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ABSTRACT
Hyperspectral compressive imaging has shown remarkable
advancements through the adoption of deep unfolding frame-
works, which integrate the proximal mapping prior into the
data fidelity term to formulate the reconstruction problem.
However, existing technologies still face challenges in effec-
tively capturing spatial-spectral features during the iterative
deep prior learning stage, leading to unsatisfactory perfor-
mance degradation. To address this issue, we propose a deep
unfolding 3D non-local transformer (3DNLT) network for hy-
perspectral compressive imaging. A learnable half-quadratic
splitting (HQS) algorithm is utilized to iteratively update the
linear projection. Furthermore, a 3D non-local attention u-
shaped transformer is presented as the deep proximal map-
ping prior module to obtain the spatial-spectral long-range de-
pendency features, leading to enhance the network’s ability to
capture fine-grained hyperspectral and spatial details. Experi-
mental results on both synthetic and real hyperspectral image
reconstruction have demonstrated the superior performance
of the 3DNLT network compared to state-of-the-art methods.

Index Terms— Deep unfolding, non-local mechanism,
transformer, hyperspectral snapshot compressive imaging.

1 Introduction
Hyperspectral Image (HSI) has gained widespread applica-
tions, e.g., anomaly detection [1, 2], multimodal classification
[3, 4], and image clustering [5], thanks to their unique proper-
ties of capturing detailed spectral information for each pixel
in a scene [6]. However, the acquisition of 3D hyperspec-
tral data poses significant challenges due to the limitations of
traditional optical sensor imaging systems [7]. As one of the
renewed imaging technologies, coded aperture snapshot spec-
tral imaging (CASSI) utilizes coded aperture and disperser to
modulate 3D HSI data, producing a compressed 2D measure-
ment [8]. Subsequently, developing an effective reconstruc-
tion algorithm has become crucial for obtaining satisfactory
HSI from a measurement.

Reconstructing HSI from compressed measurement poses
a challenging ill-posed problem. To address this issue, nu-
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Fig. 1: Comparison of reconstruction performance (SSIM vs. PSNR)
under different model training parameters. 3DNLT achieves the best
performance among state-of-the-art methods.

merous methods have been developed, which can be catego-
rized into the following classes. 1) Traditional hand-craft
prior model leverages mathematical characteristics of HSI
data, such as total variation [9], non-local similarity [10], low-
rank [11], and sparsity [12], to incorporate prior knowledge
into the reconstruction objective function. These priors rely
on predefined mathematical properties and assumptions about
the data, which may not always capture the complex struc-
tures and variations present in HSI data. 2) Data-driven deep
learning model surpasses the limitations of hand-crafted pri-
ors by learning the underlying representations and structures
directly from the data [13]. For example, λ-Net [14], HD-
Net [15], and TSA-Net [16] incorporate the end-to-end neural
network to restore 3D data within seconds rather than hours.
While deep learning models offer notable efficiency and per-
formance advantages, challenges related to interpretability
and flexibility persist [17]. 3) Plug-and-play (PnP) model in-
tegrates a fixed pretrained deep prior into traditional optimiza-
tion models [18] to achieve effective reconstruction. How-
ever, PnP-based methods face challenges in learning a spe-
cific denoiser tailored for reconstruction [19]. This limitation
hampers their reconstruction performance, as they may not ef-
fectively adapt to the unique characteristics and complexities
of each HSI dataset. 4) Adaptive prior unfolding learning
model iteratively learns the deep prior and updates the lin-
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ear projection by developing an effective network within the
objective function [20]. Deep unfolding methods offer pow-
erful learnability and good interpretability, enabling effective
reconstruction performance by systematically unveiling the
learning stages [21].

However, existing deep unfolding-based approaches have
often neglected either the spatial or spectral domain features
[8]. Moreover, these approaches have treated spatial and spec-
tral attention features as separate steps rather than considering
them as a unified whole [7]. Consequently, there is a press-
ing need to develop methods that can effectively capture and
leverage both spatial and spectral information in a cohesive
manner. This holistic approach will enable more comprehen-
sive and accurate reconstructions. In this paper, we present
a deep unfolding 3D Non-Local Attention u-shaped Trans-
former (3DNLT) network to simultaneously consider spatial-
spectral non-local attention features as a whole. To the best
of our knowledge, our work is the first to investigate the 3D
non-local attention mechanism in the deep unfolding meth-
ods. As demonstrated in Fig. 1, the proposed method achieves
superior reconstruction performance compared to other ap-
proaches in terms of peak-signal-to-noise ratio (PSNR) [22]
and structural similarity index measure (SSIM) [23], while
maintaining a reasonable computation cost. Overall, our main
contributions can be summarized as follows:

• We propose a deep unfolding 3D non-local transformer
model including the mathematical linear projection
module and deep 3D non-local attention prior module
for spectral snapshot compressive imaging.

• We develop a 3D non-local mechanism to learn spatial-
spectral attention features for reconstruction. The pro-
posed 3D non-local transformer can capture intricate
spatial structure and content, while also accurately
modeling the correlation across the spectral bands.

• Extensive experiments of synthetic and real HSI recon-
struction have validated the superiority of the proposed
method over state-of-the-art approaches.

2 Methodology
2.1 Problem Formulation
In the CASSI system, the detector captures spatially modu-
lated spectral information using an encoding aperture with
a set pattern and then spectrally disperses it with a disper-
sion prism [24]. Considering a sequence {F b}Bb=1 ∈ RH×W ,
where B is the number of HSI bands. These frames are mod-
ulated by a mask M ∈ RH×W :

F
′

b = M ⊙ F b (1)

where F
′

b means the modulated HSI frames and ⊙ denotes the
element-wise multiplication. Next, the frames F

′

b are shifted
horizontally according to the dispersion function s. Conse-

quently, the modulated HSI frames F
′

b ∈ RH×W are com-
pressed into a form of coded measurement as follows:

G(m,n) =

B∑
b=1

F
′

b(m,n+ s(b)) +N (2)

where m and n denote the spatial coordinates. Then N ∈
RH×(W+B−1) and G ∈ RH×(W+B−1) denote the noise and
the compressed measurement. Therefore, the overall imaging
model is formulated as:

g = Φf + n. (3)

where the vectorization of a shifted version of coded aper-
ture M , F , G and N are denoted Φ ∈ RH(W+B−1)×HWB ,
f ∈ RHWB , g ∈ RH(W+B−1), and n ∈ RH(W+B−1), re-
spectively. In the CASSI system, spatial information is par-
tially sacrificed to capture comprehensive spectral informa-
tion, resulting in a fused representation of spatial and spectral
data. Consequently, it becomes crucial to carefully account
for the intricate relationship between spatial-spectral infor-
mation when reconstructing HSI. This forms the core of our
optimization process for improving 3D reconstruction.

2.2 Unfolding Algorithm
Inspired by the half quadratic splitting (HQS) [20], the HSI
reconstruction can be treated as an optimization problem:

f̂ = argmin
f

1

2
∥g −Φf ∥22 + λT (f ) (4)

where the first term is the data fidelity term, T (f ) means the
image prior term, and λ denotes the trade-off regularization
parameter between data and prior terms. By introducing an
auxiliary variable h , Eq. (4) can be reformulated as:

(f̂ , ĥ) = argmin
f ,h

1

2
∥g −Φf ∥22 + λT (h) +

ν

2
∥h − f ∥22, (5)

where ν means the penalty parameter. Then Eq. (5) can be
solved by decoupling f and h into the following two separate
iterative sub-problems:

f (k+1) = argmin
f

∥g −Φf (k)∥22 + ν∥h (k) − f (k)∥22, (6)

h (k+1) = argmin
h

ν

2
∥h (k) − f (k+1)∥22 + λT (h (k)), (7)

2.3 Deep Unfolding 3D Non-local Transformer
Network Structure. In Fig. 2, we introduce a 3D non-local
transformer (3DNLT) network to investigate the non-local
spatial-spectral relationship in hyperspectral imaging (HSI).
The linear projection (LP) module provides an explicit sub-
optimal solution, while the denoiser (DN) module utilizes a
u-shaped 3D non-local transformer network to capture deep
spatial-spectral correlations in the HSI data. To mitigate in-
formation loss during training, the proposed 3D non-local

Authorized licensed use limited to: Universidade de Macau. Downloaded on October 10,2024 at 02:19:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: The framework of deep unfolding 3D Non-Local Transformer (3DNLT) for hyperspectral compressive imaging.
attention block (3DNAB) incorporates residual connections.
Within the 3DNAB, the 3D non-local (3DNL) attention mod-
ule holistically combines non-local horizontal, vertical, and
spectral attention mechanisms. The feed-forward network
(FFN) employs various convolutional and activation layers to
obtain channel-wise attention features.
Linear Projection (LP) Module. The HQS algorithm ef-
fectively separates the data term and the regularization term,
enabling the solution of these two sub-problems in an alter-
nating manner. In essence, the f -sub-problem in Eq. (6) has a
closed-form solution as:

f (k+1) = (ΦTΦ+ νI)−1(Φg + νh (k)) (8)

= h (k) +
1

1 + ν
ΦT (ΦΦT )−1(g −Φh (k)) (9)

For the linear projection and denoiser modules, we em-
ploy a simple network Ω to fuse the compressed measurement
g and the sensing matrix Φ as input, formulated by:

(γ, ζ) = Ω(g ,Φ) (10)

where Ω comprises a Conv1×1, a branch of Conv3×3, a
global average pooling, and three fully connected layers.
Both γ and ζ are dynamically determined at each stage. To
facilitate the learnable solution of Eq. (9), we establish a con-
venient correspondence between γ and ν at each stage. Based
on this correspondence, we generate γ and ζ as inputs for the
linear projection (LP) and the 3DNLT denoiser (DN ), re-
spectively. Thus, Eq. (6) and Eq. (7) can be transformed as:

f (k+1) = LP(g ,h (k),γ(k+1),Φ) (11)

h (k+1) = DN (f (k+1), ζ(k+1)) (12)

3D Non-Local (3DNL) Attention. In the spatial-spectral do-
main, we firstly extract the vertical, horizontal, spectral fea-
tures using the convolutional network. Then we use Conv1×1
to obtain the query, key, and value of vertical representations
HQ, HK , HV , horizontal representations WQ, WK , WV ,
and spectral representations SQ, SK , SV . The 3D non-local
attention features along the orthogonal directions are calcu-
lated as:

AH(HQ,HK ,HV ) = softmax(HQHT
K)HV (13)

AW (WQ,WK ,WV ) = softmax(WQW T
K)WV (14)

AS(SQ,SK ,SV ) = softmax(
ST
KSQ

α
)SV (15)

where AH , AW , and AS denote the non-local self-attention
for vertical, horizontal, and spectral axes, respectively. In
the spectral non-local self-attention, we introduce a learnable
temperature parameter α to achieve an adaptive balance in the
calculation of spectral attention scores.

Finally, the computation of the 3DNL attention features is
carried out in a fusion module, which is formulated as:

A3D = β(AH +AW ) +AS (16)

where A3D denotes the 3D non-local attention features,
which includes vertical AH , horizontal AW , and spectral
AS non-local attention features, β refers to the learnable
trade-off weight. In the experiments, we adopt a simple shal-
low neural network to adaptively obtain the parameter β.
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Table 1: Performance (PSNR & SSIM) on the KAIST dataset. Boldface and underline indicate the best and second-best.

Methods Params GFLOPs S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

TwIST [12] - - 25.16 23.02 21.40 30.19 21.41 20.95 22.20 21.82 22.42 22.67 23.12
0.700 0.604 0.711 0.851 0.635 0.644 0.643 0.650 0.690 0.569 0.699

GAP-TV [9] - - 26.82 22.89 26.31 30.65 23.64 21.85 23.76 21.98 22.63 23.10 24.36
0.754 0.610 0.802 0.852 0.703 0.663 0.688 0.655 0.682 0.584 0.669

DeSCI [11] - - 27.13 23.04 26.62 34.96 23.94 22.38 24.45 22.03 24.56 23.59 25.27
0.748 0.620 0.818 0.897 0.706 0.683 0.743 0.673 0.732 0.587 0.721

λ-Net [14] 64.64M 117.98 30.10 28.49 27.73 37.01 26.19 28.64 26.47 26.09 27.50 27.13 28.53
0.849 0.805 0.870 0.934 0.817 0.853 0.806 0.831 0.826 0.816 0.841

HSSP [25] - - 31.48 31.09 28.96 34.56 28.53 30.83 28.71 30.09 30.43 28.78 30.35
0.858 0.842 0.823 0.902 0.808 0.877 0.824 0.881 0.868 0.842 0.852

DNU [21] 1.19M 163.48 31.72 31.13 29.99 35.34 29.03 30.87 28.99 30.13 31.03 29.14 30.74
0.863 0.846 0.845 0.908 0.833 0.887 0.839 0.885 0.876 0.849 0.863

DIP-HSI [18] 33.85M 64.42 32.68 27.26 31.30 40.54 29.79 30.39 28.18 29.44 34.51 28.51 31.26
0.890 0.833 0.914 0.962 0.900 0.887 0.839 0.885 0.876 0.849 0.863

TSA-Net [16] 44.25M 110.06 32.03 31.00 32.25 39.19 29.39 31.44 30.32 29.35 30.01 29.59 31.46
0.892 0.858 0.915 0.953 0.884 0.908 0.878 0.888 0.890 0.874 0.894

DGSMP [26] 3.76M 646.65 33.26 32.09 33.06 40.54 28.86 33.08 30.74 31.55 31.66 31.44 32.63
0.915 0.898 0.925 0.964 0.882 0.937 0.886 0.923 0.911 0.925 0.917

GAP-Net [24] 4.27M 78.58 33.74 33.26 34.28 41.03 31.44 32.40 32.27 30.46 33.51 30.24 33.26
0.911 0.900 0.929 0.967 0.919 0.925 0.902 0.905 0.915 0.895 0.917

ADMM-Net [27] 4.27M 78.58 34.12 33.62 35.04 41.15 31.82 32.54 32.42 30.74 33.75 30.68 33.58
0.918 0.902 0.931 0.966 0.922 0.924 0.896 0.907 0.915 0.895 0.918

HDNet [15] 2.37M 154.76 35.14 35.67 36.03 42.30 32.69 34.46 33.67 32.48 34.89 32.38 34.97
0.935 0.940 0.943 0.969 0.946 0.952 0.926 0.941 0.942 0.937 0.943

MST-L [28] 2.03M 28.15 35.40 35.87 36.51 42.27 32.77 34.80 33.66 32.67 35.39 32.50 35.18
0.941 0.944 0.953 0.973 0.947 0.955 0.925 0.948 0.949 0.941 0.948

MST++ [29] 1.33M 19.42 35.80 36.23 37.34 42.63 33.38 35.38 34.35 33.71 36.67 33.38 35.99
0.943 0.947 0.957 0.973 0.952 0.957 0.934 0.953 0.953 0.945 0.951

CST-L [30] 3.00M 40.01 35.96 36.84 38.16 42.44 33.25 35.72 34.86 34.34 36.51 33.09 36.12
0.949 0.955 0.962 0.975 0.955 0.963 0.944 0.961 0.957 0.945 0.957

BIRNAT [31] 4.40M 2122.66 36.79 37.89 40.61 46.94 35.42 35.30 36.58 33.96 39.47 32.80 37.58
0.951 0.957 0.971 0.985 0.964 0.959 0.955 0.956 0.970 0.938 0.960

DAUHST [8] 6.15M 79.50 37.25 39.02 41.05 46.15 35.80 37.08 37.57 35.10 40.02 34.59 38.36
0.958 0.967 0.971 0.983 0.969 0.970 0.963 0.966 0.970 0.956 0.967

PADUT [7] 5.38M 90.46 37.30 40.30 42.19 46.15 36.21 37.23 37.76 35.30 40.73 34.52 38.77
0.960 0.975 0.976 0.987 0.972 0.972 0.964 0.971 0.976 0.960 0.971
37.85 40.09 42.54 47.01 36.66 37.36 38.50 35.95 41.72 35.04 39.27Ours (3DNLT) 6.67M 112.62 0.964 0.974 0.977 0.986 0.973 0.971 0.969 0.969 0.977 0.962 0.972

3 Experiments
3.1 Experimental Settings
Following the configurations of TSA-Net [16], we utilize a set
of 28 wavelengths ranging from 450 nm to 650 nm for our ex-
periments. These wavelengths are obtained through spectral
interpolation manipulation of HSI.

In the experiments, we use the CAVE and KAIST
datasets. The CAVE dataset consists of 32 HSIs with a spatial
size of 512× 512, while the KAIST dataset includes 30 HSIs
with a spatial size of 2704× 3376. The CAVE dataset is used
for training, and 10 scenes from the KAIST dataset are used
for testing. For real HSI reconstruction, we trained a separate
model from scratch using the combined CAVE and KAIST
datasets. To simulate real-world conditions, we introduce 11-
bit shot noise to the simulated measurements during training.
For evaluation, we use 5 authentic HSIs acquired with the
CASSI system. We implemented the 3DNLT models using
PyTorch with the Adam optimizer on RTX 3090 GPUs and

trained the model 300 epochs with a learning rate of 4×10−4.
For the comparison methods, we select several model-

based methods including TwIST [12], GAP-TV [9], DeSCI
[11], and HSSP [25]; deep learning-based methods such as
λ-Net [14], TSA-Net [16], HDNet [15], MST-L [28], MST++
[29], CST-L [30], and BIRNAT [31]; PnP-based methods in-
cluding DIP-HSI [18]; and deep unfolding-based methods
such as HSSP [25], DNU [21], DGSMP [26], GAP-Net [24],
ADMM-Net [27], DAUHST [8], and PADUT [7].
3.2 Simulation Reconstruction Results
The quantitative results of synthetic HSI reconstruction are
presented in Table 1. We use PSNR and SSIM for recon-
struction evaluation, and training parameters and GFLOPs for
model complexity. For a fair comparison, deep unfolding
methods undergo 12 stages of iteration under identical con-
ditions. 3DNLT outperforms state-of-the-art methods in HSI
reconstruction, achieving improvements of 0.5 dB and 0.91
dB compared to PADUT [7] and DAUHST [8] in PSNR, with
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Fig. 3: Visual results of hyperspectral image reconstruction for Scene 10 on the KAIST dataset. Zoom in for better viewing.

Fig. 4: Spectral density curve, RGB image (out of 28 bands), and
compressed measurement of Scene 10 on the KAIST dataset, ar-
ranged from left to right and top to bottom.

only a slight increase in computation cost.
As depicted in Fig. 3, compared to the blur results of

DAUST and over-smoothness on PADUT, our 3DNLT effec-
tively captures fine-grained texture details and accurately re-
constructs the contents. The visualization results of the spec-
tral density curve, as shown in Fig. 4, highlight the supe-
rior performance of our proposed method in recovering the
spectral bands. Overall, our 3DNLT approach successfully
restores spatial details and accurately reconstructs spectral
bands, achieving satisfying results.

3.3 Real Reconstruction Results
The visualization results in Fig. 5 demonstrate the excep-
tional ability of our 3DNLT model to restore intricate struc-
tural details in real HSI reconstruction. In comparison to deep
unfolding-based methods such as DAUHST and PADUT,
our approach leverages the power of 3D non-local attention

D
A

U
H
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PA

D
U

T
O

ur
s

476.5nm 492.5nm 529.5nm 584.5nm 648.0nm
Fig. 5: Visual results of Real HSI reconstruction.

Table 2: Ablation studies of attention in the proposed method.
Baseline HNA VNA SNA Params (M) GFLOPs PSNR SSIM

✓ ✗ ✗ ✗ 0.87 10.74 34.42 0.939
✓ ✓ ✗ ✗ 1.11 14.07 35.11 0.947
✓ ✗ ✓ ✗ 1.11 14.07 35.30 0.949
✓ ✗ ✗ ✓ 1.11 13.20 35.90 0.952
✓ ✓ ✓ ✗ 1.11 16.31 35.45 0.951
✓ ✓ ✗ ✓ 1.11 16.52 36.00 0.954
✓ ✗ ✓ ✓ 1.11 16.52 36.25 0.956
✓ ✓ ✓ ✓ 1.11 18.77 36.70 0.960

transformer, resulting in superior reconstruction performance.
This represents a significant advancement in HSI reconstruc-
tion, highlighting the effectiveness of our proposed method.

3.4 Ablation Studies
Table 2 demonstrates the effectiveness of our proposed
3DNLT network. Incorporating the spectral non-local atten-
tion (SNA) module improves PSNR by 1.48 dB and SSIM by
0.013 compared to the baseline. SNA outperforms the hor-
izontal non-local attention (HNA) and vertical non-local at-
tention (VNA), highlighting the importance of spectral band
features. The proposed 3D non-local attention mechanism
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achieves a gain of 2.28 dB in PSNR and 0.021 in SSIM, sur-
passing the individual non-local attention mechanisms (HNA,
VNA, and SNA). These results confirm the superiority of our
3D non-local attention mechanism in restoring spectral and
spatial details for HSI reconstruction.

4 Conclusion
In this paper, we proposed a deep unfolding 3D non-local
transformer (3DNLT) network for hyperspectral compressive
imaging. By incorporating a learnable half-quadratic splitting
(HQS) algorithm and a 3D non-local attention u-shaped trans-
former, the network effectively captures spatial-spectral fea-
tures and enhances reconstruction performance. Experimen-
tal results on synthetic and real hyperspectral images demon-
strate the superior performance of the 3DNLT network com-
pared to state-of-the-art methods. In future work, we will
develop more deep priors or constraints into the network to
enhance the reconstruction quality and robustness.
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