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Estimating the relative pose between a camera and a LIDAR holds paramount importance in facilitating complex
task execution within multi-agent systems. Nonetheless, current methodologies encounter two primary
limitations. First, amid the cross-modal feature extraction, they typically employ separate modal branches to
extract cross-modal features from images and point clouds. This approach results in the feature spaces of images
and point clouds being misaligned, thereby reducing the robustness of establishing correspondences. Second,
due to the scale differences between images and point clouds, one-to-many pixel-point correspondences are
inevitably encountered, which will mislead the pose optimization. To address these challenges, we propose a
framework named Image-to-Point cloud registration by learning the underlying alignment feature space from
Pixel-to-Point SIMimilarities (I2Pppsim). Central to I2Pppsim is a Shared Feature Alignment Module (SFAM).
It is designed under on a coarse-to-fine architecture and uses a weight-sharing network to construct an
alignment feature space. Benefiting from SFAM, 12Pppsim can effectively identify the co-view regions between
images and point clouds and establish high-reliability 2D-3D correspondences. Moreover, to mitigate the
one-to-many correspondence issue, we introduce a similarity maximization strategy termed point-max. This
strategy effectively filters out outliers, thereby establishing accurate 2D-3D correspondences. To evaluate the
efficacy of our framework, we conduct extensive experiments on KITTI Odometry and Oxford Robotcar. The
results corroborate the effectiveness of our framework in improving image-to-point cloud registration. To
make our results reproducible, the source codes have been released at https://cslinzhang.github.io/I2P.
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1 Introduction

Image-to-Point cloud (I2P) registration refers to estimating the relative pose between a Light
Detection And Ranging (LiDAR) and a camera via their measurements (point clouds and images),
where the image and the point cloud are captured from the same scene. This task is widely used in
many robotics and computer vision applications, such as Simultaneous Localization and Mapping,
robot navigation, and scene understanding [16, 18, 31, 42, 52].

The key to I2P registration is feature matching between images and point clouds. Unlike the
widely studied homologous registration (image-to-image registration [4, 5, 47, 51], point cloud
registration (PCR) [7, 46, 50]), I2P registration is sporadically explored due to the challenging
modality differences between images and point clouds.

As shown in Figure 1, the pipeline of I2P involves feature extraction, feature matching, correspon-
dence establishment, and pose estimation. Previous studies relied on complex cross-modal manual
feature designs or time-consuming optimization algorithms [10, 23], overlooking the differences
between images and point clouds in feature space, perceptual range, and scale. Therefore, the
performance of these studies is unsatisfactory. Specifically, to improve the performance of 12P
registration, there are still three challenges to be faced with:

(1) Misaligned feature space. Existing methods utilize separate modal branches to extract cross-
modal features from images and point clouds [10], which poses a challenge in feature
matching. Specifically, as different modalities of data, images and point clouds have significant
differences in data structure and scene information captured. Due to the use of different
modal branches, current approaches cannot effectively alleviate such modal differences, but
instead lead to feature space misalignment. This misalignment in the feature space reduces
the performance of feature matching.

(2) Insufficient feature fusion. The current single-stage feature fusion scheme fails to meet the dif-
ferent requirements of feature receptive fields for image-point cloud feature matching [23, 30].
Generally, cross-modal features with global receptive fields are suitable for detecting co-view
regions between images and point clouds, while those with local receptive fields are suitable
for predicting pixel-point matches. Therefore, it is of necessity to extract cross-modal fea-
tures with different receptive fields for co-view region detection and matched pixel-point
prediction. Unfortunately, current methods lack this capability.

(3) Matching ambiguity. The one-to-many correspondence problem caused by the scale difference
between images and point clouds misleads pose optimization. For example, taking the camera
center as the origin, as the perception distance gets farther, for one pixel, there are usually
multiple points within the frustum. Moreover, the Euclidean distance among those points
may vary greatly. These seemingly “correct” one-to-many correspondences can mislead the
pose optimization.

To deal with the aforementioned challenges, we propose a novel I12P registration framework,
called Image-to-Point cloud registration by learning the underlying alignment feature space from
Pixel-to-Point SIMimilarities (I2Pppsim). I2Pppsim learns the underlying feature alignment space
between images and point clouds via a Shared Feature Alignment Module (SFAM), and designs
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Fig. 1. The general pipeline of image-to-point cloud (I12P) registration. I2P registration first extracts the
common features and then conducts the feature matching to build the 2D-3D correspondences. After that, a
perspective-n-point (PnP) solver is used to estimate the relative pose.

a matching constraint called point-max based on feature similarity to alleviate the one-to-many
correspondence dilemma. The characteristics of 12P,sim and our contributions are as follows:

(1) The first feature space alignment-based I2P registration framework is proposed, named
I2Ppim- It mines pixel-point similarities by learning aligned cross-modal feature spaces.
Based on the cross-modal representation, co-view regions are detected and pixel-point
correspondences are directly predicted. Extensive experiments demonstrate that our I2Pppsim
achieves State-of-the-Art (SOTA).

(2) A novel SFAM is designed. Benefiting from the coarse-to-fine architecture, SFAM can extract
coarse-grained features focusing on global expression and fine-grained features focusing on
local expression. The former is helpful for co-view region detection and the latter is suitable
for pixel-point matching estimation. In addition, SFAM uses a weight-sharing network to
construct an aligned cross-modal feature space, which effectively alleviates the modality
difference.

(3) A plug-and-play matching strategy named point-max is introduced to solve the one-to-many
correspondences. It does not rely on the feature learning ability of the network and aims to
identify the best matching point for each pixel in the co-view region. By using point-max, a
significant improvement in registration accuracy is achieved. Moreover, point-max can be
seamlessly integrated as a plug-and-play module for other I2P registration methods, thereby
improving their performance.

2 Related Work
2.1 Image Registration

Image registration is usually treated as a pre-processing step for applications such as Structure from
Motion and image stitching [13, 20, 29]. The key to registration is to establish an accurate image
matching in the R? space. Current studies on image matching can be divided into two categories:
feature-based ones and matching-based ones. The typical pipeline of the former is to extract the
feature descriptors of the image [24], then calculate the distance between those descriptors, and
determine the matching feature pairs. Recent approaches expect to obtain better visual feature
descriptions through Convolutional Neural Networks [4, 5, 8], and further improve the correct rate
and number of matching pairs.
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Most feature-based methods determine the matching pairs through the neighbor search among
features [9], while the matching-based ones no longer focus on the extraction of image features,
but model the image matching as a learning problem. For example, SuperGlue [32] uses attention to
aggregate the global and local features, formulates the image matching problem as a graph matching
problem, and determines the matching pairs by approximately linear distribution. Furthermore,
LoFTR [34] completely abandons the learning of image features and directly predicts dense pixel-
by-pixel matches in an end-to-end manner.

22 PCR

PCR methods can be broadly categorized into two groups. The first category is characterized by its
emphasis on the extraction of point cloud features, aiming to establish correspondences mainly
based on feature matching [1, 15, 28, 33, 36, 37, 38, 39, 40, 44, 49]. These methods primarily rely
on the feature extraction capabilities of neural networks. Early studies mainly use PointNet [3] to
extract point clouds’ global descriptors and optimize the network by minimizing distances between
global descriptors [1, 33]. Recently, some approaches replaced PointNet with transformer [35].
Benefiting from the expanded receptive fields and enhanced contextual association capabilities
brought by the transformer, these methods achieved impressive performance [28, 36].

The above-mentioned PCR methods are sensitive to noise, and another category of methods
introduces additional geometric or optimization constraints to enhance the robustness of PCR
[2, 6,11, 41, 45, 48]. PointDSC [2] introduces spatial consistency to eliminate inaccurate matching
pairs. RGM [11] uses deep map matching to implement PCR. MAC [48] searches for the maximum
clique subsets among the matching pairs and selects the optimal transformation guided by the
reprojection error.

2.3 I2P Registration

Compared with image registration and PCR, there are few studies on I2P registration. According
to the ways of correspondence establishment, these I2P methods are mainly categorized into
two classes: keypoint-based methods and keypoint-free ones. The core idea of the keypoint-based
methods is to measure the distance and establish correspondences based on the keypoint descriptors
extracted from images and point clouds [10].

In order to avoid complex cross-modal keypoint design, keypoint-free methods aim to learn
point/pixel-wise features with strong repetitiveness [17, 19, 23, 30, 43]. Deepl2P [23] utilizes cross-
attention to fuse the features of images and point clouds and proposes inverse camera projection
for relative pose estimation. Building upon Deepl2P, CorrI2P establishes 2D-3D correspondences
based on feature similarity metrics [30]. Similar to CorrI2P, EP2P-Loc achieves visual localization
using images and point cloud submaps as inputs [19].

Although keypoint-free methods improve registration performance, they overlook the one-to-
many correspondence dilemma caused by scale ambiguity. Furthermore, these methods extract
features from images and point clouds through different modal branches, indicating that the feature
spaces of images and point clouds are not aligned. The misalignment of feature spaces further
reduces the repeatability of cross-modal features.

3 Methodology
3.1 Problem Definition and Framework Overview

Given an image I € R¥>W*H (W and H represent the width and height of the image) and a point
cloud P = {Py, Py, ..., Py € R¥} (N is the number of points), the task of I2P registration is to estimate
the relative rigid transformation T = [R|t] € SE(3) (R € SO(3), t € R®) from the LiDAR frame to
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Fig. 2. Overview of 12Pppsim. 12Pppsim is composed of five modules: Feature Extractor, SFAM, CVD, point-max,
and PnP solver. Firstly, the high-dimensional features of images and point clouds are separately extracted by
the two branches of Feature Extractor. Such features are then fed into SFAM to obtain cross-modal features
in a coarse-to-fine architecture. With the coarse-grained features from SFAM, the co-view region of the
image and point cloud is determined by CVD. Further, based on the fine-grained features from SFAM and the
outputs of CVD, a correlation map is predicted, where 2D-3D correspondences are selected by point-max. At
last, the relative pose of the LiDAR to the camera is estimated via the PnP solver. CVD, co-view detector; PnP,
perspective-n-point.

the camera frame. Generally, a standard registration problem is modeled as a Perspective-n-Point
(PnP) or Iterative Closest Point problem. However, the point cloud collected by LiDAR has little
geometric and appearance similarity with the RGB image. Also, to establish the correspondences
among pixels and points is non-trivial. We expect to represent the two kinds of data in a higher-
dimensional feature space through information fusion, build 2D-3D correspondences, and then
regard I2P registration as a PnP problem. To this end, I2Pppsin, is designed to comprise two parts: a
correlation map estimation module and a pose estimator (as shown in Figure 2). In I12Pppsim, Feature
Extractor, SFAM, and Co-View Detector (CVD) are used to estimate the correlation map. When
performing inference, given a pair of 7 and £, the image and point cloud are first mapped to the
high-dimensional space by Feature Extractor, and then SFAM is used to perform feature fusion and
feature space alignment. Subsequently, the pixel-point correlation map is calculated based on the
aligned cross-modal features in the co-view region and is further fed into the pose estimator. Based
on our point-max strategy, we select matching candidates obtained from the correlation map. In
this way, the 2D-3D correspondences can be established. Finally, Efficient Perspective-n-Point
(EPnP) [21] and RANSAC are employed to iteratively optimize the pose.

3.2 Feature Extractor

In view of the inherent dissimilarities in the properties of images and point clouds, employing the
same feature extraction network to process both of them is impractical. Inspired by Deepl2P, we
resort to ResNet [14] to encode the image features, while a modified PointNet++ [22, 27] serves as
the feature encoder for the point cloud. Through these feature encoders, the multi-scale features
of images and point clouds can be obtained, expressed as F} € Re>WixHi i ¢ (123 4}, and
F{J e RY*Ni| j € {1, 2,3}, respectively, where ¢;/c;j denotes the ith/ jth features. Then, the global
descriptions of the scene from images and point clouds can be obtained by performing max pooling,
which are denoted by F ;) € R and F 4 p) € R°", where c;/cp is the dimension of image/point
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Fig. 3. The overall architecture of SFAM. SFAM fuses image and point cloud features in a coarse-to-fine
manner. In the coarse fusion stage, symmetric cross-attention is leveraged to fuse multi-scale image and point
cloud features. In the fine-grained fusion stage, fine-grained features F( fine p) and F(fine ) are extracted by
a weight-sharing network fy;g,. In addition, coarse-grained features F(coarse,p) and Ficoarse,1) are used as
inputs of the CVD, where CVDj is the image CVD and CVDp is the point cloud CVD.

cloud global feature vector. We posit that taking into account both local and global features is
more conducive to enhancing the ability of feature representation. Consequently, images and point
clouds of various scales are employed for subsequent feature fusion.

3.3 SFAM
SFAM utilizes multi-scale features F } and F i, as inputs and generates per-pixel and per-point cross-
modal features Ffine,ry and F(finep). Considering that forcibly aligning the visual-laser feature
spaces is rude and meaningless, SFAM is designed as a coarse-to-fine architecture, employing a
two-stage approach to extract common features, as illustrated in Figure 3.

In the coarse fusion stage, we concatenate the global features of the image (F4,r)) and point
cloud (F4p)) with multi-scale point cloud features ({F{,} j=12) and image features ({F }}i:3,4),

respectively. Next, fused features at different scales are obtained via symmetrical cross-attention
Uvanl . RCXWXH N RCXWXH and ﬁzttp . chN N RCXN)’

— 4 2
f’(coarse,l) - fa”I(F(g:P)’ F, Fp, F(g:I))’
7 _ 4 2
f(coarse,P) - f;‘”P(F(g,P)’ Fy, Fp, F(g,I))’

where f'( coarse) and f'( coarse.p) AT€ the fused features of the image and the point cloud, respectively.

(1)

Similarly, by replacing F} and F3 in Equation (2) with F} and F},, fused features of another scale
can be obtained, which are indicated as f, .. ;) and f{_, 4 p)- Then the fused features from
different scales are concatenated, and the feature encoding functions are used to further extract

coarse-grained features f . q5e 1) @04 f(coarse.p)>

f(coarse,[) = CNN(f’(coarse,I)’f/(/coarse,l))’
f(coarse,P) = MLP(f,(coarse,P)’f’(,coarse,P))'

Coarse-grained features focus more on global information and provide a broader perspective of the
correspondence between the two modalities. In 12Ppim, they are regarded as the input of CVDs.
In the fine fusion stage, an aligned feature space is constructed to mine the consistent features of
both images and point clouds. Considering that CNN is difficult to handle unordered point cloud
features, while unordered network structures still have the ability to handle ordered features, we

@)
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resort to a variant of pointnet [23] to construct a weight-sharing network to model the feature
space. With f (cogrser) @04 f(cogrse,py as the network inputs, the fine-grained features f ;. ) and
f fine,p) are obtained by

f(fine,P) = falign (f(coarse,P))’
_ ®)

f(fine,I) - falign (f(coarse,l))’
where foign : RWXH) — ReXWxXH) for images and RN — RN for point clouds. These
features focus on local similarity, enabling SFAM to capture delicate correspondences among
pixels and points. After acquiring the fine-grained features, we expect to measure the similarity
among them to build correspondences. With f ;.. 1), f fine p)» We can calculate the correlation

map Map,,, € RVWXD*N petween the image and the point cloud by

T
Map,,, = f(fine,l)f(fiHE,P)' “)

Map,,, reflects the similarity of visual-laser data, which enables I12Pp,sm to learn the feature
matching process. We optimize SFAM by minimizing the similarity loss of Map_,,. The specific
loss function design and analysis will be presented in Section 3.6.

The Motivation behind the Weight-Sharing Network. Existing feature fusion scheme for I2P regis-
tration extracts cross-modal features of images and point clouds through different modal branches.
This results in these cross-modal descriptions being in different feature spaces, which in turn
hinders the prediction of 2D-3D correspondences. To address this issue, we design a weight-sharing
network in SFAM. By utilizing this network, features from different modal branches are mapped to
the same aligned feature space, which assists feature matching.

The Advantages of SFAM. Compared to other methods, our SFAM takes into account both global
and local information, which enables I2Ppsim to better focus on semantic objects in the scene
(such as cars, houses). Moreover, while other methods use separate modal branches to extract
cross-modal features from images and point clouds, SFAM employs a weight-sharing network to
directly construct an aligned feature space. As a result, the cross-modal features of images and point
clouds are mapped to the same feature space, which enhances the reliability of feature similarity.
Figure 4 illustrates the similarities of cross-modal features extracted by different methods. It can be
seen that our I12P,im outperforms the others.

34 CVD

The number of pixels or points in an image or point cloud typically ranges from thousands to
tens of thousands. In the case where the number of pixels is M and the number of points is N,
the size of the correlation map would be M x N. The computation and storage requirements for
such a large-scale correlation map are substantial. However, in I2P registration, the associated
data are typically concentrated in a fan-shaped area, occupying only a small portion of the image
and point cloud. Leveraging this characteristic, CVDs for images and point clouds are designed to
determine whether a pixel or point belongs to the co-view region, they are denoted by CVDy and
CVDp, respectively.

During the calculation of the correlation map, only the pixels and points in the co-view region
are considered. In this way, the data scale of the correlation map is significantly reduced, leading
to accelerated network inference. To accomplish co-view region detection, we treat it as a binary
classification problem. We employ two classification heads to analyze the coarse-grained features
f (coarse.ry @4 f (coarse p) Separately. The outputs of the CVD correspond to the co-view scores for
each pixel or point, indicating their likelihood of belonging to the co-view region.
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Fig. 5. The phenomenon of one-to-many correspondences between a pixel p; and multiple points Py, - -, Pg.
Point-max is designed to eliminate those outliers.

3.5 Pose Estimation

Following the network prediction, notable dissimilarities are expected to exist between the matched
and unmatched pixel-point pairs within the correlation map Map_,,. With this in mind, one intuitive
approach is to employ threshold screening to determine the correspondences between pixels and
points. Alternatively, some methods establish 2D-3D associations by employing a classification-
based approach. These methods aim to achieve the closest possible one-to-one correspondence
between points and pixels. However, in practice, due to the different sensor measurement manners,
the matching between point and pixel is not strictly one-to-one correspondence. As shown in
Figure 5, in the reprojection of the point cloud, each pixel in the image corresponds to a frustum in
the real world, and multiple points are distributed in the frustum. So, one pixel in the image often
has high similarity with multiple points. Furthermore, as the image downscaling and visual depth
increase, the adverse impact caused by one-to-many correspondences will become more serious.
Those seemingly “correct” correspondences indeed do harm to the calculation of reprojection errors
in pose optimization. For example, four adjacent pixels [u;, v,-]T, i €{1,2,3,4} are downscaled to
one pixel [us, vs]T, which corresponds to k points Py, -+, Px, where P; = [x},y;, zj]T,j =1~k
Before downscaling, for each pixel [u;,0;]T and its matching points {P, = [x¢, ye, zc]T : |c =1 ~ k;}
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(where k; is the number of matching points for [u;,0;]7), the reprojection error is

S B ARNEE N

where K refers to the intrinsic matrix of the camera and P, is the homogeneous coordinate of P,
7(+) is an operator that takes the first two dimensions of a vector. After scaling, the reprojection

error is reduced to
k 1
Z [ ]— —7[( KTPJ-)
=1 Zj

Such a loss will undoubtedly lead to performance degradation of the network which regards the
reprojection error as its supervision. Unfortunately, it is challenging for classification or threshold
screening to eliminate those seemingly “correct” points. Besides, these points are indeed observed by
the corresponding pixels. Consequently, relying solely on cross-modal learning is also insufficient
for removing such correspondences, and it is necessary to design a matching constraint to further
refine the matching based on the correlation map.

In image matching, the matching relationship satisfies the following constraint: one pixel in an
image can at most match with one pixel in another image [32]. Inspired by that, we appropriately
relax this constraint criterion, apply it to I2P registration, and propose the point-max matching

®)

2

(6)

2

constraints: a pixel matches at most one point. Considering the data structure of the correlation
map, point-max is performed via maximizing similarity in practice. Specifically, given a pixel p,
its receptive field contains k candidate matching points Py, - - - , Pg. Define the vector correlation
operator as §. The fine-grained feature vectors of p and P are f f;,. ;) and f ;. p), respectively.
Then the correlation between pixel p and point P is

5(P.P) = f(finep) " f(fine.p) )
Thus, the point P, matching with the pixel p is
= argmax{(5(Pa Pl)’ Y 5(?) Pk))a] = 1> Tty k} (8)

j
Equation (8) is similar to performing max pooling among the matching candidates and selecting

the candidate point with the highest correlation for the pixel. By applying Equation (8) to the
correlation map Map,,, € RM*N we can get the 2D-3D correspondences Match, where map

Map,,, € RMN js expressed as
5(?1’1’1) 5(?1’PN)
Mapcor = . . 4 (9)
5(pmsP1) -+ 6(py. PN)
and the final correspondence Matchy is
PPl
Matchy = | Py, | . (10)
Py

Matchy is the 2D-3D correspondence derived from Map,,, € RM*N by point-max selection,
where each element embeds a pair of corresponding 2D pixel and the 3D point. Through point-max,
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the most similar match is selected in the one-to-many pixel-point correspondences, which alleviates
the adverse impact of the outliers. With Matchj, a set of equations that relate the observed 2D
image coordinates to their corresponding 3D point coordinates can be established. In this way, the
I2P registration problem becomes a PnP problem, and we iteratively optimize the pose through
EPnP under RANSAC.

3.6 Loss Function

In 12P,psim, the performance of SFAM and CVD is particularly important. In order to obtain better
cross-modal descriptions and more accurate co-view region detection results, we propose a joint
loss function, which consists of the correlation loss and the co-view loss. For the correlation loss,
the matched pixel-point pairs are expected to have cross-modal features with higher similarity,
and vice versa for unmatched pairs. It implies that the correlations between matched pairs and
unmatched pairs should have significant differences. For the co-view loss, based on the output
scores of CVD, we expect that the points and pixels in the co-view region have higher scores, and
the scores for outliers should be lower.

Correlation Loss. For the input image-point cloud pair (7, ), with the ground truth of relative
pose T € SE(3) and intrinsic matrix K of the camera, the reprojection error e,,, between the pixel
p; and point P; = [x;,y;,z;]7 can be calculated by

(11)

1
epro(Pys Pj) = Hpi - (;KTPJ)

J 2

When e, is less than a safety threshold e;, p; and P; can be considered as a matched pair, otherwise
an unmatched pair. The matching ground truth is denoted by G(p;, P;)

1, if epro(Pij) < e
0, otherwise. ’

G(p,Pj) = { (12)

With G(p;, P;), the correlation loss for a predicted pixel-point pair can be calculated according
to the correlation between the pixel-point feature vectors. As mentioned in Equation (7), the
correlation between the feature vectors is denoted by §(p;, P;), where p; and P; stand for the pixel
and point, respectively. Defining the logits function as £, the loss of each pixel-point pair can be
given as

L(p;, Pj) = ~w[G(p; P)) - 1og E(5(p;, P)))

+(1-Glp, P,) - log(1 - E(8(p P)))], (13)

where w is the weight parameter.

There are M X N pixel-point pairs in Map,,, , and most of them are unmatched pairs.
In order to speed up the optimization and balance the sample distribution, during training, we
randomly select n pixels and n points in the co-view region for loss calculation and construct a
correlation map with the size of n X n. Finally, based on L(p;, P;), the correlation loss is defined as

c RMXN

Lo== 3 Lp,Py). (14)

i,j=0

Co-View Loss. Similar to the correlation loss, we sample n pixels I,o; and n points P, in the
co-view region, and n pixels I,.; and n points P, out of the co-view region when calculating the
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co-view loss. Instead of focusing on the correlation between pixels and points, the co-view loss
concerns whether the pixel or point belongs to the co-view region, which is a binary classification
problem. The classification scores of each pixel or point can be obtained by CVD, denoted by
S1,pos» SP,pos> ST,neg» and Sp pos. We expect that CVD can make the pixels and points in the co-view
region have higher scores and vice versa. So the co-view loss is defined as

1
Lo = ; Z(sl,neg + SP,neg - SI,pos - SP,pos)~ (15)
Combining Equations (14) and (15) yields the final joint loss function
~£i2p =Le+ Leo. (16)

4 Experiments
4.1 Setup

4.1.1 Dataset. Our 12Pppsim was evaluated on KITTI Odometry [12] and Oxford Robotcar [25].

KITTI Odometry. In KITTI Odometry, the images and point clouds were acquired from an RGB
camera and a 3D LiDAR. The camera and LiDAR had fixed extrinsics T2s,, € SE(3). This fixed
relative pose in training and testing would be prone to cause network overfitting. On this account,
it was necessary to perform data augmentation. Therefore, we followed the design of CorrI2P, using
a random pose T, to transform T%,,, and the point cloud. After taking augmentation, the relative
pose of image-point cloud pair became Ty, = T2, T7'. Besides, the relative translation between
the image and point cloud was guaranteed less than 10 m. We followed the settings of Ren et al.
[30] and Li et al. [23] to use the 0th-8th sequences for training, and the 9th-10th ones for testing.
During training and testing, the size of the image was set to 160 X 512, and the number of points
was 20,480. In total, there were 40,818 image-point cloud pairs used for training, and 5,584 pairs
for testing.

Oxford Robotcar. Different from the acquisition method of point cloud in KITTI Odometry, the
point clouds in Oxford Robotcar were captured by 2D scanning using a 2D LiDAR. To make the
point clouds more dense, following Deepl2P, we spliced the adjacent point clouds at an interval
of 2 m, and finally merged all the point clouds in an area within the radius of 50 m. About 34
sequences were used for training and 4 sequences for testing. During training and testing, the
image size was set to 384 X 640, and the number of points was the same as that in KITTI Odometry.
Finally, 109,398 image-point cloud pairs were used for training and 13,545 pairs for testing.

4.1.2  Implementation Details. We conducted all experiments on a workstation equipped with an
AMD Ryzen9 5900X processor and an NVIDIA GeForce RTX 3090 GPU. I2P}psim Was implemented
by Pytorch [26]. The Adam optimizer was used for network training. We trained our network over
25 epochs on each dataset. The batch size for training was 16, and 8 for testing. The learning rate of
the optimizer was initialized as 1073, and decayed by 75% every 5 epochs. During training, we set
the safe threshold of the reprojection error (e;) to 1 pixel.

Some important hyperparameters in I2P,im are reported in Table 1. The Feature Extractor of
image is ResNet34. It outputs four different scale feature maps (f; - f7) of SFAM as mentioned in
Section 3.3.

In pose estimation, we experimentally set the co-view threshold of CVD as 0.9. The relative pose
was estimated by EPnP under the RANSAC framework. The number of iterations was 500, and the
reprojection error threshold was set to 1 pixel.
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Table 1. Network Hyperparameters of 12Ppsim

Y. Sun et al.

Module Layer Type K Channel Dimensions
) Layer 1 - [32, 128, 256]
Point cloud
Layer 2 - [64, 64]
Feature
KNN Layer 32 [256, 256], [512, 256]
Extractor
Layer 3 - [256, 512]
Coarse layer Pa - [256, Hy/scale X Wy/scale]
Coarse fusion layer Pa - [1,024, 512, 512]
SFAM Coarse layer Pb - [256, Hy/scale X Wy/scale]
Coarse fusion layer Pb - [512, 128, 128]
Fine Layer P - [128, 256, 128, 64]
Fine Layer I - [128, 256, 128, 64]
Detector Head P - [128, 128, 64, 1]
CVD
Detector Head I - [64, 64, 64, 1]

H,/Wj denotes a quarter of image height/width and scale represents the reduction factor during the
network inference.

4.1.3 Evaluation Metrics. The relative rotation error (RRE) and the relative translation
error (RTE) are adopted to evaluate the performance of the registration, which are formulated as

3
RRE = > [0(i)|
Z‘ (17)

RTE = ”tpred - tg”Zs
where 0(-) denotes the Euler angle of R;rle Ro> and 0(1), 6(2), and 6(3) are roll, pitch, and yaw,
respectively. We denote the ground truth of the rotation matrix and relative translation vector by
Ry, ty, and the predicted ones by R,,cq and t,,cq.

4.1.4 Compared Methods. We compared our 12P,im With four other approaches, which were
Grid Cls.+PnP [23], Deepl2P (2D) [23], DeepI2P (3D) [23], CorrI2P [30], EFGHNet [17], and EP2P-
Loc [19]:

— Grid Cls.+EPnP. This method was proposed in Deepl2P [23]. It divides the image into grids with
the same size. For example, in the evaluation on KITTI Odometry, an image is divided into 80
grids, with a size of 5 X 16. Grid Cls.+EPnP predicts which grid the point cloud belongs to
through a classification network. The 2D-3D correspondences are built from the classification
results. With such correspondences, a PnP solver is used to estimate the relative pose.

— Deepl2P. Based on the idea of frustum binary classification, DeepI2P trains a frustum classifier
to judge whether the point cloud is within the field of view of the camera. With the classifica-
tion results, it proposes 2D/3D inverse camera projection to estimate the relative pose, called
Deepl2P (2D)/Deepl2P (3D), respectively.

— CorrI2P. This method builds 2D-3D correspondences using the outputs of multi-modal branches.
Based on those correspondences, the relative pose is estimated accordingly. We used the same
network settings as those in the paper to reproduce the work. To our knowledge, CorrI2P is
the SOTA approach for I2P registration.

— EFGHNet. This method adopts a divide-and-conquer strategy to decouple feature alignment
and feature matching, and estimates the pose based on the feature matching results.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 12, Article 388. Publication date: November 2024.



I2P Registration by Learning the Underlying Alignment Feature Space 388:13

Table 2. Registration Accuracy on KITTI Odometry and Oxford Robotcar

KITTI Odometry Oxford Robotcar
RTE (m) RRE (%) RTE (m) RRE (%)
Grid Cls.+EPnP 3.22 + 3.58 10 £ 13.74 1.91 £ 1.56 2.94 +10.72
DeepI2P (3D) 3.17 £3.22 15.52 £ 12.73 2.27 £2.19 15.00 £ 13.64
DeeplI2P (2D) 3.28 +£3.09 7.56 £ 7.63 1.65 + 1.36 4.14 + 4.90
CorrI2P 232+9.74 4.66 + 6.79 3.20 + 3.14 249 + 851
EFGHNet 4.83 + 2.92 4.58 + 8.67 3.78 + 3.48 4.76 £ 5.69
EP2P-Loc 1.32 +£1.13 4.11 £ 5.46 3.56 £3.79 8.65 +9.81
I2Pppsim 1.18 + 1.48 4.08 + 4.46 2.95 + 2.66 2.26 + 5.12

The best results are highlighted in bold.

— EP2P-Loc. EP2P-Loc establishes 2D-3D correspondences through multi-scale matching and
uses a differentiable PnP layer to directly estimate the relative pose. Due to the lack of open
source code, we reproduced this method as described in the paper.

4.2 Quantitative Experiments

Different from CorrI2P which uses the error threshold to eliminate data with large RTE and RRE,
we believe that using all test data to evaluate the accuracy of the algorithm can better reflect the
robustness of the registration method. Therefore, we followed DeepI2P and compared I2P i, With
competing methods on all test data of KITTI Odometry and Oxford Robotcar. The results achieved
are reported in Table 2. It can be seen that I12Pqim achieves significantly better performance over
other counterparts on KITTI Odometry. As for Oxford Robotcar, although I2Ppsim achieves the
best performance on RRE, it did not perform as well as other SOTA approaches on RTE. The main
reason for this phenomenon is the preprocessing method of the point cloud. The point cloud in
Oxford Robotcar is formed by accumulating the 2D LiDAR scanning results from nearby areas. As
a result, ghosting and blurring of many dynamic objects may emerge, which makes it difficult for
I2Pppsim to predict correct correspondences among pixels and points. However, Grid Cls.+EPnP,
DeepI2P (2D), and DeeplI2P (3D) only need to predict rough grid classification or point cloud
visibility results, without establishing strict pixel-point correspondences, so their performance on
translation estimation is relatively better.

To compare the registration performance in more detail, we drew the registration recall curve
under different RRE and RTE thresholds on the two datasets and calculated the area under the
curve in Figure 6. It can be seen that the performance of each approach is basically the same as
Table 2 shows. However, we find that the leading edge of I2Pppsim over Corrl2P is narrow, which is
different from the significant advantage of I12P,,sim shown in Table 2.

To dive deep into this phenomenon, we plotted the error distributions of the two approaches
with a higher error threshold on KITTI Odometry in Figure 7. It can be found that many large
errors emerge in the results of Corrl2P. In contrast, I2Pppsim performs more stably, and there are
few cases where the errors are extremely large.

Error Distribution. 12Pppsim’s error distributions of RRE (°) and RTE (m) on KITTI Odometry and
Oxford Robotcar are shown in Figure 8. Obviously, the translation estimation ability of I2Pppsim on
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Fig. 6. Comparison of the registration recall of different methods with various RTE (m) and RRE (°) thresholds
on KITTI Odometry and Oxford Robotcar. The area under each curve is presented behind the corresponding

method’s name.
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Fig. 8. Histograms of RTE (m) and RRE (°) on KITTI Odometry and Oxford Robotcar obtained by 12Ppsim.

KITTI Odometry is stronger than that on Oxford Robotcar, while the rotation estimation ability is
weaker than that on Oxford Robotcar. The mode of RTE/RRE is ~0.5 m/1° on KITTI Odometry and
~2 m/2° on Oxford Robotcar.

4.3 Qualitative Experiments

To compare the performance of different methods more intuitively, we demonstrated the 2D-3D
correspondences they generated. When generating the correspondences, the reprojection error
threshold was set to 1 pixel. We show the 2D-3D correspondences in Figure 9, where the wrong
matches are in red and the correct ones in green.

Obviously, the “slopes” of the correspondence line segments are positively correlated with
the reprojection errors. As mentioned in Section 3.5, as the visual depth grows, one pixel often
corresponds to multiple points, which is particularly evident in Grid Cls.+EPnP and CorrI2P. For
Grid Cls.+EPnP, amid the network’s inference, the final feature map’s size is downscaled at least
64 times compared with the raw input. After image downscaling, in KITTI Odometry, there are
only 5 X 16 image grids and 20,480 points classified into these grids. As shown in the column
“Grid Cls.+EPnP” of Figure 9, one pixel may correspond to several or even dozens of points. Under
the framework of grid classification of Grid Cls.+EPnP, even if the correspondences are correctly
matched, their “slopes” can still be large. Such rough correspondences make it difficult to estimate
the accurate pose. CorrI2P alleviates this phenomenon by reducing the times of image downscaling.
However, there are still a lot of one-to-many correspondences, which mislead the pose estimation.
Compared with the above methods, I2P,sim handles the one-to-many correspondences through
point-max. With such a strategy, the 2D-3D correspondences distribute more uniformly. Moreover,
the wrong matches will be reduced from one cluster to one. These advantages are reflected in the
notable improvement of the registration accuracy.

In addition, benefiting from SFAM proposed in Section 3.3, the 2D-3D correspondences generated
by I2Pppsim are also more accurate than the competing methods. In Figure 9, to make the visualization
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Original Grid Cls.+ EPnP CorrI2P Ours
Fig. 9. 2D-3D correspondences established by different methods. The line segments represent 2D-3D corre-
spondences, where red indicates false ones and green indicates correct ones.

clearer, we downsampled the correspondences and filtered out the wrong ones with reprojection
errors of less than 15 pixels. It is notable that the correlation prediction of 12Ppgim is more accurate,
and there is basically no significant reprojection errors. We believe that the alignment feature space
in SFAM plays an active role. Amid the coarse-to-fine feature alignment of I2Pp,psim, the fine-grained
features are utilized to predict pixel-point correspondences, while the counterparts only conduct
feature fusion in a one-stage pattern. Also, the effective guidance of the correlation loss enables
I2Pppsim to more directly predict the pixel-point correspondences, thus further improving the ability
of correspondence prediction.

4.4 Ablation Study

To verify the effectiveness of each module in our approach, we conducted ablation studies on our
12P,psim using KITTI Odometry. The baselines involved in the ablation study are elaborated as
follows:

— PC-CVD: CVD for point clouds;

—IMG-CVD: CVD for images;

—w/o CVD: I2Pp6im without CVD;

— Direct Regression: I12Pppsim without SFAM and CVD;

— CorrI2P (point-max): Corrl2P with point-max;

—I2Pppsim (W/0 point-max): I2Pppsim Without point-max;
—12Pppsim (mutual check): I2Ppim with mutual check.
—I2Pppsim (W/0 fine): I2Pppsim Without fine stage in SFAM.
—I2Pppsim (W/0 coarse): I2Ppqi Without coarse stage in SEAM.
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Table 3. Accuracy of CVD on KITTI Odometry

Recall Precision F2-Score Accuracy
PC-CVD 0.962 0.901 0.949 0.973
IMG-CVD 0.782 0.732 0.771 0.791
1.04
0.81
— 0.6
& 0.4 4
0.2 —— 12Pppsim
w/o CVD
0.0 1 —— Direct Regression
0.60 0.65 O.iO O.iS 0.‘20 0.25

Feature match success rate threshold

Fig. 10. Ablation study of SFAM on KITTI Odometry.

Analysis on CVD. 12Ppysim detects the co-view region between the camera and the LiDAR through
CVD and establishes 2D-3D correspondences based on the points and pixels in that region. In this
way, we can effectively reduce the time cost and storage space of Map,,,. Before CVD is used, the
storage space of Map_,, is 12.5 MB. After CVD selecting, Map,,, is notably compressed to 1.15
MB. Also, the time cost of the correlation map computing is largely reduced from 33.3 seconds to
0.51 seconds. Furthermore, we evaluated CVD’s recall, precision, F2-score, and accuracy, and the
results are reported in Table 3. It can be seen that CVD has advanced co-view region detection
performance, achieving accuracies of 97.3% and 79.1% for images and point clouds, respectively.

Analysis on SFAM. SFAM can fully integrate the multi-scale features of images and point clouds
and mine the correlation between them. It enables I12Pppim to perform co-view region detection,
improves the ability to extract cross-modal features, and enhances the accuracy of 2D-3D matching.
To verify such a claim, we carried out ablation experiments to analyze the importance of SFAM.
Specifically, we designed a network without SFAM and CVD, called Direct Regression. Direct
Regression only extracts the respective features of the image and the point cloud and predicts the
matching relationship between pixel and point via Direct Regression. Feature matching recall was
utilized to analyze the performance of Direct Regression and the results are shown in Figure 10. It
can be observed that Direct Regression without feature fusion has a poor ability to predict correct
feature matching. This is mainly due to the huge modal difference between the image and the
point cloud, which makes the network unable to extract effective common features. Consequently,
the poor matching prediction ability of Direct Regression further justifies the necessity of feature
fusion.

In addition, to explore the impact of the coarse-to-fine architecture on feature matching, we
constructed a network without CVD (w/o CVD) which only uses fine-grained features to generate
Map,,,. Also, the feature matching recall was utilized as the metric to compare the impact of using
coarse-grained features for co-view region judgment on the establishment of 2D-3D correspon-
dences. The corresponding I2Pppsim uses coarse-grained features for co-view region screening and
then generates 2D-3D correspondences by fined-grained features. The relevant experimental results
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Table 4. Ablation Results of Point-Max and SFAM

Method RTE (m) RRE (°)

CorrI2P 232 +9.74 4.66 + 6.79
CorrI2P (point-max) 1.45 + 1.62 4.32 £ 5.03
I2Pppsim (W/0 point-max) 1.95 + 2.97 431 + 6.41
I2P,psim (mutual check) 144 + 2,19 4.26 + 6.13
12P psim (W/o fine) 2.12 + 2.67 441+ 6.26
I2Pppsim (w/o coarse) 2.46 + 2.80 4.82 + 6.84
12P ppsim 1.18 + 1.48 4.08 + 4.46

The best results are highlighted in bold.

are shown in Figure 10. Compared with “w/o CVD,” it is evident that the introduction of coarse-
grained features has a significant positive effect on the establishment of 2D-3D correspondences.

To analyze the impact of each stage of SFAM, we conducted ablation experiments on SFAM, and
the results are presented in Table 4. We removed the fine stage of SFAM (I2Pppsim (W/0 fine)) to
analyze the impact of the weight-sharing network. Similarly, we removed the coarse stage of SFAM
(I2Pppsim (W/0 coarse)), which means that SFAM only adopts the weight-sharing network to fuse
the features of images and point clouds. From Table 4, it can be seen that both the coarse stage and
fine stage of SFAM have a positive effect on registration performance.

Analysis on Point-Max. Based on Map,,,, point-max is employed to find the matching point for
each pixel. In this way, I2P,pqm filters out a large number of outliers that are difficult to eliminate
only via the feature distances, therefore improving the registration accuracy.

To demonstrate the effectiveness of point-max, we compared the registration performance of
I2Pppsim» 12Pppsim Without point-max, and I12Pp,sm with mutual check. Among them, 12Pppsim with
mutual check was achieved by applying point-max to both pixels and point clouds and conducting
consistency check on the point-max results. In addition, since point-max is a feature-independent
matching constraint strategy that can be considered as a plug-and-play module for other approaches,
we also applied it to CorrI2P and compared the registration performance of point-max before and
after use. All the above experimental results are reported in Table 4. It is notable that the introduction
of point-max significantly improves the performance of the I2P registration approaches, especially
in terms of translation estimation. Such a result also confirms the negative impact of the one-
to-many correspondences on registration. Specifically, the introduction of mutual check leads to
another serious problem, i.e, the number of available 2D-3D correspondences will sharply decrease.
The average number of matching pairs is only 307 for 12Pim with mutual check, while the count
for the original 12P, s is 2,264. This sparsity of matching pairs has a detrimental effect on the
performance of subsequent pose estimation which relies on nonlinear optimization techniques.

5 Conclusion

In order to fulfill the task of I2P registration, this article presents a novel framework based on
alignment feature space learning, namely 12P,pim. 12Pppsim leverages SFAM to enhance the net-
work’s ability to extract cross-modal features. Moreover, a matching strategy called point-max is
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proposed to address the one-to-many correspondences caused by scale ambiguity. Extensive exper-
iments were conducted on benchmark datasets, namely KITTI Odometry and Oxford Robotcar, to
demonstrate the outstanding performance of I2Pppsir,. Furthermore, we conducted ablation studies
to validate the efficacy of each module within the framework. The promising results obtained from
these experiments suggest that I2P i, holds potential for utilization in other tasks that require
cross-modal fusion, such as multi-sensor calibration. In future work, we will devote our efforts to
further improve the scalability of our framework, e.g., to make it leverage the pose as supervisory
information and support multi-agent systems.
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