobility. We report our experience in identifying
and tackling the challenges and issues encountered in extracting crowd flow data from raw WiFi connection
data, and in designing both predictive and generative models for the on-campus crowd mobility forecasting and
simulation, respectively. Specifically, the design and development of CrowdMirage face the following research
challenges and practical issues.
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• How to precisely extract crowd flow from noisy WiFi connection records? In this study, we use WiFi APs
on a university campus to sense crowd flow. Specifically, on the university campus of 1.09 km2, over
8,000 WiFi APs have been deployed, covering approximately 93% indoor and 40% outdoor areas of the
campus, providing Internet services to over 13,000 students and staff, as well as to guests. Individuals
carrying WiFi-equipped mobile devices (e.g., smartphones, watches, bracelets, tablets, and laptops) leave
their spatiotemporal “digital footprints” when moving on campus, recorded by the (automatic) connection
logs between the devices and the WiFi APs. However, such data is intrinsically noisy to represent crowd
mobility, due to the inevitable presence of non-mobile devices (e.g., desktops), multiple devices possessed
by the same individual, multiple WiFi SSIDs, and randomized MAC addresses of some devices, etc. Existing
studies [12, 33, 57, 69, 73] on WiFi-positioning-based human mobility often provide little or insufficient
technical details on the data processing pipeline.

• How to design practical predictive models for cross-grained on-campus crowdmobility? Compared to traditional
GPS-based mobility traces, WiFi-positioning-based mobility traces cannot only characterize the crowd
flow between buildings on campus, but also finer-grained crowd flow between building floors, where some
floors of different buildings could be connected via skyways. In this context, modeling the building- and
floor-level crowd mobility are both critical for efficient facility management, such as for air conditioning or
elevator control optimization. However, crowd mobility often exhibits different spatiotemporal patterns at
different levels of granularity, while also having intrinsic correlations across granularities. Existing work
on crowd flow prediction mostly focuses on uni-grained crowd flow [25, 36, 64, 70] and thus fails to jointly
capture the cross-grained crowd mobility patterns.

• How to design conditional generative models for the holistic simulation of crowd flow beyond imitation? The
on-campus crowd mobility patterns usually exhibit on one hand obvious spatiotemporal regularities. On
the other hand, such mobility patterns indeed depend on various context factors, including but not limited
to time in a day, day in a week, academic almanac, weather conditions, and warning signals (for tropical
cyclones, rainstorms, or thunderstorms, etc.). However, existing crowd flow simulation techniques mostly
resort to statistical or mechanistic models to reproduce previously seen crowd mobility patterns [2, 56] and
ignore the mobility-related context factors. Against this background, it is important to design conditional
generative models incorporating these context factors for the holistic simulation of crowd flow beyond
imitation, i.e., simulating crowd flow under previously unseen scenarios.

To address these issues, we first design an end-to-end crowd mobility flow extraction pipeline based on a
thorough analysis of the raw WiFi connection logs to identify and filter out various mobility-irrelevant noises
to extract informative on-campus crowd flow data. Afterward, considering the particularity of the on-campus
mobility with different location granularities, we propose a cross-grained crowd flow prediction model with a
learnable knowledge transfer mechanism between different granularities, so as to effectively forecast future crowd
flow at both building and floor levels. Moreover, we formulate the crowd flow simulation problem as a conditional
generation problem, and then systematically identify influential context factors and resort to conditional diffusion
models for conditional generation. We build a prototype of our mobility digital twin CrowdMirage and evaluate
it on the long-term and comprehensive WiFi connection logs collected in our university for two years. Our
contributions are summarized as follows:

• We propose an end-to-end robust crowd mobility flow extraction pipeline with detailed data processing
and flow estimation steps, which can accurately estimate crowd mobility flow from the raw and noisy WiFi
connection logs.

• We propose a cross-grained crowd flow prediction model, which designs a learnable knowledge transfer
mechanism between different location granularities, benefiting on-campus crowd flow prediction at both
building and floor levels.
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• We design a conditional generative model for crowd flow simulation based on conditional diffusion, which
systematically identifies and integrates influential mobility-related context factors for the holistic simulation
of crowd flow beyond imitation.

• The evaluation using real-world WiFi connection logs shows that CrowdMirage achieves superior perfor-
mance in both crowd flow prediction and simulation tasks, with 3.35%-9.09% and 8.80%-68.92% improvement
over the best-performing baselines, respectively. Our case studies also demonstrate that CrowdMirage can-
not only accurately forecast cross-grained crowd flow across different cases, but also simulate interpretable
crowd flow under previously seen conditions.

The rest of the paper is organized as follows: In Section 2, we present the related work. This is followed by
an overview of the CrowdMirage framework in Section 3. The three main components of our study, namely
crowd mobility flow extraction, crowd flow prediction, and crowd flow simulation, are detailed along with their
design choices in Sections 4, 5, and 6, respectively. Section 7 describes the experiments conducted on these three
components, demonstrating the effectiveness of our proposed model. In Section 8, we provide a discussion on
potential use cases for both crowd flow prediction and simulation. Finally, Section 9 concludes the paper.

2 RELATED WORK
In this section, we briefly discuss two threads of related work on human mobility analytics and smart campus
digital twins.

2.1 Human Mobility Analytics
Human mobility analytics can be dated from 1885, when Ravenstein studied human migration using mobility
trajectories extracted from demographic data [50]. Nowadays, various IoT sensors make humanmobility trajectory
data much more accessible [17, 22]. On the one hand, user-voluntarily-shared mobility data on social media
platforms is often used for human mobility studies, such as a widely used Foursquare global dataset consisting of
over 90 million check-ins by over 2 million users on over 11 million POIs [67]. However, due to the voluntarily
sharing basis, such a dataset has inevitable issues of sparsity and biases [66]. On the other hand, lab-controlled
data collection schemes recruit participants for mobility data collection. Due to its practical implementation and
the privacy concerns of individuals, the scale of the publicly available mobility traces are often small, which is
usually limited to hundreds of users (e.g., 700 students in Copenhagen Networks Study [57], and 200 users in
Lausanne Mobile Data Challenge [33]).
According to the mobility analytic problem settings [40], human mobility modeling techniques roughly fall

into two types of tasks (i.e., predictive and generative tasks) with two types of data representation (i.e., individual
mobility trajectories and crowd flow). First, predictive tasks on mobility trajectories are known as location
prediction problems, forecasting the location of an individual based on the user’s historical mobility traces
[63, 66]. Second, predictive tasks on crowd flow forecast the crowd flow (the number of individuals or vehicles)
of locations based on historical crowd flow data [38, 41]. Third, generative tasks on mobility trajectories try
to generate synthetic trajectories that are similar to real-world human mobility traces in terms of statistical
patterns [23, 39]. Finally, generative tasks on crowd flow generate synthetic flow among locations, mimicking the
real-world mobility flow patterns [55, 56]. These mobility modeling tasks have been widely studied to support
various smart city applications, such as urban event organization [8], location recommendation [68], crowdsensing
[71], urban resource allocation [9], telecommunication [19, 42] and urban dynamic simulation [37], etc.
In this paper, we design and develop CrowdMirage, a crowd mobility digital twin that not only senses and

monitors comprehensive on-campus crowd mobility via Wi-Fi APs, but also learns to forecast future crowd flow
and simulate crowd flow in unseen scenarios. Note that a few recent works also study comprehensive user
mobility traces collected via WiFi APs for a building complex [69, 73] or a university campus [12]. While the first
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two works focus on predictive modeling, the second work presents an empirical analysis of on-campus mobility.
Our work differs from these works by designing and developing a crowd mobility digital twin for both predictive
and simulative analyses of on-campus crowd mobility.

2.2 Campus Digital Twins
A campus digital twin refers to a virtual replica or representation of a physical campus environment that enables
monitoring, analysis, and simulation of various aspects of campuses [5]. In the current literature, existing works
on campus digital twins can be classified into two main categories according to their focuses, i.e., immersive
learning and campus management.

On the one hand, digital twins of learning environments, such as virtual classrooms, labs, or exam rooms, are
developed to provide immersive learning to students via virtual reality and augmented reality technologies. In
particular, such immersive learning has gained increasing popularity during COVID-19 [32] in the past few years.
For example, the University of Kansas School of Nursing designs virtual exam rooms for students to conduct
health assessments with patients via question-answering under the supervision of the instructors [4]; Morehouse
College designs a so-called metaversity [32] providing students with virtual classroom, labs, and even imagined
learning places [7]; the University of Pennsylvania uses digital platform to imitate in-person office hours [34];
the Fisk University developed digital twins for their Cadaver Lab [47].
On the other hand, digital twins of campus infrastructures are developed for efficient campus management,

which primarily focuses on the integration of the Building Information Modeling (BIM) paradigm [24]. For
example, Heriot-Watt University [60] and the University of Glasgow [49] developed campus digital twins to
investigate the potential energy, carbon, and cost savings of building heating systems, for the goal of zero-carbon
building/campus management; Eindhoven University of Technology [31] and the University of Texas Austin
[35] developed campus digital twins for smart building energy management and control; Rice University [61]
developed its Campus Digital Twin on top of ArcGIS with searchable facilities. Moreover, besides the energy
consumption data, various IoT sensor data can also be integrated into campus digital twins. For example, Dublin
City University developed a 3D version of the digital campus, which integrates data from IoT sensors on footfall,
energy, and water usage [24], and provides real-time monitoring of the campus infrastructure. King Abdullah
University of Science and Technology developed a campus digital twin to assess transportation emissions on
campus via simulated mobility data [1]. The University of Murcia integrated data from various IoT sensors,
including energy consumption, building occupancy, room usage, solar energy, and other resource consumption
[51] for better campus management. University Ramon Llull integrates building information modeling tools with
the Internet of Things-based wireless sensor networks in the fields of environmental monitoring and emotion
detection to provide insights into the level of comfort [72]. These existing works mostly focus on the monitoring
and control of on-campus infrastructures, thus providing limited intelligence to campus management.
In this paper, we focus on building a crowd mobility digital twin using real-world Wi-Fi-positioning-based

mobility data, providing both predictive and simulative analyses of on-campus crowd mobility. To the best of our
knowledge, this is the first crowd mobility digital twin of its kind.

3 FRAMEWORK OVERVIEW
The design of our CrowdMirage is shown in Figure 1. First, the crowd mobility flow extraction module extracts
both crowd flow (i.e., the number of users surrounding an AP) and Origin-Destination (OD) transition flow (i.e.,
the number of users transiting from an origin to a destination) from the noisy WiFi connection records, via our
mobility trace extraction pipeline designed based on our extensive empirical analysis and investigation of the
WiFi connection logs. Second, the crowd flow prediction module designs a cross-grained information transfer
mechanism that systematically integrates the building- and floor-level spatiotemporal Graph Neural Networks
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Fig. 1. Overall design of CrowdMirage

Table 2. WLAN Configurations and Policies

Account Secured_WLAN eduroam Public_WiFi
University account ✓ ✓ ✓
eduroam account × ✓ ✓
Guest × × ✓

(GNNs), to benefit the crowd flow prediction on both location granularities. Third, the crowd flow simulation
module designs a conditional diffusion model generating both crowd flow and OD transition flow conditioned on
given mobility-related contexts, to achieve the generation beyond imitation for previously unseen contexts. The
right panel shows the heatmap visualization of the predicted and simulated crowd flow. We present the details of
individual modules below.

4 CROWD MOBILITY FLOW EXTRACTION
In this section, we present our approach to extracting crowd mobility flow from the noisy WiFi connection
records, discussing how we address the technical issues we encountered.

4.1 Wireless Network Deployment and Configuration
In our university, the Wireless Local-Area Network (WLAN) is deployed with over 8,000 APs, covering 93%
indoor and 40% outdoor areas of the campus. The APs support the IEEE 802.11b/a/g/n/ac/ax standard with radio
frequencies of 2.4/5 GHz using devices from Aruba Networks. The WLAN service is provided to different users
with different accounts following three different policies as shown in Table 2. First, Secured_WLAN can be
accessed by university account holders only (students and staff), providing both public internet and university
intranet services. Second, eduroam is an international WiFi internet access roaming service for users in research,
higher education, and further education institutes; users can access eduroam via their own institute accounts
if their affiliated institution has joined the eduroam project. Note that the university account holders can also
access eduroam. Third, Public_WiFi provides public guests with account-free and short-term Internet access, for
a maximum of 8 hours per day; a guest needs to agree to the terms of use via a captive portal before accessing
this network.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 158. Publication date: December 2024.
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Table 3. WiFi log examples

Access Point Timestamp Connection Status Hashed Device MAC Hashed Account
RC8-GF-12 2023-12-01 15:27:30 Auth request c4b***c46 a0d***b08
RC8-GF-12 2023-12-01 15:27:30 Auth success c4b***c46 a0d***b08
RC8-GF-12 2023-12-01 15:27:30 Assoc request c4b***c46 a0d***b08
RC8-GF-12 2023-12-01 15:27:30 Assoc success c4b***c46 a0d***b08
RC2-1F-18 2023-12-01 15:50:00 Assoc request c4b***c46 a0d***b08
RC2-1F-18 2023-12-01 15:50:00 Assoc success c4b***c46 a0d***b08
SQC3-2F-3 2023-12-01 21:05:02 Disassoc from sta c4b***c46 a0d***b08
SQC3-2F-3 2023-12-01 21:40:29 Deauth from sta c4b***c46 a0d***b08

4.2 WiFi Connection Logs
The WiFi connection logs are managed on the Splunk1 platform. As shown in Table 3, we extract each connection
record consisting of five fields: Access Point, Timestamp, Connection Status, Hashed Device MAC, and Hashed
Account.

• Access Point: A unique label per AP, which specifies its location at three levels, i.e., building, floor, and AP,
separated by the “-”, from left to right. For example, “RC8-GF-12” represents the building of Residential
College (RC) 8, Ground Floor (GF), AP with the ID 12.

• Timestamp: The timestamp for each connection in the format of “yyyy-MM-dd HH:mm:ss”.
• Connection Status: For users with accounts, the first-time connection log series would be “Authentication
request—Authentication success-Association request—Association success”. For account-free users, the
authentication steps do not apply. Afterward. if a connected device is in a fast-roaming mode, it will skip
the authentication steps and keep switching between different APs with "Assoc request—Assoc success"
until the device completely disassociates or deauthenticates from the WLAN. Otherwise, the connected
device would also follow the first-time connection logs when switching to another AP. Besides, associations
are not always completed with "Assoc success" but may fail with "Association Failed" due to bad network
quality.

• Hashed Device MAC: A unique hashed value for the MAC address of a WiFi-equipped device connected to
a WLAN.

• Hashed Account: A unique hashed value for the user account (if any) that is used to connect to a WLAN.
Note that each user account could be used on multiple WiFi-equipped devices.

4.3 Mobility Trace Extraction Pipeline
The extracted WiFi connection logs contain useful information on on-campus human mobility, but also contain
inevitable noises. Subsequently, we design a robust human mobility trace extraction pipeline as follows.

4.3.1 Connection Status Pre-Processing. The extracted WiFi connection logs consist of different connection status,
which are redundant to represent the spatiotemporal presences of the corresponding devices.

First, we found a large amount of duplicated logs with the connection status “Auth request” and “Auth success”.
After digging into the raw connection logs from the Splunk log management system, we found that these
duplicated entries are mostly generated by devices with university accounts authenticating to one of the networks
eduroam or Secured_WLAN and then quickly shift to the other within the same second; these two networks are
deployed on the same AP hardware but with different BSSIDs, resulting in two identical entries in our extracted

1https://www.splunk.com/en_us/blog/learn/what-splunk-does.html
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Fig. 2. Data distribution of the raw WiFi logs. (a) The frequency of the number of unique APs connected by each device per
week. (b) The frequency of the number of unique devices by each user. The red color indicates the noises being filtered out.

logs (because we only focus on which physical AP hardware a device connects to, while the BSSIDs are not
extracted). This shift is due to individual device configuration of auto-connection, depending on the connection
priority setup, signal strength and quality. Based on this insight, we first eliminate these duplicated log entries.

Second, we discover that the status of “Auth request” and “Assoc request” are not always reliable to represent
the physical closeness of a device to an AP, because they might be followed by “Auth failed” and “Assoc failed”,
which could be caused by the WiFi signal strength and quality. Note that the “Auth failed” status could also be
caused by wrong credentials, but this rarely happens because the successfully authenticated credentials are often
automatically stored by user devices. Therefore, we remove log records with the two connection status.

Third, the “Auth success” and “Assoc success” status indicate that a user device is within a reasonable distance
from an AP such that the authentication or association process can be successfully accomplished.
Finally, we observe that “Deauthentication from station” and “Disassociation from station” status are often

significantly lagged with an unpredictable delay. For example, when a device moves from one AP to another, the
“Disassoc from sta” log from the former AP is often recorded with a timestamp later than the “Assoc success” log
at the latter AP, which makes the “Disassoc from sta” status unreliable to estimate the actual departure time of
the device from the former AP.
Following the above reasons, we filter the log entries with “Auth success” and “Assoc success” status, and

then keep only the log fields including Access Point, Timestamp, Hashed Device MAC, and Hashed Account.
Subsequently, the filtered logs record the physical presence of devices close to APs.

4.3.2 Noisy Device Filtering. Based on the filtered logs, we then extract the trajectories of the devices, represented
as a sequence of AP-timestamp pairs. However, log records from some devices cannot reflect on-campus human
mobility. Through our empirical analysis, we identify the following types of noisy devices and filter out the noisy
devices according to the defined criteria.

• Guest Devices. The guest devices refer to the devices connecting to the network Public_WiFi without
authentication and thus no user account. Our empirical analysis shows that each guest device has connected
to a much smaller number of APs (4.03 on average per day) than the devices with accounts (26.4 on average
per day). Subsequently, the guest devices have quite limited contributions to the crowd mobility traces and
are thus considered not representative of on-campus mobility. Therefore, these guest devices are excluded
from our analysis.

• Non-(or low-)mobile Devices. Our empirical analysis shows that some devices may attach to a small
number of APs over a long period, which could be WiFi-equipped desktops, lab equipment, or smart home
equipment that cannot reflect human mobility. According to our empirical analysis on the frequency of
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the number of unique APs connected by each device per week as shown in Figure 2(a), we define those
devices that have ever connected to less than 10 different APs per week as non-(or low-)mobile devices.
These devices represent 30% of the total devices and correspond to 9% of the total logs.

• Publicly Shared Devices. We observed in the rawWiFi logs that a few devices may attach to an unreasonably
large number of APs in a period, which could be shared handsets for campus security staff that are not
representative of individuals’ trajectories. According to the frequency of the number of unique APs
connected by each device per week as shown in Figure 2(a), we define those devices that have ever
connected to over 500 APs per week as publicly shared devices. These devices represent 0.25% of the total
devices and correspond to 2% of the total logs.

• Devices with non-persistent MAC randomization. We observed that a few accounts are associated with
an unreasonably large number (up to 8000) of devices, uniquely identified by hashed device MACs. Our
investigation shows that they are probably due to the setting of non-persistent MAC randomization of
some devices. For example, smartphones equipped with Android 10/11 [16] or IOS 14 [58] randomize their
MAC addresses for different WiFi networks with the persistent MAC randomization policy by default,
where a persistent randomized MAC address is used for a WiFi network (a unique SSID). In our studied
WLAN, this implies that each device could have three MAC addresses for the three SSIDs, Secured_WLAN,
eduroam, and Public_WiFi, respectively. However, the device equipped with Android 12 [16] and above can
manually set to a non-persistent MAC randomization mode, which will re-randomize the MAC address at
the start of every connection. As we cannot explicitly identify this case in our extracted logs with only
hashed device MAC, we thus filter out accounts with a large number of devices (unique MAC addresses).
As seen in Figure 2(b), most users possess a small number of devices. In the daily lives of students and staff,
the most commonly used devices are mobile phones, tablets, and laptops. We empirically assume each user
may have up to 5 mobile devices, corresponding up to 3×5=15 MAC addresses if all are set to persistent
MAC randomization. We thus filter out devices with accounts with over 15 hashed device MAC addresses,
representing 0.05% of the total accounts and corresponding to 10% of the total logs.

Note that the above noisy devices may overlap, such as a guest device is often a low-mobile device.

4.3.3 Human Mobility Trace Extraction. After the log preprocessing and filtering of noisy devices, we need to
extract human mobility traces from device mobility traces. Specifically, an individual often possesses multiple
devices, such as a mobile phone, a smart watch/bracelet, or a tablet/laptop. The collective logs of these devices
often show “sudden-move” where two devices under the same user account appear at two distant APs at (almost)
the same time. Because active devices may not be carried by the user all the time; a student may go to a classroom
with her mobile phone while leaving her tablet connected to WiFi at the dormitory. Therefore, we group the WiFi
logs with the same Hashed Account and sort out the device with the most connections in one week, which is
regarded as the most actively used device of the user in that week. We thus select the logs of this primary device
to represent the mobility trace of the user in that week, formulated as a sequence of AP-timestamp pairs. We
regard this step as the primary device selection and evaluate its usefulness in the experiments later. We consider
the most active device for every week here to take into account the fact that a user may upgrade their most used
devices over time.

4.4 Crowd Flow Estimation
Considering the practical use cases (e.g., the frequency of the campus loop shuttle is every 10-15 minutes), we
estimate the crowd flow at a 10-minute time granularity based on the extracted human mobility trace. We assume
that a user contributes to only one AP in a 10-minute time slot. Then the crowd flow of an AP can be estimated as
the number of users contributing to the AP in a 10-minute time slot. However, this crowd flow estimation method
has to consider the following practical issues raised from our empirical analysis of the dataset.
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• Extracted human mobility traces may have connections to multiple APs in one 10-minute time slot. In
this case, the AP that has the most connections with the device is considered the contributed AP in the
10-minute time slot.

• Two consecutive logs may also imply a time interval over 10 minutes. In this case, considering the campus
size of 1.09 km2, if the two continuous WiFi logs are connected with two different APs and the time interval
is less than 60 minutes, we assume that the user is moving from one AP to the other. The first half of the
interval contributes to the origin AP and the second half contributes to the destination AP. If the time
interval is over 60 minutes, we assume that the user is out-of-campus and does not make a contribution to
any AP in that period.

• Users may stay at the same locations for a long time, such as attending a class or resting in the dormitory.
This might cause the WiFi module of devices to be in a sleeping mode, especially for devices with no apps
running in the backend. Therefore, if the two consecutive WiFi logs are connected to the same AP with a
time interval of over 10 minutes, we assume the user always contributes to the AP during this time period.

Following the above process, we estimate the crowd flow of 𝑖-th AP denoted as 𝑥𝑖 and all crowd flow in one
10-minute time slot 𝑡 can be represented as a vector Xt = [𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝑛,𝑡 ], where 𝑛 is the total amount of the
APs. Furthermore, following the three-level hierarchy of AP locations “Building-Floor-AP”, the flow in one floor
or building can be computed as the sum of flow of all APs located in the floor or building.

4.5 OD Transition Flow Estimation
Besides the crowd flow that characterizes the number of users surrounding an AP, we also estimate the Origin-
Destination (OD) Transition Flow that characterizes the number of users transiting from an origin to a destination
during each 10-minute time slot, represented as an OD transition flow matrix. The OD transition flow estimation
should consider the following practical issues besides those mentioned above for crowd flow estimation.

• As we record the number of transitions from an origin to a destination in each 10-minute time slot, the
transition may take over 10 minutes. Therefore, we record each transition into its departure time slot.

• Staying at the same location (the origin is the same as the destination) does not contribute to any OD
transition flow.

• To characterize the transition from/to out-of-campus places, we add one extra row/column to the OD
transition flow matrix to record these transitions.

Following the above process, we estimate the OD transition flow matrix in the 10-minute time slot 𝑡 , denoted
asMt ∈ R(𝑛+1)×(𝑛+1) whereM𝑡 [𝑜, 𝑑] is the transition flow from the origin 𝑜 to the destination 𝑑 and (𝑛 + 1) is the
number of APs plus one extra row/column for out-of-campus places. Following the three-level hierarchy of AP
locations “Building-Floor-AP”, we can compute the transition flow between floors or buildings by aggregating
the transition flow between the corresponding AP pairs.

4.6 Data Privacy
In the whole framework design, we implement the following privacy protection mechanisms. First, the WiFi
connection logs are extracted from the Splunk log management system directly with hashed device MAC and
hashed accounts, without any other metadata about the devices or user accounts. Second, the mobility trace
extraction pipeline is implemented and executed on the same intranet of the log management system, without
any external access. Third, only the extracted crowd flow and OD transition flow are used to represent on-campus
crowd mobility. Finally, the AP label (e.g., “RC8-GF-12” as shown in Table 3) is designed to be able to identify
the corresponding building (RC8) and floors (GF) only but not the specific location where the AP (12) is located
on the floor. Moreover, we design the following predictive and simulative analysis module considering only the
building- and floor-level crowd mobility.
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Fig. 3. Our crowd flow prediction model capturing the cross-grained crowd mobility patterns

5 CROWD FLOW PREDICTION
Crowd flow prediction aims to forecast future crowd flow with the input of historical crowd flow data. In our
CrowdMirage, we focus on the crowd flow prediction at both the building and floor levels, while considering not
only the spatiotemporal dynamics unique to individual levels but also their cross-dependencies. The overview of
our proposed model is shown in Figure 3. It first uses two identical but separate single-grained spatiotemporal
GNNs designed to capture the respective spatiotemporal dependencies of crowd flow within a single location
granularity building or floor, respectively. The cross-grained information transfer module then designs a dual-
channel information transfer mechanism, i.e., “floor to building” and “building to floor” channels, each employing
unique strategies for effective information transfer. In the following, we first present our problem formulation,
followed by the single-grained spatiotemporal GNN and the cross-grained information transfer module.

5.1 Definitions and Problem Formulation
We consider the two-level location hierarchy of crowd flow:

• Building-Level Crowd Flow. We denote the set of buildings as V𝐵 =

{
𝑣𝐵1 , 𝑣

𝐵
2 , . . . , 𝑣

𝐵
𝑁𝐵

}
, where 𝑁𝐵 is the

number of buildings. For crowd flow of the 𝑖−th building at time slot 𝑡 , we define it as 𝑥𝐵𝑖,𝑡 ∈ R. As a result,
we use X𝐵

𝑡 = [𝑥𝐵1,𝑡 , 𝑥𝐵2,𝑡 , . . . , 𝑥𝐵𝑁𝐵 ,𝑡
] ∈ R𝑁𝐵 to represent all crowd flow observations for all buildings at time 𝑡 .

• Floor-Level Crowd Flow. Similar to the building level, we denote the set of floors as V𝐹 =

{
𝑣𝐹1 , 𝑣

𝐹
2 , . . . , 𝑣

𝐹
𝑁𝑓

}
,

where 𝑁𝐹 is the number of floors, and crowd flow of the 𝑖−th floor at time slot 𝑡 as 𝑥𝐹𝑖,𝑡 ∈ R. Furthermore,
we use X𝐹

𝑡 = [𝑥𝐹1,𝑡 , 𝑥𝐹2,𝑡 , . . . , 𝑥𝐹𝑁𝐹 ,𝑡
] ∈ R𝑁𝐹 to represent all crowd flow observations for all floors at time 𝑡 .

Crowd flow prediction aims to predict the future campus-wide crowd flow (including both building and floor
granularity) in the future 𝑄 time steps i.e., X̂𝐵

𝑡+1:𝑡+𝑄 and X̂𝐹

𝑡+1:𝑡+𝑄 , given the historical crowd flow observations in
the past 𝑃 time steps 𝑓 (X𝐵

𝑡−𝑃+1:𝑡 and X𝐹
𝑡−𝑃+1:𝑡 ).

5.2 Single-Grained Spatiotemporal GNN
To model the crowd flow within a single granularity (building or floor), we adopt the spatiotemporal GNN
proposed in [64]. Here we use two identical but separate spatiotemporal GNNs for the building- and floor-level
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crowd flow modeling, with different graph topology designs for building and floor levels. In the following, we
first briefly present the spatiotemporal GNN, followed by our graph topology design.

5.2.1 Spatiotemporal GNN. The spatiotemporal GNN [64] consists of a gated temporal convolution and a graph
convolution network, designed to capture the respective temporal and spatial dependencies of crowd flow.
Without loss of generality, we present one layer below. First, it uses a temporal dilated convolution layer to extract
temporal features, and also a gating mechanism to enhance the model’s capacity to learn complex temporal
dependencies. Specifically, the gated temporal convolution is represented as follows:

H𝑡 = tanh(Φ ∗ F) ⊙ 𝜎 (Ψ ∗ F) (1)

where Φ and Ψ are learnable parameters of convolution filters, ⊙ is the Hadamard product (element-wise
multiplication), 𝜎 (·) is the sigmoid activation function which determines the ratio of information passed and ∗
denotes the dilated convolution operation. We use H𝑡 to represent the output of temporal convolution and F to
represent the input after linear transformation in the feature dimension. Afterward, it employ the multi-graph
convolution to further capture the spatial dependencies on different graphs as follows:

H = 𝜎

(⋃
A∈A

𝑓 (A;𝜃𝑖 )H𝑡W𝑙

)
(2)

where A is the set of graphs; in this work, we design two types of graphs, i.e., a static graph for capturing the
location topologyA𝑡𝑜𝑝 and a dynamically adaptive graph for capturing flow correlationA𝑎𝑑𝑝 (more details below).⋃

denotes the sum aggregation function. W𝑙 is transformation matrix of 𝑙−th layer. The function 𝑓 (A;𝜃𝑖 ) is
selected as a polynomial function of order 𝑙 of the graph Laplacian 𝐿, which leverages the spectral properties
of graphs for feature transformation. The spatiotemporal GNN stacks a few number of such layers. To make
the prediction, it incorporates skip connections that integrate features from each layer’s output, followed by
two fully connected layers for the final prediction. In the following, we present our design of the static topology
graph A𝑡𝑜𝑝 and a dynamically adaptive graph A𝑎𝑑𝑝 .

5.2.2 Graph Construction. We consider two types of graphs for spatial dependencies of crowd flow. Intuitively,
the crowd flow of two locations may be strongly associated if they are spatially adjacent. Therefore, we consider
forming a two-level unified topology graph based on the physical proximity of spaces. Specifically, at the
building level, we employ the Delaunay triangulation method [13], which is an effective approach widely used
in Geographic Information Systems (GIS) for analyzing surface morphology. Each building is treated as an
independent GPS-located point. These points are interconnected, forming a complex triangular network. A
distinctive feature of this network is that the circumcircle of any triangle does not encompass any additional
nodes. Utilizing this approach, pathways connecting the buildings within the campus are computed. The resulting
building-level topology graph is shown on the left side of Figure 4. Here, the edges of the building-level topology
graph are defined as:

A𝐵
𝑡𝑜𝑝 [𝑖, 𝑗] =

{
1, if there is a path between 𝑣𝐵𝑖 and 𝑣𝐵𝑗
0, otherwise

(3)

Subsequently, we consider the explicit hierarchy of the buildings and their contained floors in space, and
establish the following rules based on the building-level topology graph: 1) Floors within the same building are
deemed “directly accessible”; 2) Two floors from two different buildings connected by a path (on the building
graph) or by a skyway, are considered “indirectly accessible”; 3) All other pairs of floors are deemed “inaccessible”.
Following these definitions, for all pairs of floors that are “directly accessible”, connectivity is assumed to require
only one hop (e.g., floor1-floor2); For all pairs of floors considered "indirectly accessible," connectivity involves
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Fig. 4. Topology graphs of building and floor levels

three hops (floor1-building1-building2-floor2). Thus, we define the edges of the floor-level topology graph as:

A𝐹
𝑡𝑜𝑝 [𝑖, 𝑗] =


1, if 𝑣𝐹𝑖 and 𝑣𝐹𝑗 are "directly accessible"
1
3 , if 𝑣𝐹𝑖 and 𝑣𝐹𝑗 are "indirectly accessible"
0, if 𝑣𝐹𝑖 and 𝑣𝐹𝑗 are "inaccessible"

(4)

5.2.3 Adaptive graph. Besides the static graph that we built based on the heuristics of spatial adjacency, there
may also exist implicit and non-obvious spatial dependencies within the campus that cannot be captured by
the above method. To capture these implicit spatial dependencies, we incorporate two self-adaptive adjacency
matrices (graphs) at building levels and floor levels, denoted as A𝐵

adp and A𝐹
adp, respectively. These matrices are

designed to dynamically adjust to the data and are updated through backpropagation during the training process,
enabling the discovery of latent spatial dependencies autonomously [64]. Without loss of generality, we take
the adaptive graph at the building level as an example. Its self-adaptive adjacency matrix is derived from the
learnt node embeddings, defined for source nodes as E𝐵

1 and for target nodes as E𝐵
2 , where E

𝐵
1 ,E

𝐵
2 ∈ R𝑁𝐵×𝑐 . The

self-adaptive adjacency matrix is computed as follows:

A𝐵
𝑎𝑑𝑝

= SoftMax
(
ReLU(E𝐵

1E
𝐵
2
𝑇 )

)
, (5)

where the ReLU activation function serves to discard non-essential connections by filtering out non-positive
weights, thereby focusing on stronger relationships. The softmax function is used for normalization.

5.3 Cross-Grained Information Transfer
Through the single-grained spatiotemporal GNNs, both building and floor nodes have encoded their spatiotem-
poral representations tailored to their respective granularities. Intuitively, the building-level crowd mobility
patterns generally exhibit more macroscopic flow trends with stronger regularities, while at the floor level,
the patterns are characterized by more detailed and specific local changes along with more fluctuations and
noises. Subsequently, integrating regular spatiotemporal characteristics from the coarse granularity into the
fine granularity can mitigate its fluctuations or noises, thus effectively smoothing the data and enhancing the
robustness of the final predictions. Meanwhile, incorporating detailed spatiotemporal information from the fine
granularity into the coarse granularity can enrich its spatiotemporal information, thus leading to more precise
predictions. Based on this intuition, we design a dual-channel information transfer mechanism, with “floor to
building” and “building to floor” channels, each employing unique strategies for effective information transfer.

5.3.1 Building to Floor. The information transfer from building to floor is designed to share the information of a
building feature with its corresponding floor features. Intuitively, floor nodes that belong to the same building
are likely closely related and share valuable spatiotemporal information, although their respective degrees of
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correlation with the building may vary. For example, if a building’s crowd flow increases over time, certain floors
(such as the entrance floor or floors with key facilities) may also exhibit the same pattern, whereas less utilized
floors may not. Furthermore, as crowd patterns evolve dynamically over time, the relationships among nodes
between building level and floor level also fluctuate with time.
To address these complex cross-grained spatiotemporal patterns, we propose a Hierarchical Graph Atten-

tion Network (HGAT) module to effectively share information from the building level to the floor level. We
dynamically compute weights based on the feature similarity between nodes at the building level and floor level
to determine the extent of influence a building has on its floors and the degree to which each floor retains its
characteristics. Specifically, we construct a hierarchical graph that includes nodes at both building and floor
levels. As shown in Figure 3, for each floor node, two types of connections are established: 1) an edge linking it to
its corresponding building node; and 2) a self-loop. The hidden features for building level nodes are denoted as
H𝐵 = [h𝐵

1 ,h
𝐵
2 , . . . ,h

𝐵

𝑁𝐵 ], and for floor level nodes as H𝐹 = [h𝐹
1 ,h

𝐹
2 , . . . ,h

𝐹

𝑁 𝐹 ]. Our HGAT is formulated as follows:

h𝐹 ′
𝑗 = 𝜎

(
𝛼𝑖 𝑗W𝐵h𝐵

𝑖 + 𝛼 𝑗 𝑗W𝐹h𝐹
𝑗

)
(6)

where 𝛼𝑖 𝑗 denotes the attention score of building 𝑖 to floor 𝑗 , and 𝛼 𝑗 𝑗 denotes the attention score of floor 𝑗 to
itself, which are computed as:

𝛼𝑖 𝑗 =
exp(LeakyReLU(𝑒𝑖 𝑗 ))

exp(LeakyReLU(𝑒𝑖 𝑗 )) + exp(LeakyReLU(𝑒 𝑗 𝑗 ))
(7)

𝛼 𝑗 𝑗 =
exp(LeakyReLU(𝑒 𝑗 𝑗 ))

exp(LeakyReLU(𝑒𝑖 𝑗 )) + exp(LeakyReLU(𝑒 𝑗 𝑗 ))
(8)

𝑒 𝑗 𝑗 = b𝑇W𝐹h𝐹
𝑗 , 𝑒𝑖 𝑗 = a𝑇 [WBh𝐵

𝑖 ∥W𝐹h𝐹
𝑗 ] (9)

whereW𝐵 andW𝐹 are the weight matrices associated with the linear transformations for each building node
and each floor node, respectively, and a and b are the weight parameters for attention output, which are jointly
trained with the spatiotemporal GNNs.

5.3.2 Floor to Building. The information transfer from floor to building aims to propagate more comprehensive
and detailed spatiotemporal information from the floor level to the building level. Intuitively, there is a quantitative
hard constraint between the crowd flow at the building level and the floor level, where the total crowd flow
of a building equals the sum of the crowd flow of all its floors. Analogically, the spatiotemporal feature of a
building can also be collectively represented by the spatiotemporal features of all its floors. Here we follow a
“aggregation and propagation” paradigm which uses a gating mechanism to update the spatiotemporal features
at the building level. The workflow of our proposed approach is as follows. First, we perform an aggregation
operation to compile the features of the floor nodes subordinate to each building node, obtaining the aggregated
features for each building node as follows:

h𝐵
𝑗,𝑎𝑔𝑔 =

⋃
𝑖∈I

h𝐹
𝑖 (10)

where
⋃

represents the aggregation function and I is the set of floor nodes belonging to building 𝑣 𝑗 . We apply this
operation on all buildings and ultimately concatenate the results to obtain the aggregated building-level hidden
features H𝐵

𝑎𝑔𝑔 ∈ R𝑁𝐵×𝑇×𝑑𝐵 . Afterward, we implement a gating mechanism to control the degree of information
propagating, adapting to the dynamic nature of crowd patterns. The building-level features H𝐵′ could be updated
as follows:

H𝐵′
= G ⊙ H𝐵

𝑎𝑔𝑔 + (1 − G) ⊙ H𝐵 (11)
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Fig. 5. Crowd flow simulation via conditional diffusion

where the update gate G is computed as follows:

G = 𝜎

(
W𝑔 ·

[
H𝐵
𝑎𝑔𝑔;H𝐵

]
+ b𝑔

)
(12)

W𝑔 and b𝑔 are learnable parameters of the update gate. Note that this gating mechanism dynamically integrates
the features aggregated from the floors with the building’s own features, thus enriching the feature representation
at the building level.

6 CROWD FLOW SIMULATION
Crowd flow simulation aims to simulate on-campus crowd flow under given conditions. CrowdMirage is designed
to provide the holistic simulation of on-campus crowd flow in a controllable manner beyond simply imitating
the existing mobility patterns. In essence, such mobility patterns depend on various context factors, including
but not limited to time in a day, day in a week, academic almanac, weather conditions, etc. In this context, we
design our crowd flow simulation module as shown in Figure 5, we resort to a conditional diffusion model for the
generative modeling of on-campus crowd and OD transition flow, and use mobility-related contexts to condition
the generative model for the holistic simulation of on-campus mobility, which can thus simulate crowd flow
under previously unseen scenarios (unseen combinations of different context factors). In the following, we first
present our problem formulation, and then briefly introduce the conditional diffusion model, and then describe
our detailed condition design, followed by our trajectory simulation to animate the generated crowd and OD
transition flow.

6.1 Definition and Problem Formulation
In the crowd flow simulation task, we combine the crowd flow and OD transition flow between 𝑁𝐵 buildings
by inserting the crowd flow vector Xt = [𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝑁𝐵 ,𝑡 ] into the diagonal entries of corresponding OD
transition matrix M𝑡 ∈ R(𝑁𝐵+1)×(𝑁𝐵+1) in the same 10-minute time slot 𝑡 , resulting in a so-called integrated flow
matrix M̃𝑡 ∈ R(𝑁𝐵+1)×(𝑁𝐵+1) . The series of all such integrated flow matrices over a time period 𝑇 is denoted as
M = {M̃1, M̃2, . . . , M̃𝑡 }. Moreover, for each 10-minute time slot 𝑡 , the mobility-related context factors could have
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a significant impact on both the crowd flow and OD transition flow of the corresponding M̃𝑡 . Therefore, we
define the corresponding context Ct, and the collection of all contexts for M is denoted as C = {C1,C2, . . . ,CT}.
The crowd flow simulation task is to generate a series of integrated flow transition matrices M̂ conditioned on
the given mobility-related contexts C. To this end, by considering the integrated flow matrix as an image, we
resort to conditional diffusion models for image (integrated flow matrix M̃𝑡 ) generation, conditioned on the given
context factor Ct.

6.2 Conditional Diffusion Models
6.2.1 Diffusion Models. Diffusion Models [28] consists of two inverse processes, i.e., a forward diffusion process
and a reverse denoising process. In the diffusion part, the training data will be destroyed step by step through
the progressive addition of Gaussian noise. Subsequently, the model learns to recover the destroyed data by the
denoising process. Formally, diffusion models can be regarded as a type of latent variable model, as they map
data to a latent space through a Markov chain process. This chain gradually adds noise to the data M̃0 by the
forward process 𝑞(M̃𝑠 |M̃𝑠−1) to obtain the approximate posterior 𝑞(M̃1:𝑆 |M̃0) as follows:

𝑞(M̃𝑠 |M̃𝑠−1) = N(M̃𝑠 ;
√︁
1 − 𝛽𝑠M̃𝑠−1, 𝛽𝑠 𝐼 ), (13)

𝑞(M̃1:𝑆 |M̃0) =
𝑆∏
𝑠=1

𝑞(M̃𝑠 |M̃𝑠−1), (14)

where {𝛽𝑠 |𝑠 = 1, ..., 𝑆} is the variance schedule and 𝑆 represents the diffusion steps. At the end of the diffusion
steps, the data is converted into pure Gaussian noise. The goal of training a diffusion model is to learn the
reverse process by learning 𝑝𝜃 (M̃𝑠−1 |M̃𝑠 ), a Gaussian distribution whose mean and variance need to be calculated.
Starting with the pure Gaussian noise 𝑝 (M̃𝑆 ) = N(M̃𝑆 ;𝑂, 𝐼 ), the whole denoising process can be presented as:

𝑝𝜃 (M̃𝑠−1 |M̃𝑠 ) = N(M̃𝑠−1; 𝜇𝜃 (M̃𝑠 , 𝑠), Σ𝜃 (M̃𝑠 , 𝑠)), (15)

𝑝𝜃 (M̃0:𝑆 ) = 𝑝 (M̃𝑆 )
𝑆∏
𝑠=1

𝑝𝜃 (M̃𝑠−1 |M̃𝑠 ), (16)

The efficacy of diffusion models in generating data is largely attributed to their alignment with the inductive
biases inherent in image-like data, particularly when the core neural architecture is configured as a UNet [15, 53].

6.2.2 Conditioning Mechanisms. Diffusion models possess the capability to model conditional distributions. In
mainstream conditional generation tasks, the cross-attentionmechanism [52] is introduced to the core architecture
UNet to guide the generation process in a controllable manner. It is an effective way to handle various condition
modalities in the learning attention-based model process. Specifically, the conditions can be encoded into a latent
space and jointly trained along with the denoising process.

6.2.3 Integrated Flow Matrix to Image Adaptation. The integrated flow matrix is a square matrix, which encodes
both crowd flow and OD transition flow. This matrix can be regarded as a grey-scale image with a unique channel.
However, the uint8 image matrix contains intensity values between 0 and 255 meanwhile the max values of the
integrated crowd flow transition matrix are far more than 255 for both crowd flow and OD transition flow among
all statistics. Therefore, we conduct min-max normalization on the crowd flow and OD transition flow before
feeding the matrix to diffusion models.
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Table 4. Categories Indexing

Context Values
Timestamps 144 timestamps
Weekdays Mon / Tue / Wed / Thu / Fri / Sat / Sun
Almanac no day-off / examination / holiday / vacation / recess
Teaching arrangement face-to-face / online / hybrid / suspended
Tropical cyclone no signal / No. 1 / No. 3 / No. 8 and above
Rainstorm no signal / Amber / Red / Black / No. 8 and above
Thunderstorm no warning / warning / No. 8 and above

6.3 Mobility-Related Condition Design
The mobility patterns behind the crowd flow and OD transition flow are highly correlated with their contexts,
which could be used for the conditional generation of the integrated crowd and OD transition flow matrices.
Considering the practical environments of our studied university campus, we choose the following context
factors of seven categories: Timestamps, Weekdays, Almanac, Teaching Arrangement, and Weather Conditions
including Tropical Cyclone Warning Signal, Thunderstorm Warning Signal, and Rainstorm Warning Signal as
shown in Table 4. These seven context factors are represented as learnable embeddings in a latent space so as
to condition the conditional diffusion models by joint training with the integrated flow matrices in UNet. We
present the detailed condition design below:

6.3.1 Timestamp. This context factor captures the crowd flow patterns at different time slots of the day. For
instance, we usually observe a rush of students moving to the classroom buildings right before classes begin, or a
large crowd gathering toward canteens before lunchtime. Therefore, according to our 10-minute granularity of
crowd flow, we consider a total number of 144 timestamps for a day, where each timestamp corresponds to a
time slot. However, such timestamps might be over-specific, resulting in a sudden shift of generated crowd flow
between two neighboring timestamps. To alleviate this issue, we employ the Gaussian weighted averaging [14]
to generate smoothed timestamp embeddings. Specifically, for each timestamp 𝑘 (and its timestamp embedding
®𝑒𝑘 ), it generates a smoothed time stamp embedding ®𝜏𝑘 as the weighted average of its neighboring timestamps’
embeddings, where the weight is defined by a Gaussian with a learnable bandwidth 𝜎𝑘 :

®𝜏𝑘 =

∑
𝑖 𝑓𝑘 (𝑖) · ®𝑒𝑘∑

𝑖 𝑓𝑘 (𝑖)
,where 𝑓𝑘 (𝑖) =

1
𝜎𝑘
√
2𝜋

𝑒
− 𝑑𝑖𝑠𝑡 (𝑖,𝑘 )2

2𝜎2
𝑘 (17)

where 𝑑𝑖𝑠𝑡 (𝑖, 𝑘) computes the distance between 𝑘 and 𝑖 timestamps in a cycling loop:

𝑑𝑖𝑠𝑡 (𝑖, 𝑘) =
{
|𝑖 − 𝑘 |, if |𝑖 − 𝑘 | < 72
144 − |𝑖 − 𝑘 |, otherwise

(18)

6.3.2 Weekdays. This context factor differentiates different days of the week, as the crowd flow patterns are
significantly different between these days. For instance, there might be regular crowd flow patterns of students
and staff moving on campus due to regular classes and activities during weekdays, while during weekends the
crowd flow patterns might be less regular because of the increase in recreational activities.

6.3.3 Almanac. This context factor takes into account the academic calendar, which is highly relevant to on-
campus crowd flow patterns. For instance, during public holidays or semester breaks, there is usually a clear drop
in the crowd flow on campus; during examination periods, there is often an increase in the crowd flow toward
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libraries and study rooms. Considering the length of the days off would impact the leaving intention of campus
personnel, we design the following five non-overlapped values for this context:

• No day-off: regular date without day-off
• Examination: exam period at the end of each semester
• Holiday: day-off of one single day
• Vacation: day-offs more than or equal to three days (including weekends)
• Recess: day-offs more than 15 days, such as summer break and winter break of students

6.3.4 Teaching Arrangement. The COVID-19 pandemic has significantly impacted the way universities conduct
their classes, which in turn, has led to different crowd flow patterns. During the local epidemic outbreak,
following the government’s directives, the university modified the course arrangements to comply with the
regulations. During the teaching mode transitions from 2022 to 2023, the university adopted the following
teaching arrangements to adapt to the changing circumstances:

• Face-to-Face: This is the traditional teaching mode where all students are required to attend classes on
campus.

• Online: In this mode, all students take classes online.
• Hybrid: This mode is a blend of face-to-face and online teaching. Most students attend classes on campus,
while some infected or quarantined students attend the same classes online.

• Suspended: Due to a severe outbreak of the pandemic on campus or in response to government directives,
all classes are temporarily halted.

6.3.5 Tropical Cyclone Warning Signal. A tropical cyclone is also known as a typhoon, which usually comes
with heavy wind and rains and could cause destructive disasters, and thus has a strong impact on the crowd
mobility patterns. To protect citizens’ safety, the meteorological bureau of the local government would issue an
early warning to the citizens and take different preventive measures based on the predicted typhoon levels. We
consider the following values for this context:

• No.1 Tropical Cyclone Warning Signal: No special measures are taken. This signal serves as a warning
that a typhoon is forming, which is regarded as a preliminary alert to prepare for potential severe weather
conditions.

• No.3 Tropical Cyclone Warning Signal: This signal may cause a partial suspension of classes (for a certain
period) based on the assessment of the situation, such as the wind scale, the forecasted duration, and the
potential risks to students and staff, following the announcement of the government.

• No.8 Tropical Cyclone Warning Signal and above: The government takes comprehensive measures to
minimize potential damage from the typhoon, including suspending all teaching activities, entering an
immediate prevention state, and halting all public transportation.

6.3.6 Rainstorm Warning Signal. Rainstorms can also impact crowd mobility patterns. Following the instructions
from the meteorological bureau of the local government, a rainstorm warning signal is issued when heavy rain is
observed or predicted. This system operates independently of other warnings such as thunderstorm warning
signals or tropical cyclone signals (below No.8). For the No.8 tropical cyclone warning signal and above, the
rainstorm and thunderstorm warning signals are not issued anymore because they are by default associated with
the tropical cyclone warning signal. Therefore, we consider the following values for this context:

• Amber Rainstorm Warning Signal: Issued when the rainfall is expected to reach about 20mm in an hour or
has already reached 20mm in the past hour, and the rain is expected to continue.

• Red Rainstorm Warning Signal: Issued when the rainfall is expected to reach about 50mm in an hour or
has already reached 50mm in the past hour, and the rain is expected to continue.
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• Black Rainstorm Warning Signal: Issued when the rainfall is expected to reach about 80mm in an hour or
has already reached 80mm in the past hour, and the rain is expected to continue.

• No.8 Tropical Cyclone Warning Signal and above: The rainstorm and thunderstorm warning signals are
not issued anymore, overwritten by this extreme tropical cyclone warning signal.

6.3.7 Thunderstorm Warning Signal. This signal is issued when a thunderstorm is observed or predicted to occur.
Upon the issuance of this signal, appropriate self-preventive measures should be taken, including staying in safe
indoor locations and avoiding outdoor activities, which thus impact crowd mobility patterns. Note that similar to
the rainstorm warning signals, the thunderstorm warning signal will not be used when a No.8 tropical cyclone
warning or above is issued. Therefore, we consider the following values for this context:

• Thunderstorm Warning Signal
• No.8 Tropical Cyclone Warning Signal and above

We extract the above conditions for each integrated flow matrix. Specifically, the almanac and teaching
arrangement are available on the university website and the historical record of weather conditions can be found
on the Meteorological Bureau website. All the context factors are marked with timestamps aligned with the time
slot of the integrated flow matrix. Therefore, each flow matrix is conditioned by a combination of the seven
contexts (the concatenation of the seven respective embedding vectors), which are trained together with the
UNet in the conditional diffusion model.

6.4 Trajectory Simulation
To dynamically visualize the generated crowd flow, we design a trajectory simulation method to animate the
generated crowd flow. Specifically, the generated flow matrices encode the crowd and OD transition flow at a
10-minute time granularity, which is not intuitive to be dynamically visualized as a video playback for example.
Therefore, we simulate individual origin-destination trajectories in a finer time granularity of 1 minute from
the OD transition flow within each time slot of 10 minutes. To this end, we design a neural network to model
to fit the probability distribution of departure time and travel time. More precisely, for each integrated flow
matrix, we first conduct a statistical analysis to identify the best distributional assumption for the departure time
and travel time, and then use a fully connected neural network to estimate the parameters of the probability
distributions based on the context, origin and destination. Subsequently, for each origin-destination flow in the
generated flow matrix, we can predict probability distributions of the departure time and travel time, and sample
the corresponding amount of trajectories for visualization.

6.4.1 Statistical Analysis. We conduct a statistical analysis of the real trajectories to identify the best distributional
assumption for the departure time and travel time. For each origin-destination pair in the integrated flow matrix,
we get the real departure time (0-9thminutewithin the 10-minute time slot) and travel time on 1-minute granularity
for all the corresponding trajectories. We then test a wide range of 80 different probability distributions2 by fitting
each of them to the departure time and the travel time, using the Python package “fitter”. We then select the best
distribution according to the sum of the square errors. This statistic analysis reveals that the best distributional
assumption for departure time is the truncated-normal distribution with a range constraint of [0, 9], where its
PDF is as follows:

𝑓 (𝑡𝑑𝑒𝑝𝑡 |𝜇𝑑𝑒𝑝𝑡 , 𝜎𝑑𝑒𝑝𝑡 , 𝑎, 𝑏) =
𝜙

(
𝑡𝑑𝑒𝑝𝑡 −𝜇𝑑𝑒𝑝𝑡

𝜎𝑑𝑒𝑝𝑡

)
𝜎𝑑𝑒𝑝𝑡

(
Φ

(
𝑏−𝜇𝑑𝑒𝑝𝑡
𝜎𝑑𝑒𝑝𝑡

)
− Φ

(
𝑎−𝜇𝑑𝑒𝑝𝑡
𝜎𝑑𝑒𝑝𝑡

)) (19)

2https://fitter.readthedocs.io/en/latest/faqs.html#what-are-the-distributions-available
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Table 5. Statistics of the datasets

Year 2022 2023
#Buildings 53
#Floors 391

#WiFi Logs 1,773,027,241 2,395,657,469
Crowd Flow Range 0-1,241 0-1,786
OD Flow Range 0-503 0-530
All Flow Range 0-16,268 0-20,396

where 𝑎 = 0, 𝑏 = 9, 𝑎 ≤ 𝑡𝑑𝑒𝑝𝑡 ≤ 𝑏, 𝜇𝑑𝑒𝑝𝑡 is the location parameter, 𝜎𝑑𝑒𝑝𝑡 > 0 is the scale parameter, 𝜙 is the
probability density function of the standard normal distribution, Φ is the cumulative distribution function of the
standard normal distribution. Meanwhile, the best distributional assumption for travel time is found to be the
lognormal distribution, where its PDF is defined as follows:

𝑓 (𝑡𝑡𝑟𝑎𝑣 |𝜇𝑡𝑟𝑎𝑣, 𝜎𝑡𝑟𝑎𝑣) =
1

𝑡𝑡𝑟𝑎𝑣𝜎𝑡𝑟𝑎𝑣
√
2𝜋

exp
(
− (ln 𝑡𝑡𝑟𝑎𝑣 − 𝜇𝑡𝑟𝑎𝑣)2

2𝜎2
𝑡𝑟𝑎𝑣

)
(20)

where travel time 𝑡𝑡𝑟𝑎𝑣 > 0, 𝜇𝑡𝑟𝑎𝑣 is the location parameter, 𝜎𝑡𝑟𝑎𝑣 > 0 is the scale parameter.

6.4.2 Neural Parameter Estimation. Based on the above analyses, we use a fully connected neural network to
learn to predict the parameters 𝜇𝑑𝑒𝑝𝑡 and 𝜎𝑑𝑒𝑝𝑡 for the truncated-normal distribution of departure time, and the
parameters 𝜇𝑡𝑟𝑎𝑣 and 𝜎𝑡𝑟𝑎𝑣 for the lognormal distribution of travel time, based on the input context (as presented
in the Section 6.3, the origin and the destination (represented as learnable embeddings). The network is trained to
minimize the negative log-likelihood loss, which is equivalent to the maximum likelihood estimation for fitting
probability distributions to data. In the simulation process, for each origin-destination flow in the generated flow
matrix, we first predict parameters of the probability distributions of the departure time and travel time and then
sample the corresponding amount of trajectories.

7 EXPERIMENTS
In this section, we first present our experimental setup including dataset statistics, baselines, and evaluation
protocol, followed by the performance of individual tasks with both quantitative results and case studies.

7.1 Experimental Setup
7.1.1 Dataset. We collected crowd flow data in our university campus for the past two years 2022-2023. Table 5
shows the statistics of our collected data. Note that the flow range is computed over a whole year. All flow here
refers to the total populations (sum) of both crowd flow and OD transition flow in a time slot.
To evaluate our crowd mobility flow extraction pipeline, we resort to the user occupation history of our

university library, which has the time series of the number of users inside the library’s restricted area, where
users need to scan their access cards; the number of users is measured by the access card scanning records. This
data is collected every 10 minutes over a period of two months. Note that there is a cafeteria and a shop located in
the library building but in the public area (no access card needed). Subsequently, the library user occupation data
does not include the users in these two places. In other words, the library user occupation data might slightly
underestimate the actual users inside the library building. In contrast, our estimated crowd flow based on Wi-Fi
connection records covers all these places.

7.1.2 Baselines. We consider the following state-of-the-art baselines for crowd flow prediction and crowd flow
simulation tasks:
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• Crowd flow prediction baselines: HA predicts future values using the mean of past observations. SVR [18]
fits an optimal hyperplane within a tolerance margin, accommodating both linear and non-linear regression.
RNN [20] utilizes an internal state to process sequential inputs, ideal for time-dependent data. LSTM [29]
enhances RNNs to remember inputs over long periods, mitigating long-term dependency issues in sequence
prediction. GRU [11] simplifies LSTMs with a gating mechanism to address the vanishing gradient problem
while capturing temporal dependencies. DCRNN [36] utilizes a diffusion convolutional recurrent neural
network architecture to capture both spatial and temporal dependencies in crowd flow data, enhancing pre-
diction accuracy through sequence-to-sequence learning.ASTGCN [25] utilizes a three-branch architecture
incorporating attention mechanisms and graph convolutions to analyze multi-scale time features. STGCN
[70] integrates dual temporal convolutions and a graph convolution to learn spatiotemporal dependencies.
GWNET [64] employs an adaptive adjacency matrix and stacked dilated causal convolutions to model
spatial-temporal dependencies effectively. D2STGNN [54] employs a decoupled framework that separates
the diffusion and inherent signals in crowd flow data, and integrates a dynamic graph learning module for
evolving spatial-temporal dependencies. STWave [21] leverages a spectral graph attention mechanism
combined with wavelet transform to capture both spatial and temporal dynamics in a unified framework.

• Crowd flow simulation baselines: GM (Gravity Model) [2] is inspired by Newton’s law of Gravitation; it
assumes that the magnitude of mobility flow is directly influenced by the populations of the origin and
destination, and inversely influenced by the spatial distance separating them. DGM [56] (Deep Gravity
Model) introduces deep neural networks into GM, better modeling the relationships between geographic
features and mobility flows. CGAN (Conditional Generative Adversarial Nets) [45] uses a generative model
and a discriminative model for adversarial learning with the incorporation of conditional information into
the generator and discriminator. CVAE [26] (Conditional Variational Auto-Encoder) adapts the generative
process by using additional inputs to guide data generation; the encoder and decoder are modified to
condition these inputs, enabling controlled data output that meets specific constraints or attributes. DM
(Diffusion Model) [28] is the standard diffusion model as a baseline for comparison; it is trained to generate
the integrated flow matrix without any conditions. CDMnoGS (Conditional Diffusion Model without
Gaussian Smoothing) is one variant of our crowd flow simulation method without Gaussian smoothing on
the timestamp embeddings and using the standard timestamp embedding instead.

7.1.3 Evaluation Protocols. Our evaluation protocols for the crowdmobility flow extraction, crowd flow prediction
task and crowd simulation task are as follows.

• Crowd mobility flow extraction.We extract the estimated crowd flow and OD transition flow of the
library building, and compare them with the library user occupation history. Specifically, for crowd flow, we
directly measure the Mean Average Error (MAE) between our estimated crowd flow and the user occupation
data every 10 minutes. For OD transition flow, we compute the net change in the number of users (total
inflow subtracting the total outflow) of the library building every 10 minutes, and compare it against the
change in the number of users from the library user occupation history. We experimentally verify the key
design choices of our crowd mobility flow extraction pipeline via an ablation study.

• Crowd flow prediction task. In the crowd flow dataset, there are 53 nodes (buildings) at the building level
and 391 nodes (floors) at the floor level. To ensure that the model can fully capture the typical differences
between the academic term and non-term periods, We conduct experiments using real crowd flow data
collected in 2023, dividing the dataset into 12 parts, each representing a month, and further splitting each
part into 70% for training, 10% for validation, and 20% for testing. We train the model on the training set
and select the optimal parameters for each granularity based on the best results of the validation sets at
two different granularities. Subsequently, we test the model on the test set. We report the performance on
three widely used metrics, i.e., Mean Absolute Error (MAE) and Weighted Mean Absolute Percentage Error
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Table 6. Test scenarios for crowd flow simulation

Test scenarios Timestamps Weekdays Almanac Teaching Weather warning
1. “Semester weekday” (31 days)

1-144

Mon no day-off face-to-face no signal
2. “Semester weekend” (36 days) Sat no day-off face-to-face no signal
3. “Hybrid teaching” (30 days) Fri no day-off hybrid no signal
4. “Student recess” (18 days) Thur recess face-to-face no signal
5. “Suspended course” (1 days) Sun no day-off suspended no signal
6. “Typhoon” (1 days) Sun no day-off face-to-face No.8 typhoon signal
7. “Exam&Rain” (1 days) Tues examination face-to-face Black rainstorm signal
8. “Exam&Thunder” (2 days) Mon examination face-to-face Thunderstorm signal
9. “Holiday&Hybrid” (1 days) Wed holiday hybrid no signal

(WMAPE). Note that WMAPE weights the absolute percentage errors by the actual values at each data
point; this feature enables the comparison of performance across different granularities using this metric.
In our experiments, we utilize a multi-step forecasting approach, where we use observations of crowd flow
from the past two hours (12 time steps) to predict the crowd flow for each time step within the upcoming
two hours.

• Crowd flow simulation task. We consider the simulation of daily crowd flow in this task, where we
generate 144 integrated flow matrices, each for the corresponding 10-minute time slot. We consider 9
representative conditions as our test scenarios, out of all 206 historical conditions (unique combinations
of context factors appearing in the past two years), as shown in Table 6. We generate 144 integrated
flow matrices for each of the test cases by feeding the corresponding conditions to our trained model,
denoted as M̂ = {M̂1, M̂2, . . . , M̂144}. Unconditional baselines generate matrices directly without using
these conditions. We then compare M̂ with the ground truth matrices by reporting the following metrics.
Jensen-Shannon Divergence (JSD) quantifies the similarity between the generated matrices and the ground
truth by measuring the divergence between their respective probability distributions; a lower JSD value
indicates better performance. Common Part of Commuters (CPC) evaluates the overlap in commuter
patterns between the generated and actual OD matrices, which serves as an indicator of the model’s ability
to replicate observed commuting behaviors; a higher CPC value indicates better performance. Meanwhile,
we also report two typical error-based metrics Root Mean Square Error (RMSE) and Normalized Root
Mean Square Error (NRMSE). In the evaluation, we report the performance on the crowd flow vectors X
and OD transition matricesM separately.

7.2 Crowd Mobility Flow Extraction Performance
To evaluate our crowd mobility flow extraction pipeline, we experimentally verify the key design choices via
an ablation study. We consider the following five variants ablated from our full crowd mobility flow extraction
pipeline: w/o guest devices filtering, w/o non-mobile devices filtering, w/o public devices filtering, w/o randomized
MAC devices filtering, and w/o primary device selection. Please refer to Section 4.3 for details. Table 7 shows
the results. We observe that our full pipeline consistently outperforms all ablated variants, showing an average
improvement of 31.53% and 2.23% on crowd flow estimation and OD transition flow estimation, respectively.
Moreover, we see that the MAE on the crowd flow is larger than the OD transition flow. This is partially

because the library user occupation data tends to have a systematic bias of underestimation of the crowd flow,
due to the presence of users at the cafeteria and the shop in the public area of the library. To further understand
this issue, we plot the estimated crowd flow and the library occupation data on four typical days as shown in
Figure 6. First, we observe that compared to the ablated variants, our full pipeline shows the closest results to the
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Table 7. Crowd mobility flow extraction performance in MAE(↓)

Flow Estimation Crowd Flow Estimation OD Transition Flow Estimation

w/o guest devices filtering 32.38 4.55
w/o non-mobile devices filtering 61.68 4.87
w/o public devices filtering 23.41 4.41
w/o randomized MAC devices filtering 23.26 4.41
w/o primary device selection 31.02 4.49
CrowdMirage 21.24 4.39

Fig. 6. Comparison between the estimated crowd flow and the library occupation data on four typical days: (a) Weekday, (b)
Weekend, (c) Examination, and (d) Holiday.

library occupation data. We also observe that our estimation is generally higher than the library occupation data
in the daytime, due to the presence of the underestimation bias of the library occupation data. In contrast, the
OD transition flow measures the net change in the number of users, which is less sensitive to this consistent bias.

7.3 Crowd Flow Prediction Performance
7.3.1 Comparison with baselines. Table 8 shows the crowd flow prediction performance of different methods for
the future time steps at 10 minutes (1 step), 30 minutes (3 steps), 1 hour (6 steps), and 2 hours (12 steps). We observe
that our proposed method achieves the best results at both building and floor levels across different prediction
time steps in general. In particular, compared to the GWNET, which serves as our backbone spatiotemporal GNN,
our method shows an average improvement of 9.09% and 3.35% on the building and floor levels, respectively; the
results validate the effectiveness of our proposed cross-grained information transfer mechanisms, which can
indeed benefit the crowd flow prediction on both building and floor levels.

7.3.2 Ablation study. To further validate our proposed cross-grained information transfer module, we conduct
an ablation study with the following two variants 1) without the “building to floor” transfer module (denoted
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Table 8. Crowd flow prediction performance of different methods

Granularity Method 10 min 30 min 1 hour 2 hour

MAE WMAPE MAE WMAPE MAE WMAPE MAE WMAPE

Building

HA 15.93 13.35 15.93 13.35 15.93 13.35 15.93 13.35
SVR 11.53 9.60 13.74 11.45 17.06 14.23 23.85 19.97
RNN 12.39±0.16 16.23±0.21 12.53±0.27 16.43±0.36 13.06±0.26 17.16±0.34 14.28±0.15 18.86±0.19
LSTM 11.35±0.12 14.87±0.16 11.57±0.13 15.18±0.17 11.83±0.15 15.54±0.19 12.71±0.13 16.78±0.17
GRU 11.30±0.12 14.81±0.16 11.52±0.09 15.11±0.11 11.89±0.09 15.62±0.12 13.11±0.17 17.31±0.23
DCRNN 3.86±0.01 5.05±0.01 6.98±0.01 9.16±0.01 10.21±0.02 13.41±0.03 15.42±0.03 20.37±0.04

level ASTGCN 4.70±0.05 6.12±0.06 6.31±0.16 8.22±0.09 7.55±0.14 9.85±0.18 9.50±0.22 12.44±0.29
STGCN 4.30±0.13 5.60±0.17 6.18±0.08 8.05±0.10 8.07±0.09 10.52±0.11 10.92±0.19 14.30±0.25
GWNET 3.85±0.07 5.00±0.09 5.28±0.05 6.88±0.06 6.35±0.07 8.29±0.09 8.09±0.14 10.60±0.18
STWave 4.07±0.10 5.30±0.14 5.52±0.10 7.19±0.13 6.80±0.24 8.87±0.31 8.43±0.14 11.04±0.19
D2STGNN 3.33±0.06 4.29±0.08 4.82±0.06 6.16±0.07 6.35±0.24 8.13±0.31 8.33±0.18 10.71±0.23
CrowdMirage 3.30±0.02 4.30±0.02 4.76±0.01 6.20±0.01 5.97±0.01 7.79±0.02 7.58±0.04 9.92±0.05

Floor

HA 4.05 25.05 4.05 25.05 4.05 25.05 4.05 25.05
SVR 2.27 13.97 2.73 16.79 3.28 20.19 4.32 26.69
RNN 3.19±0.02 30.79±0.17 3.07±0.01 29.67±0.01 3.09±0.01 29.92±0.12 3.17±0.01 30.90±0.09
LSTM 2.94±0.01 28.40±0.11 2.92±0.01 28.25±0.05 2.93±0.00 28.44±0.01 2.98±0.01 29.04±0.07
GRU 2.99±0.19 28.87±0.18 2.93±0.01 28.31±0.09 2.92±0.01 28.29±0.06 2.97±0.00 28.97±0.04
DCRNN 1.17±0.01 11.32±0.06 1.76±0.00 17.02±0.06 2.29±0.01 22.16±0.08 3.12±0.01 30.42±0.13

level ASTGCN 1.25±0.00 12.00±0.00 1.69±0.02 16.23±0.21 2.02±0.05 19.41±0.48 2.41±0.05 23.33±0.49
STGCN 1.13±0.01 10.85±0.09 1.61±0.01 15.49±0.08 2.00±0.01 19.27±0.08 2.55±0.02 24.64±0.18
GWNET 1.07±0.00 10.31±0.02 1.46±0.00 14.00±0.02 1.74±0.01 16.76±0.06 2.07±0.01 20.04±0.07
STWave 1.27±0.00 12.18±0.02 1.73±0.01 16.63±0.08 2.14±0.01 20.58±0.09 2.71±0.04 26.16±0.37
D2STGNN 1.25±0.00 11.55±0.09 1.69±0.01 14.99±0.15 2.00±0.01 17.45±0.22 2.41±0.02 20.82±0.36
CrowdMirage 1.03±0.00 9.86±0.03 1.42±0.00 13.60±0.04 1.69±0.00 16.22±0.03 2.00±0.00 19.32±0.01

w/o b2f), and 2) the variant without the “floor to building” transfer module (denoted as w/o f2b). The results are
shown in Table 9, we observe that our dual-channel information transfer mechanism shows the best results in
most cases. Compared to w/o b2f, it shows an average improvement of 2.50% and 2.06% on the building and floor
levels, respectively; compared to w/o f2b, it also shows an average improvement of 6.56% and 2.06% on the two
respective levels. The results verify our design choices for the dual-channel information transfer mechanism.

7.3.3 Case study. We conduct a case study to show the crowd flow prediction performance with one prediction
step (10 minutes in the future) on two typical days (a semester weekday and a recess weekday). The left panel
of Figure 7 shows predicted and ground truth crowd flow time series for two typical buildings E6 (a teaching
building) and RC9 (a residential college). We observe that the two buildings with different functions yield distinct
crowd flow time series over time, while the same weekday within the semester also yields different patterns
from the student recess period. Despite these variations, our predicted crowd flow closely resembles the ground
truth. Moreover, we also show two snapshots of the predicted crowd flow at the same time 13:00 on the two
respective days on the right panel of Figure 7. We observe that the spatial distributions of the crowd flow show a
clear difference due to the mobility pattern differences between the semester and recess periods.
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Table 9. Ablation study on crowd flow prediction performance

Granularity Method 10 min 30 min 1 hour 2 hour

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

Building w/o b2f 3.58 7.10 4.30 4.88 9.69 6.36 6.17 12.60 8.05 7.71 15.69 10.10

level w/o f2b 3.76 7.63 4.89 5.14 10.26 6.69 6.20 12.57 8.09 7.92 16.39 10.37
CrowdMirage 3.30 6.91 4.30 4.76 9.63 6.20 5.97 12.09 7.79 7.58 15.70 9.92

Floor w/o b2f 1.05 2.52 9.99 1.45 3.35 13.91 1.72 3.98 16.59 2.04 4.60 19.71

level w/o f2b 1.02 2.44 9.82 1.42 3.36 13.61 1.69 3.94 16.29 2.04 4.57 19.67
CrowdMirage 1.03 2.46 9.86 1.42 3.29 13.60 1.69 3.88 16.22 2.00 4.48 19.32

Fig. 7. Case study of crowd flow prediction on two typical days (semester weekday on top and recess weekday on bottom).
Left: crowd flow series for two buildings where E6 is a teaching building and RC9 is a residential college. Right: heatmaps of
predicted crowd flow at 13:00.

7.4 Crowd Flow Simulation Performance
7.4.1 Comparison with baselines. Table 10 shows the crowd flow simulation performance of different methods.
Besides the overall performance on the 9 test scenarios, we also show the results on two typical scenarios 1
and 7, where scenario 1 is a common scenario “Semester weekday” appearing 31 days while scenario 7 is a rare
scenario appearing only once. Note that GM and DGM only support the OD transition flow generation because
the models only calculate the inflow/outflow probability between different buildings and the diagonal of the
OD matrix is designed to encode the staying flow. The results show that CrowdMirage achieves the best overall
performance, with an average improvement of 8.80% and 68.92% over the best-performing baselines on crowd flow
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Table 10. Crowd flow and OD transition flow simulation performance

Condition Model
Crowd Flow OD Transition Flow

JSD ↓ CPC ↑ RMSE ↓ NRMSE ↓ JSD ↓ CPC ↑ RMSE ↓ NRMSE ↓

1. “Semester

GM / / / / 0.0404 0.0626 12.5276 0.0236
DGM / / / / 0.0044 0.1476 2.1015 0.0040
CGAN 0.2539 0.5319 112.1724 0.0628 0.7177 0.0360 17.2060 0.0325

weekday” CVAE 0.1484 0.6870 86.3173 0.0483 0.0157 0.4127 1.6965 0.0032
(31 days) DM 0.1963 0.5465 114.6074 0.0642 0.0163 0.2730 2.0257 0.0038

CDMnoGS 0.1890 0.6962 83.1207 0.0465 0.0740 0.2922 1.6652 0.0031
CrowdMirage 0.1613 0.7072 83.1027 0.0465 0.0038 0.5192 1.4855 0.0028

7. “Exam&Rain”

GM / / / / 0.0231 0.0354 4.7949 0.0090
DGM / / / / 0.2191 0.0454 9.1194 0.0172
CGAN 0.2140 0.3714 97.8028 0.0548 0.3767 0.0090 27.7273 0.0523

(1 days) CVAE 0.3347 0.4271 111.4750 0.0624 0.1073 0.1844 2.5037 0.0047
DM 0.2064 0.4999 86.3562 0.0484 0.0103 0.2975 1.0665 0.0020

CDMnoGS 0.2039 0.7963 20.4757 0.0115 0.0649 0.1743 0.8021 0.0015
CrowdMirage 0.1071 0.8302 22.4006 0.0125 0.0014 0.5225 0.5514 0.0010

Overall

GM / / / / 0.0305 0.0398 9.4434 0.0178
DGM / / / / 0.0629 0.1216 3.1918 0.0060
CGAN 0.2514 0.5025 93.5117 0.0524 0.6780 0.0185 18.4088 0.0347
CVAE 0.1862 0.6573 71.8791 0.0402 0.0318 0.3639 1.3250 0.0025
DM 0.1760 0.5416 99.0566 0.0555 0.0118 0.2875 1.3089 0.0025

CDMnoGS 0.1573 0.7801 43.3767 0.0243 0.0630 0.2216 1.0261 0.0019
CrowdMirage 0.1085 0.8007 43.0348 0.0241 0.0020 0.5143 0.7861 0.0015

and OD transition flow simulation respectively. Moreover, for the two typical scenarios 1 and 7, CrowdMirage
also achieves superior performance in general, showing its effectiveness in simulating both common and rare
conditions.

7.4.2 Ablation study on mobility-related condition design. To experimentally verify our design choices on the
mobility-related conditions, we conduct an ablation study on the mobility-related conditions with the following
five variants ablated from our full condition design: w/o timestamp, w/o weekday, w/o almanac, w/o teaching
mode, and w/o weather. Table 11 shows the results. We observe that CrowdMirage consistently and significantly
outperforms all ablated variants, showing an average improvement of 25.14% and 20.04% on crowd flow and
OD transition flow simulation respectively. These results strongly support our design choices on the selected
mobility-related conditions.

7.4.3 Case study. We conduct several case studies to demonstrate the simulated crowd flow under three different
conditions. The first two conditions are previously seen conditions in history, i.e., 1) “Class day without bad
weather”: Monday, no day-off, face-to-face teaching, no weather warning signal; and 2) “No-class day with bad
weather”: Tuesday, examination, black rainstorm, thunderstorm. We also consider an unseen condition: 3) “Class
day with bad weather”: Tuesday, no day-off, face-to-face teaching, black rainstorm, thunderstorm. The case
studies are presented in Figure 8 with two snapshots. We plot both the integrated flow matrix and the crowd
flow with the simulated OD transition flow on maps via heatmap. We also plot the ground truth of the first two
conditions.
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Table 11. Ablation study on mobility-related condition design

Ablation Crowd Flow OD Transition Flow

JSD ↓ CPC ↑ RMSE ↓ NRMSE ↓ JSD ↓ CPC ↑ RMSE ↓ NRMSE ↓

w/o timestamp 0.1321 0.7381 56.2118 0.0315 0.0053 0.3836 1.1007 0.0021
w/o weekday 0.1207 0.7626 53.9037 0.0302 0.0025 0.4909 0.9440 0.0018
w/o almanac 0.1452 0.6862 65.6422 0.0368 0.0035 0.4456 1.0104 0.0019
w/o teaching arrangement 0.1308 0.7346 58.9069 0.0330 0.0022 0.4884 0.8608 0.0016
w/o weather 0.1447 0.7132 65.9981 0.0370 0.0025 0.4847 0.8976 0.0017
CrowdMirage 0.1085 0.8007 43.0348 0.0241 0.0020 0.5143 0.7861 0.0015

First, we observe that condition 1 at 9:57 shows a clear crowd rush, which is presented in the heatmap as hot
zones of concentrated movement towards 5 teaching buildings, because the regular class time is at 10 while not
at 19:20. Moreover, condition 2 shows no rush at 9:57 because of the examination period (no-class day). Moreover,
at 19:20, we observe a high crowd flow in condition 1 and a low crowd flow in condition 2, because both no-class
day and bad weather decrease the on-campus crowd flow. In all these cases, our simulation closely resembles the
ground truth.
Second, we see that for the unseen condition 3, our simulation shows a low crowd rush at 9:57. Because the

crowd rush reasonably appears on class day, while the bad weather implies a low crowd flow. Moreover, at 19:20,
we observe a medium crowd flow (lower than condition 1 but higher than condition 2). Because the bad weather
condition reduces the expected high crowd flow on class day. This implies that our method learnt to effectively
simulate the crowd rush on class day, while also capturing the effect of extreme weather on the reduction of
crowd and OD transition flow.

8 DISCUSSION ON POTENTIAL USE CASES
Recent studies have demonstrated the practical implications of crowd mobility prediction. For instance, a model
predictive control strategy for air conditioning systems [43], based on dynamic passenger flow, has shown
potential in maintaining indoor temperature stability, providing a faster system response, and saving 13% energy
on typical days and 10% energy during cooling seasons. The FI-700 elevator management system [44] uses
predicted human flow to enhance comfort and energy efficiency, and has succeeded in reducing average waiting
times by up to 20% during busy periods. Moreover, beyond hardware facilities, crowd flow prediction can also
prevent crowd congestion by providing early warnings for locations such as gyms, cafeterias, conference halls,
or critical public places during events; security resources can be pre-allocated and evacuation measures can be
prepared in advance for popular locations, reducing the risk of stampede incidents [30].

On the other hand, crowd flow simulation can serve as an effective sandbox for evaluating crowd flow-related
tasks, in particular providing high-quality synthetic crowd flow data for previous unseen scenarios. Specifically,
systems mentioned above like the air conditioning and elevator predictive control systems can be tested with
simulated crowd flow under extreme or rare scenarios. Furthermore, for a large crowd that poses potential dangers
under certain conditions, crowd flow simulation can serve as an effective sandbox for orchestrating evacuation
measures and scheduling security resources, providing a test bed with multiple rounds of experiments to enhance
public safety. In addition, for studies on crowd behavior analysis [3, 48], and crowd-driven gamification design
[27], crowd flow simulation can generate the underlying crowd framework for a more realistic background for
these research.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 158. Publication date: December 2024.



158:28 • Chen et al.

Fig. 8. Case study of crowd flow simulation with three conditions and two snapshots at 09:57 (left) and 19:20 (right).

9 CONCLUSION
In this paper, we propose CrowdMirage, an end-to-end mobility digital twin framework for smart campuses.
Specifically, we first design an end-to-end human mobility trace extraction pipeline from the comprehensive
but noisy WiFi connection logs. We then propose a cross-grained crowd flow prediction model with a learnable
knowledge transfer mechanism between different granularities, so as to effectively forecast future crowd flow on
both building and floor levels. Meanwhile, we formulate the crowd flow simulation problem as a conditional
generation problem, and systematically identify influential context factors and resort to conditional diffusion
models for the conditional generation in a controllable manner. We build a prototype of our mobility digital
twin CrowdMirage and evaluate it on the long-term and comprehensive WiFi connection logs collected in our
targeted university for the past two years. Results show that our CrowdMirage achieves superior performance
in both crowd flow prediction and simulation tasks, with 3.35%-9.09% and 8.80%-68.92% improvement over
the best-performing baselines, respectively. Moreover, our case study shows that CrowdMirage cannot only
accurately forecast cross-grained crowd flow across different cases, but also simulate interpretable crowd flow
under previously seen conditions.
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In the future, we plan to investigate the mobility digital twin with trajectory data, so as to provide finer-grained
mobility monitoring, prediction, and simulation.
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