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In this paper a highly parallel method is developed for simulating the elastodynamics of a four-

chamber human heart with patient-specific geometry. The heterogeneous hyperelastic model is 
discretized by a finite element method in space and a fully implicit adaptive method in time, 
and the resulting nonlinear algebraic systems are solved by a scalable domain decomposition 
algorithm. The deformations of the cardiac muscles are quite complex due to the realistic 
geometry, the heterogeneous hyperelasticity of the cardiac tissue, and the myocardial fibers 
with active stresses. Moreover, the deformations in different chambers and at different phases 
of the cardiac cycle are very different. To simulate all the muscle movements including the atrial 
diastole, the atrial systole, the isovolumic contraction, the ventricular ejection, the isovolumic 
relaxation, and the ventricular filling, the temporal-spatial mesh needs to be sufficiently fine, but 
not too fine so that the overall computing time is manageable, we introduce a baseline mesh 
in space and a two-level time stepping strategy including a uniform baseline time step size to 
obtain the desired time accuracy and an adaptive time stepping method within a baseline time 
step to guarantee the convergence of the nonlinear solver. Through numerical experiments, we 
investigate the performance of the proposed method with respect to the material coefficients, 
the fiber orientations, as well as the mesh sizes and the time step sizes. For an unstructured 
tetrahedral mesh with more than 200 million degree of freedoms, the method scales well for up 
to 16,384 processor cores for all steps of an entire cardiac cycle.

1. Introduction

Computational simulation is a powerful tool for investigating the biomechanical properties of the human heart, and has been 
increasingly used for certain clinical applications [1–6]. However, simulating the heart is a very challenging problem due to its 
complex, patient-specific geometry, hyperelastic tissue properties, anisotropic myocardial fiber structure, and other parameters of 
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the constitutive model. To capture the details of deformation in all four chambers of the heart throughout the cardiac cycle, a 
fine, unstructured finite element mesh is required, necessitating a highly scalable and robust numerical method. In this paper, we 
present a highly parallel implicit algorithm with adaptive time stepping for simulating the whole heart for an entire cardiac cycle. 
Our algorithm addresses the challenges by the complex geometry of the heart and the nonlinear properties of its tissue, while also 
accommodating the need for a fine mesh to accurately capture the deformation of the heart.

In recent years, significant progress has been made in developing computational techniques for understanding the functionalities 
of the heart, but most studies focus on the modeling of one or two chambers, and the geometry is sometimes simplified into a regular 
shape in order to increase the chance of convergence of the numerical methods and to reduce the computational cost. Noteworthy 
advancements in this field can be found in [7] and [8]. In these investigations, the authors applied Newton and quasi-Newton type 
methods, combined with Krylov subspace Jacobian solvers, along with algebraic multigrid and/or BDDC preconditioners, to solve the 
nonlinear elasticity model for understanding the cardiac mechanics. Further contributions are highlighted in [9–13], where authors 
showcase the scalability of their algorithms, with up to 16, 000 processor cores and millions of degrees of freedom.

While simplified models provide valuable insights into cardiac function and the performance of the numerical methods, but the 
models lack the ability to capture the functionality of the heart as a result of the complex geometry of a realistic heart. They ignore 
the significant effects of the deformation of one chamber on the rest of the heart, which often leads to inaccuracies in simulations 
[5]. For these reasons, there is a growing interest in developing numerical algorithms that can simulate the whole human heart with 
patient-specific geometry to more accurately model the cardiac functions and pathology. One representative study on this topic is 
[14], in which the authors developed an elasticity model of the whole human heart and investigated the pericardial effects from 
the boundary conditions. In [15], a database with a cohort of 24 virtual four-chamber hearts was used to simulate free contractions 
of the myocardial muscles to understand ventricular ejection fractions, while [16] developed many powerful tools for modeling the 
human heart. Another important work can be found in [17], in which the authors proposed an efficient parallel numerical algorithm 
and verified that it can scale up to 8,192 processor cores in solving the cardiac hyperelastic system. A series recent advances in this 
area can be found in [18–20] which proposed and studied several comprehensive biophysically detailed electromechanical mod-

els of the human heart that incorporates atrial and ventricular contraction, including anatomically accurate geometry, myocardial 
fiber architecture, and a closed-loop circulatory system model. These methods successfully reproduce healthy cardiac function and 
highlight the importance of considering atrial contraction and fibers-stretch-rate feedback in regulating blood flows. The immersed 
boundary method (IBM) [21] offers another promising approach for simulating the whole heart [22]. While earlier attempts, such 
as [23], utilized simplified geometry rather than realistic representations, recent advancements have focused on incorporating more 
accurate anatomical details. In [24,25], a multiphysics model was formulated utilizing the interaction potential method [26], with a 
focus on augmenting the realism and predictive accuracy of cardiac dynamics across both healthy and pathophysiological scenarios. 
Moreover, [27] presented a fluid-structure interaction model with detailed representations of all four cardiac valves, incorporating 
biomechanically calibrated descriptions of cardiac structures from human tissue specimens, resulting in realistic physiological dy-

namics and fine-scale flow features. Moreover, in a recent advancement, [28] presented a comprehensive fluid-structure interaction 
model for the entire heart, with a focus on valve dynamics and interactions between the pericardium and the heart, marking a 
significant progress in cardiac modeling.

Nevertheless, simulating the whole heart remains a highly challenging task due to various factors, including the complex geome-

try, nonlinear and anisotropic properties of the myocardial tissue, and the significant deformation experienced by the four chambers 
at different stages of a cardiac cycle, all of which necessitate the solution of some sparse, large-scale, highly nonlinear algebraic 
systems. Addressing these challenges requires sophisticated numericals algorithms with high parallel scalability and robustness.

In this paper, we present a novel numerical method that extends our previous work on simulating the left ventricle to the whole 
heart [29]. Our method tackles the challenges posed by the increased physical size and geometric complexity of the heart, as well as 
the higher deformation and imbalanced nonlinearity during the cardiac cycle. Specifically, we use an elastodynamic equation with 
a heterogeneous hyperelastic constitutive law to describe the motion of the heart, where the myocardial tissues and the attached 
vessel roots are modeled using a Guccione transverse material model reinforced by cardiac fibers and an isotropic Mooney-Rivlin 
material, respectively. The partial differential equations in the model are spatially discretized using a finite element method based 
on a fully unstructured tetrahedral mesh to accurately capture the deformation of the entire heart. For the temporal discretization, 
we propose a two-level time stepping strategy: Initially, the entire cardiac cycle is divided into a sequence of baseline time steps, all 
with a uniform step size; Subsequently, an adaptive time-stepping technique is applied to each baseline time step to guarantee the 
convergence of the nonlinear solver. This approach not only achieves the desired temporal accuracy but also allows large time steps 
when possible. In addition, we develop an efficient and robust rule-based method for the fiber and active stress distribution over 
the whole heart for the entire cardiac cycle. Finally, to solve the resulting nonlinear algebraic systems at each time step, we adopt 
a Newton-Krylov-Schwarz method with an analytically computed Jacobian matrix and a restricted additive Schwarz preconditioner 
[30–33].

The rest of the paper is organized as follows. Section 2 describes a heterogeneous hyperelasticity model of a patient-specific 
human heart with four chambers. In Section 3, we describe the details of the methodology to solve the cardiac elastodynamic system, 
which includes a fully implicit finite element scheme, and an efficient Newton-Krylov-Schwarz method. Section 4 devotes to the 
generation of the cardiac fibers of the myocardial tissues, and the settings of the active stresses in an asynchronous form for the atria 
and ventricles. A series of numerical experiments are carried out in Section 5 to validate the proposed algorithm and analyze the 
convergence behavior of the numerical method with respect to temporal and spatial mesh sizes, the model and solver parameters. 
2

Some final remarks are given in Section 6.
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Fig. 1. Geometry of a patient-specific heart with four chambers. The myocardium is composed of the atria (green) and the ventricles (blue), while the roots of the 
vessels (SVC, IVC, RPV, LPV, and PA) are colored in yellow. The aorta root (orange) is an annular-like surface portion that connects the LV endocardium and the 
epicardium, which is used to apply a mandatory boundary condition. Through the cross-section views on the bottom row, one can see the thickness of the muscular 
wall and the shape of the chamber cavity. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2. A heterogeneous hyperelastic model of a human heart

A normal human heart is composed of four chambers – the left atrium (LA), the right atrium (RA), the left ventricle (LV), and the 
right ventricle (RV) (Fig. 1). The elasticity of the heart is mainly determined by the myocardium, which is a thick muscular wall made 
up of self-contracting long, thin cells that are arranged in bundles known as cardiac fibers. These fibers spiral in a specific helical 
pattern that is crucial to the heart’s ability to effectively and efficiently pump blood into the arteries. In addition, the heart chambers 
are connected to large vessels, including the superior vena cava (SVC), inferior vena cava (IVC), left pulmonary veins (LPV), right 
pulmonary veins (RPV), pulmonary artery (PA), and aorta (AO). The proximal root segments of these vessels are also considered as 
part of the heart wall.

Mathematically, the heart can be described as a continuum elastomer Ω ⊂ ℝ3 made of two types of materials: Ω = Ωmyo ∪ Ωves, 
the myocardium and the vessel roots, respectively. Inside the myocardium, the embedded fibers are densely distributed, each of 
which can be seen as a three-dimensional curve due to the large length-to-diameter ratio. The myocardial elasticity is anisotropic

with respect to the fibers, as its local response along the longitudinal direction is different from a transverse direction, upon internal 
and/or external stresses. On the other hand, the vessel roots contain no fiber and are isotropic. Based on the model, to specify the 
transient kinetic status of the heart, one can refer to the finite elasticity theory. That is, at a given time 𝑡, for a material point 𝐗 ∈ Ω, 
its displacement 𝐝 = 𝐝(𝐗, 𝑡) and velocity 𝐯 = 𝐯(𝐗, 𝑡) shall satisfy the following partial differential equations:

⎧⎪⎨⎪⎩
𝜌
𝜕𝐯
𝜕𝑡

−∇ ⋅ 𝐏 = 0

𝜕𝐝
𝜕𝑡

= 𝐯
in Ω× (0, 𝑇 ), (2.1)

where (0, 𝑇 ) is a time interval of interest, ∇⋅ is the divergence operator, 𝐏 is the first Piola-Kirchhoff stress, 𝜌 is the material density, 
and Ω can be regarded as the reference domain occupied by the heart in the stress-free state, without loss of generality.

Usually, it is more convenient to measure 𝐏 according to the relation
3

𝐏 = 𝐅𝐒, (2.2)
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where 𝐅 = 𝐈 +∇𝐝 is the deformation gradient tensor, 𝐈 is the identity tensor of the second rank, ∇𝐝 is the gradient of the displacement, 
and 𝐒 is the second Piola-Kirchhoff stress. In the context of cardiac elastodynamics, 𝐒 can be defined as a superposition of two parts:

𝐒 = 𝐒act + 𝐒pas, (2.3)

where the active part 𝐒act is raised by the autonomic shortenings of the cardiac fibers in Ωmyo along the longitudinal directions [34]:

𝐒act =
⎧⎪⎨⎪⎩
𝑇𝑎

𝐟 ⊗ 𝐟√
𝐟 ⋅𝐂𝐟

in Ωmyo,

0 in Ωves.

(2.4)

Here, 𝑇𝑎 represents the scalar magnitude of the active stress, 𝐟 is the unit vector along the fiber direction in the reference configu-

ration, and ⊗ denotes the tensor product operator. Besides, the passive part 𝐒pas accounts for the elastic responses of all tissues in 
Ω upon deformations. Given the heart’s ability to bear large deformations and return to the original position when the loading is 
removed, a hyperelastic material assumption is commonly used to define the specific form of 𝐒pas. That it, there exists a strain energy 
density  , such that:

𝐒pas =
𝜕
𝜕𝐄
, (2.5)

where 𝐄 is the Green-Lagrange strain tensor:

𝐄 = 1
2
(𝐅𝑇𝐅− 𝐈). (2.6)

In this paper, because of the material heterogeneity,  is defined domain-wisely on Ωmyo and Ωves, and thereby as myo and ves

in the following discussion.

In particular, we assume that the myocardial material satisfies the orthotropic Guccione constitutive law [35], by which the strain 
energy reads

myo =
𝐶

2
(𝑒𝑄 − 1) + 𝜅

2
[ln(𝐽 )]2, (2.7)

where 𝐽 = det 𝐅, and

𝑄 = 𝑏𝑓𝐸2
11 + 𝑏𝑡(𝐸

2
22 +𝐸

2
33 +𝐸

2
23 +𝐸

2
32)

+ 𝑏𝑓𝑠(𝐸2
12 +𝐸

2
21 +𝐸

2
13 +𝐸

2
31),

(2.8)

each 𝐸𝑖𝑗 denotes a tensorial component of 𝐄 in a local orthonormal coordinate system, in which the first coordinate axis aligns with 
the fiber direction, and 𝐶 , 𝑏𝑓 , 𝑏𝑡, and 𝑏𝑓𝑠 are model parameters that specify the bulk and axial stiffness of the material, respectively. 
The affiliated vessel roots are assumed to satisfy the two-term Mooney-Rivlin (MR) model:

ves = 𝐶1(𝐼1 − 3) +𝐶2(𝐼2 − 3) + 𝜅
2
[ln(𝐽 )]2, (2.9)

where 𝐼1 and 𝐼2 are the first and second principal invariants of the unimodular component of the right Cauchy-Green strain tensor 
𝐂 = 𝐅𝑇𝐅:

𝐼1 = 𝐽−2∕3trace(𝐂), 𝐼2 =
𝐽−4∕3

2

(
(trace(𝐂))2 − trace(𝐂2)

)
, (2.10)

𝐶1 and 𝐶2 are the MR-model parameters that characterize the material shear modulus. Note that, a penalty term is introduced for 
both material models to enforce a nearly-incompressible constraint, in which 𝜅 denotes the corresponding penalty parameter.

Based on the above assumptions, and via straightforward calculations, it can be shown that 𝐒pas has the following analytical form:

𝐒pas =
{

𝐶𝑒𝑄𝐀 ∗ 𝐄+ 𝜅 ln𝐽𝐂−1, in Ωmyo,

𝑐1𝐈+ 𝑐2𝐂+ 𝑐3𝐂−1 + 𝜅 ln𝐽𝐂−1, in Ωves,
(2.11)

where ∗ denotes a component-wise multiplication operator, 𝐀 is a coefficient matrix

𝐀 =
⎛⎜⎜⎝
𝑏𝑓 𝑏𝑓𝑠 𝑏𝑓𝑠
𝑏𝑓𝑠 𝑏𝑡 𝑏𝑡
𝑏𝑓𝑠 𝑏𝑡 𝑏𝑡

⎞⎟⎟⎠ ,
and

𝑐1 = 2𝐽−2∕3(𝐶1 +𝐶2𝐼1), 𝑐2 = −2𝐶2𝐽
−4∕3, 𝑐3 = −2

3
(𝐶1𝐼1 + 2𝐶2𝐼2).

In addition, to ensure a unique solution in the problem domain Ω × (0, 𝑇 ), the system of partial differential equations (2.1) is 
4

complemented by a set of initial and boundary conditions in the following form:
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𝐝 = 0 on Γ𝑑 and 𝐏𝐍 = 𝐠 on Γ𝑛, (2.12)

and

𝐝(0,𝐗) = 0 and 𝐯(0,𝐗) = 0, (2.13)

where Γ𝑑 and Γ𝑛 denote the Dirichlet and Neumann boundaries and Γ𝑑 ∪ Γ𝑛 = 𝜕Ω, 𝐍 is the outward unit normal vector of Γ𝑛, and 𝐠
represents an external traction force applied on Γ𝑛. In this paper, the aorta orifice is fixed as a homogeneous Dirichlet boundary, and 
the inner surfaces of all chambers are regarded as free walls. Additionally, inspired by the approach outlined in [14], we consider 
two types of Neumann conditions on the remaining parts of the heart surfaces, which mimic the motion resistances exerted by the 
major vessels and the surrounding organs on the heart. First, the epicardium is subject to a loading that is normal to its surface, 
taking into account the projection of the displacement and velocity along its outward normal direction. Interested readers may refer 
to the diagrams in [14] for illustration. On the other hand, the surface loading on the cross-sections of the vessel roots is simplified 
as a superposition of the opposite of the scaled displacement and velocity. More specifically, a surface force being applied on the 
epicardial surface according to:

𝐠 = −(𝑘𝑑𝐝 ⋅𝐍+ 𝑘𝑣𝐯 ⋅𝐍)𝐍, (2.14)

where 𝑘𝑑 and 𝑘𝑣 are constants, 𝐍 is the unit outward normal on the epicardium, measured in the reference configuration. Besides, 
on the cross-section of each vessel root, the heart is subject to a loading given by:

𝐠 = −(𝑘𝑑𝐝+ 𝑘𝑣𝐯). (2.15)

These conditions can be regarded as a series of springs and dashpots that are attached to the surface of the heart, such that its 
movements are impeded. Depending on the type, either (2.14) or (2.15) is substituted into (2.12) on an exterior surface of the heart.

3. Methodology

To solve (2.1) numerically, we first propose a fully implicit discretization in time with varying time step sizes and a finite element 
discretization on a fully unstructured tetrahedral mesh in space. Then, at each time step, a highly scalable domain decomposition 
algorithm is invoked to solve the large sparse nonlinear algebraic system of equations.

3.1. A fully implicit finite element discretization

Let the temporal interval (0, 𝑇 ) be subdivided into 𝑁T steps {𝑡𝑛|𝑡0 = 0, 𝑡𝑛 = 𝑡𝑛−1 + Δ𝑡, 𝑛 = 1, 2, … , 𝑁T} where Δ𝑡 denotes a 
uniform time step size such that Δ𝑡 = 𝑇 ∕𝑁T. Then, corresponding to (2.1), we form the following variational problem [36]: Find 
(𝐝, 𝐯) ∈ ×  , such that

 ((𝐝,𝐯), (𝐩,𝐪)) = 0 ∀(𝐩,𝐪) ∈ ×  , (3.1)

where  =
{
𝐰 ∈ [𝐻1(Ω)]3 |𝐰 = 0 on Γ𝑑

}
and  = [𝐻1(Ω)]3 are the vectorial Sobolev spaces, 𝐩 and 𝐪 represent the corresponding 

test functions, and  is defined by

 ((𝐝,𝐯), (𝐩,𝐪)) =𝜌∫
Ω

𝜕𝐯
𝜕𝑡

⋅ 𝐩d𝐗+ ∫
Ω

𝐏 ∶ ∇𝐩d𝐗− ∫
Γ𝑛

𝐠 ⋅ 𝐩dΓ

+ ∫
Ω

𝜕𝐝
𝜕𝑡

⋅ 𝐪d𝐗− ∫
Ω

𝐯 ⋅ 𝐪d𝐗.
(3.2)

Let ℎ be a conformal tetrahedral mesh that covers Ω, based on which we introduce ℎ ⊂  and ℎ ⊂  two piecewise lin-

ear continuous Galerkin finite element spaces with basis functions {𝝍ℎ} and {𝝋ℎ}, respectively. Then, by denoting (𝐝𝑛
ℎ
, 𝐯𝑛
ℎ
) =

(𝐝ℎ(𝑡𝑛, ⋅), 𝐯ℎ(𝑡𝑛, ⋅)) ∈ℎ × ℎ as the finite element solutions at the 𝑛th time step, their time derivatives can be approximated by:

𝜕𝐝𝑛
ℎ

𝜕𝑡
≈

𝐝𝑛
ℎ
− 𝐝𝑛−1

ℎ

Δ𝑡
and

𝜕𝐯𝑛
ℎ

𝜕𝑡
≈

𝐯𝑛
ℎ
− 𝐯𝑛−1

ℎ

Δ𝑡
for 𝑛 = 1,2,… ,𝑁T, (3.3)

where 𝐝0
ℎ

and 𝐯0
ℎ

denote the given initial values. Consequently, substituting (3.3) into (3.2), the sequence of {(𝐝𝑛
ℎ
, 𝐯𝑛
ℎ
)} can be found 

by solving the following finite dimensional problems for 𝑛 = 1, 2, … , 𝑁T, in a consecutive order:

ℎ((𝐝𝑛ℎ,𝐯𝑛ℎ), (𝝍ℎ,𝝋ℎ); (𝐝𝑛−1ℎ
,𝐯𝑛−1
ℎ

),Δ𝑡) = 0, for all (𝝍ℎ,𝝋ℎ) ∈ℎ × ℎ, (3.4)
5

where
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ℎ((𝐝𝑛ℎ,𝐯𝑛ℎ), (𝝍ℎ,𝝋ℎ); (𝐝𝑛−1ℎ
,𝐯𝑛−1
ℎ

),Δ𝑡)

=𝜌∫
Ω

(
𝐯𝑛
ℎ
− 𝐯𝑛−1

ℎ

)
⋅𝝍ℎd𝐗+Δ𝑡∫

Ω

𝐏(𝐝𝑛
ℎ
) ∶ ∇𝝍ℎd𝐗−Δ𝑡∫

Γ𝑛

𝐠 ⋅𝝍ℎdΓ

+ ∫
Ω

(
𝐝𝑛
ℎ
− 𝐝𝑛−1

ℎ

)
⋅𝝋ℎd𝐗−Δ𝑡∫

Ω

𝐯𝑛
ℎ
⋅𝝋ℎd𝐗.

(3.5)

Note that we include (𝐝𝑛−1
ℎ
, 𝐯𝑛−1
ℎ

) and Δ𝑡 in (3.4) to emphasize that the definition of the finite element functional ℎ relies on the 
solution of the previous time step and the time step size.

(3.4) is a large, sparse, and highly nonlinear system of algebraic equations, whose degree of freedoms (dofs) are nodal values 
(𝐝𝑛
ℎ
, 𝐯𝑛
ℎ
) that are collectively arranged in the following order

{⋯ , 𝑑𝑛
𝑖,𝑋
, 𝑑𝑛
𝑖,𝑌
, 𝑑𝑛
𝑖,𝑍
, 𝑣𝑛
𝑖,𝑋
, 𝑣𝑛
𝑖,𝑌
, 𝑣𝑛
𝑖,𝑍
,⋯} 𝑖 = 1,2,… ,𝑁V, (3.6)

where 𝑁V is the total number of mesh points, and 𝑑𝑛
𝑖,{𝑋,𝑌 ,𝑍} and 𝑣𝑛

𝑖,{𝑋,𝑌 ,𝑍} are the {𝑋, 𝑌 , 𝑍}-component of 𝐝𝑛
ℎ

and 𝐯𝑛
ℎ

at the 𝑖-th 
mesh point, respectively. In other words, the mesh points are traversed one-by-one, and all corresponding nodal values of a point are 
placed together to form a 6 × 1 block-vector. For easing the notations, (3.4) is re-written as

 (𝐱𝑛;𝐱𝑛−1,Δ𝑡) = 0, (3.7)

where 𝐱𝑛 denotes the solution vector (i.e., nodal values) to be solved at the 𝑛th time step, and 𝐱𝑛−1 is the solution of the previous 
step which is referred to as the initial data of (3.7) in the rest of the paper.

3.2. An inexact Newton-Krylov method with Schwarz preconditioned analytic Jacobian

The system of nonlinear algebraic equations (3.7) is solved using an inexact Newton method, in each of the inexact Newton 
iteration, (3.7) is linearized to form a Jacobian system, and an approximate solution is obtained using a Schwarz preconditioned 
GMRES method. The algorithm is usually referred to as the Newton-Krylov-Schwarz (NKS) method, it has been successfully applied 
to elastodynamic simulations of a left ventricle in our previous work [29], but unfortunately, the algorithm doesn’t always work for 
the case of a whole heart. The algorithm is summarized in Algorithm 1 below, and a modification of (3.7) is introduced later to 
ensure the convergence of the NKS method.

Algorithm 1 A Newton-Krylov-Schwarz for solving (3.7) with the initial data 𝐱𝑛−1 and the time step size Δ𝑡 as input. Output 𝐱𝑛.
1: Let 𝑚 = 0 and set the initial guess 𝐱0 = 𝐱𝑛−1 .

2: while ‖ (𝐱𝑚)‖ ≥max{aN, rN‖ (𝐱0)‖} do

3: Calculate the Jacobian matrix analytically

 (𝐱𝑚) =
𝜕
𝜕𝐱

(𝐱𝑚).

4: Find an inexact Newton direction 𝛿𝐱 by approximately solving the right-preconditioned system:

 (𝐱𝑚)−1
𝑚
𝑚𝛿𝐱 = − (𝐱𝑚), (3.8)

such that

‖ (𝐱𝑚)𝛿𝐱 + (𝐱𝑚)‖ ≤max{aL, rL‖ (𝐱𝑚)‖},
where −1

𝑚
is a restricted additive Schwarz (RAS) preconditioner corresponding to  (𝐱𝑚).

5: Find 𝛼 via a cubic line search method.

6: Let 𝑚 =𝑚 + 1, update 𝐱𝑚 = 𝐱𝑚−1 + 𝛼𝛿𝐱.

7: if 𝑚 >𝑚max then

8: Terminate the algorithm and report it is not convergent.

9: end if

10: end while

11: Output 𝐱𝑛 = 𝐱𝑚 .

Here, aL, rL, aN and rN are pre-chosen small positive values used to determine whether the GMRES and Newton iterations have 
converged, respectively. The specific values of these parameters will be provided in the numerical experiments section. In addition, 
𝑚max specifies the maximal allowed number of Newton iterations, and the solution process is considered non-converged for 𝑚 >𝑚max. 
Later, we will introduce an adaptive temporal refinement scheme to handle the non-converged cases. Algorithm 1 is reliant on 
two essential ingredients to ensure its effective and efficient implementation: the construction of the Jacobian matrix  and the 
preconditioner −1 that are crucial for the convergence, and the robustness of the NKS algorithm. In the following, we present the 
structure of  , while construction of −1 will be discussed in the next subsection.

In many applications that use the Newton-Krylov family of methods (e.g. [37–39]),  is computed through a finite difference 
6

approximation that involves a large number of evaluations of the nonlinear function  with small perturbations on the input vector 
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𝐱. Although it is easy to program, this approach is slow and lacks the level of robustness that we need. In this paper, the Jacobian 
matrix is constructed analytically, and arranged in a point-block fashion to match the ordering of 𝐱 in (3.6):

 = [𝑖𝑗 ] for 𝑖, 𝑗 = 1,2,… ,𝑁V, (3.9)

in which each 𝑖𝑗 is a 6 × 6 block

𝑖𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑑𝑋 ,𝑖
𝜕𝑑𝑗,𝑋

𝜕𝑑𝑋 ,𝑖
𝜕𝑑𝑗,𝑌

𝜕𝑑𝑋 ,𝑖
𝜕𝑑𝑗,𝑍

𝜌𝑀𝑖𝑗 0 0

𝜕𝑑𝑌 ,𝑖
𝜕𝑑𝑗,𝑋

𝜕𝑑𝑌 ,𝑖
𝜕𝑑𝑗,𝑌

𝜕𝑑𝑌 ,𝑖
𝜕𝑑𝑗,𝑍

0 𝜌𝑀𝑖𝑗 0

𝜕𝑑𝑍 ,𝑖
𝜕𝑑𝑗,𝑋

𝜕𝑑𝑍 ,𝑖
𝜕𝑑𝑗,𝑌

𝜕𝑑𝑍 ,𝑖
𝜕𝑑𝑗,𝑍

0 0 𝜌𝑀𝑖𝑗

𝑀𝑖𝑗 0 0 −Δ𝑡𝑀𝑖𝑗 0 0
0 𝑀𝑖𝑗 0 0 −Δ𝑡𝑀𝑖𝑗 0
0 0 𝑀𝑖𝑗 0 0 −Δ𝑡𝑀𝑖𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.10)

In the matrix, the component functions 𝑑{𝑋,𝑌 ,𝑍} ,𝑖
are defined by

𝑑𝑋 ,𝑖 =Δ𝑡∫
Ω

(
𝑃11

𝜕𝜓𝑖

𝜕𝑋
+ 𝑃12

𝜕𝜓𝑖

𝜕𝑌
+ 𝑃13

𝜕𝜓𝑖

𝜕𝑍

)
d𝐗−Δ𝑡∫

Γ𝑛

𝑔𝑋𝜓𝑖dΓ,

𝑑𝑌 ,𝑖 =Δ𝑡∫
Ω

(
𝑃21

𝜕𝜓𝑖

𝜕𝑋
+ 𝑃22

𝜕𝜓𝑖

𝜕𝑌
+ 𝑃23

𝜕𝜓𝑖

𝜕𝑍

)
d𝐗−Δ𝑡∫

Γ𝑛

𝑔𝑌 𝜓𝑖dΓ,

𝑑𝑍 ,𝑖 =Δ𝑡∫
Ω

(
𝑃31

𝜕𝜓𝑖

𝜕𝑋
+ 𝑃32

𝜕𝜓𝑖

𝜕𝑌
+ 𝑃33

𝜕𝜓𝑖

𝜕𝑍

)
d𝐗−Δ𝑡∫

Γ𝑛

𝑔𝑍𝜓𝑖dΓ,

(3.11)

and 𝑀𝑖𝑗 is defined by

𝑀𝑖𝑗 = ∫
Ω

𝜓𝑖𝜓𝑗d𝐗, (3.12)

where 𝑃𝑎𝑏(𝑎, 𝑏 = 1, 2, 3) and 𝑔{𝑋,𝑌 ,𝑍} are the components of 𝐏 and 𝐠, and 𝜓𝑖 is the (scalar) nodal basis corresponding to the 𝑖-th mesh 
point. The detailed analytic expressions of (3.10) and (3.11) can be found in our previous paper [29] for the Guccione material, 
where the superiority of using the analytical Jacobian over the finite difference approximation is also demonstrated.

Because of the four-chamber geometry and the highly nonlinear stress tensor 𝐏, these large-scale, non-symmetric, sparse linear 
systems (3.8) are quite difficult to solve. Consequently, finding the inexact Newton direction 𝛿𝐱 in each Newton step becomes a 
challenging task. A well-designed preconditioner −1 is crucial to ensure the convergence of GMRES. Below, we propose a restricted 
additive Schwarz (RAS) preconditioner specifically tailored for the Jacobian system.

Let the finite element mesh ℎ be partitioned into 𝑛𝑝 non-overlapping subdomains: ℎ = ∪𝑛𝑝
𝑖=1𝑖, as in Fig. 2 for an illustration 

with 120 subdomains. In our numerical experiments, 𝑛𝑝 is chosen to be the same as the number of processor cores that we use to 
run the tests. For each subdomain 𝑖, an extended subdomain  𝛿

𝑖
is created by including 𝛿 neighboring layers of elements. Solution 

vectors are defined for both the whole mesh and subdomains, with dimensions 𝐷, 𝐷𝑖, and 𝐷𝛿
𝑖
, respectively. Let 𝑖 be the restriction 

of  on the overlapping subdomain  𝛿
𝑖

, the RAS preconditioner −1 ∶ℝ𝐷 →ℝ𝐷 is defined as

−1 =
𝑛𝑝∑
𝑖=1

(0
𝑖
)𝑇 −1

𝑖
𝛿
𝑖
, (3.13)

where 0
𝑖
∶ℝ𝐷 →ℝ𝐷𝑖 and 𝛿

𝑖
∶ℝ𝐷 →ℝ𝐷

𝛿
𝑖 are restriction operators that map a global vector 𝐮 ∈ℝ𝐷 onto the corresponding non-

overlapping and overlapping subdomains. The transposes (0
𝑖
)𝑇 and (𝛿

𝑖
)𝑇 are used as the extension operators, respectively.  −1

𝑖

denotes a subdomain inverse and its product with a vector 𝐮𝛿
𝑖

is obtained by an approximate solution 𝐰𝛿
𝑖

of the subdomain linear 
system of equations:

𝑖𝐰𝛿𝑖 = 𝐮𝛿
𝑖
, (3.14)
7

which is solved by an incomplete-LU (ILU) factorization method with an appropriate level of fill-in.
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Fig. 2. A partition of a mesh into 120 subdomains.

3.3. A two-level adaptive time stepping scheme

The discussion in the previous sections assumes a uniform time step size is used for the entire cardiac cycle, however, this approach 
may need to be modified for certain time steps, because some portions of the heart may experience significantly larger deformation 
at certain moments while other portion remains relatively unchanged, leading to an un-balanced distribution of nonlinearity across 
the problem domain. This poses considerable challenges for the nonlinear solver to converge in a reasonable number of iterations. In 
this section, we propose a two-pronged method to handle the time discretization of the elastodynamic system such that both the time 
accuracy and the solver convergence can be guaranteed. First, based on computational experiences we select a uniform time step 
size that we refer to as the baseline time step size that offers a reasonable time accuracy throughout the cardiac cycle, but doesn’t 
concern the convergence of the linear and nonlinear solvers. Second, within a baseline time step, we adaptively refine the time step 
size so that the nonlinear solver converges with a reasonable small number of iterations. To be more specific, we do:

1. The cardiac cycle (0, 𝑇 ) is divided into 𝑁T steps, each of which is referred to as a baseline time step, and it is selected so that the 
desired time accuracy is achieved at all the time steps 𝑡𝑛

𝐵
= 𝑛 × Δ𝑡𝐵(𝑛 = 1, ⋯ , 𝑁T) covering the entire cardiac cycle even if no 

temporal refinement is performed.

2. Within each baseline time interval [𝑡𝑛
𝐵
, 𝑡𝑛+1
𝐵

], Algorithm 1 is used to solve the nonlinear system (3.7) with 𝐱𝑛−1 as the initial 
data and Δ𝑡𝐵 as the time step size. If the algorithm successfully converges, we proceed to solve the next baseline time interval. 
However, if Algorithm 1 fails to converge within the desired number of iterations, the interval is evenly split into two smaller 
sub-intervals [𝑡𝑛

𝐵
, 𝑡𝑛+1∕2
𝐵

] and [𝑡𝑛+1∕2
𝐵

, 𝑡𝑛+1
𝐵

], and the algorithm is applied to solve each consecutively; the solution from the first 
interval serves as the initial data for the problem on the second interval. This procedure is recursively applied to any reduced 
time intervals whenever Algorithm 1 fails. We refer to a time step, whether it is a baseline step or a reduced step, at which 
convergence is achieved as an effective time step, and each a baseline time step may require multiple effective steps along with 
several unsuccessful trials.

For clarity, the established rules are summarized in Algorithm 2 for solving the nonlinear system (3.7) in any time interval with 
provided initial data and time step size.

Algorithm 2 A temporal adaptive refinement algorithm for solving the nonlinear system  (𝐱c; 𝐱p, Δ𝑡) = 0 for 𝐱c with the initial data 
𝐱p and the time step size Δ𝑡.
1: Solve  (𝐱c; 𝐱p, Δ𝑡) = 0 to obtain 𝐱c using Algorithm 1.

2: if Algorithm 1 in Step 1 does not converge within the desired number of Newton iterations. then

3: Set Δ𝑡 =Δ𝑡∕2.

4: Solve  (𝐱m; 𝐱p, Δ𝑡) = 0 by Algorithm 2 to obtain an intermediate solution 𝐱m.

5: Solve  (𝐱c; 𝐱m, Δ𝑡) = 0 by Algorithm 2 to obtain the updated solution 𝐱c .
8

6: end if
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Based on Algorithm 2, a two-level solution scheme for the entire cardiac cycle is summarized in Algorithm 3 which includes: 
(1) the first level time integration over all baseline time steps, and (2) the second level with an adaptive refinement method within 
each baseline step.

Algorithm 3 A two-level time integration strategy for simulating elastodynamics of the heart during a cardiac cycle (0, 𝑇 ).
1: Set 𝐱0 = 0 according to the initial condition.

2: for baseline time step 𝑛 = 1, 2, … , 𝑁T do

3: Set Δ𝑡𝐵 ≡ 𝑇 ∕𝑁T for the temporal discretization.

4: Solve  (𝐱𝑛; 𝐱𝑛−1, Δ𝑡𝐵) = 0 to obtain 𝐱𝑛 using Algorithm 2.

5: end for

Remark 3.1. We remark that using a small, uniform time step size is possible to satisfy the accuracy requirement and also the 
convergence of the algebraic solver, but the overall computing time may be unacceptably long.

Remark 3.2. The proposed temporal adaptive refinement strategy is different from most adaptive methods that are often based on 
some error estimate, not based on the failure of the nonlinear solver.

4. Cardiac fibers

Cardiac fibers play an essential role in the heart’s functionality as they are bundles of specialized muscle cells that are responsible 
for the contraction of the heart and supporting its geometric configuration. The cardiac fibers exhibit a significant helix pattern in 
both the ventricles and atria. In the ventricles, the cardiac fibers take a spiral pattern around the heart’s long axis, creating a twisting 
motion during contraction to pump blood into the aorta efficiently. In the atria, the cardiac fibers are arranged in a double helix 
formation around the atrial opening toward the ventricles, ensuring the effective transfer of blood from the atria to the ventricles. 
This section first proposes a methodology for synthesizing fibers in a patient-specific heart that reflect the essential anatomical 
features of the helix patterns. Then, we introduce a scheme to determine the transient magnitude of active stresses generated by the 
fibers in a domain-wise form.

4.1. Generating cardiac fibers

The helix pattern of the cardiac fibers is a crucial factor in the elastodynamics of the heart. However, given the complex geometry 
of a human heart, finding the in-vivo atlas of its myocardial fibers is very difficult, if not impossible. Mathematically, the fibers can 
be viewed as a continuously distributed three-dimensional vector field 𝐟 over the heart domain and are used as material parameters 
to define the elasticity constitutive model. In the numerical method, a unit vector is required at each mesh point that aligns with 
the local fiber tangent direction. In this paper we employ an efficient rule-based method to accomplish this task. This approach 
generalizes the interpolation scheme introduced in a previous study [40], which was initially proposed to approximate the fiber 
distribution in the two ventricles of the lower half of a heart.

We start by defining a set of six potential functions: {𝜙ab, 𝜙epi, 𝜙ra, 𝜙rv, 𝜙la, 𝜙lv} (Fig. 3), each of which solves a Laplacian 
equation

Δ𝜙 = 0 (4.1)

that satisfies the following boundary condition, respectively:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜙ab ∶ 1 on the roots of SVC and RPV,0 on the apex.

𝜙epi ∶ 1 on epicardium,0 on all chamber endocardia.

𝜙ra ∶ 1 on RA endocardium,0 on the epicardium and other endocardia.

𝜙rv ∶ 1 on RV endocardium,0 on the epicardium and other endocardia.

𝜙la ∶ 1 on LA endocardium,0 on the epicardium and other endocardia.

𝜙lv ∶ 1 on LV endocardium,0 on the epicardium and other endocardia.

(4.2)

The potentials are utilized to specify the local azimuths at any location on the boundary surfaces through their gradients. Specif-

ically, ∇𝜙ab is considered as the local longitudinal axis, representing the top-bottom direction, while other gradients are considered 
as the local transmural directions on the corresponding surfaces. In particular, ∇𝜙epi specifies the transmural direction on the epi-

cardium, on which the fiber direction 𝐟(𝐗) at any point 𝐗 is computed as follows:

1. Let 𝐞1 = −∇𝜙ab(𝐗) and 𝐞2 = −∇𝜙epi(𝐗).
2. Calculate 𝐞0 = (𝐞1 × 𝐞2)∕‖𝐞1 × 𝐞2‖.
9

3. The fiber direction is obtained by rotating 𝐞0 toward 𝐞1 by an angle of 𝛼: 𝐟(𝐗) = 𝐞0 cos𝛼 + 𝐞1 sin𝛼.
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Fig. 3. Cross-section view of the Laplacian potentials that solve the boundary value problems according to (4.1) and (4.2), their gradients at some representative 
points are indicated by magenta arrows.

Likewise, the process of determining the fiber direction on each chamber’s endocardium is done by repeating the above steps, in 
which 𝜙epi is replaced by the corresponding potential 𝜙{la, ra, lv, rv} to calculate 𝐞2, respectively. On each surface, the rotation angle 
𝛼 can be varied to match the synthetic fibers with the real ones as accurately as possible.

Provided above, the fiber vector field 𝐟 over the entire heart domain is determined through interpolations. This is achieved by 
solving three additional Laplacian boundary value problems, each for a component of 𝐟 . The corresponding surface value is used as 
a mandatory condition in each problem. To prepare for this task and ensure consistency, all Laplacian problems are resolved before 
performing the primary task of cardiac elastodynamics. These problems are discretized using the same finite element space and mesh 
as the main task, and the conjugate gradient method is used to solve them. An additive Schwarz preconditioner is employed with the 
incomplete Cholesky factorization as the subdomain solver. In this study, a fiber distribution is generated for numerical experiments 
using the aforementioned scheme (Fig. 4). The surface rotation angles 𝛼 are set as follows: 70◦ for the LV endocardium, 140◦ for the 
RV endocardium, 110◦ for the LA endocardium, 140◦ for the RA endocardium, 70◦ for the epicardium of the ventricles, and 0◦ for 
the epicardium of the atria.

Remark 4.1. In a normal heart, the atrial walls are significantly thinner than the ventricular walls, and the fiber distribution in the 
atria is more diverse. Therefore, a mapping from a template is often used to depict atrial fiber layout instead of a rule-based method. 
Nevertheless, since this paper’s primary focus is investigating the numerical algorithm, we consider the proposed rule-based method 
an acceptable alternative for our purposes.

4.2. Active stresses

The elastodynamics of the heart is driven by active stresses created by the cardiac fibers. To formulate the stresses, in addition 
to the fiber distribution layout, it is necessary to know the stress magnitude 𝑇𝑎 of the fibers. For this purpose, we define 𝑇𝑎 for all 
fibers in the two atria and two ventricles, respectively. Specifically, we use the magnitude-time curve of the active stress produced 
by a single fiber as a template and shift its phase accordingly to obtain the time-variant curve of the stress magnitude for all fibers in 
10

the atria and ventricles.
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Fig. 4. Distribution of the cardiac fibers over the myocardial domain of the patient-specific heart, which are viewed from front (upper left) and back (upper right), 
with two corresponding cross-section views (lower left and right), respectively. For better visualization, the fibers are colored according to the magnitude of the 
Z-(vertical) axis component.

Fig. 5. The magnitude of the active stresses generated by fibers in the atria and ventricles, respectively.

As shown in Fig. 5, we normalize the time for one cardiac cycle to be one second, during which, 𝑇𝑎 for the atrial fibers, denoted 
as the green curve, starts at a low value and then quickly increases to the maximal value 𝑇max. Afterward, it decreases to roughly 
one-eighth of 𝑇max at 0.4 s. After that, 𝑇𝑎 decreases gradually at a low rate for the rest of the cycle, and returns to the initial state 
at the end of the cycle. 𝑇𝑎 of the ventricular fibers also varies, represented by the blue curve that is obtained by periodically shifting 
the green (atrial) curve by 0.4 s. Considering both together, a cardiac cycle is split into five stages (I, II, III, IV, V), and the changes 
11

of 𝑇𝑎 in each stage are summarized in Table 1.
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Table 1

Changing mode of 𝑇𝑎 in the atrial and the ventricular domain in each stage of one cardiac 
cycle, in which “incr.” and “decr.” represent increasing and decreasing, respectively.

Stage I II III IV V

Time (s) [0, 0.15] [0.15, 0.4] [0.4, 0.55] [0.55, 0.8] [0.8, 1.0]

Atria Fast incr. Fast decr. Slow decr. Slow decr. Slow decr.

Ventricles Slow decr. Slow decr. Fast incr. Fast decr. Slow decr.

Table 2

Parameters of the elasticity model and the numerical solver.

Parameter Value Unit Meaning

𝐶 2 × 103 Pa Guccione bulk stiffness.

𝜅 5 × 104 Pa Incompressibility penalty.

𝑇max 4 × 104 Pa Maximal active stress magnitude.

𝐶1, 𝐶2 1 × 105, 2 × 104 Pa Mooney-Rivlin model parameters.

𝑘𝑑 2 × 103 kg⋅m−2⋅s−2 Impedance boundary force parameter on displacement.

𝑘𝑣 2 × 102 kg⋅m−2⋅s−1 Impedance boundary force parameter on velocity.

𝛼 70, 140, 110, 
140, 70, 0

angle 
degree

Fiber rotation angle on the endocardium of LV, RV, LA, RA, 
and the epicardium of the ventricles and the atria, respectively.

𝑏𝑓 , 𝑏𝑓𝑠, 𝑏𝑡 8, 4, 2 N∕A Guccione strain energy parameter in fiber, fiber shear, and 
transverse direction, respectively.

ILU 1 N∕A Fill-in level for the subdomain solver.

Overlap 1 N∕A Overlapping size for Schwarz preconditioner.

aN, rN 10−8, 10−6 N∕A Absolute and relative stopping conditions for Newton.

aK , rK 10−8, 10−4 N∕A Absolute and relative stopping conditions for GMRES.

Remark 4.2. In the heart, the active stress generated by cardiac fibers depends on the cellular ionic current and is triggered by 
physiological electrical impulses. Numerical modeling of the complex phenomena requires a more sophisticated approach that is 
beyond the scope of this paper. The proposed active stress function provides a simplified alternative that captures several essential 
features of the heart including: (1) both atria and ventricles follow the same rhythm of contracting and relaxing in each cardiac 
cycle, (2) the systolic phases of the atria and ventricles are asynchronous, i.e., when the atria contract the ventricles relax, and vice 
versa, and (3) the systolic phase is much shorter than the diastolic phase for both the atria and the ventricles.

5. Numerical experiments

In this section, we present some numerical experiments to show the computed deformation of a full size patient-specific heart 
with four chambers during a cardiac cycle, and the main focus is to understand the performance of the proposed numerical method 
in terms of its efficiency, robustness, and parallel scalability. The 3D geometry of a patient-specific heart is first extracted from a 
CT image with a spatial resolution of 0.5 mm, taken at the end of the diastole phase, and the noise and local non-smoothness are 
removed. Fully unstructured tetrahedral meshes are generated for the reconstructed geometry with smaller cells near the surfaces. 
This approach ensures that the solution in the irregular endocardia and epicardium is well resolved and that the total number of cells 
is manageable. Several meshes based on the same geometry are created with different sizes for the study of the mesh dependency 
of the solution and the parallel scalability, and one of the meshes with 1.01 million vertices and 4.67 million cells is referred to as 
the baseline mesh and used for most of the experiments. Moreover, the time for a cardiac cycle is normalized to be 1 second, and the 
period [0, 1] is partitioned into 100 time intervals. This initial temporal partition is referred to as the baseline temporal partition with 
the baseline time step size Δ𝑡𝐵 = 0.01 s. All experiments are carried out using in-house software that utilizes PETSc [41] and ParMetis 
[42].

The proposed method features several levels of nested iterations and the convergence is quite difficult to achieve for one entire 
cardiac cycle since the dynamics of the systems are very stiff at some spatial-temporal locations that are not known in advance. 
The nonlinearity is very high to the point that Algorithm 1 fails to converge. In such a situation, the proposed adaptive time 
stepping scheme presented in Algorithm 2 becomes important, it reduces the time step size, which effectively reduces the level of 
deformation for that particular time step, but also increases the total number of time steps. In the experiments, the failure of the 
solver is determined by two conditions: either the inexact Newton fails to converge in 10 iterations, or GMRES fails to converge in 
3000 steps. These conditions are established based on our experience with a large number of experiments. For clarity, Table 2 lists 
the values of all parameters of the material model and the numerical solvers used for the baseline case.

5.1. Simulation for a cardiac cycle

In this section, we discuss the details of the computed elastodynamics of a patient-specific heart for one cardiac cycle. The 
computation uses the baseline mesh defined before, with parameters given in Table 2. To reduce the artifacts caused by the impact 
12

of the initial condition, we run a preliminary cycle as a “warm-up” step with both the initial displacement and active stress set to 



Journal of Computational Physics 508 (2024) 113027Y. Jiang, Z. Yan, X. Wang et al.

Fig. 6. Numerical performances of the nonlinear and linear solvers in each baseline time step, for one cardiac cycle of a patient-specific four-chamber heart. The top 
and middle figures present the effective and the total numbers of nonlinear and linear iterations for each baseline time step, respectively, while the bottom figure 
counts the effective and the total compute time for each baseline time step.

zero. The final solution of this cycle is used as the initial condition for the second cycle, with which we discuss all the performance 
of the algorithm and its temporal and spatial accuracy.

Selecting the right time step size is not a trivial task since it has to be small enough (1) for the solution to be reasonably accuracy, 
and (2) for the resulting nonlinear algebraic systems to be solvable, meanwhile large enough so that the total number of time steps 
for the cardiac cycle is reasonably small and the total compute time is not too large. Recall from Algorithm 3 that the cardiac cycle 
is normalized to 1 second and initially partitioned into 100 the baseline time steps, and the simulation commences with a trial using 
the baseline time step size, denoted as Δ𝑡𝐵 , for each step. Our experiments show that at the beginning part of the cardiac cycle, all 
components of the methods perform well with the baseline time step size. However, after the beginning phase the system experiences 
increased stiffness, necessitating the adoption of the adaptive scheme for some of the baseline time steps for ensuring the convergence 
of the nonlinear and linear solvers within the prescribed iteration limits. Note that the adaptive time stepping Algorithm 3 involves 
both successful and unsuccessful trials, which implies the use of varying numbers of Newton and GMRES iterations. Fig. 6 presents 
the detailed behavior of the linear and nonlinear solvers throughout the whole cardiac cycle, in terms of the effective and the total 
numbers of nonlinear and linear iterations, as well as the compute time for each baseline time step, respectively. In addition, Table 3

reports the statistics of the numerical behavior collected per each of the five stages of the cardiac cycle (see Table 1). It can be seen 
that, for most of the 100 baseline time steps, the solver converges successfully using the baseline time step size Δ𝑡𝐵 without any 
adaptive refinement and their statistics per stage are provided in rows 2-5 of Table 3. For the other baseline time steps, the calculating 
starts with Δ𝑡𝐵 , but the proposed adaptive time stepping strategy is used to adjust the time step size to achieve convergence. The 
statistics of these steps per stage are provided in rows 6-11 of Table 3. Moreover, a summary of all baseline steps is given in rows 
12-19 of the table.

In Table 3, for the baseline time steps without requiring adaptive time stepping, we report the average number of nonlinear 
iterations per time step (Ave. NI/TS), the average number of GMRES iterations per Newton step (Ave. LI/NI), and the average 
compute time per time step (Ave. Time/TS). On the other hand, for the baseline time steps that require adaptive time steppings, each 
involves a certain number of successful and unsuccessful trials that correspond to effective and failed steps, respectively. For these 
intervals, we count the average number of all trials (Ave. Trial/TS) and successful trials (Ave. Effective/TS) per interval, respectively, 
and further calculate the average number of nonlinear (Ave. ENI/ETS) and linear (Ave. ELI/ENI) iterations for the solver to converge 
in each successful trial. Moreover, we report the average compute time for each baseline time step (Ave. Time/TS), and record the 
minimal effective time step size (Min. Size) and the computational time efficiency (Efficiency) per stage, where the latter is defined 
as the compute time of all successful trials divided by the compute time consumed by the whole baseline time step. Table 3 presents 
the detailed statistics for each stage, and Fig. 7 illustrates the average number of total trials and effective steps per baseline time 
13

step, as well as the numbers of Newton and GMRES iterations per effective step, in each stage of the cardiac cycle.
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Table 3

Convergence history of the proposed method in simulating the elastodynamics of a patient-specific heart in a 
complete cardiac cycle. Rows 2-5 show the average inexact Newton and GMRES iterations as well as the compute 
time in solving a baseline time step that does not need the adaptive time stepping, rows 6-11 present the solver 
behaviors in solving the baseline time intervals that require the adaptive time stepping, and the overall perfor-

mances of solver in solving all baseline time intervals are presented in rows 12-19, per each stage (see Table 1) of 
the cardiac cycle.

Stage I II III IV V All stages

No 
adaptive 
stepping

# Time Steps 12 25 8 14 20 79
Ave. NI / TS 4.08 3.48 5.25 3.36 2.20 3.41
Ave. LI / NI 173.5 177.09 142.57 188.30 219.66 179.97
Ave. Time / TS 69.56 60.32 78.34 60.65 44.55 59.62

With 
adaptive 
stepping

# Time Steps 3 0 7 11 0 21
Ave. Trial / TS 13.00 N/A 16.14 14.45 N/A 14.81
Ave. Effective / TS 10.67 N/A 12.29 11.27 N/A 11.52
Ave. ENI / ETS 3.53 N/A 5.64 4.56 N/A 4.81
Ave. ELI / ENI 61.93 N/A 47.62 51.02 N/A 50.66
Ave. Time / TS 795.88 0 1101.20 964.46 0 985.96

All steps

# Time Steps 15 25 15 25 20 100
Ave. Trial / TS 3.40 1 8.07 6.92 1 3.90
Ave. Effective / TS 2.93 1 6.27 5.52 1 3.21
Ave. ENI / ETS 3.68 3.48 5.61 4.43 2.20 4.46
Ave. ELI / ENI 95.69 177.09 55.18 61.56 219.66 74.95
Min. Size 3.125E−4 0.01 3.125E−4 3.125E−4 0.01 3.125E−4
Ave. Time / TS 214.83 60.32 555.68 458.33 44.55 254.15
Efficiency 59.69% 100% 57.59% 51.25% 100% 59.00%

Fig. 7. Collective performances of the numerical nonlinear and linear solvers in each stage, during one cardiac cycle simulation of a patient-specific four-chamber 
heart.

The numerical algorithm behaves differently from stage to stage. None of the baseline time steps in stages II and V require any 
refinement, which results in an ideal computational efficiency. In contrast, in stages I, III, and IV, 3 out of 15, 7 out of 15, and 11
out of 25 baseline time steps, respectively, require some level of adaptive refinement. At each of these 21(= 3 +7 +11) adaptive time 
steps, the nonlinear solver takes an average of 10 to 13 effective steps to complete, accompanied by 2 to 4 unsuccessful trials. For all 
the time steps that do not require adaptive time stepping throughout the cardiac cycle, the average number of nonlinear iterations 
per time step and linear iterations per Newton step are about 3.41 and 179.97, respectively. On the other hand, for successful adaptive 
trials, these values are around 4.81 and 50.66. These findings suggest that (i) significant nonlinearity is a crucial factor in activating 
the adaptive time stepping scheme, and (ii) when the inexact Newton converges with an appropriate time step size, it typically 
requires fewer number of iterations. Notably, as the minimal effective time step decreases to 3.125 × 10−4 s, which is one-thirty-

second of 0.01 s, by the use of adaptive reduction rules, the average number of all and successful trials in each baseline time step are 
3.90 and 3.21, respectively. This result clearly demonstrates the effectiveness of using adaptive time stepping to reduce the overall 
14

computational cost, compared to using a uniform small time step size throughout the entire cardiac cycle.
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Fig. 8. The magnitude of the displacement over the myocardial domain at six typical time moments, at 0 s, 0.14 s, 0.4 s, 0.54 s, 0.8 s, and 1.0 s (from left to right, top 
to bottom), respectively. Each panel presents two plots vertically, illustrating the anterior and posterior views of the heart.

The convergence behavior of the proposed method is closely related to several factors, including the extent of the deformation 
of the heart muscles, the magnitude of the active stress generated by the fibers, and their changing rates. Collectively, these factors 
dictate the level of difficulty of the nonlinear elastodynamical problem. Table 3 and Fig. 7 confirm that stage I, III, and IV are 
more challenging to solve than stages II and V. This is because stages I and III represent phases in which the active stress increases 
rapidly (in the atrial and ventricular domains, respectively), and stage IV is characterized by a high level of deformation in the 
ventricular domain. Conversely, the changing rate of the active stress and/or deformation extent is much weaker during stages II 
and V. Noticeably, in both stages II and IV, the process involves restoring the heart to its relaxed state from a deformed shape. The 
primary distinction between the two lies in the extent of deformation, which directly impacts the complexity of solving the entire 
15

system. In stage II, the deformation predominantly affects the atrial region of the heart, with the ventricular part experiencing very 
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Fig. 9. The fiber strain 𝐸𝑓𝑓 over the myocardial domain at six typical time moments, at 0 s, 0.14 s, 0.4 s, 0.54 s, 0.8 s, and 1.0 s (from left to right, top to bottom), 
respectively. Each panel presents two vertically aligned plots, illustrating the left and right halves of the heart over a vertical cross-section through the center, 
respectively.

small deformation. Conversely, in stage IV, the situation is reversed, with the ventricular portion undergoing significant deformation. 
Given the much larger size and thickness of the ventricular section compared to the atrial part, the overall deformation and local 
strains are notably higher in stage IV than in stage II. Consequently, stage IV presents a considerably greater challenge in terms 
of the solution complexity compared to stage II. These observations are further validated by visualizing the deformed heart at six 
representative moments throughout the five stages of a cardiac cycle. Specifically, Fig. 8, 9 and 10 illustrate the magnitudes of 
displacement |𝐝|, as well as the strain 𝐸𝑓𝑓 and the stress 𝑆𝑓𝑓 along the fiber direction over the myocardial domain, respectively, 
where the latter two are defined by

𝐅𝐟
16

𝐸𝑓𝑓 = 𝐟 ⋅𝐄𝐟 and 𝑆𝑓𝑓 = |𝐅𝐟 | ⋅ 𝐏𝐟 . (5.1)
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Fig. 10. The fiber stress 𝑆𝑓𝑓 over the myocardial domain at six typical time moments, at 0 s, 0.14 s, 0.4 s, 0.54 s, 0.8 s, and 1.0 s (from left to right, top to bottom), 
respectively. Each panel presents two vertically aligned plots, illustrating the left and right halves of the heart over a vertical cross-section through the center, 
respectively.

Particularly, the definition of 𝑆𝑓𝑓 is adopted from [18]. In each panel of Fig. 8, 9 and 10, the six pairs of snapshots (from left to right, 
and top and bottom) are taken at 𝑡 = 0 s, 0.14 s, 0.4 s, 0.54 s, 0.8 s, and 1.0 s, respectively, which show that the deformation starts at 
a low level before the atria shrink to their maximal contraction at 𝑡 = 0.14 s while the ventricles remain relaxed. Subsequently, the 
atria undergo diastole, and the ventricles begin to contract, reaching their maximum at 𝑡 = 0.54 s, before returning to diastole. By 
𝑡 = 0.8 s, strains in both the atria and ventricles have decreased significantly, and they further reduce to almost the initial status at 
the end of the cardiac cycle. Significantly, the atrial and ventricular regions exhibit the highest magnitude of deformations, strains, 
and stresses at 𝑡 = 0.14 s and 𝑡 = 0.54 s, respectively. This corresponds to the peak growth of active stresses in these respective 
17

regions.
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Fig. 11. The locations and baseline mesh structures of the four small regions in the LA, RA, ventricle septum and close to the apex, respectively. Mesh cells inside 
these regions are locally refined for investigating the convergence of 𝐸𝑓𝑓 with respect to the mesh size.

5.2. Study on the mesh dependence

Determining the appropriate spatial resolution of the computational mesh is crucial for the numerical simulations to be useful in 
clinic applications. Simulation of the cardiac elastodynamics requires a sufficiently fine mesh to accurately depict the complicated 
shape and fiber distributions of the heart muscle, both of which are essential for the desired accuracy of the results. Theoretically 
speaking, a uniform fine mesh would solve the accuracy issue, but the corresponding compute time would not be acceptable even on 
the largest supercomputers. To balance the accuracy and the computational time, we must choose appropriate mesh sizes to avoid 
overburdening the computational resources while simulating the essential geometric deformation of the heart.

In the following, we study the influence of the mesh size on the numerical results, with the intention to provide some guidelines 
on choosing appropriate mesh sizes for cardiac elastodynamic simulations. In particular, we compare the results by using a series of 
meshes with different spatial resolutions, generated by locally refining the baseline mesh in four representative regions inside the 
heart wall of LA, RA, the septum between the ventricles and close to the apex. The diameter of a typical cell in these regions is 
around 0.5 mm, 0.4 mm, 1.7 mm and 1.5 mm, respectively, and the local structure of the baseline mesh in these regions are shown 
in Fig. 11. With this type of mesh refinement, the total number of degrees of freedom can be confined within a relatively low range, 
in contrast to uniformly refining the whole mesh.

Inside each of these regions, the baseline mesh is refined three times independently. Using each series of meshes, the simulation 
results are compared at 𝑡 = 0.15 s for the LA and RA regions and 𝑡 = 0.55 s for the septum and apex regions. A point is put at the 
center of each region to monitor the solution. For each case, the fiber strain at the corresponding monitor point is tracked for the 
preceding 15 time steps (i.e., 0 s–0.15 s for the LA and RA regions and 0.4 s–0.55 s for the septum and apex regions). Details of the 
study are presented in Figs. 12–16.

For each case, the finest mesh produces the smoothest result, and the results obtained by coarser meshes approach the finest one 
as the mesh is refined. Notably, 𝐸𝑓𝑓 at the monitor point in the LA region is almost the same for all meshes. These experiments 
indicate the solution converges as the mesh is refined in the regions of interests.

5.3. Impact of several material and algorithmic parameters

In this section, we investigate the impact of several Guccione material parameters as well as algorithmic parameters in construct-

ing the proposed numerical method. We run the simulation for one complete cardiac cycle and count, for solving each baseline time 
step with the baseline time step size, the average number of trials (Trials) and the successful trials (Effective), the average number of 
inexact Newton iterations per successful trial (NI), the average number of GMRES iterations per inexact Newton step (LI), the average 
compute time (Time), and the computational efficiency (Efficiency) by using the adaptive time stepping scheme, respectively.

First, we study the impact of ILU fill-in level of the subdomain solver and the overlapping size between neighboring subdomains, 
18

both of which are the key parameters for the Schwarz preconditioner. In particular, the level of fill-in determines how accurately each 
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Fig. 12. The fiber strains 𝐸𝑓𝑓 in a small region inside the LA of the heart, by using a series of meshes that are locally refined for three times, respectively. The purple 
ball at the center of the subfigures indicates the location of the monitor point.

Fig. 13. The fiber strains 𝐸𝑓𝑓 in a small region inside the RA of the heart, by using a series of meshes that are locally refined for three times, respectively. The purple 
ball at the center of the subfigures indicates the location of the monitor point.

Fig. 14. The fiber strains 𝐸𝑓𝑓 in a small region inside the ventricle septum of the heart, by using a series of meshes that are locally refined for three times, respectively. 
19

The purple ball at the center of the subfigures indicates the location of the monitor point.
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Fig. 15. The fiber strains 𝐸𝑓𝑓 in a small region close to the apex of the heart, by using a series of meshes that are locally refined for three times, respectively. The 
purple ball at the center of the subfigures indicates the location of the monitor point.

Fig. 16. 𝐸𝑓𝑓 at the monitor points in the four local refinement regions for 15 time steps: 0 s–0.15 s for LA and RA regions, and 0.4 s–0.55 s for ventricle septum and 
apex regions, respectively.

sub-domain problem is solved, and the overlapping size determines the amount of the information exchanged between neighboring 
20

processor cores. We test various combinations of ILU fill-in levels and overlapping sizes in a range of 0, 1, 2 to observe the impact on 
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Table 4

Convergence behavior of Algorithm 1 as the ILU fill-in level and the overlapping size 
are adjusted. The reported data are calculated based on all time steps during one com-

plete cardiac cycle.

ILU Overlap Trial Effective NI LI Time Efficiency

0

0 7.17 5.16 3.55 293.35 531.43 62.01%
1 7.61 5.55 3.51 271.14 565.16 62.35%
2 7.72 5.65 3.49 271.61 616.98 62.27%

1

0 4.39 3.61 4.13 91.47 278.31 59.07%
1 3.90 3.21 4.46 74.95 254.15 59.00%
2 3.99 3.29 4.34 69.73 265.96 60.04%

2

0 4.12 3.44 4.15 76.55 305.49 59.95%
1 4.22 3.46 4.26 51.89 312.57 58.06%
2 4.10 3.38 4.23 47.92 312.39 59.84%

Table 5

Convergence behaviors of the NKS numerical solver and the averaged volumetric changes of the 
deformed heart region as the Guccione model parameter 𝐶 and the incompressibility penalty 𝜅 are 
adjusted. The reported data are calculated based on all time steps during one complete cardiac cycle. 
For the case 𝐶 = 1.0 × 103 and 𝜅 = 4 × 104 , the numerical solver failed to converge at 𝑡 = 0.51 s as 
the adaptive time step size has been reduced to below the minimal allowed value 10−5 s.

𝐶 𝜅 Trial Effective NI LI Time Efficiency Ave. 𝐽

1 × 103
4 × 104 − − − − − − −
5 × 104 15.72 12.10 4.33 42.15 920.78 49.12% 0.9831
6 × 104 11.24 8.67 4.30 76.58 796.95 51.08% 0.9849

2 × 103
4 × 104 8.52 6.78 4.15 43.62 458.51 52.89% 0.9811
5 × 104 3.90 3.21 4.46 74.95 254.15 59.00% 0.9834
6 × 104 3.10 2.60 4.04 95.81 206.06 62.41% 0.9851

3 × 103
4 × 104 2.83 2.39 3.89 80.03 171.15 60.48% 0.9816
5 × 104 1.40 1.25 3.81 137.16 93.32 76.29% 0.9838
6 × 104 1.25 1.19 3.39 149.48 72.90 87.27% 0.9855

Table 6

Convergence behaviors of the NKS numerical solver as the Guccione model pa-

rameters 𝑏𝑓 , 𝑏𝑓𝑠, 𝑏𝑡 are adjusted. The reported data are calculated based on all 
time steps during one complete cardiac cycle.

(𝑏𝑓 , 𝑏𝑓𝑠, 𝑏𝑡) Trial Effective NI LI Time Efficiency

(16,4,1) 2.67 2.30 3.50 107.59 162.57 62.44%
(8,4,2) 3.90 3.21 4.46 74.95 254.15 59.00%
(4,4,4) 9.15 7.15 4.42 45.33 534.11 51.95%

the convergence behavior of the linear and nonlinear solvers. The detailed statistics are listed in Table 4, from which one can see 
that the optimal result is achieved when both parameters are equal to 1.

Next we vary several parameters of the Guccione model, including the bulk modulus 𝐶 and the incompressible penalty parameter 
𝜅, as well as the combination of the strain coefficients 𝑏𝑓 , 𝑏𝑓𝑠, 𝑏𝑡. The detailed results for these cases are summarized in Tables 5
and 6. It can be seen from Table 5, as both the bulk modulus and the incompressible penalty parameter become larger, both the 
average number of the total and the successful trials to complete one baseline time step become smaller, the compute time reduces 
and the computational efficiency increases. These observations imply that these two parameters influence the overall difficulty of the 
problem, in other words, the larger the parameters are, the easier the nonlinear elastodynamic problems become, within the range 
of the selected values. Additionally, the average volumetric changes of the deformed heart region are reported in the last column 
of Table 5 (denoted as Ave. 𝐽 ). This metric is defined as the volume of the deformed heart region divided by the volume of the 
reference region, averaged over all baseline time steps of one cardiac cycle. It can be seen that the deformed volumes range between 
98% and 99% for all combinations of 𝐶 and 𝜅, indicating a good adherence to the incompressibility constraint. On the other hand, 
Table 6 suggests that the problem becomes more difficult to solve as the values of the strain parameters 𝑏𝑓 , 𝑏𝑓𝑠, 𝑏𝑡 become unified, 
as the total trials and successful trials both increase, the compute time becomes larger, and the computational efficiency becomes 
lower.

Finally, we investigate how the fiber rotation angle alters the deformation of the heart. We change the orientation angle 𝛼 on 
the heart surface in the fiber generation process by −10◦, −5◦, 5◦, and 10◦ relative to the baseline case, and carry out a separate 
simulation for each variation. To visualize the effects of these modifications, two timepoints are chosen to plot the contours of a 
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common vertical cross-section of the heart in its deformed state, at 𝑡 = 0.14 s (maximal atrial active stress) and 𝑡 = 0.54 s (maximal 
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Fig. 17. Contours of a vertical cross-section obtained by setting the fiber orientation angle 𝛼 to be −10 (blue), −5 (green), +5 (orange), and +10 (red) degrees 
comparing to the baseline case at 𝑡 = 0.14 s, respectively. The baseline result is colored in gray for reference.

Fig. 18. Contours of a vertical cross-section obtained by setting the fiber orientation angle 𝛼 to be −10 (blue), −5 (green), +5 (orange), and +10 (red) degrees 
comparing to the baseline case at 𝑡 = 0.54 s, respectively. The baseline result is colored in gray for reference.

ventricular active stress) in Fig. 17 and Fig. 18, respectively. It can be seen that, comparing to the baseline case, the contour of the 
cross-section changes in a progressive way as the value of 𝛼 changes. For example, at 𝑡 = 0.14 s, in a top portion of the right atrium 
(the top left subplot of Fig. 17), the contours show that the atrial wall moves up further as the change of 𝛼 increases from −10◦ to 
10◦. More interestingly, at 𝑡 = 0.54 s, in a region closing to the apex of the heart, the right ventricle moves downward (the bottom 
left subplot of Fig. 18) while the left ventricular moves upward (the bottom right subplot of Fig. 18) as the change of 𝛼 increases 
22

from −10◦ to 10◦, respectively.
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Table 7

Compute time and parallel efficiency using three different meshes calculated based on the first 10 time steps with step size 0.001 s 
and ILU fill-in level 3.

Mesh 1 (36M dofs) Mesh 2 (127M dofs) Mesh 3 (235M dofs)

Cores Time NI LI Efficiency Time NI LI Efficiency Time NI LI Efficiency

1024 451.9 2.3 54.1 100%
2048 241.4 2.3 58.0 93.6% 1016.1 2.3 63.4 100%
3072 191.4 2.3 60.7 78.7% 696.1 2.3 65.5 97.3% 2118.9 3.0 83.4 100%
4096 152.8 2.3 62.8 74.0% 525.8 2.3 67.2 96.6% 1603.9 3.0 85.1 99.1%
6144 114.0 2.3 65.8 66.1% 370.1 2.3 70.6 91.5% 1112.9 3.0 89.5 95.2%
8192 94.7 2.3 69.2 59.6% 376.4 2.3 73.0 67.5% 859.3 3.0 92.4 92.5%
16384 765.1 3.0 100.2 52.7%

Fig. 19. Compute time and parallel efficiency for three meshes. The reference numbers of processor cores are set to 1024 cores for the 36 millions mesh, 2048 cores 
for the 127 millions mesh, and 3072 for the 235 millions mesh, respectively.

5.4. Parallel scalability

In this subsection, we first investigate the strong parallel scalability of the proposed algorithm by running simulation on three 
meshes with around 36 million, 127 million, and 235 million degrees of freedom (DOF). For each mesh, four or five sets of processor 
cores are used to repeat the simulation, and we report the compute time and the parallel efficiency. Let us note the term parallel 
efficiency should not be confused with the adaptive time stepping efficiency. We calculate the strong parallel efficiency using the 
following formula:

Efficiencys =
compute time with 𝑝0 processor cores

compute time with 𝑝𝑖 processor cores
×
𝑝0
𝑝𝑖

× 100%, (5.2)

where 𝑝𝑖 is the number of processor cores used for a certain case label by 𝑖, and 𝑝0 denotes the reference number of processor cores, 
which is set to be 1024 cores for the 36 million mesh, 2048 cores for the 127 million mesh, and 3072 cores for the 235 million 
mesh. Additionally, we run the simulations for the first 10 time steps with an ILU fill-in level set to 3, and the time step size is set 
to 10−3 seconds. All cases converge without using the adaptive time stepping scheme. As can be seen in Table 7 and Fig. 19, except 
for one case (8192 cores on Mesh 2), the convergence accelerates as more processor cores are utilized to solve the problem, and can 
maintain a good parallel scalability with up to 16,384 processor cores.

In addition, we evaluate the weak scalability to investigate how the compute time is affected as we increase the number of 
processor cores while the size of the problem per core remains the same. Due to the complex geometry of a patient specific heart, 
it is very difficult to generate a set of unstructured tetrahedral meshes which (1) have appropriate sizes and (2) are proportionally 
larger by integral multiples. In this paper, we evaluate a scaled weak parallel efficiency that is defined by:

Efficiencysw =
compute time with 𝑝0 processor cores for mesh0
compute time with 𝑝𝑖 processor cores for mesh𝑖

×
𝑝0
𝑝𝑖

×
DOF of mesh𝑖

DOF of mesh0
× 100%, (5.3)

where mesh0 denotes the mesh used for the reference case, and mesh𝑖 for a certain case 𝑖. The above definition allows us to 
approximately evaluate the weak scalability based on the same metrics as calculating the strong scalability, without the strict 
requirement for uniform problem sizes per processor core. Provided this definition, we further define the ideal scaled compute time 
23

for a case 𝑖 that uses 𝑝𝑖 processor cores for mesh𝑖 by:
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Table 8

The compute time, ideal time and scaled weak parallel efficiencies 
of the two groups of mesh-processor core pairs. Rows 1-5 corre-

spond to group 1, while rows 6-10 correspond to group 2.

Group 1
Mesh 1 Mesh 2 Mesh 3

1024 cores 3072 cores 6144 cores

Compute time 451.9 696.1 1112.9
Ideal time 451.9 531.4 491.7
Scaled efficiency 100% 76.35% 44.18%

Group 2
Mesh 1 Mesh 2 Mesh 3

2048 cores 6144 cores 16384 cores

Compute time 241.4 370.1 765.1
Ideal time 241.4 283.9 197.0
Scaled efficiency 100% 76.70% 25.75%

Fig. 20. Compute time and scaled weak parallel efficiency for the two selected groups. The compute time is presented by vertical bars for each case. For each group, 
the mesh 1 case serves as the reference for calculating the scaled weak parallel efficiencies, marked on the top of vertical bars, for cases utilizing the other two meshes. 
The ideal compute time is indicated by the dashed lines, respectively.

Ideal time =compute time with 𝑝0 processor cores for mesh0 ×
𝑝0
𝑝𝑖

×
DOF of mesh𝑖

DOF of mesh0
. (5.4)

In this paper, we consider two groups of mesh-and-processor core pairs: Group 1 includes mesh 1 with 1024 cores, mesh 2 with 3072 
cores, and mesh 3 with 6144 cores; Group 2 includes mesh 1 with 2048 cores, mesh 2 with 6144 cores, and mesh 3 with 16384 
cores. Both two groups use the smallest mesh as the reference case, and they correspond to the cases that each processor core handles 
around 38,000 DOF and 17000 DOF, respectively. The ideal compute time and the scaled weak scalability efficiency are presented 
in Table 8, as well as in Fig. 20.

6. Conclusion

In this paper, we developed a highly scalable, fully implicit, two-level adaptive time stepping algorithm for simulating the 
elastodynamics of a patient-specific human heart with four chambers and fibers. The heart is modeled by a hyperelasticity equation 
discretized using a finite element method on a fully unstructured mesh with finer mesh cells near the surface and regions with large 
deformation, and we solve the resulting nonlinear algebraic system using the Newton-Krylov-Schwarz method at each time step. 
To enhance the robustness of algorithm, we introduce a two-level adaptive time-stepping strategy which offers the desired level of 
accuracy and accelerates the nonlinear convergence considerably. The numerical experiments demonstrate the proposed algorithm 
is robust in simulating one complete cardiac cycle and highly scalable for solving the problem with over 200 million degrees of 
freedom using more than 16,000 processor cores.
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