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Consistent Arbitrary Style Transfer Using
Consistency Training and Self-Attention Module
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Abstract— Arbitrary style transfer (AST) has garnered con-
siderable attention for its ability to transfer styles infinitely.
Although existing methods have achieved impressive results, they
may overlook style consistencies and fail to capture crucial
style patterns, leading to inconsistent style transfer (ST) caused
by minor disturbances. To tackle this issue, we conduct a
mathematical analysis of inconsistent ST and develop a style
inconsistency measure (SIM) to quantify the inconsistencies
between generated images. Moreover, we propose a consistent
AST (CAST) framework that effectively captures and transfers
essential style features into content images. The proposed CAST
framework incorporates an intersection-of-union-preserving crop
(IoUPC) module to obtain style pairs with minor disturbance,
a self-attention (SA) module to learn the crucial style fea-
tures, and a style inconsistency loss regularization (SILR) to
facilitate consistent feature learning for consistent stylization.
Our proposed framework not only provides an optimal solution
for consistent ST but also outperforms existing methods when
embedded into the CAST framework. Extensive experiments
demonstrate that the proposed CAST framework can effectively
transfer style patterns while preserving consistency and achieve
the state-of-the-art performance.

Index Terms— Arbitrary style transfer (AST), consistent train-
ing, self-attention (SA), style inconsistency.

I. INTRODUCTION

STYLE transfer aims to build a new image which migrates
the style patterns in a style image onto the contents

of another image [1]. Recently, the neural network methods
achieved great success in image processing [2], [3], [4], [5],
[6]. Many researchers devoted to developing effective neural
style transfer (ST) models to render a generated image with
different styles using the convolutional neural networks [7].
Gatys et al. [8] proposed the neural ST method using the
pretrained visual geometry group (VGG) [9] model to extract
the deep features and represented the style features (e.g., color
and drawing) using the Gram matrix. However, this method
simply combines the content and style together using iterative
optimization.
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With the rapid development of deep neural networks, neural
ST models can stylize images offline using the trained deep
learning models. According to the ST capacity, neural ST
models are divided into three categories: 1) a certain style
per model: Johnson et al. [10] introduced a feedforward
convolutional neural network to transfer style features into
the content image with a perceptual loss and trained one
transformation model for each style image; 2) multiple styles
per model: Chen et al. [11] developed a style bank module
to train the convolution filters for many kinds of style and
transfer the pretrained style into the content image; and 3)
arbitrary style per model: Huang and Belongie [12] proposed
the adaptive instance normalization (AdaIN) layer to shift the
feature statistics from style to content, and trained one model
for any style transferring. One successful transformation model
should transfer style as much as possible. Apparently, the most
attractive one is the arbitrary style per model due to its high
efficiency and capability of transferring any style using one
trained model [13]. Therefore, the arbitrary ST (AST) has
achieved a flourish development. Jing et al. developed dynamic
instance normalization (DIN) [14] to learn the flexible con-
volution kernel and bias parameters from style in a more
sophisticated way for ST. Li et al. [15] integrated the whiten
and color transforms (WCT) into the reconstruction model to
synthesize satisfactory stylized results. Linear ST (LST) [16]
was proposed to learn the transformations in a symmetric
autoencoder module to address the issue of complicated matrix
manipulation in WCT [15]. Park and Lee [17] developed
style-attentional network (SAN) to capture richer style pat-
terns. Deng et al. [18] introduced the self-adaptation module
into SAN to propose a multi-adaptation network (MAN).
Liu et al. [19] proposed the adaptive attention normalization
(AdaAttN) to align the point-wise feature statistics. Singh
et al. [20] combined the self-attentive factorized instance
normalization (SAFIN) to remove the unwanted artifacts in
the generated images.

The above-mentioned methods have achieved successful ST
results with abundant style features. However, these models are
still plagued by the inconsistent ST, leading to unstable style
migration and unsatisfactory performance [21]. To address
these issues, many consistent models were developed for ST.
For instance, Wang et al. [21] proposed a relaxation loss and
a regularization strategy for consistent ST. However, existing
consistent ST models mainly focus on dealing with temporal
inconsistencies that are inapplicable for spatial inconsistency
caused by the style disturbance. As shown in Fig. 1, the
style spatial inconsistency is mainly presented in color mixing

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universidade de Macau. Downloaded on October 31,2024 at 15:16:13 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0003-5690-0761
https://orcid.org/0000-0002-4487-6384


16846 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 1. Inconsistent stylization results of AST models. The first row shows the content image c and style images denoted by Si
0 and Si

1, i ∈ a, b. The second
to eighth rows show the stylization results of AdaIN [12], SAN [17], DIN [14], LST [16], AdaAttN [19], SAFIN [20], and MAN [18], respectively. Small
inconsistency between similar style images results large disturbances between the generated images under style images Si

0 and Si
1, i ∈ a, b.

and shape deformation. For example, the stylization results of
AdaIN [12] show the unwanted style artifacts near the human
nose and hair areas. Visual results of SAN [17] contain the

color differences and content distortions in the human face.
LST [16] performs the slight color depth inconsistency in the
forehead areas. These problems are mainly caused by style

Authorized licensed use limited to: Universidade de Macau. Downloaded on October 31,2024 at 15:16:13 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: CAST USING CONSISTENCY TRAINING AND SA MODULE 16847

spatial inconsistency that leads to the failure of capturing
the core style patterns (e.g., color and texture) and makes
models sensitive to style disturbance. Therefore, in addition
to the temporal consistent ST, a spatial consistent ST is also
important to improve the model performance. Previous studies
have mainly focused on effectively synthesizing spatial style
features onto content images [22], [23], [24]. Chen et al. [22]
proposed a feed-forward network that consistently transfers
style to different content image views for stereoscopic neural
ST. Yao et al. [23] introduced an attention network that inte-
grates multiple stroke patterns into different spatial regions of
the content image. Chang and Chen [24] developed a relation
loss and a spatial relation module to capture long-range
dependency and reduce artifacts. However, these approaches
do not explicitly consider the issue of inconsistent stylization
caused by minor variations in the style image. In this work,
we investigate the impact of minor disturbance on style
spatial consistency in ST and introduce a consistent AST
(CAST) framework to preserve style consistency and achieve
satisfactory stylization results. To the best of our knowledge,
our work is the first to tackle this specific problem in the
field of consistent ST. The main contributions of this work
are summarized as follows.

1) We mathematically analyze the problem of style incon-
sistency caused by style disturbance and develop a style
inconsistency measure (SIM) to quantitatively evaluate
the degree of style inconsistency.

2) Based on this SIM, we propose a CAST framework to
effectively transfer essential style patterns into content
images. CAST introduces an intersection over union
preserving crop module to obtain style image pairs
with minor disturbance, a self-attention (SA) module to
capture the essential features, and a style inconsistency
loss to regularize the learning process of consistent
features for CAST.

3) The proposed CAST framework not only provides an
optimal solution for consistent ST but also obtains sig-
nificantly better performance than existing ST methods
when they are embedded into our CAST framework.

4) Extensive experiments demonstrate that the proposed
CAST framework outperforms the state-of-the-art meth-
ods in transferring style patterns while preserving
consistency.

The rest of this article is organized as follows. Section II
reviews the related works of the ST and SA module.
In Section III, we analyze the style inconsistency problem and
propose the SIM. Section IV introduces the consistent ST
framework. Qualitative and quantitative experiment results are
presented in Section V and ablation study of the proposed
model is given in Section VI. Finally, Section VII concludes
this article.

II. RELATED WORKS

In this section, we briefly review the related work of ST
and SA module.

A. Style Transfer

Given the content and style images, the primary goal of
ST is to transfer the style features onto the content images.

A good ST model is to achieve the balance between the content
and style simultaneously [17]. Recently, researchers have been
devoted into developing AST models to improve efficiency and
performance of the ST using deep neural networks [25]. For
example, Huang and Belongie [12] proposed the AdaIN which
is one of the classic AST method transferring the statistical
distribution of deep features from style into content in a holis-
tic way. AdaIN adopts the following style and content loss:

Ll
style(G, S) = ∥µ(φl(G)) − µ(φl(S))∥2

+ ∥σ(φl(G)) − σ(φl(S))∥2 (1)

Ll
content(G, C) = ∥φl(G) − φl(C)∥2 (2)

where the style loss Ll
style in lth layer is calculated by the

mean square error (MSE) of mean µ and standard deviation σ

between generated image G and style image S, φl denotes the
deep features in the lth layer; the content loss Lcontent compares
the MSE between lth layer deep features (φl) of generated
and content image. AdaIN adopts several rectified linear unit
(ReLU) layers, including ReLU_1_1, ReLU_2_1, ReLU_3_1,
ReLU_4_1 in pretrained VGG19 as style layers for the
style loss, and ReLU_4_1 as content layer for the content
loss. Park and Lee [17] presented an SAN that effectively
captures the stylization features through the application of
the non-local mechanism. Subsequently, Deng et al. [18]
extended this work by introducing a multi-adaption network
(MAN) that integrates channel and spatial attention into the
SAN. Additionally, recent advancements in AdaAttN have
been proposed, including the AdaAttN [19] and SAFIN [20]
techniques. To achieve precise feature distribution matching
in ST, Zhang et al. [26] employed exact histogram matching
of image features in the deep space. In recent years,
transformer-based methods have emerged as promising
approaches, demonstrating superior performance in ST. For
instance, Wu et al. [27] utilized a transformer-based network
to composite style features into content images. To address
the long-range dependencies within images, Deng et al. [28]
proposed a transformer-based approach for ST. The existing
ST methods can achieve good ST results. However, they still
lack robustness to small style disturbances. Therefore, we will
make a profound study on the inconsistent AST which is
mainly caused by the loss of essential style patterns.

B. SA Module

SA has caught the great interest of researchers due to its
ability to capture long-range dependence [29]. The methods
in [23] and [30] use the query-key-value structure to calculate
the attention map which reflects the response of self-content
in different areas. The query-key-value features are learned
through different convolutional blocks. The attention maps are
obtained from the cross correlation [31] between the subspace
query and key features. After the softmax activation, the
normalized attention map is calculated as the guidance for
the key features. Using the attention map, the models pay
more attention on the area of interest to obtain a satisfactory
result. Different from this, our module adopts the shareable
feature embedding for the attention map and obtains the spatial
attention across the channel-wise features.
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III. STYLE INCONSISTENCY MEASURE

To study the style inconsistency problem, we first system-
atically analyze the style spatial inconsistency and propose a
SIM to quantitatively evaluate the style inconsistency of a ST
model.

A good ST model can generate robust style patterns while
preserving the content structure on stylized images. However,
as shown in Fig. 1, the style inconsistency greatly affects
the performance. Generally speaking, inconsistent ST means
similar style images S0 and S1 with the same style patterns may
produce style inconsistencies. As shown in Fig. 1, style incon-
sistencies between the generated images G0 and G1 occur and
cause the color mixture, texture artifacts, and pattern deletion.
Therefore, the inconsistency problem reveals that existing ST
methods perform unstable ST in presence of perturbations in
style images. To address this issue, we propose a SIM to
describe the style inconsistencies. SIM is defined as

SIM(θ) =
1

∥S∥

1
K

∑
S∈S

K∑
k=1;Sk

0 ,Sk
1 ∈S

ν
(
θ
(
Sk

0

)
, θ

(
Sk

1

))
ν
(
Sk

0 , Sk
1

) (3)

where SIM denotes the evaluation function of the AST method
θ which transfers a style image S within style image sets S
into a content image. ν(·, ·) calculates the style inconsistency
between two paired images. k indicates the index of the paired
images. Here, the style image S ∈ S is divided into N
partitions with the same size. Every two images from these N
partitions form pairs of style images Sk

0 and Sk
1 , and N = 4.

Therefore, we can evaluate the consistent style transferability
of AST method θ using the obtained style images Sk

0 and Sk
1

in the kth pair. Considering the variance between style images,
we take the style inconsistency ν between Sk

0 and Sk
1 as the

denominator which works as the balanced boundary term. For
a consistent ST model, the smaller the inconsistency between
style images is, the more consistent between generated images
will be. When the denominator is fixed, the SIM value will
increase as the inconsistency between the generated images
becomes larger, and vice versa. For AST model θ , a larger
SIM value always means higher style inconsistency.

In this article, function ν in (3) is calculated by the style
loss function Lstyle in AST models

ν(S0, S1) =

L∑
l=1

Ll
style(S0, S1) (4)

where Ll
style(S0, S1) indicates the style loss function between

style images S0 and S1 at the lth feature layer. We adopt the
style loss function in (1) to calculate the style inconsistency
between images. Fig. 2 presents the distributions of SIM
values for several popular AST methods such as AdaIN [12],
SAN [17], and MAN [18]. We can observe that the quantitative
evaluation SIM results of style inconsistency are consistent
with the visual quality of generated images. This means that
these existing AST models lack the ability of consistently
migrating the style into the content image. Their SIM values
are often very high. A robust AST model should have a
small SIM value located in the left area of the distribution.
In addition, we also test the Gram-matrix-based style loss

Fig. 2. Distributions of SIM for AST methods AdaIN [12], SAN [17], and
MAN [18]. In each pair, C denotes the content image, S0 and S1 denote the
style images, and G0 and G1 denote the corresponding generated images. The
inconsistency of ST models is evaluated by SIM of the generated and style
images. A larger value of SIM means the higher inconsistency of the AST
method.

function [8] as the style inconsistency evaluation function ν

but the results show that the style loss in (1) seems more
reasonable. Next, we develop a consistent ST framework to
migrate important style patterns into content images robustly.

IV. CONSISTENT ARBITRARY STYLE TRANSFER

In this section, we propose a CAST framework to robustly
transfer the important style patterns into content images.
We first present the overall structure of CAST framework
and then introduce our three important components: 1) an
intersection-of-union (IoU) preserving random crop module
to obtain the style images with the same style patterns; 2) a
style inconsistency loss for style consistency training (SCT);
and 3) a plug-and-play SA module to capture the important
style patterns represented by SA statistics.

A. CAST Framework

The flowchart of proposed CAST framework is shown in
Fig. 3. The CAST framework first inputs the style image
S into the IoU-preserving random crop module to obtain
two paired style samples S0 and S1. These paired style
images S0, S1 and content image C are then fed into a style
encoder block like VGG [12] and MoblieNet [14] to obtain
deep features FS0 , FS1 , and FC . A feature transformation
block migrates the paired style features to content features
to generate the paired stylized content features FC S0 and
FC S1 for the decoder block to obtain the generated images
G0 and G1. Meanwhile, a SA module is plugged into the
transformation block to extract the important style patterns.
The training procedure of CAST adopts the content loss and
style loss in [12]. The CAST framework further proposes a
new style inconsistency loss LSI to obtain consistent stylization
results. Next, Sections IV-B–IV-D present our proposed IoU-
preserving random crop module, style inconsistency loss, and
SA module in the CAST framework, respectively.

B. IoU-Preserving Random Crop Module

As shown in Fig. 4, the CAST framework introduces an
IoU-preserving random crop module to obtain the slightly
different style images S0 and S1 with the same style pattern
for consist style training. Different from the traditional data
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Fig. 3. Flowchart of the proposed CAST framework. IoU-preserving random crop module provides abundant style samples. LSI optimizes the consistency
between G0 and G1 with important style patterns. SA module extracts the robust statistical features.

Fig. 4. IoU-preserving random crop module.

augmentation [32], our module is specially designed for ST
and considers both heterogeneous and homogeneous style
patterns to achieve consistent ST. As shown in Fig. 5, the
overlapping region that represents the same style patterns can
be evaluated by the intersection between paired style images.
On the other hand, the non-overlapping region increases the
style diversity between paired style images and improves the
ability of consistency training. At the same time, random crop
enriches the style sets to ensure that the model can achieve
satisfactory results with a limited size of image dataset. The
proposed IoU-preserving random crop module can not only
retain the same style patterns but also consider the diversi-
fied style patterns from the same image. It aims to provide
abundant style images for consistent ST training. Using the
obtained style image samples with identical style patterns, the
consistent model can capture the key style patterns from the
image.

C. Style Inconsistency Loss

To train a robust and stable AST model, we develop a style
inconsistency loss LSI based on the proposed SIM defined
in (3). For style images S0 and S1 with the same style
patterns, an unstable AST model will generate the stylized
images G0 and G1 with a huge inconsistency. However,
a CAST model can capture key style patterns and consistently
migrate them into the content image C . The SCT of AST
models can be regarded as minimizing the style inconsis-
tency between generated images with the same style patterns.
Therefore, we should train a CAST model to reduce the style

Fig. 5. Structure of the proposed plug-and-play SA module. SA statistics,
mean (µatt) and variance (σ 2

att), are obtained by SA map �att using features
FX , X ∈ C, S0, S1.

inconsistency between the stylized results generated from the
style images with the same style pattern. The proposed style
inconsistency loss LSI can be formulated as follows:

LSI(C, S0, S1)|S0,S1∈S =
Lstyle(θ(S0, C), θ(S1, C))

Lstyle(S0, S1)
(5)

where LSI considers not only the style inconsistency between
θ(S0, C) and θ(S1, C) but also the divergence between S0 and
S1. We use Lstyle(S0, S1) as the denominator to count the
influence of divergence from style images.

Including the proposed style inconsistency loss LSI, the final
loss of our CAST framework is established as follows:

L = αLcontent + βLstyle + γLSI (6)

where α, β, and γ are the corresponding parameters to
highlight the importance of each individual loss. Thus, our
CAST framework has an overall consideration of the content,
style, and style consistency at the same time.

D. Plug-and-Play SA Module

In this section, we first review the statistical calculation
of AST models and then propose a SA module for AST to
calculate the SA weighted statistical features.

Given the pretrained VGG lth layer features F ∈ RC×H×W ,
the statistical features, mean (µ), and standard deviation (σ )
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are defined as follows:

µ(F) =

∑
i, j

wi, j Fi, j (7)

σ(F) =

√∑
i, j

wi, j (Fi, j − µ(F))2 (8)

where wi, j denotes the weight in spatial domain, which
is equal to (1/(i × j)). It means that each element in the
feature maps contributes equally. The statistical calculation of
feature maps has been widely applied in AST [12], [14], [17].
For example, the AdaIN employees the mean and standard
deviation of style features to normalize the content features
in a holistic way. However, they treat all elements in feature
maps equally and fail to consider the attention weights in
spatial domain. This leads to unstable statistics, ignores the
local style distribution, and thus may result in unsatisfying ST
performance. Therefore, many works have been developed to
address this issue. SAN [17] develops a style attention module
and performs the feature normalization with the attention map
generated by style and content. Furthermore, AdaAttN [19]
proposes an adaptive attention module to normalize the content
using a style-content attention map at the point-wise level.
SAFIN [20] learns the factorized spatial normalization param-
eters for stylization from content and style images. Different
from these above-mentioned methods, we propose a plug-and-
play SA module to extract important local and global style
patterns. As shown in Fig. 5, the proposed SA module is a
shareable nonlocal structure. We adopt the nonlocal structure
to generate an attention map which guides the calculation of
the SA weighted statistics. To be specific, given the VGG lth
layer feature FX ∈ RC×H×W , a siamese 1 × 1 convolution
layer with shareable weights is first leveraged to embed the
feature into a new deep subspace YX ∈ RC×H W . l2 normal-
ization “l2 norm” in Fig. 5) is used to obtain the normalized
feature ỸX which maps the feature to the multidimensional
unit space

ỸX =
YX

∥YX∥2
(9)

where ∥·∥2 denotes the l2-norm. Similar to the nonlocal struc-
ture in [33], we obtain the transposed feature Ỹ T

X for matrix
multiplication. Following with the channel-wise average and
softmax function, the SA weights �att

∈ RH W×1 can be
acquired as:

�att = Softmax
(
M

(
ỸX ⊗ Ỹ T

X

))
(10)

where M(·) denotes the average function along the spatial
dimension, ⊗ denotes the matrix multiplication. Finally, the
SA weighted mean (µatt) and standard deviation (σatt) are
calculated as

µatt(Z X ) = Z X ⊗ �att (11)

σatt(Z X ) =

√
(Z X − µatt(Z X ))2 ⊗ �att (12)

where Z X ∈ RC×H W indicates the embedded convolutional
results of feature maps FX in a new deep subspace. Using
the proposed CAST framework, the obtained SA weighted
statistics can well represent the key style features. We adopt

Fig. 6. Distributions of SIM for the proposed methods. In each pair, C
denotes the content image, S0 and S1 denote the style images, and G0 and
G1 denote the corresponding generated images. A larger value of SIM means
higher inconsistency of the evaluated AST methods.

a shareable nonlocal structure to reduce trainable parameters
and calculate the auto-correlated attention weights. Different
from the average weight, the SA weighted statistics can catch
global attention in the long range of image features that capture
the important style patterns. In addition, the proposed module
can be plugged into the existing AST models and replace the
non-attention weighted statistical calculation. With this plug-
and-play SA module, the representative statistical features
become robust and perform consistent ST.

In Fig. 6, we visualize the SIM distributions of the AST
models using the proposed CAST framework. Compared with
Fig. 2, we can find that the consistency of the AST models
with our CAST framework is greatly improved while main-
taining the stylization performance. The SIM value tends to
be distributed in the left area. It is also proved that SIM can
well measure the style inconsistency of the AST model.

V. EXPERIMENTS

In this section, we will present the comparative experiments
with other state-of-the-art methods and discuss the qualitative
and quantitative results.

A. Experiment Settings

In our experiments, the MS-COCO datasets [34] are used
as the content images and WikiArt [35] as the style images
to train the AST models. In the training phase, all images are
transformed into size of 512 along the smaller dimension to
well preserve the aspect ratio and then randomly cropped to
size of 256 × 256. All test images with any input size are avail-
able for our consistent ST model. The Adam optimizer [36]
are employed with learning rate of 10−4 at a decay rate of 5 ×

10−5 in each iteration. We use the pre-trained VGG-19 as our
encoder to extract deep features. We train all models on the
Pytorch-1.6.0 [37] and NVIDIA Quadro P6000.

B. Performance Comparison

To validate the performance, we compare our consistent
approaches with some state-of-the-art AST methods including
AdaIN [12], LST [16], SAN [17], MAN [18], DIN [14],
SAFIN [20], AdaAttN [19], StyleFormer [27], ST with trans-
formers (StyTr2) [28], and exact feature distribution matching
(EFDM) [26].
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1) Qualitative Evaluation: Compared with other state-of-
the-art methods, Fig. 7 shows the visual results of ST using
different content and style images. As can be seen, AdaIN
brings up the unwanted style patterns such as color noisy. LST
can well preserve the original content structure. However, the
generated images lose some important style patterns of the
original style images. SAN generates abundant style patterns
but cannot align them well with content images, resulting
in style mixture. MAN alleviates the style mixture but still
pays little attention to the essential feature patterns in style
images so as to bring more unimportant style patterns into
the generated results. As to SAFIN, the style patterns are
generated well but do not match the content image. This
causes a detailed content structure corruption. As shown in
the last third row of Fig. 7, the stylization results generated by
StyleFormer exhibit semantic content coherency, but they also
contain some color styles that are not present in the input style
image. StyTr2 achieves impressive stylization performance by
incorporating style patterns into content images with long-
range dependency. However, the corresponding row in Fig. 7
shows that it generates results with unpleasant color noise.
EFDM employs feature distribution matching for ST but
unfortunately results in a degradation of content structure and
an unsatisfactory stylization effect. In contrast, our method
can generate essential style patterns from style images and
achieve promising ST performance.

To evaluate the style consistency of ST models, Fig. 8
presents the visual results of style consistency. “CAST”
denotes the proposed CAST framework. For example, “CAST-
SAN” means the CAST method using SAN as the feature
transformation module. We can clearly observe that the pro-
posed methods using the CAST framework can well catch
the important style patterns (color, shape, and texture) from
style images and obtain a robust stylization result. In detail,
SAN stylizes the content images with different color and
shape patterns in the human face and eyes, resulting shape
inconsistencies as depicted in the blue rectangle box of the
subfigure. CAST-SAN can align important style patterns well
in the generated images without shape artifacts. MAN gener-
ates the same shape patterns in the stylized images. However,
the color patterns vary a lot between the generated images,
especially in the red rectangle area. CAST-MAN can extract
key style patterns from the style images and obtain robust
stylization results with better color consistency (the same color
of human and background). AdaIN generates inconsistent
stylization results with content blurred. As shown in the red
rectangle area, it smooths the bridge line resulting in content
inconsistency. With the proposed method, CAST-AdaIN can
obtain the consistent ST (the same color and shape in bridge
line). For style images with different color weights, LST
transfers the color without attention based weights in the style
image to obtain inconsistent results (the different cloud color
as shown in red rectangle). CAST-LST focuses on extracting
important style patterns (hair color and shape in the style
images) and obtains more consistent results in the generated
images (the same cloud color and shape) as shown in the
blue rectangle box. The stylization results of StyTr2 exhibit
color inconsistency between the style image pairs, which

adversely affects the overall quality of the generated images.
In contrast, CAST-StyTr2 can effectively capture crucial style
features and maintain consistency during the ST process. The
generated results by EFDM present inconsistent color and
texture patterns in the hair of the girl due to the neglect
of essential style patterns, leading to inconsistent ST. Com-
pared to EFDM, CAST-EFDM generates images with essential
color and texture patterns that are consistently transferred
into the content images. It is worth noting that the visual
consistency comparison results align with the SIM shown in
Fig. 8.

2) Quantitative Evaluation: To evaluate the performance of
ST methods, we use the deception rate (DR) [38], balanced
style loss (BSL) [39], structural similarity index measure
(SSIM) [40], and SIM to verify the ability of style transfer-
ring (DR and BSL), content preservation (SSIM), and style
consistency transferring (SIM), separately.

For testing the style transferability, we calculate the DR
as in [38]. It is calculated as the success rate of generated
images to deceive the fine-tuned classification model such
that both the style and generated images are predicted as
the same category. The higher DR means the better style
transferability. We employ the ArtImage in [35]. It consists
of 9000 images with five art categories (drawings, engraving,
iconography, painting, and sculpture) and the Microsoft COCO
2014 (MS-COCO) dataset [34] as the style and content images.
As for dataset split, we follow the training and testing split
as the ratio of 7:1. We fine-tune the pre-trained VGG19 as
our classification model using the training split. We randomly
select 1000 style-content pairs as the validation set for AST.
Besides, we also calculate the BSL [39] to evaluate the ability
of ST. Lower BSL means better style transferability of the
model. We calculate the SSIM [40] between generated and
content images to measure the ability of content preservation.
To evaluate the style consistency quantitatively, we calculate
the SIM of ST methods defined in (3). The style images are
divided into four parts equally and fed into ST models as
the style images, separately. The higher SIM means the more
serious inconsistency, and vice versa.

Table I presents the quantitative results of the ST models.
“Imp.” and “RImp.” denote absolute and relative improvement,
respectively. As shown in the results, with the proposed CAST
framework, the performance of ST and consistency can be
improved effectively while well preserving the content struc-
ture. This is consistent with the qualitative results in Figs. 7
and 8. In terms of DR, BSL, SSIM, and SIM, CAST-AdaIN
obtains the relative improvements of 20.80%, 74.32%, 0.93%,
and 14.29%. Compared with SAN, CAST-SAN achieves the
relative improvements of 4.56%, 20.17%, 3.67%, and 30.22%.
CAST-MAN obtains the relative improvements of 19.29%,
23.68%, 3.00%, and 11.11%. CAST-LST achieves the relative
improvements of 37.46%, 50.74%, 1.29%, and 5.88%. Using
the proposed methods, CAST-StyTr2 and CAST-EFDM can
achieve significant improvements of 11.65%, 3.53%, 4.32%,
13.04% and 4.05%, 3.74%, 2.16%, 28.33% over StyTr2 and
EFDM. These results strongly suggest that the ST methods
employing our proposed consistent framework are capable
of effectively capturing the essential style patterns, including
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Fig. 7. Stylization results of competing methods. From left to right, each column shows the content images, style images, and images generated by AdaIN [12],
LST [16], SAN [17], MAN [18], SAFIN [20], StyleFormer [27], StyTr2 [28], and EFDM [26]. As can be seen, our proposed method can generate the key
style patterns and achieve satisfactory performance. The figure is viewed better in zoomed-in view version.
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Fig. 8. Visual comparison of several consistent ST methods, namely SAN [17], MAN [18], AdaIN [12], LST [16], StyTr2 [28], and EFDM [26]. “CAST-”
denotes the proposed CAST framework using the corresponding AST method within the feature transformation module. Each subfigure consists of three rows:
the first row shows the content and style images, the second row displays the results generated by the proposed consistent method, and the third row displays
the generated images by the competing methods. Our consistent methods exhibit superior performance in terms of color and shape consistency, with generated
images containing richer style patterns and fewer artifacts compared to the competing methods.
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TABLE I
PERFORMANCE COMPARISON OF ST MODELS

color and texture, and consistently transfer them into content
images, resulting in remarkable consistent ST performance.

VI. ABLATION STUDY

In this section, we conduct experiments to discuss the
functions of each component and verify the importance of the
proposed methods.

A. Discussion of SCT

Table II presents the experimental results of different con-
sistent models. AdaIN is a well-established method for AST
and is frequently used as a baseline for developing new ST
methods. Therefore, we adopt AdaIN as the feature transfor-
mation module within our proposed CAST framework (called
CAST-AdaIN) for our baseline approach. Baseline refers to the
proposed CAST-AdaIN without the proposed IoU-preserving
crop (IoUPC) module and style inconsistency loss regular-
ization (SILR) term. We extend the Baseline network by
integrating different modules to evaluate their effectiveness,
denoted as “Baseline-”. For example, “Baseline-IoUPC” refers
to the Baseline network with IoUPC module. SCT denotes
the proposed style consistency training method including the
proposed IoUPC module and SILR term. In SCT, the IoUPC
module and SILR term work together to enable consistent
style training in the CAST framework. Specifically, the IoUPC

TABLE II
ABLATION STUDY OF DIFFERENT CONSISTENCY TRAINING METHODS

module is employed to obtain style image pairs with minor
disturbance from the input style and the SILR term facili-
tates the network in learning consistent style features. In the
experiments, some consistency training methods such as unsu-
pervised data augmentation (UDA) [32] and relaxed style loss
(RSL) [21] are also compared. In the comparison of “UDA”
method, we adopt the same manipulation in [32] for a fair
comparison. “RSL” relaxes the objective function to make the
style loss term more robust. In a robust ST model, we would
like consistently transfer important style patterns into content
images. Therefore, we use the evaluation metrics of BSL [39],
SSIM [40], and SIM to evaluate the ability of ST, content
preservation, and style consistency. The results indicate that
Baseline-IoUPC effectively generates stylization results and
Baseline-SILR optimizes the network to consistently transfer
style features into content images. By integrating IoUPC
and SILR, the proposed Baseline-SCT achieves significant
relative improvements of 42.79%, 0.28%, and 19.37% in
terms of BSL, SSIM, and SIM, respectively, compared to
the Baseline network. These demonstrate that the proposed
SCT approach can facilitate the learning of essential style
features by the network and consistently transfer style patterns
into content images to achieve significant improvements of
consistent stylization. Compared to the original method, the
proposed consistent ST method not only captures richer style
patterns from the style image but also retains the content
structure of the content image. UDA simply minimizes the
difference between the generated images to obtain the style
patterns directly. However, it fails to fully consider the minor
variation between style images resulting in content distortion.
On the contrary, RSL can retain more content structure to
resist interference from content to achieve consistent ST but
fails to effectively extract the important style patterns. SCT
can well capture the important style patterns in the style image
and preserve the content structure at the same time to achieve
consistent ST.
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TABLE III
ABLATION STUDY OF DIFFERENT ATTENTION MECHANISMS

B. Analysis of Attention Module

In Table III, we evaluate different attention-based methods
to provide an optimal module for CAST. SA denotes our
designed SA module as shown in Fig. 5. MLP means the
multiple layer perception with several convolutional neural
network layers to learn the attention maps. In contrast, our
proposed SA module adopts SA mechanisms to capture the
inner-correlations between feature maps. To explore the opti-
mal network structure as shown in Fig. 5, the proposed SA
structure without convolution and with ReLU layers, denoted
by SAWC and SAWR, are compared in the ablation stud-
ies. To validate the efficacy of the proposed SA module,
some weighted normalization methods such as switchable
normalization (SN) and attentive normalization (AN) are also
compared. Baseline-SA effectively captures essential style fea-
tures, leading to significant improvements over the “Baseline”
method in terms of BSL, SSIM and SIM by 74.32%, 0.93%
and 14.29%. Using a simple network, the Baseline-MLP learns
initial features and achieves modest improvements compared
to the proposed method. By exploring self-attentive features,
our Baseline-SA outperforms Baseline-MLP by 15.56% in
BSL, 0.53% in SSIM, and 12.5% in SIM. These demonstrate
that the proposed SA module can effectively capture essential
style features, thereby enhancing the CAST performance. As
shown in the row “Baseline-SAWC,” SA without the convolu-
tion layer obtains the improvement of ST and consistency but
lacks the representative ability to preserve the content struc-
ture. As shown in the row “Baseline-SAWR,” SA with ReLU
layer ignores some important activation from the generated SA
weights. Therefore, the Baseline-SAWR performs an incon-
sistent AST, resulting in a degradation in SIM. Baseline-SN

enriches style patterns by adapting the normalization method
into the ST method according to the inputs but fails to preserve
the content structure. Baseline-AN learns the attention weights
to conduct the mixture normalization. It is effective for object
classification but not suitable to improve the consistency of ST.
Overall, the proposed SA devises an optimal SA module to
capture the important features for consistent ST and achieves
the best performance in terms of BSL, SSIM, and SIM,
respectively.

VII. CONCLUSION

In this article, we first discovered the style inconsistency
problem in the AST model and developed a measure, namely
SIM, to quantitatively evaluate the inconsistency. To address
this issue, we then proposed a CAST framework that consists
of an IoUPC module, a SILR, and a SA module to capture
important features for consistent stylization. We conducted
comprehensive qualitative and quantitative experiments to ver-
ify the effectiveness of the proposed approach. The results
demonstrate that our methods significantly improve the con-
sistency of stylization and enhance the stylization performance
by capturing salient style features. In future work, we plan
to extend our consistent model to video ST and other image
generation tasks.
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