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Vehicular Ad-hoc Networks (VANETs) provide key support for the achievement of intelligent, safe, and efficient 
driverless transportation systems through real-time communication between vehicles and vehicles, and vehicles 
and road infrastructure. This paper investigates a joint optimization problem of electric vehicles (EVs) charging 
management and resource allocation based on VANETs. EV charging requires significantly more time than 
refueling conventional vehicles, a key factor behind people’s reluctance to transition from internal combustion 
engine vehicles to EVs. Previous works have primarily concentrated on fully-charged vehicles and random 
matching, which does not solve the problems of vehicle charging delays and long customer waiting times. 
Considering these factors, we propose a distributed multi-level charging strategy and level-by-level matching 
method. Specifically, EVs and passengers are categorized into classes based on battery power and target mileage. 
Vehicles are then allocated to customers in the same or lower levels. Furthermore, the Attentive Temporal 
Convolutional Networks-Long Short Term Memory (ATCN-LSTM) model is leveraged to predict historical traffic 
data, supporting anticipatory decision-making. Subsequently, we develop a hierarchical charging and rebalancing 
joint optimization framework that incorporates charging facility planning. Experimental results obtained under 
various model parameters exhibit the method’s commendable performance, as evidenced by metrics such as 
operating cost, system response time, and vehicle utilization.
1. Introduction

With the increasing severity of global climate change and environ-

mental pollution, tailpipe emissions from conventional internal combus-

tion engine vehicles have become a significant international concern. 
The energy conversion efficiency of EVs can reach 70%-90%, which is 3-

4 times higher than that of conventional internal combustion engine ve-

hicles. This allows EVs to travel longer distances using the same amount 
of energy. Numerous analyses comparing fossil fuel and electrical en-

ergy consumption consistently highlight the substantial advantages of 
transitioning to electric transportation. This shift, particularly in drive-

train electrification, reduces fuel costs and lower emissions per unit of 
distance traveled [1]. In addition, EVs can be recharged by renewable 
energy sources (e.g., solar, wind, etc.), further reducing overall energy 
consumption and carbon emissions and promoting sustainable devel-

opment. In this context, governments have introduced policy measures 
to encourage and support the development and promotion of electric 
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vehicle sharing system (EVSS) to minimize the negative impact on the 
environment and urban traffic [2].

Driven by the low-carbon development policy, the proliferation of 
EVs and charging facilities is expected to persist. With the rise in 
the number of EVs, the construction and management of charging in-

frastructure have emerged as pressing challenges [3]. Traditional ap-

proaches to managing charging infrastructure often encounter issues 
like uneven resource utilization and overloaded stations, impeding the 
widespread adoption of EVs. Consequently, there’s a pressing need to 
manage EV charging resources and optimize their allocation effectively. 
Operators must carefully evaluate the economic viability and opera-

tional reliability of charging station (CS) construction to ensure seamless 
integration with existing infrastructures. Additionally, considering the 
spatial and temporal uncertainties of residents’ travel patterns affecting 
charging demand, constructing stations that prioritize user satisfaction 
is crucial. Unjustifiable construction impacts operator profits and also 
leads to charging delays and resource inefficiencies [4]. Thus, striking 
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Fig. 1. Framework of the proposed method.
a balance between service quality and construction costs is paramount 
in the planning phase of EV CSs.

While decision problems related to EVs charging and rebalancing in 
EVSS have been extensively studied, less attention has been paid to the 
joint optimization problem for both. In addition, most of the existing 
studies usually adopt a fully charged strategy, resulting in long charg-

ing times. Vehicle congestion and excessively long waiting times may 
occur at CSs during peak hours, which hinders the widespread adop-

tion of EVs. Existing approaches rely on static or stochastic matching 
models, making it difficult to respond flexibly to fluctuations in CS de-

mand and dynamic changes in vehicle distribution. Many optimization 
models favor the operator’s interests and neglect user experiences, such 
as customer waiting time and CS accessibility, which may reduce user 
satisfaction and affect EV adoption.

In this context, utilizing VANETs technology to optimize EV charg-

ing and scheduling problems is a promising solution. VANETs allow 
real-time communication between vehicles and between vehicles and 
roadside infrastructures, which strongly supports enhancing the intelli-

gent transportation system (ITS) [5]. Through real-time data exchange 
and communication, VANETs can facilitate the dynamic optimization of 
EVSS, balance demand and resources, and minimize system service time. 
This research aims to explore the potential of VANET-based charging 
and scheduling optimization for EVs. By combining VANET technol-

ogy, optimization algorithms, and intelligent decision-making systems, 
a joint optimization framework of multi-level charging, tiered match-

ing, and vehicle rebalancing is constructed to enhance the operational 
efficiency, reliability, and scalability of EVSS. We developed a joint op-

timization framework based on data-based prediction (e.g., Fig. 1). The 
main contributions of the paper are as follows:

1. We propose a joint optimization model based on queuing theory for 
multi-level charging and EV rebalancing to enhance travel service 
efficiency and vehicle availability. Experimental results demon-

strate that this model reduces customer waiting times by 5-15 min-

utes and increases vehicle availability by 15%-30%.

2. Establish an innovative ATCN-LSTM deep reinforcement learning 
framework for prospective decision-making. Short-term traffic flow 
prediction using historical data can reduce the prediction error by 
4%-14% compared with traditional models.

3. Propose a request-resource allocation method grounded in dynamic 
planning, which considers the construction of charging piles. In ad-

dition, we calculate the number of EV charging piles at each station 
under local distribution network constraints.

The rest of the paper is organized as follows: related work is dis-

cussed in Section 2. Next, Section 3 deals with modeling and problem 
2

formulation. A charging pile planning is presented in Section 4. Section 5
is demand forecasting, which contains data processing and forecasting 
modeling. The experimental simulation is given in Section 6. Finally, 
conclusions and some future work are drawn in Section 7.

2. Related work

The imbalance between supply and demand for stations and the lim-

ited capacity of EV batteries pose significant challenges to operational 
decisions and CS planning for EVSS. A significant portion of contempo-

rary research tends to segregate the management of EV charging from 
operational decisions, thus disregarding the mobility and service capa-

bilities of EVs [6].

At the operational level, there are two types of methods in exis-

tence: user-based rebalancing schemes and operator-based schemes. The 
user-based approach leverages pricing incentives to encourage users to 
drop off vehicles at specific stations, aiming to achieve system equi-

librium [7–9]. In the majority of EVSSs, user-based schemes typically 
serve as a complementary function alongside operator-driven strategies. 
In operator-driven rebalancing, dedicated operation crews are tasked 
with relocating idle vehicles from specific stations to those experienc-

ing higher demand. This relocation process aligns with the operator’s 
considerations, including operational costs, benefits, and quality of ser-

vice, or a balanced trade-off among them. For any objectives, system 
rebalancing policy can be built on real-time methods like model predic-

tive control [10,11] and steady-state formulations using fluid models 
[12], queuing algorithms [13,14], network flow methods [15], Markov 
chain models [16], etc.

At the charge management level, numerous research endeavors have 
examined various aspects of EV charging, aiming to enhance various 
performance indicators like charging time and cost through diverse 
methodologies. Various studies have explored different approaches to 
charging EV batteries, including grid charging [17], renewable energy 
charging [18], a hybrid of both [19], battery swapping [20], and wire-

less charging [21]. Battery swapping and wireless charging often neces-

sitate more expensive infrastructure development. Wireless charging, 
in particular, tends to be less efficient than wired charging due to en-

ergy losses during transfer, leading to slower and less effective charging 
processes. A queuing network model to estimate the charging demand 
of EVs and the impact of charging pricing on the CS traffic was pro-

posed in [17]. A multi-class charging management system based on a 
zone queuing model was proposed in [22], and the [23] developed a 
CS capacity planning model built upon this framework. In [24], a data-

driven EV charging management scheme was proposed to rationalize 
the allocation of charging piles. Recent advancements have leveraged 
the connectivity between transportation systems and smart grid infras-

tructures. Here, EVs requiring charging send requests to roadside units 

(RSUs) [25,26]. These RSUs then safely guide them to the suitable CS, 



Vehicular Communications 50 (2024) 100857T. Sun, B.-G. He, J. Chen et al.

Table 1

Comparison of closely related literature.

Reference Objective Charging Policy Rebalancing Process Prediction Model Charging Pile

[22] minimize wait time multi-level charging ————– ————– ————–

[23] minimize wait time multi-level charging ————– ————– mathematical model

[24] maximize operating 
income

fully charged ————– multi-graph 
convolutional network

cournot competition model

[30] minimize the total travel 
congestion time

fully charged user-based rebalancing ————– ————–

[29] maximize operating 
income

fully charged station-based static 
balancing

graph convolution ————–

[31,32] maximize operating 
income

fully charged station-based real-time 
balancing

————– ————–

[33] minimize wait time multi-level charging zone-based static 
balancing

————– ————–

Our study maximize operating 
income and minimize 
wait time

multi-level charging station-based real-time 
balancing

ATCN-LSTM mathematical model
taking into account the RSU’s real-time data and the workload of CS. 
An efficient method for independent, decentralized vehicle-to-vehicle 
charging pair allocation was introduced in [27], effectively addressing 
the challenge of charging information dissemination in VANETs. In [28], 
they presented a centralized charging management system for mobile 
EVs, optimizing prospective charging slot reservations to minimize the 
total service time for energy-demanding vehicles.

However, previous studies have primarily concentrated on EV charg-

ing management and operational scheduling separately. Integrating EV 
scheduling and charging optimization within EVSS remains a largely un-

der explored challenge. In [29], they addressed the problem of vehicle 
dispatching and recharging decision for an MoD fleet, focusing on the 
balance of the power grid subject to the V2G operations. A formula in-

tegrating a resilience enhancement strategy was proposed in [30]. This 
formula re-plans routes for low- power EVs to improve system flexi-

bility during emergencies. It also introduces a user balancing principle 
to account for the self-interested behavior of EV owners, enhancing 
the formula’s applicability. A joint optimization framework based on 
queuing theory and fluid modeling were given in [31] and extended in 
[32]. In [33], they addressed a joint problem of rebalancing and charg-

ing scheduling of MoD systems from different perspectives. Whereas it 
was concerned with long distance relocating from vehicle-rich regions 
to those in need, which cannot cope with supply imbalance between 
nearby stations. (See Table 1.)

We aim to build a joint optimization framework for hierarchical 
charging and rebalancing that incorporates charging facility planning, 
utilizes data-driven predictive models to optimize EV transportation-

charging networks in smart cities, and provides support for fleet man-

agement, aiming to balance operational costs and quality of service, and 
improve system responsiveness and vehicle utilization.

3. EV charging and servicing systems

The EV charging process and the service process (including serving 
customers and vehicle rebalancing, with the rebalancing process viewed 
as serving virtual customers) are modeled based on queuing theory and 
fluid models.

3.1. System setup and problem description

Consider a EVSS with 𝑁 parking-charging stations (PCSs) and 𝑀 CSs 
in Fig. 2, each of CS 𝑚 or PCS 𝑖 has 𝛾𝑚 and 𝛾𝑖 charging piles, respectively. 
Including 𝑓𝑚 / 𝑓𝑖 fast chargers and 𝑜𝑚 / 𝑜𝑖 ordinary chargers. Denote 
by 𝜇𝑓 and 𝜇𝑜 the service rate of different chargers. Each of PCS 𝑖 has 𝑝𝑖
parking spaces. Denote by 𝑐𝑓 and 𝑐𝑜 the cost of charging one level using 
fast chargers and ordinary chargers, respectively.

The arrivals of customers and customer-carrying vehicles at PCS 𝑖
3

are modeled as two Poisson processes [31] with expected rates 𝜆𝑖𝑐 and 
𝜆𝑣𝑐
𝑖

, respectively. Denote by 𝑏𝑖𝑗 and ℎ𝑚𝑖 the rate of EVs being relocated 
from PCS 𝑖 to 𝑗 and from CS 𝑚 to PCS 𝑖, respectively. Denote by 𝑏𝑖𝑚 the 
probability of a vehicle charging from PCS 𝑖 to CS 𝑚. EV battery power 
at 20%-80% is favorable for battery life [34]. We categorize EVs into K-

levels according to their power (as in Fig. 3). k-EVs use graded charging, 
and 1-EVs use graded charging or full charging. Upon a vehicle arrival 
at the PCS 𝑖, each 𝑘-EV, 𝑘 ∈ {1,⋯ ,𝐾 − 1}, will park anywhere in the 
station until it is assigned to perform the following tasks [35]. i). Join 
vehicles to serve customers with the current power with probability 𝑝𝑐0

𝑘
; 

ii). Recharge its battery from level 𝑘 to 𝑘 +1 with probability 𝑝𝑐1
𝑘
(1 −𝑏𝑖𝑚)

at PCS 𝑖 or go CS 𝑚 with a probability of 𝑝𝑐1
𝑘
𝑏𝑖𝑚, where 𝑝𝑐1

𝑘
+ 𝑝𝑐0

𝑘
= 1, 

then join vehicles to serve customers; iii). To be relocated to PCS 𝑗 with 
probability 𝑏𝑖𝑗 , where 0 ≤ 𝑏𝑖𝑗 ≤ 1. Let 𝑡𝑥𝑥 and 𝑐𝑥𝑥, respectively, be the 
travel time and vehicle trip cost (per unit time) between two stations.

In order to achieve refined vehicle-customer matching, both cus-

tomers and vehicles are graded into 𝐾 levels based on the trip distance 
and power, respectively. From the thinning property of Poisson pro-

cesses, the arrivals of customers and customer-carrying vehicles at level 
𝑘 ∈ {0,⋯ ,𝐾} are independent Poisson processes with rates 𝜆𝑐𝑘

𝑖
and 

𝜆𝑣𝑐
𝑖
𝑝𝑘. Let 0 ≤ 𝑝𝑘 ≤ 1 be the probability that the power of an arriv-

ing vehicle belongs to class 𝑘. Then 𝑝𝐾 = 0, as no vehicle will arrive 
a station with full power after a prior trip, and 

∑𝐾−1
𝑘=0 𝑝𝑘 = 1. Simi-

larly, we have 𝜆𝑖𝑐0 = 0, as no customer will request a vehicle to travel 
no distance, and 

∑𝐾

𝑘=1 𝜆
𝑐𝑘
𝑖

= 𝜆𝑐
𝑖
. Assume that each vehicle of class 𝑘

can serve customers of any sub-level 𝑙 ≤ 𝑘 with probability 𝑠𝑘𝑙 , where ∑𝑘

𝑙=1 𝑠𝑘𝑙 = 1, 𝑘 = 1, ⋯ 𝐾 . Table 2 summarizes some of the notations used.

3.2. EV service queue

This queueing network has 𝐾 𝑀∕𝑀∕1 queues corresponding to the 
𝐾 levels of customers services. It is worth noting that EVs can only be 
assigned to customers of the same level or lower, i.e., 𝑘-EVs can only 
serve customers from level 1 to 𝑘. Rebalancing of EVs viewed as the 
virtual customer service process.

𝑘-EV arrival rate at PCS 𝑖 is

𝜆𝑣𝑐𝑘
𝑖

= 𝜆𝑣𝑐
𝑖
(𝑝𝑘𝑝𝑐0𝑘 + 𝑝𝑘−1𝑝

𝑐1
𝑘−1(1 − 𝑏𝑖𝑚)), 𝑘 = 1⋯𝐾 − 1,

𝜆𝑣𝑐𝐾
𝑖

= 𝜆𝑣𝑐
𝑖
(𝑝0𝑝𝑐𝐾0 + 𝑝𝐾−1𝑝

𝑐1
𝐾−1(1 − 𝑏𝑖𝑚)).

(1)

Arrival rate of vehicles at CS 𝑚 is

𝜆𝑖𝑚 =
∑𝐾−1

𝑘=1
𝜆𝑣𝑐𝑘
𝑖

𝑝𝑐1
𝑘

∑𝑀

𝑚=1
𝑏𝑖𝑚, 𝑖 = 1,⋯ ,𝑁. (2)

The rate of EVs at CS 𝑚 will be relocated to PCS 𝑗 is

𝜆𝑚𝑗 =
∑𝑁

𝑗=1

∑𝐾

𝑘=1
𝜆𝑖

𝑣𝑐𝑘𝑝𝑐1
𝑘
𝑏𝑖𝑚ℎ𝑚𝑗 ,𝑚 = 1,⋯ ,𝑀. (3)

The rate of 𝑘-EV to be rebalanced from PCS 𝑗 to 𝑖 and to serve the 

customers at PCS 𝑖, denote by 𝜆𝑏𝑘

𝑗𝑖
and 𝜆𝑎𝑘

𝑖
, respectively, are
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Fig. 2. A schematic diagram of a EVSS with four PCSs, and two CSs. The PCS is d
different level of customers (dots) and EVs (car icons): red for 4-EV, orange for 3-EV

blue for fast charging piles and green for ordinary charging piles.
Fig. 3. EVs are categorized into 4 levels based on battery charge.

𝜆𝑏𝑘
𝑗𝑖

=
∑𝑁

𝑖≠𝑗
𝜆𝑣𝑐𝑘
𝑗

𝑏𝑗𝑖, 𝑘 = 2,⋯ ,𝐾,

𝜆𝑎𝑘
𝑖

= 𝜆𝑣𝑐𝑘
𝑖

(1 − 𝑏𝑖𝑗 − 𝑏𝑖𝑚), 𝑘 = 1,… ,𝐾.

(4)

Availability of 𝑘-EVs at PCS 𝑖 is

𝜆𝑖
𝑘 = 𝜆𝑎𝑘

𝑖
+ 𝜆𝑏𝑘

𝑗𝑖
+ 𝜆𝑏𝑘

𝑚𝑖
, 𝑘 = 1, ...,𝐾. (5)

In the same way, we can calculate the rate 𝜆𝑠𝑘
𝑖

of 𝑘- customers to 
receive service from EVs as below

𝜆𝑠𝑘
𝑖
=
∑𝐾

𝑤=𝑘+1

(
𝜆𝑎𝑤
𝑖

+ 𝜆𝑏𝑤
𝑗𝑖

+ 𝜆𝑤
𝑚𝑖

)
𝑝𝑠
𝑤𝑘
, 𝑘 = 1,… ,𝐾. (6)

To ensure that all customers can be served, the stability of the cus-

tomer queue is

𝜆𝑠𝑘
𝑖
> 𝜆

𝑐(𝑘−1)
𝑖

, 𝑘 = 2,… ,𝐾. (7)

It is also established from queue analysis that the average response 
time for 𝑘-customer in the EVSS is
4

1∕(𝜆𝑠𝑘
𝑖
− 𝜆

𝑐(𝑘−1)
𝑖

), 𝑘 = 2,⋯ ,𝐾. (8)
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ivided into customer service and EV charging zones. Different colors represent 
, green for 2-EV, blue for 1-EV. Each PCS and CS has two types of charging piles, 

Table 2

Description of notations.

Symbol Definition

𝜆𝑐
𝑖

arrival rate of customers at PCS 𝑖

𝜆𝑣𝑐
𝑖

arrival rate of customer-carrying EVs at PCS 𝑖

𝜆𝑎𝑘
𝑖

rate of 𝑘-EVs that do not participate in rebalancing

but directly serve customers at PCS 𝑖

𝜆𝑏
𝑖𝑗

rate of rebalancing vehicles from PCS 𝑖 to PCS 𝑗

𝜆𝑠𝑘
𝑖

rate of class 𝑘 customer receive service from EVs at

PCS 𝑖

𝑓𝑖∕𝑜𝑖 the number of fast /ordinary chargers at PCS 𝑖

𝑓𝑚∕𝑜𝑚 the number of fast / ordinary chargers at CS 𝑚

𝜇𝑟𝑖 service rate of fully charged EV with depleted battery

𝑝𝑘 probability that the power of an arriving EV belongs to

class 𝑘

𝑠𝑘𝑙 rate of 𝑘-EV serving 𝑙-customers

𝑏𝑖𝑗 rate of rebalancing vehicle from PCS 𝑖 to PCS 𝑗

𝑏𝑖𝑚 rate of charging vehicle from PCS 𝑖 to CS 𝑚

𝑝𝑜
𝑖

rate of EVs at PCS 𝑖 that do not participate

in rebalancing to directly serve customers at PCS 𝑖

𝑝𝑐𝐾0 probability that a battery-depleted EV fully charges

𝑝𝑐0
𝑘

probability that a 𝑘-EV serve customers with the

current power

𝑝𝑐1
𝑘

probability that a 𝑘-EV recharge its battery from

class 𝑘 to 𝑘+ 1
𝑐𝑓 ∕𝑐𝑜 the cost of charging per level by fast/ordinary chargers

𝑠𝑓 ∕𝑠𝑜 the cost of setting up a fast/ordinary chargers

𝜌 the service intensity of charging area

𝑃𝑓𝑟𝑒𝑒 the probability that all charging piles are free

𝛾 the total number of charging piles

𝐿𝐸𝑉 the number of EVs waiting to be charged

𝑃max the grid’s maximum carrying capacity
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Fig. 4. EV queuing charging process diagram.

To improve the quality of service for customers, the controller of 
each PCS 𝑖 must impose an average response time limit. We can express 
this average response time constraint for the 𝑘-customers as

1∕(𝜆𝑠𝑘
𝑖
− 𝜆

𝑐(𝑘−1)
𝑖

) ≤ 𝑇 ,𝑘 = 2,⋯ ,𝐾. (9)

3.3. EV charging queue

After the EV reaches the charging area, charging service will be pro-

vided immediately once an idle charging pile is available; otherwise, 
the EV will have to wait in line. This process follows the first-come-

first-served principle, as shown in Fig. 4.

The charging queue for fast charging piles are modeled as 𝑀∕𝑀∕𝑓𝑖
and 𝑀∕𝑀∕𝑓𝑚, 𝑓𝑖 and 𝑓𝑚 indicates the number of fast charging piles 
at PCS 𝑖 and CS 𝑚, respectively. Therefore, the charging demand using 
fast charger at PCS 𝑖 and CS 𝑚 are

𝜆
𝑓

𝑖
= (

∑𝐾−1
𝑘=1

𝜆𝑣𝑐
𝑖
𝑝𝑘𝑝

𝑐1
𝑘
𝑜𝑖 + 𝜆𝑣𝑐

𝑖
𝑝0𝑝

𝑐1
0

+ 𝜆𝑣𝑐
𝑖
𝑝0𝑝

𝑐𝐾
0 )𝛼𝑓

𝑖
, 𝑖 = 1,⋯ ,𝑁,

(10)

𝜆𝑓
𝑚
=
∑𝑁

𝑖=1

∑𝐾−1
𝑘=1

𝜆𝑖
𝑣𝑐𝑝𝑘𝑝

𝑐1
𝑘
𝑏𝑏
𝑖𝑚
𝛼𝑓
𝑚
,𝑚 = 1,⋯ ,𝑀, (11)

where 𝛼𝑓
𝑖

and 𝛼𝑓
𝑖

are the percentage of EVs charging by fast chargers at 
PCS 𝑖 and CS 𝑚.

The charging queue for regular chargers is modeled as 𝑀∕𝑀∕𝑜𝑖 and 
𝑀∕𝑀∕𝑜𝑚, 𝑜𝑖 and 𝑜𝑚 indicates the number of ordinary chargers at PCS 
𝑖 and CS 𝑚, respectively. The charging demand using regular charger at 
PCS 𝑖 and CS 𝑚 are

𝜆𝑜
𝑖
= (

∑𝐾−1
𝑘=1

𝜆𝑣𝑐
𝑖
𝑝𝑘𝑝

𝑐1
𝑘
𝑜𝑖 + 𝜆𝑣𝑐

𝑖
𝑝0𝑝

𝑐1
0

+ 𝜆𝑣𝑐
𝑖
𝑝0𝑝

𝑐𝐾
0 )𝛼𝑜

𝑖
, 𝑖 = 1,⋯ ,𝑁,

(12)

𝜆𝑜
𝑚
=
∑𝑁

𝑖=1

∑𝐾−1
𝑘=1

𝜆𝑖
𝑣𝑐𝑝𝑘𝑝

𝑐1
𝑘
𝑏𝑖𝑚𝛼

𝑜
𝑚
,𝑚 = 1,⋯ ,𝑀, (13)

where 𝛼𝑜
𝑖

and 𝛼𝑜
𝑚

are the percentage of EVs charging by ordinary charg-

ers at PCS 𝑖 and CS 𝑚.

The charging demand for EVs should not exceed the service rate 
provided by the charging facility. Therefore, Therefore, we can derive 
stability conditions for charging queues at PCS 𝑖 are

(
∑𝐾−1

𝑘=1
𝜆𝑣𝑐
𝑖
𝑝𝑘𝑝

𝑐1
𝑘
(1 − 𝑏𝑖𝑚) + 𝜆𝑣𝑐

𝑖
𝑝0𝑝

𝑐1
0 )𝛼𝑓

𝑖

≤ 𝑜𝑖𝜇𝑓𝑖, 𝑖 = 1,⋯ ,𝑁,

(14)

𝜆𝑣𝑐
𝑖
𝑝0𝑝

𝑐𝐾
0 𝛼

𝑓

𝑖
≤ 𝑜𝑖𝜇𝑓𝑖∕(𝐾 − 1), 𝑖 = 1,⋯ ,𝑁, (15)

(
∑𝐾−1

𝑘=1
𝜆𝑣𝑐
𝑖
𝑝𝑘𝑝

𝑐1
𝑘
(1 − 𝑏𝑖𝑚) + 𝜆𝑣𝑐

𝑖
𝑝0𝑝

𝑐1
0 )𝛼𝑜

𝑖

≤ 𝑜𝑖𝜇𝑜𝑖, 𝑖 = 1,⋯ ,𝑁,

(16)

𝜆𝑣𝑐
𝑖
𝑝0𝑝

𝑐𝐾
0 𝛼𝑜

𝑖
≤ 𝑜𝑖𝜇𝑜𝑖∕(𝐾 − 1), 𝑖 = 1.⋯ ,𝑁. (17)

Stability conditions for charging queues at CS 𝑚 are

𝜆𝑓
𝑚
≤ 𝑜𝑚𝜇𝑓𝑚,𝑚 = 1,⋯ ,𝑀, (18)
5

𝜆𝑜
𝑚
≤ 𝑜𝑚𝜇𝑜𝑚,𝑚 = 1,⋯ ,𝑀. (19)
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3.4. The joint optimal solution

Given these arguments and variables, the maximum response time 
𝑇 and the rebalancing cost 𝐶 of the system can be, respectively, given 
as below:

𝑇 = max
𝑘∈{1,…,𝐾},𝑖∈{1,…,𝑁}

1∕(𝜆𝑠𝑘
𝑖
− 𝜆𝑐𝑘

𝑖
), (20)

𝐶 = (
∑𝐾−1

𝑘=1
𝑡𝑖𝑚𝜆

𝑣𝑐𝑘
𝑖

𝑏𝑖𝑚 +
∑𝑀

𝑚=1

∑𝐾

𝑘=1
𝑡𝑚𝑗𝜆

𝑘
𝑚
ℎ𝑚𝑗

+
∑𝐾

𝑘=1

∑𝑁

𝑖≠𝑗
𝑡𝑖𝑗𝜆

𝑣𝑐𝑘
𝑖

𝑏𝑖𝑗 )𝑐𝑥𝑥 + (
∑𝑛

𝑖=1
𝜆
𝑓

𝑖

+
∑𝑀

𝑚=1
𝜆𝑓
𝑚
)𝑐𝑓 + (

∑𝑛

𝑖=1
𝜆𝑜
𝑖
+
∑𝑀

𝑚=1
𝜆𝑜
𝑚
)𝑐𝑜,

(21)

where 𝑐𝑓 and 𝑐𝑜 are the cost of charging per class by fast and ordinary 
chargers, respectively.

Given the above stability conditions, the joint optimization problem 
can be formulated as follows:

min𝑎1𝑇 + 𝑏1𝐶, (22a)

s.t. (14)-(19)

𝜆𝑠𝑘
𝑖
− 𝜆

𝑐(𝑘−1)
𝑖

≥
1
𝑇
,𝑘 = 2,… ,𝐾, (22b)

𝜆𝑐
𝑖
+
∑𝑁

𝑖≠𝑗
𝜆𝑏
𝑖𝑗
+
∑𝑀

𝑚=1
𝜆𝑖𝑚 = 𝜆𝑣𝑐

𝑖
+
∑𝑁

𝑖≠𝑗
𝜆𝑏
𝑗𝑖
+
∑𝑀

𝑚=1
𝜆𝑚𝑖, (22c)∑𝑁

𝑖=1
𝜆𝑖𝑚 =

∑𝑁

𝑗=1
𝜆𝑚𝑗 ,𝑚 = 1,⋯ ,𝑀, (22d)

where 𝑎1 and 𝑏1 are the weighting coefficient, inequalities (22b) are the

stability conditions of the customer queues. Equalities (22c) and (22d)

are the stability conditions of traffic flow at PCS 𝑖 and CS 𝑚, respectively.

Based on the above model, we can give the following algorithm for 
joint optimization (see Algorithm 1).

Algorithm 1 EV scheduling optimization.

Require: 𝑙-passenger arrival rate, 𝜆𝑐𝑙
𝑖

, 𝑘-EV arrival rate, 𝜆𝑣𝑘
𝑖

, number of fast 
/ordinary chargers, 𝑓𝑖, 𝑓𝑚, 𝑜𝑖 and 𝑜𝑚

Ensure: Decision variables 𝑠𝑘𝑙 set, 𝑏𝑖𝑗 set, 𝑏𝑖𝑚 set, and ℎ𝑚𝑗 set, which satisfy 
constraints and optimization objectives

1: Initialization the parameters

2: Set initial optimal value 𝑍 = +∞
3: for 𝑙 ∈ [1, 𝐾], 𝑖 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝐾] do

4: Initialization 𝜆𝑣𝑘
𝑖
, 𝜆𝑐𝑙

𝑖
, 𝑓𝑖, 𝑓𝑚, 𝑜𝑖 and 𝑜𝑚, 𝑚 = 1, ...,𝑀

5: Select branch node (𝑖, 𝑚, 𝑘), according to formula (14)–(19) and 
(22b)–(22d), 𝜆𝑣𝑐

𝑖
𝑝𝑘

(
1 − 𝑏𝑖𝑗 − 𝑏𝑖𝑚

)
= 𝜆𝑠𝑘

𝑖
, ∑𝑘

𝑙=1 𝑠𝑘𝑙 = 1
6: Calculate the 𝑜𝑏𝑗𝑒𝑐𝑡𝑖,𝑚,𝑘 according to formula (22a)

7: if 𝑜𝑏𝑗𝑒𝑐𝑡𝑖,𝑚,𝑘 ≤𝑍 then

8: (𝑖, 𝑚, 𝑘) is the current best node, 𝑜𝑏𝑗𝑒𝑐𝑡𝑖,𝑚,𝑘 →𝑍

9: else if 𝑜𝑏𝑗𝑒𝑐𝑡𝑖,𝑚,𝑘 > 𝑍 then

10: Branch on node (𝑖, 𝑚, 𝑘) to generate new sub-level nodes (𝑖_𝑎, 𝑚_𝑏, 𝑘_𝑐), 
which satisfy the constraints (14)–(19)and (22b)–(22d).

11: end if

12: Calculate the objective value of each new node 𝑜𝑏𝑗𝑒𝑐𝑡𝑖_𝑎,𝑚_𝑏,𝑘_𝑐 , according 
to formula (22a)

13: if 𝑜𝑏𝑗𝑒𝑐𝑡𝑖_𝑎,𝑚_𝑏,𝑘_𝑐 ≤𝑍 then

14: continue repeat the above steps until the sub-nodes at the branch are 
completely calculated, and 𝑜𝑏𝑗𝑒𝑐𝑡𝑖_𝑎,𝑚_𝑏,𝑘_𝑐 →𝑍

15: else if 𝑜𝑏𝑗𝑒𝑐𝑡𝑖_𝑎,𝑚_𝑏,𝑘_𝑐 > 𝑍 then

16: This branch is discarded

17: end if

18: end for

19: output 𝑠𝑘𝑙 set, 𝑏𝑖𝑗 set, 𝑏𝑖𝑚 set, ℎ𝑚𝑗 set, 𝑇 and 𝐶

4. EV charging infrastructure deployment

Charging piles are classified into fast and normal chargers. This sec-

tion focuses on the deployment of fast and regular chargers at each PCS 

and CS.
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The basic assumptions of the model as follows:

1. The charging process cannot be interrupted or stopped until the 
charging task is completed;

2. The charging demand is linearly proportional to its traffic volume.

EVSS charging area service intensity is

𝜌 =
∑𝑁

𝑖=1
∑𝐾−1

𝑘=1 𝜆𝑣𝑐𝑘
𝑖

𝑝𝑐1
𝑘
+
∑𝑁

𝑖=1 (𝐾 − 1)𝜆𝑣𝑐1
𝑖

𝑝𝑐𝐾0∑𝑁

𝑖=1 (𝑓𝑖𝜇𝑓𝑖 + 𝑜𝑖𝜇𝑜𝑖) +
∑𝑀

𝑚=1 (𝑓𝑚𝜇𝑓𝑚 + 𝑜𝑚𝜇𝑜𝑚)
. (23)

The probability that all charging piles in EVSS are free is

𝑃𝑓𝑟𝑒𝑒 = [1 +
∑𝛾−1

𝑑=1
(𝛾𝜌)𝑑

𝑑!
+ (𝛾𝜌)𝛾

𝛾!(1 − 𝜌)
]−1, (24)

where 𝛾 denotes the total number of charging piles in EMSS, (𝛾𝜌)𝑑∕𝑑!
indicates the probability that 𝑑 chargers are serving EVs, and the or-

der of services performed by these chargers does not affect the system’s 
state. (𝛾𝜌)𝛾∕[𝛾!(1 −𝜌)] denotes the probability that all chargers are serv-

ing EVs, but EVs are waiting in line.

The number of EVs waiting to be charged is

𝐿𝐸𝑉 =
𝑃𝑓𝑟𝑒𝑒𝜌

2𝛾

𝛾!(1 − 𝜌)2
. (25)

The construction cost of the charging piles is

𝐶𝑓+𝑜 = (
∑𝑀

𝑚=1
𝑓𝑚 +

∑𝑁

𝑖=1
𝑓𝑖)𝑠𝑓 + (

∑𝑀

𝑚=1
𝑜𝑚 +

∑𝑁

𝑖=1
𝑜𝑖)𝑠𝑜. (26)

where 𝑠𝑓 and 𝑠𝑜 denote the cost of setting up a fast charging pile and 
an ordinary charging pile, respectively.

The charging queue length and charging pile construction cost are 
taken as optimization objectives, and the charge piles scale optimization 
model is

min𝑎2𝐿𝐸𝑉 + 𝑏2𝐶𝑓+𝑜, (27a)

s.t.

𝐿𝐸𝑉 ≤ 𝛾 +𝐻, (27b)

𝑃𝑓𝑎𝑠𝑡𝑓𝑚 + 𝑃𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦𝑜𝑚 ≤ 𝑃max
𝑚

,𝑚 = 1,⋯ ,𝑀, (27c)

𝑃𝑓𝑎𝑠𝑡𝑓𝑖 + 𝑃𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦𝑜𝑖 ≤ 𝑃max
𝑖

, 𝑖 = 1,⋯ ,𝑁, (27d)

𝑓𝑖, 𝑜𝑖, 𝑓𝑚, 𝑜𝑚 ≥ 0, (27e)

where 𝑎2 and 𝑏2 are the weighting coefficients, the objective is to safe-

guard charging rates while minimizing costs. Inequality (27b) indicates 
the charging queue length does not exceed the location capacity of the 
charging service area, denoted by 𝐻 the capacity of the charging area. 
Inequality (27c) and (27d) denote the grid capacity constraints for PCS 
𝑖 and CS 𝑚, respectively, and 𝑃max is the grid’s maximum carrying ca-

pacity (kW). Inequality (27e) is a non-negative constraint. Based on the 
above factors, we can give the following algorithm for optimization of 
charging pile size (see Algorithm 2).

5. Demand forecasting

5.1. Data processing

Our experiment uses the September 2020 Xuancheng city traffic flow 
dateset. The data includes traffic flow and average speed data for all 
roadways in the city over a consecutive 30-day period (5-minute count-

ing interval), and floating vehicle trajectory data (10-second sampling 
interval). In this study, 40W EVs trajectories and traffic flow history 
data were randomly selected with the time span of 1 month, which 
specifically contains the elements of vehicle ID, road ID, vehicle location 
(latitude and longitude), observation time, traveling speed, and travel 
6

distance.
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Algorithm 2 Optimization process for charging piles size.

1: Initialization the parameters:

𝑙-passenger arrival rate, 𝜆𝑐𝑙
𝑖

, 𝑘-EV arrival rate, 𝜆𝑣𝑘
𝑖

, the capacity of the charg-

ing area, 𝐻
2: Calculate the intensity of charging service 𝑟ℎ𝑜 and the probability of all 

charging piles are free 𝑃𝑓𝑟𝑒𝑒, according to (23) and (24).

3: for 𝑖 ∈ [1, 𝑁], 𝑚 ∈ [1, 𝑀] do

4: Select a combination of the number of initial fast charging piles and ordi-

nary charging piles (𝑓𝑖, 𝑓𝑚, 𝑜𝑖, 𝑜𝑚), according to formula (27a)–(27e), and 
𝑓𝑖, 𝑓𝑚, 𝑜𝑖𝑎𝑛𝑑𝑜𝑚 ∈𝑍≥0

5: Calculate the 𝑜𝑏𝑗𝑒𝑐𝑡0 according to formula (27a)

6: Optimal solutions for different types of charging pile sizes for PCS 𝑖 and 
CS 𝑚 using the cut plane algorithm

7: end for

8: output𝑓𝑖 , 𝑓𝑚 , 𝑜𝑖 and 𝑜𝑚

Organize dateset into suitable input sequences and corresponding 
target values. Ensure the data is preprocessed appropriately, including 
normalization and feature engineering if necessary. Firstly, decontami-

nating the collected EV historical data removes missing values and out-

liers (data with travel distance less than 500 m and latitude/longitude 
not in the intervals 118°28’-119°04’ and 30°34’-31°19’). The historical 
data are then normalized according to equation (28) so that the model 
inputs become standard data mapped to [-1,1], which reduces compu-

tational errors and improves prediction accuracy

𝐷𝑎𝑡𝑎𝑖𝑛𝑝𝑢𝑡 =
2(𝐷𝑎𝑡𝑎−𝐷𝑎𝑡𝑎min)
𝐷𝑎𝑡𝑎max −𝐷𝑎𝑡𝑎min

− 1, (28)

where 𝐷𝑎𝑡𝑎 is the initial traffic data; 𝐷𝑎𝑡𝑎max and 𝐷𝑎𝑡𝑎min are the max-

imum and minimum values in the initial data.

5.2. Prediction model

Utilize a deep structure composed of A-TCN (Attention-based Tem-

poral Convolutional Network) and LSTM to address the traffic flow pre-

diction problem, as illustrated in Fig. 1. This structure is composed of 
three main components. The first is the A-TCN Module, which incorpo-

rates a TCN with an attention mechanism to enhance feature extraction 
from time series data by focusing on crucial time steps. It uses a convo-

lutional kernel size of 2 with 64 filters and includes four convolutional 
blocks with dilation rates of 1, 2, 4, and 8. The second component is the 
LSTM Module, which employs a LSTM network to capture long-term 
dependencies within the sequential data. Finally, the Fusion Layer com-

bines the outputs of both the A-TCN and LSTM modules, resulting in a 
more comprehensive and robust feature representation.

Observe the forecasting outcomes, gradually adapt the super-parame-

ters of the algorithm, explore the balance between the volume of input 
data, the prediction accuracy of the algorithm and the prediction time, 
determine the optimal super-parameters of the algorithm, form the 
ATCN-LSTM deep learning network model, and then fit the data using 
the ATCN-LSTM algorithm. The algorithm evaluates the performance by 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) 
and Root Mean Squared Error (RMSE).

𝑀𝐴𝐸 = 1
𝑁

∑𝑁

𝑛=1
|𝐷𝑎𝑡𝑎𝑟𝑒 −𝐷𝑎𝑡𝑎𝑝𝑟𝑒|,

𝑀𝐴𝑃𝐸 = 1
𝑁

∑𝑁

𝑛=1
|(𝐷𝑎𝑡𝑎𝑟𝑒 −𝐷𝑎𝑡𝑎𝑝𝑟𝑒)∕𝐷𝑎𝑡𝑎𝑟𝑒|,

𝑅𝑀𝑆𝐸 =
√

1
𝑁

∑𝑁

𝑛=1
(𝐷𝑎𝑡𝑎𝑟𝑒 −𝐷𝑎𝑡𝑎𝑝𝑟𝑒)2,

(29)

where 𝑁 denotes the number of samples, 𝐷𝑎𝑡𝑎𝑟𝑒 is the real value and 
𝐷𝑎𝑡𝑎𝑝𝑟𝑒 is the corresponding predicted value.

The findings presented in Table 3 demonstrate that our proposed 
approach surpasses the performance of these algorithms in predicting 

traffic flow within the Xuancheng.
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Table 3

Comparison of performance parameters of dif-

ferent prediction models.

Model MAE MAPE RMSE

T-CN 52.4592 0.2082 68.3521

LSTM 66.4825 0.1826 79.8939

GRU 48.7190 0.2351 59.7397

DNN 71.3135 0.2831 84.1592

ATCN-LSTM 42.2869 0.1427 54.0191

Fig. 5. 7-day prediction of traffic flow.

Fig. 6. 1-day prediction of traffic flow.

We employ a dataset spanning 30 × 24 hours as input features for 
our time series analysis. The subsequent 7 × 24 hours are predicted as 
output. As illustrated in Fig. 5, we note that the traffic flow patterns ex-

hibit remarkable similarity across different days in the dateset. In Fig. 6, 
we depict the demand for carpooling for passengers over 24 hours. The 
distribution on one of these days is modeled as having three peaks corre-

sponding to the morning, afternoon, and evening rush hours. In general, 
we interpret this demand as reflecting the initial ridership of EMSS. To 
guarantee a superior user experience, our focus lies in evaluating system 
performance during peak hours.

6. Case studies

This section evaluates the scalability and robustness of the joint 
optimization framework of rebalancing and multilevel charging strate-

gies through data-driven simulations based on actual traffic data. First, 
Section 5 describes the processing of the dateset in detail. Then, a com-

parative analysis of different strategies is presented in Section 6.2, and 
the superiority of our approach is investigated by analyzing different 
7

performance metrics.
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Table 4

Location of PCS 𝑖 and CS 𝑚.

PCS𝑖/CS𝑚 Longitude Latitude

PCS1 118.753632300 30.76398583

PCS2 118.802483800 31.10577010

PCS3 118.704572500 30.97823703

PCS4 118.833528400 31.04456752

PCS5 118.662451700 31.09687117

PCS6 118.647175800 30.95486172

PCS7 118.696475800 30.93594922

PCS8 118.820696600 30.99279910

PCS9 118.652850500 30.90252423

PCS10 118.700519900 31.05570794

PCS11 118.683382500 31.01257589

PCS12 118.817467900 30.91253845

CS1 118.732506000 30.84596527

CS2 118.651853800 31.05027319

CS3 118.742438800 30.93960249

CS4 118.722042600 30.89456922

CS5 118.790152600 30.94637809

CS6 118.732445200 31.11902093

Table 5

Glossary of abbreviations.

Acronyms Full Name

EV Electric vehicle

EVSS Electric vehicle sharing system

VANETs Vehicular ad-hoc networks

ATCN-LSTM Attentive temporal convolutional networks-

long short term memory

PCS Parking charging stations

CS Charging station

ITS Intelligent transportation system

V2V Vehicle-to-vehicle

RSU Road side unit

MAE Mean absolute error

MAPE Mean absolute percentage error

RMSE Root mean squared error

V2X Vehicle-to-everything

Fig. 7. Planning number of charging piles at PCS 𝑖.

6.1. Basic settings

In this section, we verify the method’s effectiveness through an exam-

ple study and evaluate the impact of parameter changes on the system’s 
performance. We have chosen 12 different PCSs and 6 CSs in Xuancheng 
by performing K-means clustering (see Table 4). Table 5 summarizes 
several of the acronyms used and their full names. Each PCS 𝑖 and CS 
𝑚 charging area is fitted with both fast and ordinary charging piles for 
users to select one. Based on the model simulation analysis, the number 

of charging piles within PCS 𝑖 and CS 𝑚 are shown in Fig. 7 and Fig. 8. 
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Fig. 8. Planning number of charging piles at CS 𝑚.

Fig. 9. Distribution ratio of travel distance.

The charger fleet size optimal model is directly solved using LINGO with 
computation time of 23 seconds. The fast charging pile is rated at 60 
kW, with a construction cost of 80,000 RMB and a charging rate of 1.2 
RMB per kWh. In contrast, the regular charging pile operates at 7 kW, 
with a lower construction cost of 35,000 RMB and a charging rate of 0.7 
RMB per kWh. Let the EV fleet size is 2000, and the rebalancing cost is 
15RMB/h.

Given an EV with a battery capacity of 60 kWh and a range of 450 
km, each charging session allows the vehicle to cover 90 km. As illus-

trated in Fig. 9 and Fig. 10, depicting the driving mileage distribution of 
residents and the distances to various locations in Xuancheng, respec-

tively, it becomes apparent that a single charging session is adequate to 
fulfill residents’ daily travel needs.

6.2. Results and analysis

All simulations are performed on a computer with 8192 MB RAM 
and Intel(R) Core(TM) i7-7500U CPU@2.70 GHz 2.90 GHz Processor. 
The software used for traffic flow data preprocessing and prediction 
was IBM SPSS Statistics 26, Python 3.10.4, and PyCharm Community 
Edition 2022.1; the run time of the prediction model was 27 minutes. 
LINGO 18.0 was used to solve the joint optimization model, and all the 
strategies employed were solved in 18 minutes.

Fig. 11 illustrates the system response time at each PCS, represent-

ing the waiting duration from when a customer sends an EV request 
to when they board the EV. The figure demonstrates that the rebalanc-

ing approach markedly diminishes the system’s response time as the 
rebalancing method dynamically assigns idle vehicles to areas of higher 
demand. Furthermore, the graded charging strategy surpasses the tra-
8

ditional complete charging approach in performance. This is because 
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Fig. 10. Straight line distance of Xuancheng transportation routes.

Fig. 11. Vehicle response time at various PCSs.

graded charging allows vehicles to return to service quickly after reach-

ing a partial charge, reducing vehicle charging time and idle periods.

Subsequently, the variations of maximum customer wait times, sys-

tem operating costs, and EV utilization with changes in fleet size are 
illustrated in Fig. 12. Firstly, there is a decreasing trend in the maxi-

mum system response time in Fig. 12(a). This can be attributed to the 
expansion of fleets, resulting in an increased availability of vehicles to 
serve more customers simultaneously. However, the improvement tends 
to flat line after a certain level of fleet size, suggesting that an excessive 
increase in vehicles does not further significantly reduce waiting times. 
Secondly, in scenarios where customer demand exceeds the available ve-

hicle capacity, a larger number of vehicles are required for charging or 
relocation. Conversely, when an ample number of vehicles are available, 
fewer vehicles necessitate charging and rebalancing, leading to a fluctu-

ating trend in system operating costs, as depicted in Fig. 12(b). Finally, 
the EV utilization rate under different models shows different trends 
(see in Fig. 12(c)). With the increase of EV numbers at each station, the 
model without a rebalancing process has a decreasing trend as the idle 
EVs at some unpopular stations will accumulate and not be handled 
in time. For the other two models, more available vehicles serve cus-

tomers in the early stage and thus increase the overall EV utilization rate. 
Then, the EV utilization rate starts to decline gradually in the later stage 
when the number of vehicles continues to grow, but the customer de-

mand remains unchanged. This suggests that while increasing fleet size 
can improve system performance in the early stages, resource wastage 
may occur after over-extension. These results indicate that proper fleet 
sizing and rebalancing strategies are critical for improving EV utiliza-

tion and reducing system response time. This not only provides valuable 
guidance for fleet management in ITS, but also offers potential research 

directions for further optimizing EV scheduling in the future.
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Fig. 12. Changes in fleet size impact system performance: (a) variation in max-

imum customer waiting time, (b) changes in system operating costs, and (c) 
differences in system EV utilization.

We compare the performance of the proposed solution against base-

line decision methods under different total customer arrival rates in 
Fig. 13. It is evident from the figure that our solution outperforms the 
other three approaches across the entire range. The core of this en-

hancement lies in the close integration of our proposed graded charging 
and rebalancing strategies, which can effectively adapt to the system 
demand under different arrival rates and especially show stronger adapt-

ability and robustness during peak periods. Specifically, the rebalancing 
9

approach effectively reduces the system response time and improves 
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Fig. 13. Performance comparison for different total customer arrival rates.

Fig. 14. Impact of number of charging piles on system response time.

the vehicle scheduling efficiency by intelligently allocating resources. 
In addition, the optimization framework incorporating a hierarchical 
charging strategy can flexibly respond to fluctuations in customer ar-

rival rates and maintain low charging delays during peak hours.

Due to vandalism or natural damage, certain charging piles will in-

evitably malfunction resulting in unavailability, so we need to ensure 
the effectiveness of the model in hard-to-charge situations. Fig. 14 and 
Fig. 15 depict the robustness performance of our proposed scheme in the 
case of charging pile reduction. To verify the robustness of the model, 
we analyze the system response time, vehicle rebalancing cost, and vehi-

cle utilization under different scenarios: without rebalancing, with fully 
charged vehicles, and with no sub-levels of assigned vehicles, while 
varying the number of charging piles. As can be seen in Fig. 14 and 
Fig. 15(b), our proposed solution provides more efficient and reliable 
customer service. The improvement primarily results from the joint opti-

mization framework, which efficiently allocates available vehicles even 
as the number of charging piles decreases, preventing a sharp increase 
in customer waiting times. The rebalancing cost of the system shows an 
increasing and decreasing trend (see Fig. 15(a)), which is mainly due to 
the fact that when there are fewer charging facilities, the vehicle needs 
to go to an area far away from the target station to charge. These results 
demonstrate the model’s robustness in handling damaged or reduced 
charging piles, ensuring efficient system operation in resource-limited 
environments.

7. Conclusions

The study proposes a unified framework for hierarchical charg-
ing scheduling and rebalancing based on data-driven predictions. This 
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Fig. 15. Superiority of graded charging strategies: (a) changes in system rebal-

ancing costs, (b) changes in EV utilization rates.

framework aims to balance operational costs and service quality while 
integrating charging infrastructure planning. By leveraging predictive 
modeling, the framework improves vehicle utilization, reduces maxi-

mum response times and associated costs, and enhances overall sys-

tem resilience. Experimental results show that this approach outper-

forms traditional methods, demonstrating significant efficiency, cost-

effectiveness, and system reliability improvements. In real-world ap-

plications, this framework can be deployed to optimize EV charging 
networks in smart cities, helping operators dynamically manage CSs and 
allocate resources based on demand forecasts, which also contributes to 
grid stability and energy optimization. For fleet management, it can im-

prove operational efficiency by ensuring that vehicles are charged at 
optimal times, reducing downtime and maximizing fleet availability.

However, it is essential to acknowledge some potential limitations 
and areas for further exploration. The robustness and accuracy of the 
predictive models under different datasets and real-world conditions de-

serve further improvement. In addition, fluctuating demand patterns or 
unexpected disruptions in the charging infrastructure could impact the 
reliability of the framework. Furthermore, communication challenges, 
such as latency, network congestion, and packet loss, may affect the ex-

change of real-time information between vehicles and infrastructure, as 
well as between vehicles. In order to better service customers, there are 
some interesting topics worthy of future investigation.

1. Explore prediction models beyond ATCN-LSTM, such as deep re-

inforcement learning variants or hybrid models, to improve the 
accuracy and robustness of predictions for different datasets.

2. Investigate the incorporation of vehicle-to-grid technologies to en-
10

able bidirectional energy flow between EVs and the power grid. 
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The EV’s battery is a decentralized energy storage system that en-

hances the grid’s adaptability to power fluctuations and optimizes 
grid stability.

3. Extend the optimization framework to integrate advanced V2X 
communication protocols and emerging technologies like edge 
computing and 5G to address communication issues, reduce la-

tency, and stabilize data transfers in dynamic vehicular networks. 
Enhancing the communication layer improves system resilience, 
ensuring effective operation even with limited or compromised in-

frastructure.

CRediT authorship contribution statement

Tianyu Sun: Writing – original draft, Validation, Methodology. Ben-

Guo He: Supervision. Junxin Chen: Writing – review & editing, Super-

vision, Funding acquisition. Haiyan Lu: Visualization, Project adminis-

tration. Bo Fang: Resources, Data curation. Yicong Zhou: Visualization, 
Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This work is funded by the National Natural Science Foundation 
of China (Nos. 62171114, 52222810) and the Fundamental Research 
Funds for the Central Universities (No. DUT22RC (3)099), and Xiaomi 
Young Talents Program.

Data availability

Data will be made available on request.

References

[1] G. Wager, J. Whale, T. Braunl, Driving electric vehicles at highway speeds: the ef-

fect of higher driving speeds on energy consumption and driving range for electric 
vehicles in Australia, Renew. Sustain. Energy Rev. 63 (2016) 158–165.

[2] C.L. Canals, L.E. Martinez, G.B. Amante, N. Nieto, Sustainability analysis of the elec-

tric vehicle use in Europe for co2 emissions reduction, J. Clean. Prod. 127 (2016) 
425–437.

[3] M. Yilmaz, P.T. Krein, Review of the impact of vehicle-to-grid technologies on 
distribution systems and utility interfaces, IEEE Trans. Power Electron. 28 (2013) 
5673–5689.

[4] Z. Danping, L. Juan, C. Yuchun, C. Zhongjian, L. Liping, Research on electric vehicle 
charging stations planning based on traffic destination heat data and charger usage 
data, in: IEEE International Conference on Intelligent Transportation Engineering, 
vol. 3, 2020, pp. 407–410.

[5] H. Abualola, H. Otrok, R. Mizouni, S. Singh, A v2v charging allocation protocol for 
electric vehicles in vanet, Veh. Commun. 18 (2022) 33.

[6] R. Li, Q. Wu, S. Oren, Distribution locational marginal pricing for optimal electric 
vehicle charging management, IEEE Trans. Power Syst. 29 (1) (2013) 203–211.

[7] A.D. Febbraro, N. Sacco, M. Saeednia, One-way car-sharing profit maximization by 
means of user-based vehicle relocation, IEEE Trans. Intell. Transp. Syst. 20 (2) (2019) 
628–641.

[8] M. Clemente, M.P. Fanti, G. Iacobellis, M. Nolich, W. Ukovich, A decision support 
system for user-based vehicle relocation in car sharing systems, IEEE Trans. Syst. 
Man Cybern. Syst. 28 (2017) 1–14.

[9] D. Jorge, G. Molnar, Dacg Homem, Trip pricing of one-way station-based carsharing 
networks with zone and time of day price variations, Transp. Res., Part B, Methodol. 
81 (2015) 461–482.

[10] A. Carron, F. Seccamonte, C. Ruch, E. Frazzoli, M.N. Zeilinger, Scalable model pre-

dictive control for autonomous mobility-on-demand systems, IEEE Trans. Control 
Syst. Technol. 29 (2) (2021) 635–644.

[11] G.C. Calafiore, C. Bongiorno, A. Rizzo, A robust mpc approach for the rebalancing 
of mobility on demand systems, Control Eng. Pract. 90 (2019) 169–181.

[12] M. Pavone, S.L. Smith, E. Frazzoli, D. Rus, Load balancing for mobility-on-demand 

systems, Int. J. Robot. Res. 31 (2012) 839–854.

http://refhub.elsevier.com/S2214-2096(24)00132-3/bib117C4A8F3EFBA392FA5B945F7831E65Cs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib117C4A8F3EFBA392FA5B945F7831E65Cs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib117C4A8F3EFBA392FA5B945F7831E65Cs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibB756E4A2A2E113A2FC1572293D2D61E7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibB756E4A2A2E113A2FC1572293D2D61E7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibB756E4A2A2E113A2FC1572293D2D61E7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib18E5F86B1C80E8F30B2BB0A5829D4ED7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib18E5F86B1C80E8F30B2BB0A5829D4ED7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib18E5F86B1C80E8F30B2BB0A5829D4ED7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib7C491AD6D429D1361061F8FB73DBB5C6s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib7C491AD6D429D1361061F8FB73DBB5C6s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib7C491AD6D429D1361061F8FB73DBB5C6s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib7C491AD6D429D1361061F8FB73DBB5C6s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib5AD1F92231507F622900D35A8AB3C2DEs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib5AD1F92231507F622900D35A8AB3C2DEs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibC5FDC207E56559543516F2117838AD9As1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibC5FDC207E56559543516F2117838AD9As1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib90C87680DFAAB86A49DA51D74076B254s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib90C87680DFAAB86A49DA51D74076B254s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib90C87680DFAAB86A49DA51D74076B254s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibFDC93A2D1969482DB67C774B93FA1AC7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibFDC93A2D1969482DB67C774B93FA1AC7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibFDC93A2D1969482DB67C774B93FA1AC7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib2C7CD19AA202DB7D586039D029EA5038s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib2C7CD19AA202DB7D586039D029EA5038s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib2C7CD19AA202DB7D586039D029EA5038s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibC53789DFED65CA216745D61A359F55D7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibC53789DFED65CA216745D61A359F55D7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibC53789DFED65CA216745D61A359F55D7s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib6CADF5E6739591270B064950F4165160s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib6CADF5E6739591270B064950F4165160s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib90792950431594823E9014E537A079B6s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib90792950431594823E9014E537A079B6s1


Vehicular Communications 50 (2024) 100857T. Sun, B.-G. He, J. Chen et al.

[13] R. Zhang, M. Pavone, A queueing network approach to the analysis and control 
of mobility-on-demand systems, in: American Control Conference, vol. 11, 2015, 
pp. 4702–4709.

[14] R. Zhang, M. Pavone, Control of robotic mobility-on-demand systems: a queueing-

theoretical perspective, Int. J. Robot. Res. 35 (2014) 186–203.

[15] F. Rossi, R. Zhang, Y. Hindy, M. Pavone, Routing autonomous vehicles in congested 
transportation networks: structural properties and coordination algorithms, Auton. 
Robots 9 (2018) 1–16.

[16] M. Volkov, J. Aslam, D. Rus, Markov-based redistribution policy model for future 
urban mobility networks 22 (2012) 1906–1911.

[17] H. Liang, I. Sharma, W. Zhuang, K. Bhattacharya, Plug-in electric vehicle charging 
demand estimation based on queueing network analysis 4 (2014) 1–5.

[18] K. Zhang, Y. Mao, S. Leng, Y. Zhang, S. Gjessing, D.H.K. Tsang, Platoon-based electric 
vehicles charging with renewable energy supply: a queuing analytical model, in: 
IEEE International Conference on Communications, vol. 14, 2016, pp. 1–6.

[19] T. Zhang, W. Chen, Z. Han, Z. Cao, Charging scheduling of electric vehicles with local 
renewable energy under uncertain electric vehicle arrival and grid power price, IEEE 
Trans. Veh. Technol. 63 (6) (2013) 14–25.

[20] X. Tan, B. Sun, D.H.K. Tsang, Queueing network models for electric vehicle charging 
station with battery swapping 9 (2014) 1–6.

[21] Y. Shanmugam, R. Narayanamoorthi, P. Vishnuram, M. Bajaj, K.M. AboRas, P. 
Thakur, Kitmo, A systematic review of dynamic wireless charging system for electric 
transportation, IEEE Access 10 (2022) 133617–133642.

[22] S. Belakaria, M. Ammous, L. Smith, S. Sorour, R.A. Abdel, Multi-class management 
with sub-class service for autonomous electric mobility on-demand systems, IEEE 
Trans. Veh. Technol. 6 (99) (2019) 7155–7159.

[23] M. Asna, H. Shareef, A. Prasanthi, R. Errouissi, A. Wahyudie, A novel multi-level 
charging strategy for electric vehicles to enhance customer charging experience and 
station utilization, IEEE Trans. Intell. Transp. Syst. 25 (9) (2024) 11497–11508.

[24] C. Li, Z. Dong, G. Chen, B. Zhou, X. Yu, Data-driven planning of electric vehicle 
charging infrastructure: a case study of Sydney, Australia, IEEE Trans. Smart Grid 
12 (4) (2021) 3289–3304.

[25] B. Aziz, A process algebraic mutation framework with application to a vehicle charg-

ing protocol, Veh. Commun. 30 (2021) 1–13.

[26] Al-A. Irfan, T.M. Hussein, Wave 4 v2g: wireless access in vehicular environments for 
vehicle-to-grid applications, Veh. Commun. 3 (2016) 31–42.

[27] H. Abualola, H. Otrok, R. Mizouni, S. Singh, A v2v charging allocation protocol for 
electric vehicles in vanet, Veh. Commun. 33 (1) (2022) 1–12.

[28] B.B. Pablo, Lemus C. Leticia, U.A. Luis, A.I. Mónica, A traffic-aware electric vehicle 
charging management system for smart cities, Veh. Commun. 20 (2019) 100188.

[29] F. Boewing, M. Schiffer, M. Salazar, M. Pavone, A vehicle coordination and charge 
scheduling algorithm for electric autonomous mobility-on-demand systems 8 (2020) 
248–255.

[30] W. Gan, J.F. Wen, M.Y. Yan, Y. Zhou, W. Yao, Enhancing resilience with electric 
vehicles charging redispatching and vehicle-to-grid in traffic-electric networks, IEEE 
Trans. Ind. Appl. 60 (1) (2024) 953–965.

[31] G. Guo, T. Xu, Vehicle rebalancing with charging scheduling in one-way car-sharing 
systems, IEEE Trans. Intell. Transp. Syst. 3 (2020) 1–10.

[32] G. Guo, M. Kang, Rebalancing and charging scheduling with price incentives for car 
sharing systems, IEEE Trans. Intell. Transp. Syst. 23 (10) (2022) 18592–18602.

[33] N. Yamin, L. Smith, S. Belakaria, S. Sorour, A. Abdel-Rahim, Fleet re-balancing with 
in-route charging for multi-class autonomous electric mod systems 10 (2020) 1–5.

[34] L. Timilsina, P.R. Badr, P.H. Hoang, G. Ozkan, B. Papari, C.S. Edrington, Battery 
degradation in electric and hybrid electric vehicles: a survey study, IEEE Access 11 
(2023) 42431–42462.

[35] S. Belakaria, M. Ammous, S. Sorour, R.A. Abdel, Fog-based multi-class dispatch-

ing and charging for autonomous electric mobility on-demand, IEEE Trans. Intell. 
Transp. Syst. 21 (2) (2020) 762–776.
11

http://refhub.elsevier.com/S2214-2096(24)00132-3/bib774C1F0AA49D20453F673D60AB26F922s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib774C1F0AA49D20453F673D60AB26F922s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib774C1F0AA49D20453F673D60AB26F922s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibB2EB06D809A97EDDCE52046EC636796Ds1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibB2EB06D809A97EDDCE52046EC636796Ds1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib2854B6E543334616F5ADAB99C4EBEB25s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib2854B6E543334616F5ADAB99C4EBEB25s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib2854B6E543334616F5ADAB99C4EBEB25s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib058EC0DDF571AC1E4505B76104B7371Bs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib058EC0DDF571AC1E4505B76104B7371Bs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib80B8CA85585916DA3253D3DB3698E95As1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib80B8CA85585916DA3253D3DB3698E95As1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibEEB3ABFF128E681CB929000F6CB24D86s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibEEB3ABFF128E681CB929000F6CB24D86s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibEEB3ABFF128E681CB929000F6CB24D86s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib77672BDB7B806081A9089CBF7BD39248s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib77672BDB7B806081A9089CBF7BD39248s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib77672BDB7B806081A9089CBF7BD39248s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib9A8C4ECC1E35644649C7AC6E496965EAs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib9A8C4ECC1E35644649C7AC6E496965EAs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibE23A554B431534BF7C5F9352C4C8725Es1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibE23A554B431534BF7C5F9352C4C8725Es1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibE23A554B431534BF7C5F9352C4C8725Es1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib9A61148A2733F7DCA431082BCA5A3564s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib9A61148A2733F7DCA431082BCA5A3564s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib9A61148A2733F7DCA431082BCA5A3564s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib1DCA629B4E0FBBCE8D6199531BF40FECs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib1DCA629B4E0FBBCE8D6199531BF40FECs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib1DCA629B4E0FBBCE8D6199531BF40FECs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib59DDBC4A021801B0B927FBFDA1BDF25Bs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib59DDBC4A021801B0B927FBFDA1BDF25Bs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib59DDBC4A021801B0B927FBFDA1BDF25Bs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibBD3426618178905F4ADA6537C54A9AFEs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibBD3426618178905F4ADA6537C54A9AFEs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib533C1872947B4148EE0BA528206FFFADs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib533C1872947B4148EE0BA528206FFFADs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib50BAEF4A3E799230E9C5884AA3A89644s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib50BAEF4A3E799230E9C5884AA3A89644s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibC2203A7DCF24FDFA2C5EA646E720F6F2s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibC2203A7DCF24FDFA2C5EA646E720F6F2s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib9DE31B6D6F5BC9584CB732B1B137D609s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib9DE31B6D6F5BC9584CB732B1B137D609s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib9DE31B6D6F5BC9584CB732B1B137D609s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib7FBB1C71CCE470E7C776AAD2BBE570C2s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib7FBB1C71CCE470E7C776AAD2BBE570C2s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib7FBB1C71CCE470E7C776AAD2BBE570C2s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib0E1187F3FC36BDF159111FDB15A3805Fs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib0E1187F3FC36BDF159111FDB15A3805Fs1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib76EE1EF903E9A705941F807C11D93F98s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib76EE1EF903E9A705941F807C11D93F98s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibA0BA64CCDE4125D53AE61E1D0F97EFC5s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibA0BA64CCDE4125D53AE61E1D0F97EFC5s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibFBA5045C1ED1EDB8C68AFEDBCB06D75As1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibFBA5045C1ED1EDB8C68AFEDBCB06D75As1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bibFBA5045C1ED1EDB8C68AFEDBCB06D75As1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib0DE257D09FB532BA290679305F01E352s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib0DE257D09FB532BA290679305F01E352s1
http://refhub.elsevier.com/S2214-2096(24)00132-3/bib0DE257D09FB532BA290679305F01E352s1

	Optimization of electric vehicle charging and scheduling based on VANETs
	1 Introduction
	2 Related work
	3 EV charging and servicing systems
	3.1 System setup and problem description
	3.2 EV service queue
	3.3 EV charging queue
	3.4 The joint optimal solution

	4 EV charging infrastructure deployment
	5 Demand forecasting
	5.1 Data processing
	5.2 Prediction model

	6 Case studies
	6.1 Basic settings
	6.2 Results and analysis

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


