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Abstract. Numerical simulation of blood flows in patient-specific arteries is becoming an im-
portant tool in understanding vascular diseases and surgery planning. Depending on the branching
geometry and the patient parameters, the flow can be quite complicated with local vortex structures
and rotations, but the principal component of the flow is always along the centerline of the artery.
Based on this observation, we introduce a new two-level domain decomposition method for unsteady
incompressible Navier--Stokes equations in three-dimensional complex patient-specific arteries, and
the key component of the preconditioner is a parameterized one-dimensional unsteady Navier--Stokes
or Stokes coarse problem defined along the centerline of the artery. The one-dimensional precondi-
tioner and some overlapping three-dimensional subdomain preconditioners are combined additively
to form the two-level method via interpolations using radial basis functions. The most important
feature of the method is that the cost of solving the coarse problem is nearly negligible compared with
the subdomain solver. The blood flow is modeled by the unsteady incompressible Navier--Stokes equa-
tions with resistance outflow boundary conditions discretized by a stabilized finite element method
on fully unstructured meshes and the second-order backward differentiation formula in time. Nu-
merical experiments indicate that the proposed method is highly effective and robust for complex
arteries with many branches, in other words, the number of linear and nonlinear iterations changes
very little when the mesh is refined or the number of subdomains is increased or the number of
arterial branches is increased.

Key words. unsteady incompressible Navier--Stokes problem with resistance boundary condi-
tions, blood flows in artery, two-level Schwarz method, parameterized one-dimensional coarse prob-
lem, fully implicit finite element method
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1. Introduction. Early identification can often reduce the probability of the
morbidity and mortality of vascular diseases such as peripheral artery disease [43],
cerebral aneurysm [25], and coronary artery atherosclerosis [8]. Hemodynamics analy-
sis [1, 15, 44, 55, 60], the study of the behavior of blood flows, can be helpfulin gaining
insight into the formation and progression of vascular diseases, and may even identify
early as well as make a treatment plan for certain vascular diseases. Many clinical
techniques are available for the diagnosis of vascular diseases such as computed tomog-
raphy, magnetic resonance imaging, transcranial Doppler, and four-dimensional flow
magnetic resonance imaging. Recently with the advances in supercomputing and par-
allel algorithms, tremendous progress has been made on image-based computational
fluid dynamics (CFD) methods to study hemodynamics because they are noninvasive
and can offer reasonably accurate solutions for clinical applications [41, 45, 46, 47,
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S2 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

50, 59]. When simulating blood flows using image-based CFD methods, the unsteady
incompressible Navier--Stokes equations are often considered with suitable outflow
boundary conditions such as the resistance boundary condition and the impedance
boundary condition [45, 62]. Taking account of the nonlinearity of the system and
the geometrical complexity, the unsteady incompressible Navier--Stokes equations are
quite difficult to solve. Many numerical methods have been developed to solve the
equations discretized implicitly on fully unstructured meshes. Newton--Krylov meth-
ods [35] solve the nonlinear systems by inexact Newton methods in which the Jacobian
systems are solved by a Krylov subspace method with suitable preconditioner, for ex-
ample, block preconditioners [10, 11, 14, 32, 33], multigrid preconditioners [36], and
overlapping Schwarz preconditioners (NKS) [3, 5]. Projection methods [26, 48, 49]
split the discretized problem into some smaller problems involving the velocity and
pressure fields and then approximately solve them successively. We also mention
that there are many other methods for the hemodynamics simulation including lat-
tice Boltzmann methods [51], dual-primal FETI methods [2], BDDC methods [40],
multigrid methods [21], and isogeometric methods [63]. Taking advantage of New-
ton methods [9], Krylov subspace methods [54], and domain decomposition methods
[61], in this paper, we solve the unsteady incompressible Navier--Stokes equations in
patient-specific arteries by NKS and focus on the construction of a two-level additive
Schwarz preconditioner with a highly effective, robust, and low cost coarse precondi-
tioner.

In two-level additive Schwarz preconditioners, the coarse problem together with
its restriction and extension plays a crucial role in the overall performance. In
[27, 28], a monolithic overlapping Schwarz preconditioner with generalized Dryja--
Smith--Widlund (GDSW) coarse spaces was introduced and studied, the method was
inspired by the original GDSW coarse spaces [12], and the monolithic Schwarz pre-
conditioner [34, 37, 38] introduced a coarse problem by discretizing the original prob-
lem in a geometry-preserving three-dimensional coarse mesh. Since the geometries
of the coarse and fine meshes match each other, the restriction and extension ma-
trices can be constructed by the finite element basis functions of the coarse mesh.
[7] presented a nonnested coarse mesh to reduce the number of mesh points of the
geometry-preserving coarse mesh near the wall and the restriction and extension ma-
trices are defined using radial basis functions to deal with the nonmatching geometries
of the coarse and fine meshes. All the coarse meshes developed in [7, 37, 38] are three
dimensional and solving these coarse problems takes a significant percentage of the
overall compute time.

Recently, for steady Stokes equations in two-dimensional tube-like domains, we in-
troduced a coarse problem based on the parameterized one-dimensional steady Stokes
equations defined on the centerline of the domain, and showed that the method is quite
effective in reducing the number of iterations and the cost of the coarse preconditioner
is nearly negligible [42]. In fact, as cheap approximations of complex blood flows in
three-dimensional arteries, one-dimensional models have been studied widely [17, 18,
56, 58]. However, limited by the characteristics of one-dimensional models, most of
the studies focus on the global behaviors of the flow such as the averaged pressure
and the flow waveforms [52, 53] or combining the one-dimensional model with three-
dimensional models to simulate blood flows in multiscale arteries [16]. In this paper,
we extend the idea of the one-dimensional coarse preconditioner to a one-dimensional
unsteady Navier--Stokes model to solve the unsteady incompressible Navier--Stokes
equations in three-dimensional patient-specific arteries. The full three-dimensional
Navier--Stokes model is sometimes necessary especially for exploring the localized
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1D COARSE PRECONDITIONER FOR 3D NAVIER--STOKES S3

hemodynamic quantities such as the wall shear stress, local vortex dynamics, and
flow rotations in patient-specific arteries [24, 55].

The one-dimensional model of the unsteady incompressible Navier--Stokes equa-
tions on the centerline of an artery with multiple branches is obtained by a homog-
enization of the three-dimensional unsteady incompressible Navier--Stokes model on
the cross section with suitable compatibility conditions at bifurcations. We then use a
fully discretized matrix of the one-dimensional model to construct the one-dimensional
coarse preconditioner with appropriate restrictions and extension matrices between
the one-dimensional coarse mesh and the three-dimensional fine mesh. Experiments
show that the method works quite well even for situations with a large number of
branches. It is known that in a cardiac cycle, the flow is usually easier to model in the
diastole phase than the systole phase, and the proposed method works well in both
phases. This type of robustness is important for clinical applications.

The rest of the paper is organized as follows. In section 2 we describe the model
problem and the stabilized finite element discretization. In section 3 we briefly recall
the Newton--Krylov--Schwarz method and focus on the details of the one-dimensional
coarse preconditioner. Section 4 shows some numerical experiments for patient-
specific arteries to verify the effectiveness and robustness of the one-dimensional coarse
preconditioner. Some concluding remarks are given in section 5.

2. Unsteady incompressible Navier--Stokes model with resistance out-
flow boundary condition and its stabilized finite element discretization.
Consider the unsteady imcompressible Navier--Stokes problem in an arterial domain
\Omega \in \BbbR 3 (see Figure 1),\left\{       

\rho 

\biggl( 
\partial \bfitu 

\partial t
+\bfitu \cdot \nabla \bfitu 

\biggr) 
 - \nu \Delta \bfitu +\nabla p= \bfitf in \Omega \times (0, T ),

\nabla \cdot \bfitu = 0 in \Omega \times (0, T ),
\bfitu (\bfitx ,0) =\bfitu 0(\bfitx ) in \Omega ,

(2.1)

where \bfitu and p are the velocity and pressure, \bfitf and \bfitu 0 are the given source term
and initial velocity, \rho and \nu are the blood density and viscosity coefficient. Denote

by \partial \Omega =\Gamma I \cup \Gamma W \cup \Gamma O the boundary of the domain, where \Gamma I , \Gamma W , and \Gamma O =
m
\cup 
i=1

\Gamma i
O

are the inlet boundary, the arterial wall, and the m outlet boundaries, respectively.
On the boundaries, we impose a Dirichlet condition for the inlet velocity, a no-slip
condition on the wall velocity, and a resistance condition on the outlet pressure; more
precisely, we have the following conditions:

Fig. 1. A sample artery with 1 inlet and 12 outlets.
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S4 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

\bfitu =\bfitu I on \Gamma I \times (0, T ),(2.2)

\bfitu = 0 on \Gamma W \times (0, T ),(2.3)

p=RiQi on \Gamma i
O \times (0, T ),(2.4)

where \bfitu I is the inlet velocity, Ri is the constant resistance, and Qi =
\int 
\Gamma i
O
\bfitu \cdot \bfitn d\Gamma i

O is

the fluid flux at the local outlet surface \Gamma i
O with the outward unit normal vector \bfitn .

Before introducing the weak form of (2.1), we define \bfitH 1
W (\Omega ) = \{ \bfitv \in \bfitH 1(\Omega ) :

\bfitv | \Gamma I
= \bfitu I ,\bfitv | \Gamma W

= 0\} , \bfitH 1
IW (\Omega ) = \{ \bfitv \in \bfitH 1(\Omega ) : \bfitv | \Gamma I\cup \Gamma W

= 0\} . Then the variational
formulation of (2.1) with boundary conditions (2.2)--(2.4) is to find (\bfitu (\cdot , t), p(\cdot , t)) \in 
\bfitH 1

W (\Omega )\times L2(\Omega ) such that\biggl( 
\rho 
\partial \bfitu 

\partial t
,\bfitv 

\biggr) 
+ (\nu \nabla \bfitu ,\nabla \bfitv ) - (p,\nabla \cdot \bfitv ) + (q,\nabla \cdot \bfitu ) + (\rho \bfitu \cdot \nabla \bfitu ,\bfitv )

 - \langle \nu \nabla \bfitu \cdot \bfitn ,\bfitv \rangle \Gamma O
+

m\sum 
i=1

Ri

\int 
\Gamma i
O

\bfitu \cdot \bfitn d\Gamma i
O

\int 
\Gamma i
O

\bfitv \cdot \bfitn d\Gamma i
O = (\bfitf ,\bfitv )(2.5)

for all (\bfitv , q)\in \bfitH 1
IW (\Omega )\times L2(\Omega ) and t\in (0, T ), where (u, v) :=

\int 
\Omega 
uvd\Omega and \langle u, v\rangle \Gamma :=\int 

\Gamma 
uvd\Gamma .
Let \scrT h be a shape-regular unstructured tetrahedral mesh of \Omega , and the continuous,

piecewise linear polynomial function space on \scrT h is denoted by Sh. We define the
finite element spaces \bfitV h = [Sh]

3 \cap \bfitH 1
W (\Omega ), \bfitW h = [Sh]

3 \cap \bfitH 1
IW (\Omega ) for the velocity

and Qh = Sh \cap L2(\Omega ) for the pressure. Considering the advantages of the low- and
equal-order finite element pair in terms of the computational complexity and the ease
of implementation compared with the stable finite element pairs, following [7, 19], we
use the stabilized finite element method to spatially discretize the weak formulation
(2.5), that is, to find (\bfitu h(\cdot , t), ph(\cdot , t))\in \bfitV h \times Qh, such that

\left\{                                 

\biggl( 
\rho 
\partial \bfitu h

\partial t
,\bfitv h

\biggr) 
+ (\nu \nabla \bfitu h,\nabla \bfitv h) - (ph,\nabla \cdot \bfitv h) + (qh,\nabla \cdot \bfitu h) + (\rho \bfitu h \cdot \nabla \bfitu h,\bfitv h)

 - \langle \nu \nabla \bfitu h \cdot \bfitn ,\bfitv h\rangle \Gamma O
+

m\sum 
i=1

Ri

\int 
\Gamma i
O

\bfitu h \cdot \bfitn d\Gamma i
O

\int 
\Gamma i
O

\bfitv h \cdot \bfitn d\Gamma i
O

+
\sum 

K\in \scrT h

\biggl( 
\rho 

\biggl( 
\partial \bfitu h

\partial t
+\bfitu h \cdot \nabla \bfitu h

\biggr) 
+\nabla ph, \gamma 1(\bfitu h \cdot \nabla \bfitv h +\nabla qh)

\biggr) 
K

+
\sum 

K\in \scrT h

(\nabla \cdot \bfitu h, \gamma 2\nabla \cdot \bfitv h)K

= (\bfitf ,\bfitv h) +
\sum 

K\in \scrT h

(\bfitf , \gamma 1(\bfitu h \cdot \nabla \bfitv h +\nabla qh))K

(2.6)

for all (\bfitv h, qh)\in \bfitW h\times Qh and t\in (0, T ). Here the stabilization parameters \gamma 1 and \gamma 2
are defined as

\gamma 1 =

\left(  \sqrt{} 4

\bigtriangleup t2
+\bfitu T

hG\bfitu h + 36

\biggl( 
\nu 

\rho 

\biggr) 2

G :G

\right)   - 1

, \gamma 2 =

\Biggl( 
8\gamma 1

3\sum 
i=1

Gi,i

\Biggr)  - 1

,

where G = (Gi,j), (i, j = 1,2,3) is the covariant metric tensor satisfying Gi,j =\sum 3
k=1

\partial \^xk

\partial xi

\partial \^xk

\partial xj
, \{ \^xi\} 3i=1 and \{ xi\} 3i=1 are the local reference and global physical co-

ordinate variables, respectively. Let \{ \varphi i\} Ni=1 be the basis functions, where N is the
number of mesh points. Then the numerical solution \bfitu h and ph can be written

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1D COARSE PRECONDITIONER FOR 3D NAVIER--STOKES S5

as \bfitu h(t, x) =
\sum N

i=1(Ui(t), Vi(t),Wi(t))\varphi i(x) and ph(t, x) =
\sum N

i=1Pi(t)\varphi i(x), where
U = (Ui), V = (Vi),W = (Wi), and P = (Pi) are the vectors of the nodal values
of the velocity unknowns and the pressure unknowns, respectively. Define X =
(U,V,W,P )T and then (2.6) can be rewritten as a system of ordinary differential
equations

dX

dt
=L(X).(2.7)

Considering the numerical accuracy, instead of the implicit backward Euler formula,
we use the second-order backward differentiation formula (BDF2) for the temporal
discretization with the time step size \bigtriangleup t, then the fully discretized system at t= n\bigtriangleup t
is given by

3
2X

n  - 2Xn - 1 + 1
2X

n - 2

\bigtriangleup t
=L(Xn) (n\geq 2),(2.8)

where X1 can be obtained by the first-order implicit Euler method with the given
initial value X0.

3. Implicit solver with a two-level Schwarz preconditioner. The nonlin-
ear algebraic system (2.8) is large, sparse, and quite difficult to solve because its
underlying arterial geometry is complex and its solution involves highly nonlinear
features. In a cardiac cycle, many systems of form (2.8) need to be constructed and
solved, and some of them are relatively easy to solve but others are difficult to solve,
therefore a robust nonlinear solver is important for the simulation of the blood flow
in a whole cardiac cycle. Rewrite the nonlinear system (2.8) as

Fn(Xn) = 0.(3.1)

The general framework of the nonlinear solver [5] can be described as follows.

In Algorithm 3.1, Jn
k is the analytically constructed Jacobian matrix of the

nonlinear system Fn at Xn
k , (Mn

k )
 - 1 is a preconditioner to be discussed later, f

is a merit function defined as f(X) = \| F (X)\| 22
\big/ 
2, and \varepsilon is a control parameter

with a default value \varepsilon = 10 - 4. The user-defined absolute and relative tolerances
atolGMRES, rtolGMRES and atolNewton, rtolNewton are used to control the Krylov and
Newton iterations, respectively.

In order to construct an efficient preconditioner Mn
k at each Newton step, we

consider a two-level overlapping additive Schwarz preconditioner of the form M - 1 =
M - 1

cl +M - 1
1s , where M - 1

cl is a one-dimensional coarse preconditioner and M - 1
s is the

sum of some three-dimensional subdomain preconditioners, which will be introduced
in the following subsections.

3.1. One-dimensional coarse preconditioner. We consider a coarse precon-
ditioner of the form

M - 1
cl =EclA

 - 1
cl Rcl,(3.5)

where Acl is the discretized matrix of a coarse problem, Rcl and Ecl are the restriction
and extension matrices between the coarse and fine finite element spaces, respectively.
In this subsection, we focus on the construction of a coarse preconditioner in which Acl

is derived from discretizing a parameterized one-dimensional unsteady Navier--Stokes
coarse problem defined on the centerline of the artery. The problem is obtained by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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S6 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Algorithm 3.1 Inexact Newton for Fn(Xn) = 0
1: Give an initial guess Xn

0 =Xn - 1.
2: for k= 0,1,2, . . . do
3: Find the Newton direction snk by solving the Jacobian system by a

preconditioned restarted GMRES method

Jn
k (Mn

k )
 - 1
Mn

k s
n
k = - Fn(Xn

k )(3.2)

with the stopping criterion

\| Fn(Xn
k ) + Jn

k s
n
k\| 2 \leq max\{ atolGMRES, rtolGMRES \| Fn(Xn

k )\| 2\} .(3.3)

4: Find the step size \lambda nk by the line search technique (Armijo rule)

f(Xn
k + \lambda nks

n
k )\leq f(Xn

k ) + \varepsilon \lambda nk\nabla f(Xn
k )

T snk .(3.4)

5: Update the Newton solution Xn
k+1 =Xn

k + \lambda nks
n
k .

6: if \| Fn(Xn
k+1)\| 2<max\{ atolNewton, rtolNewton\| Fn(Xn

0 )\| 2\} then
7: Xn =Xn

k+1, return.
8: end if
9: end for

an approximate integration of the three-dimensional Navier--Stokes equations on the
cross section centered at a point on the centerline.

3.1.1. One-dimensional parameterized unsteady incompressible Navier--
Stokes equations and their discretization. Denote \Omega cl as the centerline of \Omega ,
which is a curve in the three-dimensional (3D) space parameterized by the arc length
s, Cs(s) as the cross section of \Omega , and As(s) as the corresponding area. Let ucl(t, s)
be the tangential component of the velocity along the centerline and pcl(t, s) be the
value of the pressure on the centerline. We assume that the pressure is a constant
on each cross section and the velocity consists mainly of the component us along the
centerline, i.e., \bfitu \approx us\bfittau , where \bfittau = (\tau 1, \tau 2, \tau 3) is the unit tangent vector along the
centerline. Further we assume that the component us has a parabolic profile at each
cross section, i.e.,

us(t, r, s) = ucl(t, s)\zeta 

\biggl( 
r

r0(s)

\biggr) 
,(3.6)

where \zeta (y) = (1 - y2) (y \in [0,1]) is a parabolic profile function, r0(s) is the radius of
Cs(s), and r is the radial coordinate with respect to Cs(s). Define Q=

\int 
Cs
usdCs as

the flux on the cross section Cs. For a nonbifurcating artery \Omega (see the left subfigure
in Figure 2), the one-dimensional unsteady Navier--Stokes model on the centerline \Omega cl

can be described as [42, 46]\left\{     
\rho 
\partial Q

\partial t
+ \beta \rho \alpha 

\partial 

\partial s

\biggl( 
Q2

As

\biggr) 
+Kr

Q

As
+As

\partial pcl

\partial s
= f cl,

\partial Q

\partial s
= 0, ucl(s,0) = ucl0 (s),

(3.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1D COARSE PRECONDITIONER FOR 3D NAVIER--STOKES S7

Fig. 2. A nonbifurcating (left) and a bifurcating (right) artery with the marked centerline and
cross sections.

where \alpha = 4/3 is the Coriolis coefficient, Kr = 8\pi \nu , f cl =
\int 
Cs

\bfitf \cdot \bfittau dCs and ucl0 =\int 
Cs

\bfitu 0 \cdot \bfittau dCs. Here \beta = 0 represents the one-dimensional Stokes model and \beta = 1

represents the Navier---Stokes model. By the flux conservation equation \partial Q
\partial s = 0, the

nonlinear term \partial 
\partial s (

Q2

As
) in (3.7) can be reduced to Q \partial 

\partial s (
Q
As

). Based on the assumption

(3.6), we have Q=Asu
cl
\big/ 
2, and (3.7) can be rewritten as\left\{     

\rho 
As

2

\partial ucl

\partial t
+ \beta \rho 

\alpha 

4
Asu

cl \partial u
cl

\partial s
+
Kr

2
ucl +As

\partial pcl

\partial s
= f cl,

\partial (Asu
cl)

\partial s
= 0, ucl(s,0) = ucl0 (s).

(3.8)

At the inlet point sI and the outlet point so of the centerline, we consider the following
boundary conditions,

ucl(sI , t) = - 2

| \Gamma I | 

\int 
\Gamma I

\bfitu I \cdot \bfitn d\Gamma I := uclI ,(3.9)

pcl(so, t) =RoQo \approx 
RoAs(so)

2
ucl(so, t),(3.10)

obtained by integrating (2.2) on the inlet boundary and (2.4) on the outlet
boundary.

Define the centerline velocity function spaces M(\Omega cl)=\{ vcl\in H1(\Omega cl): v
cl(sI) =

uclI \} , M0(\Omega cl) = \{ vcl \in H1(\Omega cl) : v
cl(sI) = 0, vcl(so) = 0\} . Then the variational formu-

lation of the one-dimensional problem (3.8) with the boundary conditions (3.9)--(3.10)
is to find (ucl(\cdot , t), pcl(\cdot , t))\in M(\Omega cl)\times L2(\Omega cl) such that\left\{             

\biggl( 
\rho 
As

2

\partial ucl

\partial t
, vcl

\biggr) 
+ \beta 

\biggl( 
\rho 
\alpha 

4
Asu

cl \partial u
cl

\partial s
, vcl

\biggr) 
+

\biggl( 
Kr

2
ucl, vcl

\biggr) 
+Asv

clpcl
\bigm| \bigm| \bigm| so
sI

 - 
\biggl( 
\partial (Asv

cl)

\partial s
, pcl

\biggr) 
+

\biggl( 
\partial (Asu

cl)

\partial s
, qcl
\biggr) 
=
\bigl( 
f cl, vcl

\bigr) 
,

RoAs(so)

2
ucl(so) - pcl(so) = 0

(3.11)

for all (vcl, qcl)\in M0(\Omega cl)\times L2(\Omega cl) and t\in (0, T ). Let \scrT cl
h be a polyline mesh for \Omega cl

with the mesh size O(hcl) and S
cl
h be the corresponding continuous, piecewise linear

polynomial function space. Define the finite element spaces V cl
h = Scl

h \cap M(\Omega cl),W
cl
h =

Scl
h \cap M0(\Omega cl) for the velocity and Qcl

h = Scl
h \cap L2(\Omega cl) for the pressure. The stabi-

lized finite element discretization of the weak formulation (3.11) is written as find
(uclh (\cdot , t), pclh (\cdot , t))\in V cl

h \times Qcl
h , such that
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S8 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI\left\{                                   

\biggl( 
\rho 
As

2

\partial uclh
\partial t

, vclh

\biggr) 
+ \beta 

\biggl( 
\rho 
\alpha 

4
Asu

cl
h

\partial uclh
\partial s

, vclh

\biggr) 
+

\biggl( 
Kr

2
uclh , v

cl
h

\biggr) 
+

\biggl( 
Asv

cl
h ,
\partial pclh
\partial s

\biggr) 
 - 
\biggl( 
Asu

cl
h ,
\partial qclh
\partial s

\biggr) 
+Asu

cl
h q

cl
h

\bigm| \bigm| \bigm| so
sI

+\gamma cl
\sum 

e\in \scrT cl
h

\biggl( 
\rho 
As

2

\partial uclh
\partial t

+ \beta \rho 
\alpha 

4
Asu

cl
h

\partial uclh
\partial s

+
Kr

2
uclh +As

\partial pclh
\partial s

,h2cl
\partial qclh
\partial s

\biggr) 
e

=
\bigl( 
f cl, vclh

\bigr) 
+ \gamma cl

\sum 
e\in \scrT cl

h

\biggl( 
f cl, h2cl

\partial qclh
\partial s

\biggr) 
e

,

RoAs(so)

2
uclh (so) - pclh (so) = 0

(3.12)

for all (vclh , q
cl
h ) \in W cl

h \times Qcl
h and t \in (0, T ), where \gamma cl > 0 is a stabilization parameter.

Using the implicit first-order backward Euler method for the temporal discretization
with the time step size \bigtriangleup t, we have a linearized and fully discretized scheme of (3.12)
at t= n\bigtriangleup t, \left\{       

\scrB cl

\Bigl( 
ucl,nh , pcl,nh ;vclh , q

cl
h

\Bigr) 
=
\bigl( 
Fcl, v

cl
h

\bigr) 
+ \gamma cl

\sum 
e\in \scrT cl

h

\biggl( 
Fcl, h

2
cl

\partial qclh
\partial s

\biggr) 
e

,

RoAs(so)

2
ucl,nh (so) - pcl,nh (so) = 0,

(3.13)

where

Fcl = f cl + \rho 
As

2\bigtriangleup t
ucl,n - 1
h + \beta \rho 

\alpha 

4
Asu

cl,n - 1
h

\partial 

\partial s

\Bigl( 
ucl,n - 1
h

\Bigr) 
and

\scrB cl

\Bigl( 
ucl,nh , pcl,nh ;vclh , q

cl
h

\Bigr) 
=
\bigl( 
Bcl, v

cl
h

\bigr) 
+ \gamma cl

\sum 
e\in \scrT cl

h

\biggl( 
Bcl, h

2
cl

\partial qclh
\partial s

\biggr) 
e

 - 
\biggl( 
Asu

cl,n
h ,

\partial qclh
\partial s

\biggr) 
+Asu

cl,n
h qclh

\bigm| \bigm| \bigm| so
sI

with

Bcl = \rho 
As

2\bigtriangleup t
ucl,nh +\beta \rho 

\alpha 

4
As

\biggl( 
ucl,n - 1
h

\partial 

\partial s

\Bigl( 
ucl,nh

\Bigr) 
+ucl,nh

\partial 

\partial s

\Bigl( 
ucl,n - 1
h

\Bigr) \biggr) 
+
Kr

2
ucl,nh +As

\partial pcl,nh

\partial s
.

The coarse matrix Acl is simply the matrix form of (3.13). The linearized term (i.e.,
the second term in Bcl) corresponds to the nonlinear term in (3.8). When \beta = 0, this
term vanishes and the matrix Acl degenerates into the one-dimensional Stokes matrix.

For general bifurcating arterial networks, the one-dimensional model can be de-
rived by combining the one-dimensional (1D) model (3.8) at each nonbifurcating
branch with suitable compatibility conditions on each bifurcation. To briefly describe
the conditions, we assume that there is one inflow branch and two outflow branches
on each bifurcation (see the right subfigure in Figure 2), then using the conservation
of flux and the continuity of the pressure [17, 42] on each bifurcation, we have the
compatibility conditions

As(s1)u
cl(s1) =As(s2)u

cl(s2) +As(s3)u
cl(s3), pcl(s1) = pcl(s2) = pcl(s3).(3.14)

For more general bifurcations involving more bifurcating branches, similar compati-
bility conditions can also be given.
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1D COARSE PRECONDITIONER FOR 3D NAVIER--STOKES S9

Fig. 3. Diagram of the extension process from the 1D space to the 3D space by piecewise linear
and radial basis interpolations. First obtain the value at the point on the centerline (blue point) of
the cross section (green section) by linear interpolation and then use it to obtain the value at the
mesh points (black points) on the cross section by a radial basis interpolation.

3.1.2. 1D-3D restriction and extension matrices. Let \{ \bfitx i\} Ni=1 and
\{ \bfitx (si)\} Ncl

i=1 be the collection of mesh points of \scrT h and \scrT cl
h , respectively. Denote

\{ Ii\} Ncl - 1
i=1 as the collection of line elements of \scrT cl

h . Then for any s in \scrT cl
h , there

exists a unique j \in \{ 1, . . . ,Ncl  - 1\} , denoted by j(s), such that s \in Ij . Define a
mapping \scrI : \{ \bfitx i\} Ni=1 \rightarrow \{ Ii\} Ncl - 1

i=1 by

\scrI (\bfitx i) = Ij ,

where j =min
s\in s\ast 

j(s) and s\ast = argmin
s\in \scrT cl

h

| \bfitx i - \bfitx (s)| . We define an extension operator from

(uclh , p
cl
h )\in V cl

h \times Qcl
h to (\bfitu h, ph)\in Vh \times Qh as

\bfitu h(\bfitx j) = uclh (s)\zeta 

\biggl( 
| \bfitx j  - \bfitx (s)| 
r0(s)

\biggr) 
\bfittau (s), ph(\bfitx j) = pclh (s)(3.15)

for any \bfitx j (j = 1, . . . ,N) with s satisfying s \in \scrI (\bfitx j) and \bfitx j \in Cs(s). The extension
operator (3.15) can be described in two steps for a nonbifurcating artery as shown in
Figure 3: (1) first for each line segment [si, si+1] we compute the value of the function
at s \in [si, si+1] by the piecewise linear interpolation; (2) we compute the values of
the function for mesh points on the cross section Cs(s) by the parabolic radial basis
interpolation. For any \bfitx j , we denote rj = | \bfitx j  - \bfitx (s)| , where s satisfies s\in \scrI (\bfitx j) and
\bfitx j \in Cs(s). Let the influence set Di of si be defined as

Di =
\bigl\{ 
\bfitx \in \{ \bfitx i\} Ni=1 : \scrI (\bfitx )\subset [si - 1, si+1], \bfitx \in Cs(s), \forall s\in [si - 1, si+1]

\bigr\} 
.

Below we describe the detailed algorithm to compute the 3D-1D restriction and 1D-3D
extension matrices.

3.2. Multiscale two-level additive Schwarz preconditioner. In this sub-
section, we introduce a multiscale restricted additive Schwarz preconditioner consist-
ing of a 1D coarse preconditioner and some overlapping 3D subdomain precondition-
ers. Let us first divide the arterial domain \Omega into np nonoverlapping subdomains
\{ \Omega i\} npi=1 such that each subdomain \Omega i consists of some elements in \scrT h denoted by

\scrT h,i, i.e., \scrT h =
np
\cup 
i=1

\scrT h,i, where \scrT h,i \cap \scrT h,j = \emptyset for i \not = j. In practice, this step is often

realized by some graph partitioning libraries such as METIS or ParMETIS [31]. Then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

7/
24

 to
 1

49
.1

02
.9

8.
14

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



S10 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Algorithm 3.2 Computation of the 3D-1D restriction matrix Rcl and 1D-3D exten-
sion matrix Ecl

1: Construct the Ncl \times N weighting matrices Wu = (wu
i,j) for the velocity and

W p = (wp
i,j) for the pressure with the weighting coefficients

wu
i,j =

\Biggl\{ 
\zeta 
\Bigl( 

rj
r0

\Bigr) 
\phi i(s), \bfitx j \in Di,\bfitx j \in Cs(s),

0, \bfitx j /\in Di,
wp

i,j =

\biggl\{ 
\psi i(s), \bfitx j \in Di,\bfitx j \in Cs(s),
0, \bfitx j /\in Di,

where \{ \phi i\} Ncl
i=1 are the nodal basis functions of Scl

h and \psi i(s) is a function of s.
2: Calculate the Ncl \times Ncl tangent matrices Tk (k= 1,2,3) as

Tk := diag
\bigl( 
\tau k(s1), . . . , \tau 

k(sNcl
)
\bigr) 
,(3.16)

where \tau k(si) is the kth component of the unit tangent vector \bfittau at the mesh
point si.

3: Construct the 2Ncl \times 4N restriction matrix Rcl by

Rcl =

\biggl( 
Wu

1 Wu
2 Wu

3 0
0 0 0 W p

\biggr) 
, Wu

k = TkW
u (k= 1,2,3)(3.17)

with \psi i(s) = 1 in W p.
4: Construct the 4N \times 2Ncl extension matrix Ecl by

Ecl =

\biggl( 
Wu

1 Wu
2 Wu

3 0
0 0 0 W p

\biggr) T

, Wu
k = TkW

u (k= 1,2,3)(3.18)

with \psi i(s) = \phi i(s) in W
p.

we obtain the overlapping subdomains \{ \Omega \delta 
i \} 

np
i=1 with the mesh \scrT \delta 

h,i by extending each
subdomain \Omega i with \delta layers of elements from neighboring subdomains (see Figure 4),
i.e.,

\scrT 0
h,i = \scrT h,i, \scrT \delta 

h,i =
\Bigl\{ 
K \in \scrT h : \exists K \prime \in \scrT \delta  - 1

h,i , \partial K \prime \cap \partial K \not = \emptyset 
\Bigr\} 
.

For each overlapping subdomain \Omega \delta 
i , the corresponding local finite element space is

defined by

\bfitV i
h =

\Bigl\{ 
\bfitv \in Vh| \Omega \delta 

i
: \bfitv | \partial \Omega \delta 

i \setminus (\partial \Omega \setminus \Gamma W ) = 0
\Bigr\} 
, P i

h =
\Bigl\{ 
q \in Ph| \Omega \delta 

i
: q| \partial \Omega \delta 

i \setminus \partial \Omega = 0
\Bigr\} 
.

Let Ri : \bfitV h \times Ph \rightarrow \bfitV i
h \times P i

h be a restriction operator which returns all degrees
of freedom associated with the subspace V i

h \times P i
h and the transpose RT

i of Ri be
the extension operator. Similarly we denote R0

i as a restriction operator associated
with the nonoverlapping subdomains. Let A be the Jacobian matrix Jn

k and Ai =
RiAR

T
i be the ith subdomain matrix. Then the one-level restricted additive Schwarz

preconditioner [6] can be defined as

M - 1
1s =

np\sum 
i=1

(R0
i )

TA - 1
i Ri.(3.19)
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1D COARSE PRECONDITIONER FOR 3D NAVIER--STOKES S11

Fig. 4. Example of nonoverlapping and overlapping partitions of an arterial domain with one
overlapping layer, where the red elements represent the overlapping part.

Finally, combining the coarse preconditioner (3.5) with the one-level preconditioner
(3.19), we obtain the two-level additive Schwarz preconditioner

M - 1
2s,cl =M - 1

cl +M - 1
1s =EclA

 - 1
cl Rcl +

np\sum 
i=1

(R0
i )

TA - 1
i Ri.(3.20)

In (3.20), the matrix Acl derived from the discretization of the 1D problem depends
on the model parameter \beta . When \beta = 0, it means that the coarse problem is the 1D
Stokes problem and Acl in Algorithm 3.1 stays unchanged for each time and Newton
step. When \beta = 1, the 1D problem represents a linearized unsteady incompressible
Navier--Stokes problem and consequently Acl needs to be recalculated at each time
step based on the solution at the previous time step. In our implementation, for this
case, uclh at the previous time step is obtained by an interpolation of \bfitu h because the
original 1D problem (3.13) is not solved. Note that in (3.20) the coarse preconditioner
and the one-level Schwarz preconditioner are added together; other hybrid versions
[7, 61] can also be designed.

In this paper, we focus on the Newtonian model for the blood flows: the non-
Newtonian effect is important for some situations [4, 22, 23, 29, 30, 39] and we
expect that the extension of the proposed algorithm to non-Newtonian Navier--Stokes
equations is straightforward [57].

4. Numerical experiments. In this section, we provide some numerical ex-
periments to illustrate the effectiveness of the multiscale two-level restricted addi-
tive Schwarz preconditioner for unsteady incompressible Navier--Stokes flows in 3D
patient-specific arteries. For the blood flows, we set the viscosity \nu = 0.035 g/(cm\cdot s),
the density \rho = 1 g/cm3, and the source function \bfitf = 0. On each outlet \Gamma i

O, the
resistance satisfies Ri = Rtotal(

\sum m
j=1 | \Gamma 

j
O| 
\big/ 
| \Gamma i

O| )1.5 with a total resistance constant
Rtotal to be given for each test case later [7]. The BDF2 with \bigtriangleup t = 0.005 s is used
for the temporal discretization and the stabilized P1  - P1 finite element method is
used for the spatial discretization. At each time step, we solve the nonlinear system
by an inexact Newton method with a line search technique. At each Newton step,
the Jacobian system is solved by the right-preconditioned GMRES(30) method. The
default parameters of Newton and GMRES stopping conditions in Algorithm 3.1 are
rtolNewton = 10 - 4, atolNewton = 10 - 6 and rtolGMRES = 10 - 4, atolGMRES = 10 - 6. For
the Schwarz preconditioners, we choose the overlapping parameter \delta = 1 and ILU
with one fill-in level is used to solve the subdomain problems. In the experiments,
we consider a tube and two patient-specific arteries with different 3D fine meshes
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S12 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Table 1
Details of 3D fine meshes used in the experiments. N , E, and h are the number of mesh points,

the number of elements, and the approximate mesh size, respectively.

Tube Three-branch artery Twelve-branch artery

N E h (mm) N E h (mm) N E h (mm)

1789 8179 1.690 30114 147223 0.289 87866 380332 0.276

12542 65432 0.846 144701 752741 0.174 243013 1130531 0.188

93659 523456 0.422 1079408 6024816 0.087 1497225 8050242 0.100

Table 2
Details of 1D coarse meshes used in the experiments. Ncl and hcl are the number of mesh

points and the approximate mesh size of the centerline, respectively.

Tube Three-branch artery Twelve-branch artery

Ncl hcl (mm) Ncl hcl (mm) Ncl hcl (mm)

100 0.505 247 0.609 677 0.879

(Table 1) and 1D coarse meshes (Table 2). For the 1D coarse preconditioner, there
are two models to use, i.e., the Stokes model (\beta = 0) and the Navier--Stokes model
(\beta = 1). For the test problems considered in this paper, the Stokes model is quite
efficient in terms of the number of GMRES iterations and the coarse preconditioner
needs to be computed only once for all time steps and all Newton iterations (the
subdomain matrices are recomputed at every Newton iteration), therefore in the fol-
lowing experiments, we use the Stokes model for most of the tests. In the end of the
section we show some numerical results when the Navier--Stokes model is used. Note
that in the following tables we only report the average number of GMRES iterations
per Newton iteration and the average number of Newton iterations per time step is
reported when the calculation is for a full cardiac cycle.

4.1. Womersley flow in a tube. We first verify the correctness of the imple-
mentation of the proposed algorithm by the Womersley flow in a tube with length
Ltube = 5 cm and radius Rtube = 0.5 cm. It is known that (2.1) has the following
analytic solution [20],

u(r, t) = - R
2
tube

\nu w2
o

(sin(t)J1(r) + cos(t)J2(r)) , v= 0,w= 0, p(x, t) = cos(t)

\biggl( 
x - Ltube

2

\biggr) 
,

where r =
\sqrt{} 
y2 + z2, wo = Rtube

\sqrt{} 
\rho /\nu is the Womersley number, J1(r), J2(r) are

the real and imaginary parts of J(r) = 1 - J0(\Lambda 
r

Rtube
)J0(\Lambda )

 - 1,\Lambda = woe
i 3
4\pi with the

zeroth order Bessel function of the first kind J0. For the boundary conditions, on the
inlet the velocity is set to satisfy the exact velocity solution and on the outlet we set
Rtotal = 0 dyn\cdot s/cm5 to be consistent with the exact pressure solution. We compute
the solution for a period of [0,2\pi ] with \bigtriangleup t = \pi /100 and test three unstructured
meshes described in Table 1. For this case, the maximum Reynolds number in a
period is about 15. Figure 5 shows the numerical results of the velocity profile,
the distributions, and the errors of the magnitude of the velocity and the average
pressure difference between the inlet and the outlet. We can see that the numerical
solutions gradually converge to the analytic solution with the use of finer meshes
and the numerical solution with N = 93659 is quite close to the analytical solution,
which indicates the correctness of the implementation. Table 3 shows the average
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1D COARSE PRECONDITIONER FOR 3D NAVIER--STOKES S13

Fig. 5. A comparison of the analytical solution and the numerical solution obtained with
three meshes with 1789, 12542, and 93659 mesh points labeled by ""mesh1"", ""mesh2,"" and
""mesh3"", respectively. (a): the velocity profile on the cross section x = 0 at different times
t = \pi /3,2\pi /3, \pi ,4\pi /3,5\pi /3,2\pi . (b): the time history of the velocity at the center (0,0,0) of the
tube. (c): the time history of the average pressure difference scaled by the length of the tube, i.e.,
the ratio of the pressure difference between the inlet and the outlet and the length of the tube. (d):
the error of the velocity shown in subfigure (b). (e): the error of the average pressure difference
shown in subfigure (c). Note that the black solid line is covered by other lines.

number of Newton iterations at each time step and the average number of GMRES
iterations at each Newton step with different preconditioners. The number of Newton
iterations is almost independent of the fine mesh size, the coarse mesh size, the number
of subdomains, and the preconditioners, but the number of GMRES iterations is
sensitive to the fine mesh size and the preconditioner. Compared with the one-level
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S14 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Table 3
A comparison of the one-level and two-level preconditioners in terms of the average number of

Newton iterations per time step and the average number of GMRES iterations per Newton iteration
in a full period for the Womersley flow. N is the total number of mesh points, and np is the number
of subdomains.

One-level Two-level

N np Newton GMRES Ncl Newton GMRES

1789 8 1.74 12.06 34 1.84 5.74

12542 16 1.87 17.84 100 1.86 5.74

93659 32 1.88 29.43 100 1.84 6.46

Fig. 6. The velocity pulse at the center of the inlet for a cardiac cycle.

preconditioner, the new two-level preconditioner offers a better GMRES convergence
and scalability with respect to the fine mesh size for this case.

4.2. Patient-specific arteries. In this subsection, we focus on two patient-
specific arteries, including a three-branch artery and a twelve-branch artery. For the
three-branch artery, there is one inlet with diameter 2.30mm and three outlets with
diameters 1.36mm, 1.30mm, and 1.00mm. For the twelve-branch artery, there is
one inlet with diameter 3.00mm and twelve outlets with diameters about 1.00mm.
On the inlet, we prescribe a pulsatile periodic flow velocity (see Figure 6) with the
parabolic profile. On the outlet, we set Rtotal = 1500 dyn\cdot s/cm5. Three different
unstructured meshes (see Table 1) for both arteries are considered. Note that the
maximum Reynolds number is about 260 for the three-branch case and 340 for the
twelve-branch case. For the two-level method, the coarse mesh information is given
in Table 2.

First for the three-branch artery, we show the time histories of the velocity and
pressure at different points for a cardiac cycle in Figure 7. These curves of the velocity
and pressure have similar waveforms to the inlet flow waveform. Figure 8 displays
local features near the bifurcation at different phases. The velocity profiles have
noticeable differences at the peak systole and early diastole phases. The maximum
value of the velocity magnitude happens in areas close to the wall and the corner
of the bifurcation at the peak systole phase, but move to the internal center at the
early diastole phase. The pressure at the corner of the bifurcation reaches the local
maximum for both phases and the obvious vortex occurs at the early diastole. In
Tables 4 and 5, we give the number of Newton iterations and the average number of
GMRES iterations at each Newton step of the one-level and two-level methods at the
peak systole and the early diastole, respectively. Compared to the early diastole case,
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1D COARSE PRECONDITIONER FOR 3D NAVIER--STOKES S15

Fig. 7. The time histories of the velocity and pressure at different points for a cardiac cycle.

both methods require more GMRES iterations at the peak systole. For both phases,
the two-level method scales much better with respect to the fine mesh size and the
number of subdomains, but the one-level method performs poorly, especially on the
fine mesh.

Further we consider the more complicated twelve-branch artery. Figure 9 shows
the magnitude of the velocity and the wall shear stress at different locations at the
peak systole and the wall shear stress is defined by

wss := - \nu \nabla \bfitu \cdot \bfitn + ((\nu \nabla \bfitu \cdot \bfitn ) \cdot \bfitn )\bfitn .

Figure 10 shows the streamlines at the peak systole. In order to study the effectiveness
of the two-level method for this case, we provide the number of iterations at the peak
systole (Table 6) and the early diastole (Table 7) and observe similar behaviors as in
the three-branch case. Comparing the three-branch case with the twelve-branch case,
for the one-level method, we see that the number of GMRES iterations increases a
lot, but the increase of the two-level method is not much. These results indicate that
the proposed two-level method is effective and robust with respect to the complexity
of the arterial geometry.

The above discussions focus on the performance of the proposed method at two
different times in a cardiac cycle, namely, the peak systole phase when the veloc-
ity and pressure are near their maximum values and the early diastole phase when
their respective values are close to their minimum. In Table 8 we illustrate the per-
formance in a complete cardiac cycle. The average number of Newton iterations
stays unchanged and the average number of GMRES iterations has a small increase
when refining the mesh, and we can see that the two-level method works well for
the full cardiac cycle. Next, we consider the impact of other algorithmic parame-
ters including the ILU fill-in level, the overlapping parameter, and the coarse mesh
size. Table 9 shows the number of iterations for different ILU fill-in levels and in-
dicates that the ILU fill-in level has an obvious impact on the number of GMRES
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S16 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Fig. 8. The distributions of the magnitude of the velocity (top), pressure (middle), and the
streamline (bottom) near the bifurcation at the systole phase when t= 0.165 s (left) and the diastole
phase when t= 0.405 s (right).

iterations and ILU(2) can clearly improve the GMRES convergence. Considering
the overlapping parameter, Table 10 shows that a small overlapping parameter is
enough, which is consistent with the classical theory of two-level Schwarz meth-
ods in [13]. Table 11 lists the number of iterations with different coarse meshes
and shows, as expected, that a finer coarse mesh provides a better GMRES con-
vergence especially at the systole phase of a cardiac cycle.
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Table 4
At the systole phase, a comparison of one-level and two-level preconditioners in terms of the

number of iterations for the three-branch artery. N is the total number of mesh points and np is
the number of subdomains.

One-level Two-level

Phase N np Newton GMRES Newton GMRES

16 2 297.50 2 19.50

30114 32 2 307.50 2 19.50
64 2 319.50 2 20.00

32 2 583.50 2 24.50

Systole 144701 64 2 558.00 2 25.00
128 2 633.50 2 24.00

256 2 485.00 2 36.00

1079408 512 2 807.50 2 36.00
1024 2 1128.50 2 36.50

Table 5
At the diastole phase, a comparison of one-level and two-level preconditioners in terms of the

number of iterations for the three-branch artery. N is the total number of mesh points and np is
the number of subdomains.

One-level Two-level

Phase N np Newton GMRES Newton GMRES

16 2 156.50 2 15.00
30114 32 2 134.00 2 15.00

64 2 247.00 2 15.00

32 2 226.50 2 17.00
Diastole 144701 64 2 222.50 2 17.50

128 2 235.50 2 17.00

256 2 244.50 2 25.00
1079408 512 2 366.50 2 25.50

1024 2 426.50 2 25.50

Fig. 9. The wall shear stress and velocity magnitude at different locations at the peak systole.
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S18 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Fig. 10. The streamlines at different locations at the peak systole.

Table 6
At the systole phase, a comparison of one-level and two-level preconditioners in terms of the

number of iterations for the twelve-branch artery. N is the total number of mesh points and np is
the number of subdomains.

One-level Two-level

Phase N np Newton GMRES Newton GMRES

32 2 675.00 2 36.00

87866 64 2 748.50 2 36.50

128 2 845.50 2 36.00
64 2 1318.50 2 41.00

Systole 243013 128 2 980.50 2 41.00

256 2 1214.50 2 42.00
256 4 2670.00 2 113.00

1497225 512 3 2461.00 2 113.00

1024 3 2841.33 2 112.00

Next, in Table 12, we present the performance of the 1D coarse preconditioner for
different time step sizes when there is a stenosis in the artery. In this experiment, we
test the three-branch artery with and without a stenosis which reduces the diameter
of the artery by 50\%, as shown in Figure 11. Figure 11 also shows the distribution
of the pressure which decreases rapidly passing the stenosis. Table 12 indicates that
with the increase of the time step size, the numbers of Newton and GMRES iterations
both increase slightly.

Note that the coarse preconditioner in all the experiments presented so far in this
section is constructed based on the 1D Stokes model (\beta = 0). In order to show the
effect of the 1D Navier--Stokes model (\beta = 1) on the number of iterations, in Table 13,
we provide a comparison of the number of iterations with different coarse models
for the twelve-branch artery. We see that the 1D Navier--Stokes model moderately
improves the GMRES convergence at the peak systole and the difference is quite
small at the early diastole. Therefore we conclude that for problems considered in
this paper, the Stokes model is sufficient, but for more complicated problems the
Navier--Stokes model might be more useful.
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Table 7
At the diastole phas,: a comparison of one-level and two-level preconditioners in terms of the

number of iterations for the twelve-branch artery. N is the total number of mesh points and np is
the number of subdomains.

One-level Two-level

Phase N np Newton GMRES Newton GMRES

32 2 279.00 2 26.00

87866 64 2 280.00 2 25.50

128 2 328.00 2 26.50
64 2 412.00 2 26.50

Diastole 243013 128 2 425.00 2 26.50
256 2 463.00 2 27.00

256 2 651.50 2 62.50

1497225 512 2 655.00 2 63.00
1024 2 890.50 2 63.00

Table 8
The average number of iterations of the two-level preconditioner in a cardiac cycle for three-

branch and twelve-branch arteries. N is the total number of mesh points and np is the number of
subdomains.

Artery N np Newton GMRES

30114 16 1.59 16.70

Three-branch 144701 32 1.58 18.56

1079408 256 1.53 28.43
87866 32 1.70 33.33

Twelve-branch 243013 64 1.69 33.68

1497225 256 1.66 71.27

Table 9
The effect of the ILU fill-in level ``LU"" on the number of iterations of the two-level preconditioner.

Three-branch Twelve-branch

Phase ILU Newton GMRES Newton GMRES

0 2 62.00 2 234.00

Systole 1 2 36.00 2 113.00
2 2 29.50 2 72.00

0 2 36.50 2 95.50

Diastole 1 2 25.00 2 62.50
2 2 20.00 2 43.00

Table 10
The effect of the overlapping parameter \delta on the number of iterations of two-level preconditioners.

Three-branch Twelve-branch

Phase \delta Newton GMRES Newton GMRES

1 2 36.00 2 113.00
Systole 2 2 35.00 2 104.00

3 2 34.00 2 100.50
1 2 25.00 2 62.50

Diastole 2 2 24.00 2 63.00

3 2 22.50 2 63.00
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S20 YINGZHI LIU, FENFEN QI, AND XIAO-CHUAN CAI

Table 11
The effect of the number of coarse mesh points Ncl on the number of iterations of two-level

preconditioners.

Three-branch Twelve-branch

Phase Ncl Newton GMRES Ncl Newton GMRES

88 2 53.50 522 2 128.00

Systole 128 2 46.50 677 2 113.00

247 2 36.00 998 2 99.00
88 2 38.00 522 2 64.00

Diastole 128 2 32.50 677 2 62.50

247 2 25.00 998 2 61.00

Table 12
The performance of the 1D coarse preconditioner with respect to the time step size and the

three-branch artery with and without a stenosis at t= 0.16 s. N is the total number of mesh points.

Geometry N \bigtriangleup t (s) Newton GMRES

0.005 2 30.00

Norm 331370 0.01 2 41.50

0.02 3 46.00
0.005 2 30.50

Stenosis 329938 0.01 2 44.50

0.02 3 48.00

Fig. 11. The distribution of the pressure at t= 0.16 s for the three-branch artery with a stenosis.

5. Conclusions. Modeling blood flows using the 3D unsteady incompressible
Navier--Stokes equations in patient-specific arteries with many bifurcating branches
is computationally very expensive. In this paper, we developed a Newton--Krylov
method with an effective two-level restricted additive Schwarz preconditioner consist-
ing of overlapping 3D subdomain preconditioners and a 1D coarse preconditioner con-
structed by a parameterized unsteady Navier--Stokes model defined on the centerline
of the artery with an appropriate 3D-1D restriction and 1D-3D extension operators.
The key feature of the method is that the cost of the 1D coarse problem is almost
negligible but it reduces significantly the number of GMRES iterations compared with
the one-level method. Numerical experiments show that the proposed method is not
only scalable in terms of the numbers of linear and nonlinear iterations, but is also
quite robust with respect to the complex geometry of the artery and varying flow
conditions. In future work, we plan to further develop the method for diseased arter-
ies with, for example, an aneurysm or stenosis, as well as study its performance on
large-scale parallel computers.
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Table 13
A comparison of the coarse preconditioner with 1D Stokes (\beta = 0) and Navier--Stokes (\beta = 1)

models in terms of the number of iterations. rtolGMRES is the GMRES relative tolerance.

\beta = 0 \beta = 1

Phase rtol\mathrm{G}\mathrm{M}\mathrm{R}\mathrm{E}\mathrm{S} Newton GMRES Newton GMRES

10 - 4 2 113.00 2 89.50

Systole 10 - 3 2 94.00 2 77.50

10 - 2 2 85.00 2 78.00
10 - 4 2 62.50 2 63.00

Diastole 10 - 3 2 45.00 2 45.00

10 - 2 2 36.00 2 36.00
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