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ABSTRACT
Weaim todevelopefficient and robust algorithms for nonsmoothnonlinear
systems arising from complementarity problems. The semismooth Newton
algorithm is popular due to its reliability and efficiency. However, it strug-
gles with issues with imbalanced nonlinearities of the problems, leading to
degraded convergence rates or failure despite help from the globalization
techniques like linesearch or trust region. We introduce a right nonlinearly
preconditioned semismooth Newton algorithm to address this difficulty.
The critical success ingredient is that before each global Newton update, a
nonlinear preconditioning step implicitly removes the so-called ‘bad com-
ponents’ causing trouble via nonlinear subspace correction, inspired by
Gaussian elimination but adapted nonlinearly to balance system nonlin-
earities. Additionally, our method integrates with a domain decomposi-
tion framework, enhancing parallelism. Numerical results on two classes of
problems demonstrate significantly improved convergence over standard
semismooth Newton methods.
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1. Introduction

In this paper, we consider the large, sparse, nonsmooth nonlinear system of algebraic equations

F(x) = 0, (1)

where F is a Lipschitz function in R
n. In particular, we are interested in nonlinear complementarity

problems (NCP) [12], which are closely related to variational inequality problems [17], and both
problems [21] can be reformulated as systems of nonsmooth equations [40]. Thus, developing fast
and robust methods for such problems is important, especially methods that run on large parallel
computers. Generally speaking, the family of semismooth Newton methods [22] is a good choice
since it is easy to implement and offers rapid local convergence when the user-provided initial guess is
close to the solution. To describe an extension ofNewton-typemethods for the nonsmooth system (1),
we begin by introducing some notations. Let ‖ · ‖ denote the Euclidean norm throughout the paper
unless otherwise explicitly stated.
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Definition 1.1 ([22]): A locally Lipschitzian functionF : D ⊂ R
n → R

n is called B-differentiable at
x ∈ D if it is directionally differentiable in the sense that

lim
‖h‖→0

1
‖h‖‖F(x + h)− F(x)− F ′(x; h)‖ = 0 (2)

for every x ∈ D. Here,F ′(x; h):D ⊂ R
n → R

n is referred to as a directional derivative ofF inD and
it is not necessarily unique.

Note that Rademacher’s Theorem [43] states a local Lipschitzian function on R
n is differentiable

almost everywhere. Let us define DF as the set of points where F(x) is differentiable. Then we
construct the generalized Jacobian matrix using the B-subdifferential [12,16,44],

∂BF(x) =
{
A ∈ R

n×n
∣∣∣∣∃{x(k)} ⊆ DF , with lim

x(k)→x
∇F(x(k)) = A

}
. (3)

A directionally differentiableF is said to be semismooth at x if Vh − F ′(x; h) = o(‖h‖) as ‖h‖ → 0
forV ∈ ∂BF(x). Typically, the following locally superlinear convergence rate of Newtonmethods can
be obtained under appropriate semismoothness and regularity assumptions [22,43,44].

Theorem1.2: Let x∗ be a solution to (1) and suppose thatF is B-differentiable in an open neighborhood
D containing x∗ with the generalized Jacobian J (x) ∈ ∂BF . If J (x) is nonsingular for all x ∈ U and
{‖J (x)−1‖; x ∈ U} is bounded, then the Newton iteration

x(k+1) = x(k) − J (x(k))−1F(x(k)) (4)

converges superlinearly to x∗, provided that ‖x(0) − x∗‖ is sufficiently small.

If we apply a Newton-typemethod with a generalized Jacobian in (3) to the system (1), themethod
is called a semismooth Newton (SN) method. In the method, we first find a direction by solving the
Jacobian system and then determine an appropriate step size along this search direction to obtain a
new iterate that sufficiently decreases the merit function value

�(x) := 1
2
F(x)TF(x). (5)

An extension of the globalization linesearch technique from smooth to nonsmooth equations is not
straightforward, as the merit function � defined in Equation (5) is usually not differentiable when
F is nonsmooth. However, in some specific cases, such as nonlinear complementarity problems,
reformulating the complementarity conditions through the Fischer-Burmeister function leads to a
differentiable � due to the special properties of the Fischer-Burmeister function [30]. Assume that
�(x) is continuously differentiable. Given an initial guess x(0) ∈ R

n and let x(k) be the current approx-
imation at the kth SN iteration. The SN method [4,37,45] consists of three key steps for finding the
next approximation x(k+1) as follows.

• Determine the inexact Newton direction d(k) by approximately solving the Jacobian system

F(x(k))+ Jkd(k) = 0,

where Jk ∈ ∂BF(x) is a generalized Jacobian matrix.
• Compute a step length γ such that the Armijo condition is satisfied, i.e.

�
(
x(k) + γ d(k)

)
≤ �(x(k))+ σγ

(
∇�(xk)

)T
d(k), (6)

and set α = γ and σ ∈ (0, 1] is a prescribed parameter assuring the sufficient descent.
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• Compute the new approximate solution x(k+1) = x(k) + αd(k), and set k = k+ 1.

We continue the nonlinear iteration until the following convergence criterion is satisfied.

‖F(x(k))‖ ≤ max{εr‖F(x(0))‖, εa},
where εr (εa) is the relative (absolute) solver tolerance for the Newton iteration.

In the Newton method, α is the damping factor that tells us how far we should go in the selected
search direction. As stated in Theorem 1.2, a superlinear convergence rate may be achieved when the
initial guess is close enough to the desired solution. Nonetheless, for problems with high nonlinearity
or for problems in which the initial guess is far from the solution, the Newton direction may not be
descent; thus, the Newton step is unacceptable, and it converges slowly or simply stagnates. In this
paper, we employ a nonlinear preconditioning technique to reduce the high nonlinearities that slow
down the convergence ofNewton iterations. Like linear cases, nonlinear preconditioning is a powerful
technique for accelerating the convergence rate of the iterative methods suffering from slow conver-
gence. This acceleration is achieved by reducing the number of iterations required for convergence
while imposing minimal overhead for the construction and application of preconditioning. More
importantly, when well-designed, nonlinear preconditioning significantly enhances the robustness of
these iterative methods, particularly those with local convergence properties such as Newton-type
methods.

Here, we briefly review developments in nonlinear preconditioning methods. The first such
algorithm is known as the additive Schwarz preconditioned inexact Newton algorithm (ASPIN), in
which the function of the system is implicitly changed to a more nonlinearly balanced system, and it
has been applied successfully to solve some rather complex nonlinear problems in computational fluid
dynamics [8,10,24]. Later, Liu and Keyes and Dolean et al. further developed the multiplicative ver-
sion (i.e. MSPIN [34]) and the restricted variation (i.e. RASPEN [14]) of the domain decomposition
based nonlinearly preconditioned Newton algorithm, respectively. The local convergence analysis of
ASPIN and MSPIN is established by An [2] and Liu and Keyes [34], respectively. Under reasonable
assumptions, they showed that ASPIN or MSPIN is locally convergent, and the desired superlin-
ear or quadratic convergence can be achieved when the forcing terms are picked appropriately. In
addition, the multilevel ASPIN methods were proposed in [9,25], where nonlinear or linear coarse
space is added to enhance the scalability of the algorithm. To further improve ASPIN’s efficiency, Liu
et al. [35] suggested some practical mechanisms to turn off the nonlinear preconditioning step when
it is not needed, for example, when the intermediate solution enters the convergence region. In such
a situation, the inexact Newton with preconditioning is expected to converge quadratically.

A class of different but closely related algorithms is called the right nonlinear preconditioning tech-
nique, including the nonlinear elimination (NE) algorithm [26,27], the nonlinear restricted additive
Schwarz algorithm (NKS-RAS) [11], the nonlinear finite element tearing and interconnecting (FETI)
method [31]. The right preconditioning method is applied by modifying the variables of the nonlin-
ear function. Compared with the left nonlinear preconditioner, the right one is more attractive and
more accessible to implement because it does not change the nonlinear function. Therefore, more
sophisticated and efficient solvers can be easily applied to the unchanged system. Among them, the
NE approach has attracted more attention since it can handle the imbalance of the nonlinearity by
removing variables deemed to cause trouble for the global Newton iterations [35]. Combining with
different partitioning strategies leads to the family of domain-based NE algorithms [27,47] and the
field-based approaches [18,48], and they have been employed successfully to solve some problems
that are challenging for inexact Newton. In addition to model problems defined on simple geom-
etry, in [18,36], Cai and his coworkers demonstrated the capability of NE to complicated 3D fluid
flow and structure problems for applications to patient-specific blood flows in the human artery.
Recently, Liu et al. [33] proposed a new algorithm, namely the nonlinear elimination preconditioned
inexact Newton (NEPIN) algorithm, where NE was used as a left preconditioner for inexact Newton
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methods. They showed that left and right NE preconditioned inexact Newton methods have similar
convergence behavior.

One of our target applications is the optimal flow control problem [19], reformulated as a non-
smooth system in the form of NCP from the PDE-constrained optimization problem. The main
challenge for SN arises from the additional sharp jumps in the residual function near the nons-
mooth regions. The stagnation issue becomes worse for problems under consideration in this paper
due to the more complicated dynamics of the flow mechanism. This paper aims to develop a NE-
based preconditioner for improving the convergence of SN as a numerical solution of nonsmooth
systems arising fromNCP [45]. Related works [49,50] studied a field-based component-wise or adap-
tive region-based nonlinear elimination preconditioner for SN used in the numerical simulation of
porous media fluid flows, where the governing equation is formulated as variational inequality or
NCP forms to guarantee the numerical solution all make physical sense.

The rest of this paper is organized as follows. Section 2 reviews the general framework of a right
nonlinear elimination-based preconditioning technique for the Newton-type method. In Section 3,
we give a detailed description of two applications, which can be reformulated as large, sparse, non-
smooth, nonlinear systems of equations. We provide some numerical results in Section 4 and end the
paper with some concluding remarks in Section 5.

2. Nonlinear preconditioning technique for Newton-typemethod

This section first reviews a general framework for the right nonlinear preconditioned system. Then,
we summarize the desired properties of the right preconditioned system and the corresponding non-
linear preconditioner, analogous to the left version of the nonlinear preconditioned system [8]. Such
properties provide a guideline for designing a nonlinear preconditioner. Finally, we describe a solu-
tion algorithm for solving the right preconditioned systemwith an inexactNewtonmethod, including
deriving the linesearch technique based on the Armijo condition for the preconditioned systems.

2.1. Nonlinear preconditioner and its properties

Consider a right nonlinear preconditioned system

W(y) ≡ F
(
G(y)

) = 0, (7)

where

x = G(y)

and the operator G is referred to as a right preconditioner for the original system,

F(x) = 0,

where G: R
n → R

n and W: R
n → R

n are two continuously differentiable nonlinear mappings.
We hope the nonlinear preconditioner, G, and the preconditioned system (7) have the following
properties.

(1) G is a fixed-point mapping, where its fixed-point x∗ is the solution of F(x) = 0. This property
guarantees that the nonlinearly preconditioned problem has the same solution as the original
problem.

(2) W(y) is more nonlinearly balanced than F(x) in some sense.
(3) The cost for performing the nonlinear preconditioning operation, x = G(y), for a given y ∈

R
n, is much lower than the one for evaluating the original function F(x).
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Let y(k) be the current approximate solution, an inexact Newton with backtracking (INB) method
for the preconditioned system (7) provides a new approximation

y(k+1) = y(k) + α	y(k), (8)

where	y(k) is obtained by solving the following Jacobian system

∂W
(
y(k)

)
∂y

	y(k) = −W(y(k)) (9)

and α ∈ [0, 1) is a damping scalar. An extension to the nonsmooth case will be discussed later.

2.2. Right nonlinearly preconditioned Newton algorithm

Solving the preconditioned system (7) by Steps (9) and (8) of INB is not practical and has the following
potential drawbacks. First, the operatorG(y) is implicitly defined so that the Jacobian ofW(y) is hard
to obtain by using the chain rule, ∂W∂y = ∂F

∂x
∂G
∂y . Moreover, designing an efficient preconditioner for

the Jacobian system in the composite form in (9) is quite challenging. Hence, in this paper, we suggest
the right nonlinearly preconditioned INB as

y(k+1) = x(k) + α	x(k), (10)

where
∂F(x(k))
∂x

	x(k) = −F(x(k)), with x(k) = G(y(k)). (11)

Equation (11) is derived from Equation (9) as

∂F(G(y(k)))
∂x

∂G(y(k))
∂y

	y = −F(G(y(k))), (12)

by letting	x(k) = ∂G(y(k)
∂y 	y(k) and x(k) = G(y(k)). On the other hand, the right-hand side of (10) is

obtained by using the first-order Taylor’s expansion of G(y(k) + α	y) around y(k) as

x(k) + α	x(k) = G(y(k))+ α
∂G(y(k))
∂y

	y(k)

≈ G(y(k) + α	y(k))

Note that this approximation introduces a truncation error expected to be O((	y)2), where O() is
denoted by a big O notation.

We can guarantee that the limit point of {y(k)} denoted by y∗ such that F(G(y∗)) = 0 is also the
root of F(x) = 0 as follows. Taking the limit for both sides of (10), we have

y∗ = G(y∗)− α

(
∂F
∂x
(G(y∗))

)−1
F(G(y∗)).

Since y∗ = G(y∗) by design, we have F(G(y∗)) = 0, which implies F(y∗) = 0.
Next, we introduce a merit function for the nonlinearly preconditioned function, which is

needed for the globalization technique, such as linesearch or trust region approaches. Let w(y) =
1
2‖W(y)‖2 = 1

2‖F(G(y))‖2 = 1
2‖F(x)‖2 = f (x). Note that ∇w(y) = JTw(y)W(y), then the Armijo

condition for w takes the form

w(y(k) + α	y(k)) ≤ w(y(k))+ σα(∇w(y(k)))
T
	y(k)
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= f (x(k))+ σαWT(y(k))Jw(y(k))	y(k)

= f (x(k))+ σαWT(y(k))
∂F
∂G

∂G
∂y
	y(k)

= f (x(k))+ σα(∇f (x(k)))T	x(k).

The left-hand side of the above inequality is

w(y(k) + α	y(k)) = 1
2
‖W(y(k) + α	y(k))‖2 = 1

2
‖F(G(y(k) + α	y(k)))‖2

≈ 1
2
‖F(G(y(k))+ α

∂G
∂y
	y(k)))‖2

= 1
2
‖F(x(k) + α	x(k))‖2

= f (x(k) + α	x(k)).

This is true if α is sufficiently small. As a result, the Armijo condition can be realized in any of the
following formats.

(1) Find α ∈ (0, 1] for y(k+1) = x(k) + α	x(k) such that f (x(k) + α	x(k)) � (1 − σα)f (x(k)) [27].
(2) Findα ∈ (0, 1] for y(k+1) = y(k) + α	y(k) such thatw(y(k) + α	y(k)) � (1 − σα)w(x(k)) [26].

3. Nonlinearly preconditioned semismooth Newton algorithm for nonlinear
complementarity problems

In this section, we apply NPSN to two important classes of problems, namely, an NCP and the
reformulation of an optimization problem with equality-inequality constraints as NCP and a series
of illustrative examples in R

2. We first discuss the details of the nonlinear preconditioner in con-
junction with SN for solving (1), which has n functions F = (F1, . . . ,Fn)

T and n unknowns, x =
(x1, . . . , xn)T .

3.1. Nonlinear complementarity problem

The NCP [17,21] is stated as follows. Find a solution x ∈ R
n such that

x ≥ �, F(x) ≥ 0, and (x −�)TF(x) = 0, (13)

where � = (φ1, . . . ,φn)T , x = (x1, x2, . . . , xn)T , and F = (F1, F2, . . . , Fn)T . Here, Fi(x) : R
n → R,

1 ≤ i ≤ n, is assumed to be continuously differentiable. To solve (13), we first reformulate the problem
as the following nonlinear system of equations

F(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ϕ
(
x1 − φ1, F1(x)

)
...

ϕ
(
xi − φi, Fi(x)

)
...

ϕ
(
xn − φn, Fn(x)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, (14)

with a NCP function ϕ : R
2 → R that satisfies

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.
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There are several choices for this function, but we focus on the Fischer-Burmeister NCP func-
tion [17,43], defined as

ϕ(a, b) := a + b −
√
a2 + b2. (15)

Note that ϕ is differentiable everywhere except at the point (a, b) = (0, 0). Hence, we construct the
generalized Jacobian matrix by using the B-subdifferential in (3), i.e.

∂BF(x) ⊆ {Da + Db(x)∇F(x)},
where nonnegative diagonal matrices

{
Da = diag(da1 , . . . , dan),
Db = diag(db1 , . . . , dbn),

(16)

consist of the partial derivatives of the mapping ϕ with respect to the first variable ai = xi − φ and
the second variable bi = Fi(x), respectively, or a suitable approximation to these partial derivatives
at those points where ϕ is not differentiable. More precisely, the elements of the matrices Da and Db
in (16) take the following form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(dai , dbi) =

⎛
⎜⎝1 − ai√

a2i + b2i
, 1 − bi√

a2i + b2i

⎞
⎟⎠ if a2i + b2i �= 0,

(dai , dbi) ∈ {
(1 − α1, 1 − α2) |α21 + α22 ≤ 1

}
otherwise,

with 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1.

3.2. Constrained optimization problem

Consider a general constrained optimization problem with both equality and inequality con-
straints [19,39] formulated as follows: Find the states s ∈ R

ns and u ∈ R
nu such that

minimize J (s,u)
subject to C(s,u) = 0,

ul ≤ u ≤ ur ,
(17)

where the state variable is classified as two types: s is the free variable and u is the variable with some
restrictions imposed. J (s,u) : R

ns × R
nu → R is an objective function and C : R

ns × R
nu → R

nc

satisfying C(s,u) = 0, which is a nonlinear system of equations derived from the discretization of
some partial differential equation. By introducing the Lagrange multipliers λ ∈ R

nc , μl ∈ R
nu , and

μr ∈ R
nu , we define the following Lagrangian functional

L(s,u, λ,μl,μr) ≡ J (s,u)+ (λ,C(s,u))+ (ul − u,μl)+ (u − ur ,μr). (18)

Then, the corresponding KKT system is obtained by differentiating (18), with respect to λ, s, u, μl,
μr , respectively. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lλ(s,u, λ,μl,μr) = C(s,u) = 0,
Ls(s,u, λ,μl,μr) = Js(s,u)+ (λ,Cs(s,u)) = 0,
Lu(s,u, λ,μl,μr) = Ju(s,u)+ (λ,Cu(s,u))− μl + μr = 0,
ul − u ≤ 0, μl ≥ 0, (ul − u,μl) = 0,
u − ur ≤ 0, μr ≥ 0, (u − ur ,μr) = 0,

(19)

where Js(s,u) denotes the gradient of J with respect to the variable s, and the others are defined in
a similar way. The last three equations in (19) form NCP, which is equivalent to the following system
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by eliminating the Lagrange multipliers μl and μr

⎧⎨
⎩
u = ul & Lu(s,u, λ) = Ju(s,u)+ (λ,Cu(s,u)) ≥ 0,
u = ur & Lu(s,u, λ) = Ju(s,u)+ (λ,Cu(s,u)) ≤ 0,
u ∈ (ul,ur) & Lu(s,u, λ) = Ju(s,u)+ (λ,Cu(s,u)) = 0,

(20)

with only one of these three cases holding at a time.
Let the solution vector x be organized by x = (s,u, λ) = (x1, . . . , xn) ∈ R

n and the corresponding
function be defined by

F(x) ≡ (Ls(x),Lu(x),Lλ(x))T ∈ R
n.

Then, the variational inequality problem for the KKT system of (17) is defined as follows: find x ∈ R
n

such that one of the following conditions holds for all i ∈ {1, 2, . . . n},
⎧⎨
⎩
xi = φi & Fi(x) ≥ 0,
xi = ψi & Fi(x) ≤ 0,
xi ∈ (φi,ψi) & Fi(x) = 0,

(21)

where the lower- and upper-bound vectors for the solution x are defined by

{
� = (−ŝ,ul,−λ̂) = (φ1,φ2, . . . ,φn) ∈ R

n,
� = (ŝ, ur , λ̂) = (ψ1,ψ2, . . . ,ψn) ∈ R

n,

where ŝ and λ̂ are the prescribed vectors whose components are chosen to be some sufficiently large
numbers. We remark that the inequality holds componentwisely by φ and ψ , i.e. only one of these
three equations holds at a time. Moreover, if the upper bound vectorψ = −∞, (21) is reduced to the
complementarity problem (13).

Similar to the complementarity problem (13), by using the Fischer-Burmeister function (15), we
reformulate the variational inequality problem (21) as F(x) = 0, where F : R

n → R
n is expressed

by

F(x) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ϕ
(
x1 − φ1,−ϕ (ψ1 − x1,−F1(x))

)
...

ϕ
(
xi − φi,−ϕ (ψi − xi,−Fi(x))

)
...

ϕ
(
xn − φn,−ϕ (ψn − xn,−Fn(x))

)

⎞
⎟⎟⎟⎟⎟⎟⎠
. (22)

And we can define the corresponding generalized Jacobian matrices by using the B-subdifferential
in (3) with respect to (22) similarly. The optimality problem is a large, nonlinear, coupled, and muti-
component systemwith an indefinite and often ill-conditioned Jacobianmatrix. Hence, we use NPSN
to deal with the difficulties.

3.3. Nonlinear elimination preconditioner

To construct the nonlinear elimination preconditioner, we assume the unknown variables
and the corresponding nonlinear equations are partitioned into two subsets denoted as
[(Fb(xb, xg),Fg(xb, xg)]T . Usually, the dimension of xb is much smaller than the dimension of xg .
The set of xb, referred to as the ‘bad’ component, represents the components with locally strong
nonlinearity, such as shock, discontinuity, and singularity. The way to obtain the partition is often
problem-dependent, and several partitioning strategies are available in the literature, such as the
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field-by-field approach for multiphysics problems [48] and the pointwise approach for scalar prob-
lems [26,27]. Next, we introduce a globally preconditioned nonlinear function, defined implicitly
as

y = G(F̃ ; x) =
[
Tb
xg

]
.

Here, the evaluation of G(F̃ ; x) for a given vector x = [xb, xg]T requires the numerical solution of
zb = Tb, from the following subspace problem,

F̃(zb, zg) =
[
Fb(Tb, zg)
zg − xg

]
= 0

by using some nonlinear iterative method. Note that zg is simply a copy of xg . The nonlinearly
preconditioned semismooth Newton (NPSN) algorithm can be described as in Algorithm 1.

Algorithm 1 Nonlinearly Preconditioned Semismooth Newton (NPSN) algorithm.
Given an initial guess y(0) ∈ R

n.
1: for k = 0, 1, 2, 3, . . . until convergence do
2: Nonlinear preconditioning (NP) step:

• Evaluate x(k) = G(F̃ ; y(k))

3: Semismooth Newton (SN) step:

• Inexactly solve F(x(k))+ Jkd(k) = 0.
• Update y(k+1) = x(k) + αd(k), where α ∈ (0, 1].

4: end for

Remark 3.1: Since the generalized Jacobian matrix is large, sparse, and ill-conditioned, a Krylov
subspace method, such as the general minimal residual method (GMRES) with accelerated domain
decomposition-based preconditioning, e.g. overlapping Schwarz methods, is more favorable than
direct methods for solving the generalized Jacobian systems in Step 3 of Algorithm 1 in the parallel
computing environment [3].

Remark 3.2: While the numerical results of right nonlinear elimination preconditioned Newton
methods show promise for various applications, the theoretical analysis regarding their local or
global convergence analysis remains open. As presented by Nguyen et al. [38], the mathematical tool
developed for ordinal ordinary differential equations could help establish the global convergence of
nonlinear preconditioned Newton-type methods or offer a heuristic explanation for their success.

3.4. Some illustrative examples inR
2

Let us consider some simple problems, which can be easily visualized as a solution procedure to find
the minimum of the objective function in x = (x1, x2)

f (x) := 100(x2 − x21)
2 + (1 − x1)2 (O)

with or without the constraint

h(x) := x1 + x2 + 0.5 = 0 (E),
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and

g(x) := x1 ≥ 0 (I).

Three cases are tested.

Case (I) Unconstrained optimization, (O): An optimal point is located at (1, 1)T .
Case (II) Equality-constrained optimization, (O)+(E): An optimal point is located approximately

at (−0.4707,−0.0293)T .
Case (III) Inequality-equality-constrained optimization, (O)+(E)+(I): An optimal point is located

at (0,−0.5)T .

For all cases, (x1, x2)T = (0, 0)T (and λ = 0 if needed) is used as an initial guess vector. An inexact
Newton, Lagrange-Newton, and SN are used to solve these problems in conjunction with some non-
linear preconditioners, which will be described below in detail. We also include the results obtained
using these methods without nonlinear preconditioning for comparison. To solve the equality-
inequality-constrained optimization problem by SN, we begin by defining the Lagrangian functional
as

L(x) := f (x)+ λh(x)+ μg(x),

and the associated KKT system is obtained by differentiating L,

⎧⎪⎪⎨
⎪⎪⎩

F3 := Lλ(x, λ,μ) = h(x) = 0,
F2 := Lx2(x, λ,μ) = fx2(x)+ λhx2(x) = 0,

Lx1(x, λ,μ) = fx1(x)+ λhx1(x)− μ = 0,
x1 ≥ 0, μ ≥ 0, μx1 = 0.

The last two equations of the above system form the so-called complementarity problem, which is
equivalent to the following system by eliminating μ.

{
x1 = 0 & F1 := Lx1(x, λ,μ) = fx1(x)+ λhx1(x) ≥ 0,
x1 ∈ (0,∞) & Lx1(x, λ,μ) = fx1(x)+ λhx1(x) = 0.

Note that only one of these two equations holds at a time. It can be further simplified as

F1 = ϕ(x1, F1(x)) = 0 ⇐⇒ x1 ≥ 0, F1(x) ≥ 0, x1F1(x) = 0,

where ϕ(a, b) is the Fischer-Burmeister NCP function defined as (15). The corresponding nonlinear
system of equations can be defined as

F(x) =
⎛
⎝ϕ(g(x), F1(x))F2(x)
F3(x)

⎞
⎠

=
⎛
⎝ϕ(x1,−400x1(x2 − x21)+ 2(x1 − 1)+ λ)
200(x2 − x21)+ λ
x1 + x2 + 0.5

⎞
⎠ = 0. (23)
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Note that

F(x) :=
⎛
⎝F1
F2
F3

⎞
⎠ =

⎛
⎝Lx1
Lx2
Lλ

⎞
⎠ =

⎛
⎝−400x1(x2 − x21)+ 2(x1 − 1)+ λ

200(x2 − x21)+ λ
x1 + x2 + 0.5

⎞
⎠ .

Its generalized Jacobian J is defined as J = Da + DbJ, where

J =
⎛
⎝400(3x21 − x2)+ 2 −400x1 1

−400x1 200 + 2λ 1
1 1 0

⎞
⎠ ,

and the diagonal matrices

Da = diag(da, 0, 0)

Db = diag(db, 1, 1).

Here, the coefficients are defined as
⎧⎨
⎩
(da, db) =

(
1 − a√

a2 + b2
, 1 − b√

a2 + b2

)
if a2 + b2 �= 0,

(da, db) = (0, 0) otherwise,

with a = x1 and b = F1(x).
Next, we discuss the design of a nonlinear preconditioner for SN for this optimization problem.

Assume the term x2 − x21 in the first two equations is a troublemaker. Hence, we eliminate x2 − x21 in
the first equation by using the second equation to obtain

ϕ(x1, 2λx1 + 2(x1 − 1)+ λ) = 0.

We construct two different preconditioners depending on whether the inequality constraint is sat-
isfied. When x1 ≥ 0, by using the property of the NCP function, we have (2λ+ 2)x1 + λ− 2 = 0.
Solving this equation for x1 gives x1 = 2−λ

2λ+2 , andwe obtain x2 = − λ
200 + x21 = − λ

200 + ( 2−λ
2λ+2 )

2 from
the second equation of (23). Substituting x1 and x2 in terms of λ into the third equation of (23)
to derive a cubic polynomial of λ as h(λ) = −4λ3 + 192λ2 + 396λ+ 2000 = 0. Then we define a
nonlinear preconditioner by updating λ, followed by x1 and x2.

(1) Update λ(k+1) = G1(x(k)1 , x(k)2 , λ(k)) ≡ λ(k) − h(λ(k+1))
h′(λ(k)) by one-step Newton iteration, where

h′(λ) = −12λ2 + 384λ+ 396.
(2) Update x(k+1)

1 = G2(x(k)1 , x(k)2 , λ(k+1)) ≡ 2−λ(k+1)

2λ(k+1)+2 .

(3) Update x(k+1)
2 = G3(x(k+1)

1 , x(k)2 , λ(k+1)) = −λ(k+1)

200 + x(k+1)
1 .

On the other hand, when the inequality condition is not satisfied, i.e. x1 < 0, we construct the
preconditioner by trying to make the intermediate solution to be in the active set as soon as possible,
that is

x(k+1)
1 = 1

2
x(k)1

x(k+1)
2 = −0.5 − x(k)1

λ(k+1) = −200(x(k)2 − (x(k)1 )2)
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Table 1. A summary of three nonlinear functions and the corresponding nonlinear preconditioners for each test case.

Case F(x) G(x)

(I)
F1 ≡ −400x1(x2 − x21)+ 2(x1 − 1)
F2 ≡ 200(x2 − x21)

x1 = G1 ≡ x1 + 1

2
(x1 − 1)

x2 = G2 ≡ x21

(II)
F1 ≡ −400x1(x2 − x21)+ 2(x1 − 1)+ λ
F2 ≡ 200(x2 − x21)+ λ
F3 ≡ x1 + x2 + 0.5

λ = G1 ≡ λ− h(λ)

h′(λ)
x1 = G2 ≡ 2 − λ

2λ+ 2

x2 = G3 ≡ − λ

200
+ x21

if x1 ≥ 0, same as Case (II) else

(III)
F1 ≡ ϕ(x1,−400x1(x2 − x21)+ 2(x1 − 1)+ λ)
F2 ≡ 200(x2 − x21)+ λ
F3 ≡ x1 + x2 + 0.5

x1 = G1 ≡ 1

2
x1

x2 = G2 ≡ −0.5 − x1
λ = G3 ≡ −200(x2 − x21)

Table 2. A summary of the total number of Newton iterations for three test cases. ‘without npc’: SN is used; ‘with NPC’: NPSN is
used; ‘NPC only’: the nonlinear preconditioners designed for each problem are used as iterative methods.

Method Case(I) Case(II) Case(III)

without NPC 62 63 130
with NPC 8 3 9
npc only 21 916 54

Table 1 lists three nonlinear functions and their nonlinear preconditioners for each test case. The
following findings are observed from Table 2, which summarizes the number of iterations required
for convergence.

(1) Although the three test cases look simple, they are not easy for Newton-type methods, and
many iterations are required for convergence. In particular, the inequality constraint increases
the level of difficulty. As a result, the SN method takes more than 100 iterations to find the
optimal point.

(2) With the help of a nonlinear preconditioner, the number of Newton iterations required for
convergence can be significantly reduced; see the first and second rows in Table 2. On the
other hand, the nonlinear preconditioners defined in Table 1 as nonlinear iterative methods
are less efficient, especially for Case II. However, they can serve as effective preconditioners
for accelerating the convergence of Newton-type methods.

To gain more insight into the convergence behavior of Newton-type iterations in each test case, in
Figure 1, we plot the trajectories of the intermediate solutions produced by the Newton method with
and without the nonlinear preconditioning. The contour curves of the modified objective function,
log(f (x)+ 1), are superimposed, and its corresponding level set numbers are also displayed.

In the unconstrained optimization problem (left of Figure 1), the un-preconditionedNewton solu-
tion gradually converges to the optimal point along the valley bottom, requiring many iterations due
to small damping. Surprisingly, Newton’s directions are nearly parallel to the gradient, indicating rea-
sons other than weak descent direction for small step lengths. As noted by Cai and Hwang [7], also
see Figure 2, the merit function shows significant changes between predicted and current points,
indicating its highly ‘ill-conditioned’ nature. Consequently, the quadratic model’s minimal point for
linesearch could be very lose to the current approximation, leading to small damping. In contrast,
the preconditioned Newton method’s search direction slightly differs from the original, accelerating
convergence by bypassing unnecessary intermediate steps in the valley.

On the other hand, for constrained optimization, the initial objective function value exceeds the
optimal one, requiring Newton to work hard to ascend toward the optimal point along the shortest
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Figure 1. A comparison of the trajectory histories of Newtonmethodswith andwithout nonlinear preconditioning. Case (I): uncon-
strained optimization problem (left); Case (II): equality-constrained optimization problem (middle); Case (III): equality-inequality
optimization problem (right).

Figure 2. The merit function value along the Newton direction for INB without (top figure) and with (bottom figure) nonlinear
preconditioning, respectively, at the first nonlinear iteration. The step length after backtracking in the un-preconditioned case is
0.0707, much smaller than the one in the preconditioned case (0.3050).

path between these two points. However, the problem is a minimization one. In this case, the Newton
search direction is a weak descent direction in the (x1, x2, λ) space, differing from the unconstrained
optimization case. When the additional inequality constraint is imposed, the convergence history of
SN can be separated into two phases: the first phase is the same as the equality-constraint case. SN
first tries to force the intermediate solution to satisfy the equality constraint, then moves it gradually
along the line for the equality constraint to meet the inequality constraint in the second phase. The
zig-zag dashed blue line (middle and right of Figure 1) shows the intermediate steps after the nonlin-
ear preconditioning is applied and the global update is performed within each Newton iteration. The
objective function in an optimization problem can be viewed as a measure of the potential energy
of the system. When the difference in potential energy between the current and predicted steps is
minor, convergence slows. Nonlinear preconditioning seeks a better initial guess, shifting the step to
a higher potential energy position. This improved guess is globally updated with momentum, con-
verting system potential energy to kinetic energy. This process accelerates convergence to the optimal
solution.However, its specifics vary depending on the problem, possibly requiring further elaboration
for complete understanding.

4. Numerical results and discussion

In this section, we report a series of numerical experiments to evaluate the performance of the
proposed algorithm. The numerical experiments consist of an obstacle problem [32,45] and a
high-pressure chemical vapor deposition (CVD) reactor problem [20,28,46,48]. The algorithm is
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Figure 3. The active (multi-colored) and inactive (grey) sets with different C. (a) C = 5 (b) C = 10 (c) C = 15.

implemented using the Portable, Extensible Toolkit for Scientific computation (PETSc) library [3].
The numerical experiments are carried out on a parallel supercomputer with 512 processor cores.

4.1. An obstacle problem

In this experiment, we consider an obstacle problem [29,32,45] defined in the domain � = [0, 1] ×
[0, 1]. This problem is used to model the elastoplastic torsion of a cylindrical bar with a quadratic
cross-section: find u(x) such that

⎧⎪⎪⎨
⎪⎪⎩

−	u(x)+ C ≥ 0, x ∈ �,
u(x) ≥ −d(x, ∂�), x ∈ �,
(u(x)+ d(x, ∂�)) (−	u(x)+ C) = 0, x ∈ �,
u(x) = 0, x ∈ ∂�,

(24)

where the d(x, ∂�)-operatormeasures the distance froma point x to the domain boundary ∂�. In this
problem, the level curves of the solution consist of the region of ‘inactive’ points, where −	u(x)+
C = 0 is valid, and ‘active’ points, where the obstacle u(x)+ d(x, ∂�) = 0 is achieved. The inactive
region, whose size depends on parameter C, represents the plastic region, while the active points,
where the second constraint with equality sign is valid, correspond to the elastic region. Figure 3
compares the active/inactive sets with the different values of C. In this figure, the inactive sets are the
multi-colored regions, and the active sets are the grey regions. The active region increases as the value
of C decreases.

Using the standard second-order central difference approximation for the term 	u(x), the dis-
cretization of (24) on a uniform mesh leads to the complementarity problem in the form of (13).
After reformulation, the resulting nonlinear algebraic system of Equation (14) is solved using SN or
NPSN. We employ the standard cubic backtracking algorithm [13,15] with σ = 10−4 in (6) to pick
the step length for SN. While our focus is on the analysis of the SN method without or with the SN
technique, we did not perform the sensitivity analysis for two parameters, α1 and α2, in the definition
of the generalized Jacobian matrix. We chose the same parameters for both algorithms for a fair com-
parison. Although it is a naive but good choice, setting them to zero for the obstacle problem and the
high-pressure CVD reactor problem can ensure numerical stability in the computation of the gen-
eralized Jacobian matrix, a crucial ingredient of our method to determine the search direction and
update the solution iteratively.

For SN, the choice of an initial guess plays a crucial role in affecting the convergence and efficiency
of the algorithm. Specifically, SN fails to converge when a naive zero vector is used as an initial guess.
Even with a better initial guess, such as u0 = −d(x, ∂�), where x is a collection of corresponding
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Figure 4. Nonlinear residual histories for the obstacle problem on a 128 × 128 mesh and C = 15.

grid points, where x represents a collection of corresponding grid points, as shown in Figure 4, SN
still experiences a long stagnation period before recovering from quadratic convergence in the final
iterations.

Within NPSN, SN is used for both global and local nonlinear solvers with an absolute (relative)
tolerance of 10−6 (10−8), and the Jacobian system is solved by the overlapping restricted additive
Schwarz preconditioned GMRES method. For this example, we use the absolute value of the point-
wise nonlinear residual and the nonlinear residual norm to judge whether the nonlinearity of the
system is balanced and to identify the bad components needed for the construction of a nonlinear
elimination preconditioner. The index set for the bad components, Sb, is defined as for all i ∈ S such
that

|Fi(x)| > ρ ‖F(x)‖∞ ,

where is a pre-chosen constant. The number of bad components corresponding to the dimension
of the subspace problems depends on the value of ρ during the Newton iterations. After prelimi-
nary investigation, we found ρ = 0.3 to be an appropriate choice for all experiment runs to balance
costs between global and subspace solutions tominimize overall computation time and ensure NPSN
convergence. Generally, bad components gradually decrease as the semismooth Newton algorithm
progresses. The percentage of bad components relative to the total number of points is reduced from
1 to a certain percentage controlled by the level curves of the solution to (24).

In NPSN, we can include mechanisms to turn the nonlinear preconditioning step on or off to
avoid unnecessary overhead. From our numerical experience, we find that the small residual does
imply a small error for some cases. As a result, we may identify the to-be-eliminated components
inaccurately with the residual-based strategy when a zero initial guess is used. Therefore, we perform
a few steps of classical SN, say Nswitch, before turning on the nonlinear preconditioning step so that
the large component-wise residuals can reveal the region of local high nonlinearity of the system.We
set Nswitch to be 5 for simplicity. Table 3 shows the number of Newton iterations and the computing
time for the different values of C on a 128 × 128 mesh with SN and NPSN. The tests are carried
out on a computer with four processors. As shown in the table, as C becomes smaller, the number
of iterations and the computing time for SN increase. In contrast to SN, for NPSN, the number of
nonlinear iterations is reduced with the nonlinear preconditioner. However, the number of iterations
depends slightly on C.
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Table 3. Performance of SN and NPSN for the obstacle problemwith respect to the parameter C. In the table, ‘Newton’ denotes the
number of inexact Newton iterations, and ‘Time’ denotes the total computing time in seconds.

C = 15 C = 10 C = 5

Method Newton Time Newton Time Newton Time

SN 94 2.5 103 2.8 116 3.2
NPSN 20 0.87 33 0.92 43 1.27

Figure 4 compares the histories of the nonlinear residual norms of NPSN and SN for C = 15 case
on a 128 × 128 mesh. Since the nonlinear system is highly nonlinear, it is difficult for SN to progress
after many Newton iterations, and the norm of nonlinear residual decreases gradually to around 10.
On the other hand, the nonlinear preconditioning technique improves convergence by balancing the
nonlinearities. As a result, NPSN converges well for the test case. It is worth mentioning that the
performance of NPSN and SN for the other mesh sizes and values of C are similar to that for this
case, and we do not include these plots for brevity.

4.2. A high pressure chemical vapor deposition reactor problem

We consider the boundary control of thermally convective flows and focus onminimizing the vortic-
ity in incompressible fluid flowby controlling the temperature of the surroundingmediumon thewall
[1,5,6,19]. One benchmark problem of this type is the so-called high-pressure chemical vapor depo-
sition (CVD) reactor problem that deposits layer by layer of a substance on a thin film [20,28,46,48],
mathematically formulated as follows.

min J = 1
2

∫
�

|ω|2 d�+ γ

2

∫
{0,1}×(0,1)

|g|2 d�

subject to the constraints of stationary Navier–Stokes equations in the velocity-vorticity formulation
on the domain� = (0, 1)× (0, 1):⎧⎨

⎩
−	u − ∇ × ω = 0,
−	ω + ∇ · (uω)− Gr∇xT = 0,
−	T + Pr∇ · u = 0,

(25)

where � is the computational domain in R
2, u = (u, v) is the velocity field, ω = − ∂u

∂y + ∂v
∂x is the

fluid vorticity, and T is the temperature,Gr is the Grashof number, and Pr is the Prandtl number. The
corresponding boundary conditions are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (0, 0) and T = 1, on [0, 1] × {0},
u = (0, 0) and

∂T
∂n

= g − T, on {0, 1} × (0, 1),
u = (0,−4(x − 1/3)(2/3 − x)) and T = 0, on (1/3, 2/3)× {1},
u = (0, 2x(1/3 − x)) and

∂T
∂n

= 0, on [0, 1/3] × {1},
v = (0, 2(x − 2/3)(1 − x)) and

∂T
∂n

= 0, on [2/3, 1] × {1},

where g is a temperature control to be computed, the regularization parameter γ equals 10−2. In the
study, we set Re = 1 and Pr = 0.72, considering different values of Gr. This work requires the inte-
rior temperature to be 0 ≤ T ≤ 1. This problem can be mathematically formulated as a constrained
optimization problem with inequality constraints, as introduced in Subsection 3.2.

We employ the discretize-then-optimize approach, where the objective functional and the PDE
constraints are approximated numerically before applying an optimization method to the finite-
dimensional nonlinear optimization problem; see [41,42,46] for more details. In particular, the
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Figure 5. The magnitude of the vorticity (first row) and the temperature contours (second row) for different values of Gr. (a) Gr =
5 × 103 (b) Gr = 104 (c) Gr = 5 × 104 (d) Gr = 5 × 103 (e) Gr = 104 (f ) Gr = 5 × 104.

corresponding nonlinear algebraic problem (22) is solved using either SN or NPSNwith a zero initial
vector. For the NE preconditioner, the subspace correction system is defined as

F̃(x) =
(
xg − x(k)g
Fb (x)

)
= 0, (26)

where xg is the subvector for all the components except for the variable T and its Lagrangian vari-
able λT . These two field variables are selected with the convergence analysis as in [48]. An absolute
(relative) tolerance of 10−10 (10−6) is utilized for the Newton iteration, and the linear systems are
solved by the Schwarz preconditioned GMRESmethod with relative and absolute tolerances of 10−10

and 10−6, respectively. Figure 5 shows the magnitude of the vorticity and the temperature contours
for different values of Gr with a fixed mesh, 64 × 64. It can be observed that the computed tempera-
tures in the interior domain are in the range of 0 and 1, which is forced by the inequality constraint
imposed.

4.2.1. Influence of nonlinear preconditioning
In the subsection, we conduct numerical experiments to investigate the effectiveness of SN with and
without nonlinear preconditioning. The interpretation of the right nonlinear preconditioning step
is to obtain a better initial guess for each Newton iteration, which can enhance the robustness and
reduce the overall cost of the algorithm. Table 4 shows the nonlinear iteration counts and timing
results obtained using the standard SN method and its nonlinearly preconditioned version. We keep
the ratio of the mesh size and Np fixed and vary the mesh size from 64 × 64 to 256 × 256. The range
of Gr from 103 to 105 is selected to test. The switch parameter, Nswitch is set to be 3.

From this table, we find that for the small (mesh size 64 × 64) and medium-size (mesh size
128 × 128) cases, SN converges up to Gr = 2 × 104, while for the finest mesh case, it only converges
when Gr is around a few thousand. Moreover, for the convergent instances, the number of SN itera-
tions is usually large, but it is not correlated to Gr, making the convergence behavior not predictable
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Table 4. Performance of SN and NPSNwith respect to different Grashof numbers andmesh sizes. Nswitch = 3.Np = 4 for a 64 × 64
mesh, Np = 16 for a 128 × 128 mesh and Np = 64 for a 256 × 256 mesh.

64 × 64 128 × 128 256 × 256

Method Gr Newton Time Newton Time Newton Time

SN 103 35 82.8 98 148.7 92 307.2
5 × 103 19 29.1 97 154.0 184 618.3
104 24 32.4 85 137.5 ∗ ∗

2 × 104 48 100.7 161 280.5 ∗ ∗
5 × 104 ∗ ∗ ∗ ∗ ∗ ∗
105 ∗ ∗ ∗ ∗ ∗ ∗

NPSN 103 8 29.1 12 54.5 13 100.8
5 × 103 11 32.8 11 57.9 14 130.6
104 11 33.1 11 63.9 14 131.2

2 × 104 11 33.7 17 80.2 17 141.8
5 × 104 12 33.9 14 76.3 17 165.6
105 14 35.8 16 81.4 20 202.5

Note: In the table, ‘Newton’ denotes the number of inexact Newton iterations, and ‘Time’ is the total computing time in seconds.
The symbol ‘∗’ denotes divergence of the Newton iteration caused by the failure of linesearch.

for different Gr. On the other hand, with the help of nonlinear preconditioning, NPSN converges for
all test cases with a wide range ofmesh sizes andGr. Generally, in contrast to SN, the number of NPSN
iterations is more predictable; it grows mildly as Gr increases, about 33% to 75% when we increase
Gr by two orders of magnitude. Next, we consider the cases in which both SN and NPSN converge.
The benefit of using a nonlinear preconditioning method in conjunction with SN is not apparent
for smaller Gr, e.g. Gr = 5 × 103 or 104, on a coarse mesh. Although the number of nonlinear itera-
tions is reduced, the overhead due to the construction and application of nonlinear preconditioning
contributes mainly to the total computing time. As a result, the time savings for NPSN are marginal
or even slower than for SN. However, on finer meshes, the usefulness of nonlinear precondition-
ing is more profound. The reduction of the nonlinear iterations is significant, and about 3.0 and 4.7
speedups can be achieved for Gr = 103 and 5 × 103, respectively.

In addition, Figure 6 compares the nonlinear residual histories of SN and NPSN for the case of
Gr = 104 on a 128 × 128 mesh. We can observe from the figure that the nonlinear residual norm of
SN stagnates around 10−1 without progress after many iterations due to the bad quality of the initial
guess. For NPSN, there is a nondecreasing residual norm at the third iteration after activating the
nonlinear preconditioning step, and then it monotonically decreases toward the solution.

4.2.2. Parametric tuning
In this subsection, we focus on the parallel performance of the proposed solver. We study several
performance-related parameters, including a threshold Nswitch for the nonlinear solver, the over-
lapping size δ for the Schwarz preconditioner, and the strong scalability with different numbers of
processors Np. In NPSN, Nswitch is used to determine when to turn on the nonlinear precondition-
ing step to balance the costs and accuracy of solving the global and subspace nonlinear problems. In
Table 5, we show the performance of NPSNwith differentNswitch. Based on the results from this table,
we find that the threshold Nswitch around three is appropriate in terms of the total computing time
and the robustness and stability of the solver.

In NPSN, an important feature is the selection of linear preconditioners for solving global and
subspace Jacobian systems. Here, we use the overlapping restricted additive Schwarz preconditioned
GMRESmethod to solve these linear systems, and this section focuses on the performance of Schwarz
preconditioners. In the Schwarz preconditioner, we set a fixed overlapping size for the subspace Jaco-
bian systems to be six and investigate the effect of the overlapping size, δ for the global Jacobian
systems. As shown in Table 6, the number of GMRES iterations decreases as the overlap increases.
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Figure 6. Nonlinear residual histories for the flow problem on a 128 × 128 mesh and Gr = 104.

Table 5. A comparison of the threshold Nswitch with Gr = 5 × 104. Np = 16 for a 128 × 128 mesh and Np = 64 for a 256 × 256
mesh.

SN step NP step

Mesh Nswitch Newton GMRES Time Newton GMRES Time

128 × 128 1 14 71.8 53.4 81 17.2 73.5
2 14 70.7 52.8 47 15.9 41.7
3 15 69.2 52.4 34 15.6 29.9
4 15 68.4 55.9 29 15.9 26.7
5 17 68.9 57.4 27 15.8 23.9

256 × 256 1 10 191.4 68.3 100 29.7 125.7
2 16 160.6 85.0 78 28.8 96.4
3 17 157.2 87.8 64 27.8 77.8
4 18 166.9 96.9 57 27.5 69.1
5 19 173.4 105.4 51 27.6 62.1

Note: In the table, the ‘SN step’ denotes the number of NPSN in the semismooth Newton step, and the ‘NP step’ denotes the number
of NPSN in the nonlinear preconditioning step. ‘Time’ is the computing time in seconds.

However, solving subdomain problems with a larger overlap requires more computing time.We con-
clude that a moderate overlap, e.g. δ = 6 provides a good compromise between the computing time
per iteration and the total number of linear iterations.Note that the Schwarz preconditioner is reduced
to a block-Jacobi method for the case of δ = 0, and we find that the number of GMRES iterations
is two times or more when the block-Jacobi preconditioner is used compared to the Schwarz-type
method as a preconditioner.

4.2.3. Parallel performance study
To study the parallel performance of NPSN, we consider the case of Gr = 5 × 103 on a 512 × 512
grid. Two metrics are used for evaluating the parallel scalability: Sp = T1/T2, where T1 and T2 are
the execution times obtained by running the parallel codewithNp,1 andNp,2 processors (Np,1 ≤ Np,2),
respectively.We also report the parallel efficiency of themethod, defined asEf = (Np,1 × T1)/(Np,2 ×
T2). Table 7 summarizes the total computing time, parallel efficiency, and speed upwith respect to the
different number of processors. This table also reports the total number of nonlinear and nonlinear
iterations for the NP and SN steps in Algorithm 1 and the computing time spent on these two com-
ponents. From the table, we find that both SN and NP steps are nonlinear scalable and nearly linear
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Table 6. Performance study for different overlapping size, δ, for Gr = 5 × 103. ‘Time’ is the total computing time in seconds.

SN step

Mesh Np δ Newton GMRES Time

256 × 256 64 0 13 254.1 54.7
2 13 116.3 44.1
4 13 85.0 42.1
6 13 69.6 43.6
8 13 63.5 47.3

512 × 512 128 0 24 631.3 587.5
2 24 236.9 258.6
4 23 185.1 218.1
6 23 154.7 210.9
8 24 127.2 211.2

Table 7. Scalability analysis with Np for Gr = 5 × 103 on a 512×512 mesh.

SN step NP step Overall performance

Np Newton GMRES Time Newton GMRES Time Time Ef (%) Sp

64 23 108.0 401.3 128 37.2 840.2 1241.5 100 1.0
128 23 154.7 210.9 128 44.9 458.2 660.1 94.0 1.9
256 24 168.3 124.4 128 49.8 238.4 362.8 85.6 3.4
512 24 219.5 89.6 128 60.1 147.2 236.8 65.6 5.2

Note: ‘SN step’ denotes the number of NPSN in the semismooth Newton step, and ‘NP step’ indicates the number of NPSN in the
nonlinearly preconditioned step. This table also includes the total computing time, parallel efficiency (Ef ), and speed up (Sp).

scalable, i.e. the number of nonlinear iterations is independent of NP, and the number of linear itera-
tions grows mildly asNp increases. In addition, the overhead spent on the NP step is not neglectable,
taking about 2/3 of the total computing time. Furthermore, NPSN achieves an efficiency of 65.6% or
a good speedup of 5.2 with up to Np = 512.

5. Concluding remarks

This paper developed a family of nonlinearly preconditioned semismooth Newton algorithms
for large, sparse, nonsmooth nonlinear systems using physics-based field-split or domain
decomposition-based nonlinear elimination preconditioning methods. Two key ingredients of the
proposed method were subspace correction and global updates. Numerical results illustrate that the
proposed nonlinear preconditioners effectively improved the performance of the global semismooth
Newton iterations by balancing the distribution of nonlinearities in the system. Using obstacle and
flow control problems with inequality constraints as numerical examples, we showed that the new
approach is more robust and efficient than the standard semismooth method. Parallel scalability is
also studiedwith amodest number of processors.Multilevel algorithm versionsmay need to be devel-
oped when the number of processors is large. In addition, we considered a series of illustrative 2D
examples, which are easy to visualize. These examples help one understand how the equality and
inequality constraint conditions, or both, for optimization problems affect the convergence behavior
of the proposed methods. They also provide an idea of the role the preconditioner plays in the whole
iterative process. On the other hand, we only considered the semismooth Newton algorithm with the
classical linesearch technique based on the Armijo condition in the global update or subspace correc-
tion phases. Recent developments for some nonmonotone linesearch for unconstrained optimization
problems with composite objective functions [23] in conjunction with a nonlinear preconditioning
technique are worth investigating.
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