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Abstract
Nowadays, the abuse of deepfakes is a well-known issue since deepfakes can lead to severe security and privacy problems.
And this situation is getting worse, as attackers are no longer limited to unimodal deepfakes, but use multimodal deepfakes,
i.e., both audio forgery and video forgery, to better achieve malicious purposes. The existing unimodal or ensemble deepfake
detectors are demanded with fine-grained classification capabilities for the growing technique on multimodal deepfakes. To
address this gap, we propose a graph attention network based on heterogeneous graph for fine-grained multimodal deepfake
classification, i.e., not only distinguishing the authenticity of samples, but also identifying the forged types, e.g., video or
audio or both. To this end, we propose a positional coding-based heterogeneous graph construction method that converts an
audio-visual sample into a multimodal heterogeneous graph according to relevant hyperparameters. Moreover, a cross-modal
graph interaction module is devised to utilize audio-visual synchronization patterns for capturing inter-modal complementary
information. The de-homogenization graph pooling operation is elaborately designed to keep differences in graph node
features for enhancing the representation of graph-level features. Through the heterogeneous graph attention network, we
can efficiently model intra- and inter-modal relationships of multimodal data both at spatial and temporal scales. Extensive
experimental results on two audio-visual datasets FakeAVCeleb and LAV-DF demonstrate that our proposed model obtains
significant performance gains as compared to other state-of-the-art competitors. The code is available at https://github.com/
yinql1995/Fine-grained-Multimodal-DeepFake-Classification/.
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1 Introduction

The combination of artificial intelligence technology and
multimedia synthesis technology has led to the populariza-
tion of deepfakes in which both video and audio are sufficient
to be faked (Juefei-Xu et al., 2022). There are various ways
of creating deepfakes, including text-to-speech(TTS) (Jia et
al., 2018; Ping et al., 2018), voice conversion(VC) (Arik et
al., 2018), face reenactment (Prajwal et al., 2020; Tulyakov
et al., 2018; Jamaludin et al., 2019), and face swapping (Kor-
shunova et al., 2017; Nirkin et al., 2019). The new internet
communication method, which takes individual media com-
munication as a branch and closely focuses on hotspots,
further intensifies the breeding and abuse of deep falsification
in cyberspace, and seriously undermines our trust in online
media.

To defend against the potential risks of these forgedmedia,
numerous efforts have been devoted and achieved promising
performances on a singlemodality forgery i.e., either video or
audio, in recent years. For video forgery, detection techniques
can be divided into textural feature based and semantic fea-
ture based methods. Textural feature based methods focus on
capturing discriminative frame-level features, including face
blending boundaries (Li et al., 2020a; Zhao et al., 2020) and
forgery signals on frequency spectrum (Chen et al., 2021;
Qian et al., 2020; Liu et al., 2021a). Semantic feature based
methods aim to model temporal inconsistency by extracting
trends in irregular facial movements (Haliassos et al., 2021,
2022) or differences over adjacent frames (Li et al., 2020b;
Gu et al., 2021; Lu et al., 2023). For audio forgery, most
exiting spoofed speech detection methods rely on extract-
ing acoustic representations like MFCC (Muda et al., 2010),
STFT and CQCC (Todisco et al., 2016) from raw waveform
signals to classify.

However, a convincing deepfake usually require metic-
ulous manipulations of both video and audio channels to

Fig. 1 Different types of audio-visual manipulation. On the top left is
a real video with the subject saying “Vaccinations are safe”. On the top
right is manipulating the video to get another person to say the same
content. On the bottom left is manipulating the audio to change what
the person is saying. The bottom right is fabricating misinformation by
tampering with video and audio

more efficiently deliver spurious information and fake news.
As shown in Fig. 1, to create different social or political
threats, attackers can manipulate audio-visual multimodal
samples with different types of audio and video combina-
tions. When faced with such diverse manipulation types,
existing unimodal or ensemble-based detection methods
struggle to achieve satisfactory authenticity detection per-
formance, let alone accurately distinguish the manipulation
types (Khalid et al., 2021). This is because unimodal-based
approaches don’t consider multimodal forgery scenarios,
while ensemble-based approaches don’t take full advantage
of the complementary information between modalities.

To overcome the shortcomings in the existing studies, we
propose a multimodal deepfake classification model, which
can classify deepfakes that are possibly any combination of
audio or video. Generally speaking, visual and audio modal-
ities are often intertwined, and a synchronization pattern
exists between the two (Zhou and Lim, 2021). The inter-
play between these two modalities is critical for detecting
multimodal deepfakes. Heterogeneous graphs are a compact,
efficient and scalable way to represent data involving several
different entities and their relationships. Modeling the inter-
action of entities (including modalities) with heterogeneous
graphs is a relatively newparadigmand has been successfully
used to solve several tasks in the fields of computer vision and
natural language processing, e.g., visual question answering
(Saqur and Narasimhan, 2020; Le et al., 2021), multime-
dia recommendation (Wei et al., 2019; Wang et al., 2021),
medical image synthesis (Cao et al., 2023) and audio-visual
sentiment analysis (Wu and Li, 2023; Yang et al., 2021).
Motivated by the success of graph-based approaches, we pro-
pose a heterogeneous graph-based model to detect deepfakes
of multiple modalities.

To this end, we first transform an audio-visual sample into
a heterogeneous graph with two subgraphs. It is worth noting
that positional encoding is introduced into each subgraph to
preserve the intra-modal temporal relationships of the audio
or video. We next develop a heterogeneous graph attention
network with two well-designed modules, namely, cross-
modal graph interaction module and the de-homogenization
graph poolingmodule. In combination with adjacencymatri-
ces, cross-modal graph interaction module utilizes a self-
attention mechanism to establish information interaction
between modalities. This allows capturing rich inter-modal
complementary information from the synchronization pat-
terns of audio-visual pairs. The de-homogenization graph
pooling module enhances the graph-level representation of
themodel by eliminating homogenized graph nodes and their
corresponding adjacency matrices. Our heterogeneous graph
model creates a shared space for audio and visual modalities
that explores their spatial and temporal relationships explic-
itly. Overall, the proposed model can take full advantage of
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multimodal information for fine-grained multimodal deep-
fake classification.

Our contributions are summarized as follows:

• We propose a heterogeneous graph attention network
for fine-grained multimodal deepfake classification. The
multimodal heterogeneous graph can bring out a closer
coupling between audio and video, thereby capturing
modality-specific information as well as complementary
information between modalities.

• A cross-modal graph interaction module is proposed
to promote the interaction between modalities, thereby
efficiently capturing rich inter-modal complementary
information according to audio-visual synchronization
patterns.

• A de-homogenization graph pooling module is devised
to measure the degree of homogeneity between graph
nodes. The diversity of graph-level features is enhanced
by eliminating the homogeneous graph nodes, which
is beneficial to improving the fine-grained classification
performance of the model.

The rest of this paper is organized as follows: Sect. 2 explains
multimodal deepfake datasets and graph neural networks,
Sect. 3 elaborates the proposed method, Sect. 4 shows exper-
iments, and Sect. 5 concludes the paper.

2 RelatedWork

2.1 Multimodal Deepfake Datasets

Benefiting from the continuous development of forgery syn-
thesis technology, there are several public deepfake datasets,
such as FaceForensics++ (Rossler et al., 2019), DFDC
(Dolhansky et al., 2020), Celeb-DF (Li et al., 2020c), Deep-
erForensics (Jiang et al., 2020), andWildDeepFake (Zi et al.,
2020), etc. However, most of these datasets are designed for
the binary task of deepfake classification and focus primarily
on video forgerywithout the corresponding audio forgery. To
the best of our knowledge, DFDC is the first dataset contain-
ing synthesized audio with the video, but it does not provide
respective labels for audio and video to specify if the video
is fake or the audio. To overcome this drawback, Khalid et
al. (2021) released a novel Audio-Video Deepfake dataset
(FakeAVCeleb), which contains not only deepfake videos
but also respective synthesized lip-synced fake audios. They
used the latest face-swap and face-reenactment methods to
manipulate videos and used transfer learning-based real-time
voice cloning tools to generate cloned audio. Recently, Cai
et al. (2022) proposed a large sized dataset LAV-DF, which
includes deepfake videos as well as synthesized fake audios
synchronized with the videos. All samples in LAV-DF are

partially faked, that is, fake content might constitute only
small part of a long real video, which greatly increases the
difficulty of detection. LAV-DF is not only suitable for the
task of fine-grained multimodal deepfake classification, but
also for temporal forgery localization.

2.2 Multimodal Deepfake Detection

Recently, some works consider utilizing the audio-visual
information (i.e., the inconsistency of audio and video infor-
mation) to conduct multimodal deepfake detection. Some
works (Chugh et al., 2020; McGurk and MacDonald, 1976)
extract the audio and visual information and directly analyze
the dissimilarity between two modalities. These methods do
not take into account audio forgery scenarios and have lim-
ited performance. To address this problem, JAVDD (Zhou
and Lim, 2021) and BA-TFD (Cai et al., 2022) considered
the interactions between different modalities and performed
joint audio-visual learning to capture the effective incon-
sistency of two modalities to achieve multimodal deepfake
detection. Besides, Cheng et al. (2023) used a self-supervised
manner to learn the audio-visual synchronization patterns
in real videos and applied these pretrained feature to detect
multimodal forgery. However, due to the gap betweenmodal-
ities, more intrinsic relationships and subtle inconsistencies
between the twomodalities need to be further explored.Com-
pared to these methods, our proposed method leverages a
novel heterogeneous graph structure to accurately model the
local audio-visual correspondence, which facilitates the cap-
ture of inter-modal inconsistencies.

2.3 Graph Neural Networks

In recent years, graph neural networks (GNNs) (Scarselli et
al., 2008; Brissman et al., 2023) have attracted growing atten-
tion, especially variants such as graph convolution networks
(GCNs) (Fu et al., 2021) or graph attention networks (GATs)
(Veličković et al., 2017). Since traditional neural networks
can only handle structured data, they are powerless in face of
non-Euclidean data. GNN relies on its powerful points and
edges to model non-Euclidean data, efficiently solving the
problem of graph-structured data encountered in practical
applications.

2.3.1 Homogeneous Graph Based Methods

Anumber of studies have shown the utility and appeal of uni-
modal homogeneous graphs for various modality processing
tasks, such as text (Peng et al., 2017; Veyseh et al., 2019),
audio (Zhang et al., 2019; Tak et al., 2021), and video (Qi
et al., 2018; Liu et al., 2021b). Peng et al. (2017) proposed
a general relationship extraction framework based on graph
long and short term memory networks, which can be easily
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extended to cross-sentence n-ary relation extraction. Veyseh
et al. (2019) proposed a new GCN based approach to inte-
grate semantic and syntactic structures by introducing affinity
matrix. Zhang et al. (2019) applied GCNs to a few-shot
audio classification task in order to derive attention vectors
that help improve the discrimination between different audio
instances. Tak et al. (2021) used a spectro-temporal graph to
model the relationship between cues spanning different sub-
bands and temporal intervals for speech deepfake detection.
Qi et al. (2018) proposed a graph parsing neural network
in order to achieve the purpose of detecting and recognizing
human-object interactions in videos, which is to infer parsing
graphs in an end-to-end manner. Liu et al. (2021b) proposed
a graph attention spatio-temporal convolutional network that
comprises of interleaved temporal convolutional and graph
attention blocks for 3D human pose estimation in video.

2.3.2 Heterogeneous Graph Based Methods

In real-life scenarios, heterogeneous graphs are themost rele-
vant to the actual problem compared to homogeneous graphs.
Multimodal heterogeneous graphs have been successfully
used to address various problems in computer vision and nat-
ural language processing, such as visual question answering
(Saqur and Narasimhan, 2020), multimedia recommenda-
tion (Wang et al., 2021), and audio-visual sentiment analysis
(Yang et al., 2021). Saqur and Narasimhan (2020) proposed
multimodal graph networks to learn joint graph-based rep-
resentation for better solving the problem of compositional
generalization for visual question answering. Wang et al.
(2021) proposed a dual graph neural network based on the
user micro-video bipartite and user co-occurrence graphs
for micro-video recommendation. Yang et al. (2021) used
multi-channel graph neural networks to learn multimodal
representations and then fused multimodal information to
predict the sentiment of image-text pairs. Motivated by the
success of graph-based methods in multimodal problems,
we propose a heterogeneous graph-based approach to cap-
ture the synchronization patterns in audio-video sample for
fine-grained multimodal deepfake classification.

3 Approach

In this section, the proposed approach for fine-grained
multimodal deepfake classification is described. First, we
present a detailed description of how to transform an audio-
visual sample into a heterogeneous graph without losing the
temporal order. Then, we elaborate the framework of the
heterogeneous graph-based graph attention network. Finally,
we technically introduce the proposed network modules,
namely the cross-modal graph interactionmodule and the de-
homogenization graph pooling module, which can enhance

Algorithm 1 The intra-modality information aggregation
process
Require: subgraph Gv = {Vv, Evv, nv, ev}
Ensure: updated subgraph ˜Gv

1: nvq = σq (nv)

2: nvk = σk(nv)

3: nvv = σv(nv)

4: for i = 1 : P do
5: for j = 1 : P do
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10: end for
11: Return: ˜Gv ← ˜nv

the representation ability of graph neural network and facil-
itate better graph classification.

3.1 Positional Coding-Based Heterogeneous Graph
ConstructionMethod

In contrast to unimodal data,multimodal data has tight spatio-
temporal correlation between its different components. For
example, there is a strong correlation between the facial
motions (viseme) and the pronounced syllables (phoneme)
(McGurk and MacDonald, 1976). Making full use of inter-
action between audio and video is beneficial for fine-grained
classification of multimodal deepfakes. To learn this interac-
tion, we convert an audio-visual sample into a multimodal
heterogeneous graph. The powerful coupling ability of the
heterogeneous graph helps to explore the subtleties of the
intrinsic synchronization patterns between audio and video.
However, the heterogeneous graph structure is not natu-
rally defined here, we propose a positional coding-based
heterogeneous graph construction method to add inter- and
intra-modality edges.

As shown in Fig. 2, an audio-visual sample is converted
to a heterogeneous graph G = (V, E, O, R), where V repre-
sents the set of nodes, E represents the set of edges, O is the
set of node types (audio or video), and R is the set of edge
types (audio-audio, video-video, and audio-video). First, the
video and audio frames are uniformly divided into P and Q
clips respectively and then these clips are used for high-level
semantic feature extraction. That is to say the heterogeneous
graph comprises of the video node sets Vv = {v j }Pj=1 and

the audio node sets Va = {ai }Qi=1. Each video node v j ∈ Vv

is associated with feature vector nv
j ∈ R

d . Similarly, an

audio node ai ∈ Va owns the feature vector nai ∈ R
d .

Next, according to the predefined parameters, (1) neigh-
bour and (2) overlap, we add intra- and inter-modality edges
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Fig. 2 Positional coding-based heterogeneous graph construction process. For simplicity, the edges are only shown for ai and ai+1. Similar
connections are added for each node

E = {Eaa, Evv, Eav} and denote the corresponding adjacency
matricesAaa , Avv , andAav . The former parameterneighbour
defines the number of adjacent nodes of each node in intra- or
inter-modality. The latter parameter overlap defines the num-
ber of overlaps between different attribute nodes connected
to adjacent nodes.

Since both audio and video are directed sequence data,
the constructed heterogeneous graph is undirected. In order to
preserve the temporal order of data, we introduce the position
coding to assign the temporal weight et1,t2 to each edge in
intra-modality edge sets (Eaa and Evv). Taking the video-
video edge as an example, the temporal weight ev

t1,t2 can be
expressed by:

ev
t1,t2 =

{

t1 − t2, 1 ≤ t1, t2 ≤ P&t1 �= t2
0.5, t1 = t2

(1)

where t1 and t2 represent the temporal number of the nodes on
each side of an edge. ev

t1,t2 defines the time interval between
two nodes and is specifically set to 0.5 when the node is
self-looping. In total, we have four hyperparameters for the
heterogeneous graph construction.

3.2 Heterogeneous Graph Attention Network

Combining the abovementioned heterogeneous graph con-
struction method, we propose a graph attention network
based on the heterogeneous graph for fine-grained mul-
timodal deepfake classification. As shown in Fig. 3, the
proposed model is a two-stage multimodal spatio-temporal
feature extractor. In the former stage, we use a video node
feature extractor and an audio node feature extractor to

extract high-level semantic features from uniformly seg-
mented video and audio clips, respectively. In the latter stage,
we construct a heterogeneous graph attention network to cap-
ture modality-specific information as well as complementary
information between modalities both at spatial and temporal
scales.

To this end, the heterogeneous graph attention network
comprises of three learning stages: (1) intra-modality infor-
mation aggregation; (2) cross-modality information inter-
action; (3) de-homogenization graph pooling. In the first
stage, each subgraph captures modality-specific information
by updating its own node features through an attentionmech-
anism. Specifically, the feature of each node is updated with
the aggregated information from neighboring nodes of the
same subgraph by a self-attentionmechanism. For video sub-
graphGv = {Vv, Evv, nv, ev}, the intra-modality information
aggregation process is illustrated in Algorithm 1, where σ is
an affine transform, cv

i j refers to the correlation between node
vi and v j , αv

i j refers to the attention weight between node vi
and v j , which reflects how informative one node is of another,
where the higherweight implies a higher connective strength,
and β is a learnable parameter. The update process of audio
subgraph is similar to the video subgraph.

In the second stage, a cross modal graph interaction
module is introduced to promote the interaction between
audio and video subgraphs for capturing complementary
information between modalities. In the third stage, a de-
homogenization graph pooling module is designed to com-
press the scale of the heterogeneous graph, so as to obtain
graph-level representations for deepfake classification. The
latter two stages are described in detail below.
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Fig. 3 Diagrammatic overview of the proposed fine-grained multimodal deepfake classification framework

Fig. 4 Cross-modal graph interactionmodule.� and⊗denote element-
wise multiplication and matrix multiplication, respectively

3.3 Cross-Modal Graph InteractionModule

Visual and audio modalities are often intertwined that video
and audio can complement each other by providing semantics
from different perspectives. Therefore, we propose a cross-
modal graph interaction module to model the interaction
between video and audio to capture complementary infor-
mation. The computation process of the interaction module
is described in Fig. 4. The proposed module can convert the
video subgraph feature Fv and the audio subgraph feature Fa
to ̂Fv and ̂Fa .

Taking the conversion of Fa as an example, first, Fa ∈
R

Q×C is converted into two other representations using dif-
ferent affine transforms. The value representation Fv

a ∈
R

Q×C denotes the modality-specific information and the

other key representation Fk
a ∈ R

Q×C/r measures the cor-
relation between two modalities. Then, the video to audio
(V2A) attention map attv2a ∈ R

Q×P is measured by the
attention mechanism:

attv2a = softmax(γ (Fk
a ) ⊗ (γ (Fk

v ))T ), (2)

where γ denotes the projection function. attv2a reweights
features in video modality according to its correlation with
the audio modality. Finally, applying the inter-modality adja-
cency matrix Aav ∈ R

Q×P to V2A attention map attv2a and
the corresponding value representation Fv

v ∈ R
P×C , we can

get the refined video feature. Adding the refined video feature
to Fa yields the enhanced feature ̂Fa :

̂Fa = Fa + α · (Fv
v ⊗ (attv2a � Aav)), (3)

where α is a learnable parameter. The calculation for ̂Fv is
the same. ̂Fa and ̂Fv embody complementary information
and promote the feature learning for each other.

3.4 De-homogenization Graph PoolingModule

Our objective is to classify entire graphs, as opposed to
the more common task of classifying each node. Hence,
we propose a de-homogenization graph pooling module to
eliminate redundant graph nodes and compress the scale of
graphs. After multiple iterations, the remaining node-level
representations are concatenated to obtain graph-level repre-
sentations. Denoting the input graph X ∈ R

4×5, the pooling
process is described in Fig. 5.

First, we calculate the node similarity matrix M ∈ R
4×4

between the input graph X and its own transpose XT by
self-attention. Then, we sum up each row of the similarity
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Fig. 5 Diagrammatic of the de-homogenization graph pooling module. ⊗ and ∩ denote matrix multiplication and the aggregation operation based
on indexes, respectively

matrix to get similarity score of each node. The k nodes
with lower similarity scores are selected and the correspond-
ing indexes are obtained. Since the video contains a large
number of duplicate frames, there are some redundant nodes
with similar features in the graph. Therefore, using the min-
imum similarity score as a metric is beneficial to expand the
variability of node-level features and enhance the character-
ization of graph-level features. Finally, we pool the input
graph X according to indexes to obtain the output graph
X. Meanwhile, we also apply the same pooling operation
to the corresponding inter-modality adjacency matrix Aav

to obtain the new adjacency matrix Aav , thus ensuring the
correct correspondence between audio and video in the fol-
lowing operations.

4 Experiments

4.1 Datasets

Toevaluate ourmethod,we conduct experiments on twochal-
lenging datasets: FakeAV (Khalid et al., 2021) and LAV-DF
(Cai et al., 2022).

• FakeAV is a large-scale multimodal forgery dataset con-
taining 500 real videos and 19,500 fake videos. There
are four forgery types in FakeAVCeleb, namely, ‘real-
real’(video is real and audio is real), ‘fake-fake’, ‘fake-
real’, and ‘real-fake’. Since some unimodal competitors
only focus onvisual informationor audio information,we

additionally prepared a video subset of FakeAV, exclud-
ing those with audio-only modifications and an audio
subset of FakeAV, excluding those with video-only mod-
ifications.

• LAV-DF is another largemultimodal forgerydataset, con-
sisting of 36,431 real videos and 99,873 fake videos.
Since the fake videos are partially forged and the dura-
tion of fake segment is in the range of [0–1.6] sec, it is a
very challenging dataset. Similarly, we also obtained the
video subset and the audio subset of LAV-DF.

4.2 Baseline Methods

We compare our method with some SOTA unimodal video
methods (e.g., UIA-ViT (Zhuang et al., 2022), RECCE
(Caoet al., 2022), FTCN (Zheng et al., 2021), and Real-
Forensics (Haliassos et al., 2022)) and SOTAunimodal audio
methods (e.g., TSSDN (Hua et al., 2021), RawGAT (Tak et
al., 2021), and SSLAS (Tak et al., 2022)) to show how mul-
timodal information can be helpful for deepfake detection.
Meanwhile, we also select the unimodal video methods and
unimodal audio method with better performance from the
abovemethods to form the ensemblemethods for comparison
to demonstrate the difficulty of the fine-grained classification
task.Moreover, to the best of our knowledge, there is nomul-
timodal forgery detection method that not only distinguish
the authenticity of samples, but also point out the forgery
types of samples. To demonstrate the effectiveness of the
proposed method on the fine-grained classification task, we
compare it with several methods that use multimodal infor-
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mation as an aid to detect unimodal forgery. MDS (Chugh et
al., 2020) and JAVDD (Zhou and Lim, 2021) mainly focused
on detect video-only forgery. BA-TFD (Cai et al., 2022)
was designed for temporal forgery localization. Since both
datasets, FakeAVCeleb and LAV-DF, are new datasets that
have just been made publicly available, no baseline methods
have been previously experimented on these datasets. There-
fore, we reproduce all baseline methods for comparison. It is
worth noting that the code for JAVDD is not publicly avail-
able. As a result, we implemented it and tried to match the
experimental setup of the original paper as much as possible
to ensure the fairness of the comparison.

4.3 Feature Encoders

Audio encoder: to extract audio node feature, each audio
is segmented into non-overlapping 1000 ms clips. For each
audio clip, a log-mel spectrogram is computed by the short-
time Fourier transform. The dimension of each log-mel
spectrogram is 64 × 100. We use the 2D ResNet to extract
512-dimensional features for each log-mel spectrogram.

Video encoder: each video is divided into non-overlapping
400ms video clips. Each clip comprises of 10 frames of size
128× 128× 3. Due to the high repetition of frame contents,
we randomly sample 4 frames from each clip as input to the
Spatio-temporal model proposed by (Yin et al., 2023). This
creates 512-dimensional features for each video clip.

4.4 Implementation Details

Each video produces a heterogeneous graphwith Q = 4 audio
and P = 10 video nodes, where each node corresponds to a
1000ms audio clip or a 400msvideo clip. In general,multiple
temporal slices of audio can map to a single video frame due
to the redundancy of frames, temporally. Therefore, different
time ranges of audio and video nodes in localized segments
of the whole video do not lead to synchronization issue. The
graph construction hyperparameters are set to audio neigh-
bour = 4, audio-visual neighbour = 4, audio-visual overlap
= 2, and video neighbour = 10, for all experiments. To verify
the rationality of the graph construction parameter setting,we
repeat our experimentswith different audio-visual neighbour
values and report results in Sect. 4.7.2. During the training
phase, the whole network is initialized randomly and is opti-
mized by Adam optimizer with a learning rate of 1e−3, a
batch size of 12, betas of 0.9 and 0.999, and epsilon of 1e−8.

4.5 Performance Comparisons

4.5.1 Intra-dataset Comparisons

Unimodal Methods We compare the proposed method with
some unimodal methods on the video subset or audio sub-

set of two popular multimodal deepfake datasets, FakeAV
and LAV-DF. As shown in Tables 1 and 2, our proposed
method can achieve the best detection performance in all set-
tings, both for the video subsets and audio subsets. For the
experimental results on video subsets, all unimodal video
methods perform poorly on FakeAV dataset because of the
sample imbalance problem in FakeAV, i.e., the number of
real samples is much less than the number of fake samples. In
addition, the detection performance of UIA-ViT and RECCE
has a large gap compared to FTCN and RealForensics on
the LAV-DF dataset. This is because UIA-ViT and RECCE
are frame-level methods, while FTCN and RealForensics are
video-level methods. To achieve video-level results for the
frame-level methods, we average the model predictions for
each frame across the entire video. However, in LAV-DF
dataset, the fake videos are partially forged and the duration
of the fake segment is small, which makes it unfriendly to
the frame-level methods.

For the experimental results on audio subsets, all unimodal
audio methods do not suffer from the sample imbalance
problem of FakeAV dataset and also achieve comparable per-
formance on the more challenging LAV-DF dataset. This
is due to the fact that audio content is purer and clearer
compared to complex video content. Audio features are sim-
pler and more effective than video features. In contrast, our
method is also immune to sample imbalance problem and
outperforms all compared opponents due to the learning
and exploiting ofmultimodal complementary information by
the heterogeneous graphmodel. Multimodal complementary
information can capture more tampering traces in the deep-
fakes and effectivelymitigate the effects of sample imbalance
problem with the help of audio information.

Ensemble Methods Further, two unimodal video methods
(FTCN and RealForensics) and one unimodal audio method
(RawGAT) are chosen to compose the ensemble models for
four classification comparison based on their performance on
the video and audio subsets. The results presents in Table 3.
The proposed method shows a promising results and outper-
forms the strong ensemblemethod by about 5.7%underACC
and 19.34%underAUConFakeAVdataset. Even on the chal-
lenging LAV-DF dataset, our method can also outperform
all ensemble methods. This is because the ensemble method
ignores the complementary information between modalities
and is simply a superimposition of unimodal approaches.
Furthermore, the ensemble method is not an end-to-end
model, and training video branch and audio branch separately
often brings extra computational and storage costs while not
being conducive to unleashing the power of deep learning.
This can also lead to ensemble models that are vulnerable
to the performance of a single unimodal branch, resulting
in poor stability. Compared with the ensemble models, our
method can bring a close coupling between modalities and
take full advantage of multimodal information, which allows
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Table 1 Quantitative results
(video-level ACC and AUC) for
binary classification of unimodal
methods on the video subset of
FakeAV and LAV-DF datasets

Methods FakeAV LAV-DF

ACC AUC ACC AUC

UIA-ViT (Zhuang et al., 2022) 0.9680 0.5793 0.6577 0.7550

RECCE (Caoet al., 2022) 0.9648 0.6013 0.6974 0.7738

FTCN (Zheng et al., 2021) 0.9716 0.5976 0.7786 0.8576

RealForensics (Haliassos et al., 2022) 0.9687 0.5986 0.7949 0.8766

Ours 0.9977 0.9997 0.9942 0.9999

The bold results are the best

Table 2 Quantitative results (video-level ACC and AUC) for binary
classification of unimodal methods on the audio subset of FakeAV and
LAV-DF datasets

Methods FakeAV LAV-DF

ACC AUC ACC AUC

TSSDN (Hua et al., 2021) 0.9916 0.9748 0.8127 0.8519

RawGAT (Tak et al., 2021) 0.9964 0.9913 0.8421 0.8885

SSLAS (Tak et al., 2022) 0.9922 0.9796 0.8376 0.8726

Ours 0.9970 0.9999 0.9983 0.9999

The bold results are the best

Table 3 Quantitative results (video-level ACC and AUC) for four clas-
sification of ensemble methods on FakeAV and LAV-DF datasets

Methods FakeAV LAV-DF

ACC AUC ACC AUC

FTCN+RawGAT 0.9421 0.8063 0.7063 0.8726

RealForensics+RawGAT 0.9349 0.7919 0.7197 0.8868

Ours 0.9991 0.9997 0.7213 0.8956

The bold results are the best

for good stability and is suitable for the deployment in real
applications.

Multimodal Methods We conduct comprehensive exper-
iments on the full set of FakeAV and LAV-DF under both
binary classification and four classification scenarios and
report comparisons against state-of-the-art works in Tables 4
and 5. It is clear that our proposed method outperforms all
compared methods, especially under AUCmetrics by a large
margin. In term of ACCmetrics, all methods achieve compa-
rable results. This is reasonable that the number of positive
and negative samples in the two datasets is unbalanced, and
the number of real samples is much smaller than the number
of faked samples. In order to better analyze the experimental
results, we also plotted the confusion matrices of the classifi-
cation results of eachmethod on different datasets. As shown
in Fig. 6, both the FakeAV and LAV-DF datasets suffer from
some degree of data imbalance. The sample imbalance prob-
lem can have a huge impact on the performance of different
detection models that none of the baseline methods learn the
features of those categories with low sample sizes well. how-
ever, our proposed model is almost immune to this problem.

The reason behind is that de-homogenization graph pooling
module designed by us can enhance the diversity of graph-
level features, which facilitates mining the specific features
for those categories with low sample sizes.

For FakeAV dataset, the performance of JAVDD which
is specifically designed to fuse multimodal information at
each layer is better than MDS and BA-TFD under four clas-
sification scenario. The reason behind is that both MDS and
BA-TFD only fuse multimodal information in late fusion
stage. However, different modalities have different conver-
gence trends and simple information fusion does not yield
more effective representation features, which causes sub-
par results. Although JAVDD can learn the correspondence
between the audio and video over time, it only focuses on the
overall correspondence of audio and video and ignores the
local correspondence, which is insufficient to learn the sub-
tleties of the intrinsic synchronisation patterns. This is also
reflected in the fact that JAVDD does not performwell on the
LAV-DF dataset, where all fake videos in the LAV-DF dataset
are partially manipulated. In contrast, our method uses a het-
erogeneous graph model to model intra- and inter-modality
relationships, and further promotes the local regional infor-
mation interaction between the audio and video. Therefore,
our method outperforms all compared opponents on all set-
tings.

For LAV-DF dataset, all methods don’t perform very well
in four classification scenario. This is because the duration of
the fake segment in each fakevideo is in the rangeof [0.8, 1.6]
seconds. For fake videos with an average total duration of
4 s, the relatively small proportion of fake segments is a huge
challenge for the detection method. Even then, our method
still suppresses all compared competitors and achieve 5.51%
and 3.04% performance gains than state-of-the-art results in
terms of ACC and AUC metrics.

4.5.2 Inter-dataset Comparisons

In this section, we train the model on one dataset and test on
another dataset to evaluate the model generalization. Com-
parisons underAUCmetrics are shown inTable 6.Weachieve
63.8% AUC on LAV-DF and 65.52% AUC on FakeAV
dataset, exceeding the competitors by about 8% on average.
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Table 4 Quantitative results
(video-level ACC and AUC) for
binary classification of
multimodal methods on FakeAV
and LAV-DF datasets

Methods FakeAV LAV-DF

ACC AUC ACC AUC

MDS (Chugh et al., 2020) 0.9697 0.5193 0.9342 0.9783

JAVDD (Zhou and Lim, 2021) 0.9697 0.5204 0.9442 0.9691

BA-TFD (Cai et al., 2022) 0.9696 0.5431 0.6529 0.5097

Ours 0.9984 0.9994 0.9981 0.9998

The bold results are the best

Table 5 Quantitative results
(video-level ACC and AUC) for
four classification of multimodal
methods on FakeAV and
LAV-DF datasets

Methods FakeAV LAV-DF

ACC AUC ACC AUC

MDS (Chugh et al., 2020) 0.9371 0.7318 0.6510 0.8091

JAVDD (Zhou and Lim, 2021) 0.9428 0.7778 0.6585 0.8271

BA-TFD (Cai et al., 2022) 0.9377 0.7757 0.6662 0.8652

Ours 0.9991 0.9997 0.7213 0.8956

The bold results are the best

Fig. 6 Confusion matrices of different model tested on different datasets under four classification scenarios. Each element in the confusion matrix
represents the number of samples predicted to be in that class

Table 6 Comparisons (video-level AUC) on cross-dataset generaliza-
tion under four classification scenario

Methods LAV-DF FakeAV

MDS (Chugh et al., 2020) 0.5522 0.5178

JAVDD (Zhou and Lim, 2021) 0.5811 0.6214

BA-TFD (Cai et al., 2022) 0.5511 0.5609

Ours 0.6380 0.6552

The bold results are the best

Since the videos in LAV-DF are partially forged, the
detectors present relatively better generalization on FakeAV
dataset compared to theLAV-DFdataset. Larger performance
gains of 13.74% is obtained on FakeAV dataset. This is rea-
sonable as ourmodel explicitly takes advantage of spatial and
temporal relationships between audio and visual modalities,
which allows for a certain robustness of the proposed model.
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Table 7 Robustness to common corruptions

Method Clean Saturation Contrast Block Noise Blur JPEG

MDS (Chugh et al., 2020) 0.7318 0.7164 0.7114 0.7251 0.6662 0.6789 0.6655

JAVDD (Zhou and Lim, 2021) 0.7778 0.7469 0.7614 0.7768 0.7158 0.7315 0.7547

BA-TFD (Cai et al., 2022) 0.7757 0.7662 0.7584 0.7728 0.7312 0.7404 0.7387

Ours 0.9997 0.9091 0.9107 0.9995 0.8598 0.8544 0.8703

The bold results are the best
Average AUC scores (%) across five intensity levels for each corruption type

Table 8 Ablation study on key components

Pos Cross Pool Binary classification Four classification

ACC AUC ACC AUC

× × × 0.9696 0.5502 0.9502 0.8161

� × × 0.9696 0.5507 0.9512 0.8141

× � × 0.9878 0.9216 0.9577 0.9010

× × � 0.9809 0.9045 0.9549 0.8795

� � × 0.9912 0.9537 0.9840 0.9556

� × � 0.9904 0.9451 0.9853 0.9696

× � � 0.9937 0.9982 0.9906 0.9860

� � � 0.9984 0.9994 0.9991 0.9997

The bold results are the best

4.6 Robutness to Common Corruptions

Given the ubiquity of post-processing operations on social
media, it is critical that deployed multimodal forgery detec-
tors are not easily subverted by common perturbations. We
investigate the robustness of the detectors by training on
original uncompressed FakeAV and then testing on FakeAV
samples that were exposed to various unseen corruptions.
The set of perturbations, proposed in Jiang et al. (2020), are
changes in saturation and contrast, block-wise occlusions,
Gaussian noise and blur, and JPEG compression (JPEG).
Each perturbation type is applied at five different intensity
levels. Table 7 presents the average AUC across all intensity
levels for each corruption type. The proposed method still
outperforms all competitors. The smaller performance degra-
dation of all competitors is due to the fact that they originally
initially failed to correctly distinguish between the different
types of multimodal forgeries, as detailed in Fig. 6.

4.7 Ablation Study

4.7.1 Study onModule Effectiveness

We conduct comprehensive ablation studies on FakeAV
dataset to further explore the effectiveness of the pro-
posed method and modules, i.e., positional coding (Pos),
cross-modal graph interaction module (Cross), and de-

homogenization graph pooling module (Pool), as listed in
Table 8. We observe from Table 8 that without introducing
any proposed modules or methods, the original model has
the poor performance. Inserting only Cross module or Pool
module already improves the performance a lot. Obviously,
both inter- and intra-modality information are vital and com-
bination of them boosts the performance. The Pos method
is an effective auxiliary approach that can further improve
model performance. Note that the inter-modality information
contributes to the improvement more, which again demon-
strates the important of complementary information between
modalities for fine-grained multimodal deepfake classifica-
tion. We also use t-SNE (Van der Maaten and Hinton, 2008)
to visualize the graph-level representations of the models
with different key components. As shown in Fig. 7, the more
key components a model has, the more discriminating its
graph-level representations are. This also illustrates the effec-
tiveness of the proposed method and modules.

4.7.2 Study on Graph Construction Parameters

To investigate the effect of the graph construction hyper-
parameter (Audio-Visual neighbor), we test our model with
different hyperparameter value under four classification sce-
nario on FakeAV dataset. As shown in Fig. 8, different
Audio-Visual neighbor parameters will lead to different
structure of the heterogeneous graph. It is noted that the
Audio-Visual overlap changes as the Audio-Visual neigh-
bor changes, aiming to follow the global correspondences
of the audio and video nodes. As shown in Fig. 9, the perfor-
mance of the proposed model increases as hyperparameter
value increases. Performance improves up to 4 and then lev-
els off. Audio-Visual neighbor = 4 means that 1000ms audio
clip corresponding to 1600ms video clip. In other words, an
appropriate increase in the inter-modal receptive field not
only does not cause audio-visual synchronization problems,
but also incorporates more inter-modal contextual informa-
tion, which is good for performance. Meanwhile, due to
the de-homogenization graph pooling operation, redundant
inter-modal connections are removed and do not cause per-
formance degradation.
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Fig. 7 t-SNE visualization on feature space of graph-level representations
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Fig. 8 Diagrammatic of the different structure of the heterogeneous
graph caused by different Audio-Visual neighbor parameters

Fig. 9 Effect of using different graph construction hyperparameter val-
ues (Audio-Visual neighbor) on model performance

5 Conclusions

In this paper, we propose a novel task about fine-grained
multimodal deepfake classification. This task is important

because we don’t have any prior knowledge about whether it
is the video or audio that has beenmanipulated in practice. To
this end,wepropose a heterogeneous graph attention network
that makes full use of intra- and inter-modality relationships.
The graph attention network consists of a cross-modal graph
interactionmodule for capturing complementary information
between modalities and a de-homogenization graph pool-
ingmodule for extractingmodality-specific information. The
proposed model presents superior performance and general-
ization on several benchmarks.
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