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Abstract

The rapid spread of diverse information on online social plat-
forms has prompted both academia and industry to realize
the importance of predicting content popularity, which could
benefit a wide range of applications, such as recommenda-
tion systems and strategic decision-making. Recent works
mainly focused on extracting spatiotemporal patterns inher-
ent in the information diffusion process within a given ob-
servation period so as to predict its popularity over a fu-
ture period of time. However, these works often overlook
the future popularity trend, as future popularity could ei-
ther increase exponentially or stagnate, introducing uncer-
tainties to the prediction performance. Additionally, how to
transfer the preceding-term dynamics learned from the ob-
served diffusion process into future-term trends remains an
unexplored challenge. Against this background, we propose
CasFT, which leverages observed information Cascades and
dynamic cues extracted via neural ODEs as conditions to
guide the generation of Future popularity-increasing Trends
through a diffusion model. These generated trends are then
combined with the spatiotemporal patterns in the observed
information cascade to make the final popularity prediction.
Extensive experiments conducted on three real-world datasets
demonstrate that CasFT significantly improves the prediction
accuracy, compared to state-of-the-art approaches, yielding
2.2%-19.3% improvement across different datasets.

Introduction

The advent of the digital age has led to the emergence of
various online social platforms (OSNs). Users on OSNs can
freely post and share their interests, which can then be fol-
lowed or re-posted by others, resulting in the widespread
dissemination of content in the form of information cas-
cades (Cheng et al. 2014). In such an era of information
explosion, understanding future trends in information —
predicting its future popularity — can aid social manage-
ment (Shen et al. 2014) and benefit various applications, in-
cluding recommendation systems (Wang et al. 2021), fake
news detection (Lazer et al. 2018), and personalized user ex-
periences (Li et al. 2014). Specifically, this prediction task,
known as information popularity prediction, aims at fore-
casting the future increase in the popularity of given content,
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Figure 1: A toy example of information popularity predic-
tion problem (top) and the variations of average growth rates
after observation time in Weibo and APS datasets, respec-
tively (bottom), where ¢, represents the observation time and
t,, represents the prediction time.

such as predicting the number of retweets that may occur
within a specified period in the future for a tweet.
State-of-the-art approaches mainly focus on capturing
spatiotemporal patterns from observed cascades by adopting
various deep learning techniques, such as Recurrent Neural
Networks (RNNSs) (Lu et al. 2023), attention mechanism (Yu
et al. 2022) or Graph Neural Networks (GNNs) (Wang et al.
2022; Chen et al. 2019). However, existing approaches pre-
dominantly focus on modeling cascades before an obser-
vation time, neglecting their evolution of trends between
the observation time and the prediction time, which is vi-
tal for popularity prediction. For instance, Figure 1 illus-
trates the average popularity growth rates between obser-
vation (Z,) and prediction (¢,) times in Twitter and APS
datasets, where the growth rate represents the increase of
popularity per unit of time. Notably, during this period, the



variation in growth rates fluctuates significantly across both
two datasets, highlighting different cascade incremental pat-
terns, which contributes to the uncertainty in depicting fu-
ture diffusion trends. Subsequently, achieving robust pop-
ularity prediction necessitates accommodating such uncer-
tainties by accounting for cascade evolution patterns after
the observation period. Nevertheless, the actual dynamic
changes in cascades during this period are invisible when
performing real-time popularity prediction.

Against this background, we resort to generative models
to simulate the cascade evolving patterns between the ob-
servation and prediction times for boosting popularity pre-
diction performance. However, there exist two difficulties in
characterizing the unique features in the patterns: 1) the in-
cremental popularity equals the integral of the growth rate,
which is highly fluctuated as evidenced by Figure 1; and 2)
information diffusion is a complex propagation process that
is susceptible to external factors, resulting in varying pat-
terns of uncertainties that need to accommodate.

To address these challenges, we propose CasFT, a novel
information popularity prediction technique that aims to
capture the evolving patterns of information Cascades
over time, in particular, the Future propagation Trend.
CasFT leverages neural Ordinary Differential Equations
(ODEs) (Chen et al. 2018) to model the growth rate based
on corresponding graph structure and sequential event infor-
mation under observation, propagate the growth rate from
the observation time to the prediction time, and calculates
the cumulative popularity during several periods by the inte-
gration of the growth rate. We take the historical information
diffusion representation and the future dynamic cumulative
popularity as conditions, adopt diffusion models to generate
the future trend of information popularity, and fuse the cas-
cade representation with the generated cues for prediction.
In summary, our contributions are as follows:

* We revisit the existing cascade popularity prediction
methods and identify the importance of modeling future
trends of popularity after observation which contributes to
the final prediction.

* We propose CasFT, which is designed to capture the
evolving dynamic patterns of both the information cas-
cades and growth rate with neural ODEs. We leverage dif-
fusion models to generate future trends of popularity and
concatenate them with dynamic cascade representations
together for prediction.

* We conduct extensive experiments to evaluate CasFT on
several real-world information cascade datasets. Results
show that CasFT achieves superior performance compared
to a sizeable collection of state-of-the-art baselines on
the information popularity prediction task, yielding 2.2%-
19.3% improvement over the best-performing baselines
across different datasets.

Related Work

In the current literature, cascade popularity prediction tech-
niques can be roughly classified into three categories.

Feature-based approaches: Feature-based approaches ex-
tract observed features manually which include informa-

tion about the content, such as tags (Ma, Sun, and Cong
2013), topic features (Martin et al. 2016), and graph struc-
tures (Gao, Ma, and Chen 2014; Wang et al. 2016), tempo-
ral features such as publication time (Petrovic, Osborne, and
Lavrenko 2011; Wu et al. 2016), observation time (Cheng
et al. 2014; Yang and Leskovec 2011), first participation
time (Zaman, Fox, and Bradlow 2014), etc. However, these
works heavily rely on the quality of hand-crafted features
and thus are dataset-specific and have limited generalizabil-
1ty.

Generative-based approaches: These methods use proba-
bilistic models to describe the propagation, including epi-
demic models (Matsubara et al. 2012), survival analy-
sis (Lee, Moon, and Salamatian 2012), and various stochas-
tic point processes, e.g., Poisson process (Bao et al. 2015),
Hawkes process (Zhao et al. 2015), (Zhang, Aravamudan,
and Anagnostopoulos 2022). However, the selection of un-
derlying probabilistic models can lead to significant differ-
ences in performance.

Deep-learning-based approaches: The recent rapid devel-
opment of deep learning has also spurred the emergence
of numerous information cascade models based on deep
neural networks. DeepHawkes (Cao et al. 2017) constructs
an end-to-end network by Hawkes processes. DeepCas (Li
et al. 2017) is the first cascade graph representation learning
method, capturing both structural and temporal information.
VaCas (Zhou et al. 2020a) and CasFlow (Xu et al. 2021)
propose a hierarchical graph learning method using varia-
tional autoencoders or normalizing flows to model uncer-
tainty in cascade graphs, and a bidirectional GRU to capture
temporal dynamics. CasSeqGCN (Wang et al. 2022) aggre-
gates cascade node representations using a dynamic routing
mechanism. CTCP (Lu et al. 2023)integrates multiple cas-
cades into a diffusion graph to further capture the correla-
tion between cascades and users. However, existing methods
only consider modeling cascades within observation. We ar-
gue that CasFT incorporates the future trends of popularity,
thereby improving the prediction performance.

Preliminaries

In this section, we present the definitions of key concepts
in our work and give a brief introduction to the concepts of
neural ODEs and diffusion models.

Problem Definition

Suppose that a Twitter user ug posts a tweet I at time t; = 0
(we set the start time to 0) and other users can interact with
tweet [ through various actions such as liking, retweeting,
and commenting. Here we focus on the “retweet” behav-
ior, while our work can also be generalized to other actions.
Specifically, when a user u; retweets I posted by user wug
at time t1, we can define a triplet (ug, u1,t1) to present the
diffusion of information I from user ug to user u;. Subse-
quently, a series of such triplets constitutes a retweet cas-
cade C. Specifically, within a given observation time ¢, the
retweet cascade C(t,) can be defined as the set of all rele-
vant triplets, i.e., C(to) = {(us,, Wiy, t:) };c > Where N rep-
resents the total number of triplets involved in the retweet
process during the observation period and ¢; < ¢,.



Cascade Graph: Given a tweet I and an observation time
t,, the cascade graph can be defined as G(t,) = (V.,E.),
where V. represents the set of users involved in C(%,), and
E. represents the set of edges, each denoting a retweet rela-
tionship between two users (nodes).

Cascade Sequence: Different from the cascade graph, the
cascade sequence S(t,) for cascade C(t,) is a collection of
users, each arranged in chronological order based on their
timestamps, i.e., S(t,) = {ug, u1,...,un}.

Global Graph: Given all the retweet cascades under the
observation time t,, we define the global graph as § =
{G1(t,)|I € I}, where the edge in &, represents the node
relationship from cascading, such as the follower/followee
relationship in the social network.

Cascade Popularity Prediction: Given a cascade C(¢,) and
a duration ¢,, we predict its incremental popularity P over
the time interval from ¢, to ¢, , where t,, > t,,, and %, is the
prediction time. P represents the number of triplets occur-
ring during the time period (¢,,t,).

Neural Ordinary Differential Equations

A neural Ordinary Differential Equation (ODE) (Chen et al.
2018) describes the continuous-time evolution of variables.
It represents a transformation of variables over time, where
the initial state at time ¢o, denoted as h(¢g), is integrated
forward using an ODE to determine the transformed state at
any subsequent time ¢;.

%it) = f(h(t),t;0) where h(0) =hg €))

h(t;) = h(ty) + / T, @)

b dt

where f denotes a neural network, such as a feed-forward or
convolutional network.

Diffusion Models

Diffusion models (Ho, Jain, and Abbeel 2020) are used to
generate high-quality samples from complex data distribu-
tions through a bi-directional process.

The forward process of diffusion model is a Markov
Chain that gradually adds Gaussian noise to z°:

g(a* T |2°) Hq alz'7h), 3)

q(a'lz'™h) = N V1= Bt Y Bed), (4
where T is the timesteps of adding noise and 3; € (0,1) is
the variance schedule.

For the denoising process, the goal is to learn a condi-
tional probability distribution pg(x!~1|x?) that reverses the
diffusion process:

po(z'Hat) = N(a' 7Y po(ah, b), op (2, )I),  (5)

where the parameter 6 can be optimized by minimizing
the negative log-likelihood via an Evidence Lower Bound
(ELBO):

mgnEq(IO) < mein Eq(IO:K)L (6)

k 1
Zl po(a*”|z") 7

L =—logp(x xk|:ck 0

Our Method: CasFT

Our proposed CasFT can be summarized as a three-step
model: the first step involves extracting spatiotemporal pat-
terns from the observed cascade, the second step simulates
the future trends of popularity increment, and the third step
makes the final prediction. The overall framework is shown
in Fig. 2. We now provide a detailed discussion of its main
components.

Historical Spatiotemporal Modeling

Given an observed cascade C(to), CasFT first extracts the
spatiotemporal features from it. Specifically, this step in-
volves two components: (1) spatial structural pattern extrac-
tion from the observed cascade graph G(ty) and the global
graph G, and (2) temporal pattern extraction based on the
cascade sequence. The details are outlined as follows.

Spatial Structural Pattern Extraction: In light of the
distinct characteristics between the cascade and global
graphs, we employ two different graph embedding methods
to extract unique structural patterns from each, respectively.
For the cascade graph, we use GraphWave (Donnat et al.
2018) to capture local structural information, as referenced
in previous studies (Zhou et al. 2020b; Xu et al. 2021). For
the large-scale global graph, we employ NetSMF (Qiu et al.
2019), which is designed for large-scale networks and can
quickly learn interactions between all users, efficiently em-
bedding these global structural patterns into node embed-
dings. Specifically, given the observed cascade graph G(t,)
and the global graph G, we calculate the local-view and
global-view representations of users as follows:

E. = GraphWave(G(%,)), (8)
E, = NetSMF(G), )

where E. and E, represent local-view and global-view rep-
resentations for users in G(t,) and G, respectively. For a spe-
cific user u;, we retrieve its representations from these two
views according to its index, denoted as E.(u;) and E,(u;).

Temporal Pattern Extraction: In this phase, we split
the cascade sequence S(t,) into multiple sub-sequences
in chronological order, represented as S = {S;}jen =
{(uo), (uo,u1),- .., (ug,u1,...,un)}, and employ the self-
attention mechanism (Vaswani et al. 2017) to each sub-
sequence to capture its internal interdependencies, thereby
accounting for the long-term history information. Firstly, for
each timestamp ¢;, we define a temporal encoding procedure
by trigonometric functions:

cos(t;/10000°F "), if j is odd,
[2(t)]; = ; (10)
sin(t; /100008 ), if j is even.
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Figure 2: An overview of our proposed model CasFT.

We deterministically compute z(¢;) € RE, where B is the
dimension of encoding and get Z; which is the set of z(¢;).
The initial embedding of each sub-sequence .S; is specified
by

X(Z) = Z(ti) + Ec(ui), (11)
Eﬁ = {X(O),X(l), ...,X(i)}, (12)
E; = {Eg(uo)vEg(ul)v"'vEg(ui)}7 (13)

where u; € S, and t; is its associated time stamp. We then
encode EJ and Eg via two independent self-attention layers.
Specifically, the scaled dot-product attention (Vaswani et al.
2017) is defined as:

T

s = Attention(Q, K, V) = Softmax(QK

Vd
where @, K,V represent queries, keys, and values. In our
case, the self-attention operation takes EJ or E; as input
and converts them into different groups of @, K, and V'
through separate linear transformations. By applying the
above self-attention operation to all sub-sequences, we ob-

WV, (14

tain sets of hidden representations s, = {s’ sl ..., sV
and s, = {s),s},...,s]'} for the local-view and global-

view, respectively. Finally, we concatenate these two views
of hidden representations at the sub-sequence level to form
the final historical spatiotemporal features of S, denoted by
{s0,S1,-.-,SN}.

Interpretation of Future Trends

As we discussed in the Introduction section, the real dynam-
ics of cascade evolution between the observation and pre-
diction periods are invisible and difficult to depict due to
their fluctuations. To address this challenge, we designed
a dynamic cues-driven diffusion model to simulate future
trends based solely on the observed cascades. Specifically,
this model consists of two components: (1) a dynamic cues
learning module and (2) a diffusion model-based future
trends simulation module. To acquire the dynamic cues, we

are inspired by ODEs, which are used to model quantity
changes over time in dynamic systems. We introduce a neu-
ral ODEs to model the continuous-time growth rate during
the observation period, capturing its evolving tendency. Af-
terward, the future growth rate between the observation and
prediction periods can be autoregressively predicted using
this neural ODEs. Finally, the dynamic cues of popularity in-
crement are derived through an integration operation based
on these predicted growth rates. However, one limitation of
ODE:s is that they are constrained by the initial state of the
dynamic system, leading to popularity predictions based on
the estimated growth rate that are biased and lack realistic
variability. Accordingly, we further divide the estimated pe-
riod into several time spans and employ diffusion models
to generate incremental popularity in each time span, condi-
tioned on the growth rate.

Dynamic Cues Learning with Neural ODEs: We lever-
age neural ODEs to model the continuous-time growth rate
dynamics with a vector representation h;, at every times-
tamp t;. Here we parameterize the growth rate using hidden
state dynamics:

A"(t) = fi(hy),

where f is a linear neural network with the softplus function
to ensure the output is positive. As for the continuous-time
hidden state h;,, we use a multi-layer fully connected neural
network fo to model the continuous change in the form of
an ODE. When a new retweeting action occurs at time t;,
we use a GRU function g to model instantaneous changes
triggered by a newly observed event:

dhy,

5)

dt f2(t7 tlfl)a ( 6)
h, = ODESolve(fa,hy, ., (ti-1,t:)), A7)
h,, = g(hy,,s;), (18)



and the popularity at time ¢; can be calculated as:

t;
Pt'[, = )\*(T)dT = Ati' (19)
0
Then we can get the hidden state, growth rate, and cumula-
tive popularity at an arbitrary time by the above equations,
even after observation time.

Future Trends Simulation with Diffusion Model: We
first divide the time between the observation and pre-
diction time into ! uniform time intervals, denoted as
{(to, ts1)y-ees (Esi1, tsi), ey (tsl—17 tsl)}’ where i € [. The
start time is ¢, and the end time ¢,; equals to ¢,,. We aim to
model the incremental popularity in each time interval and
define Y = (P, P, ..., P) as the sequential increase pro-
cess of popularity. y; represents the popularity during the
time interval (¢;_1, ;).

We compute the hidden state h;_at the exact observa-
tion time, and the dynamic cues {A;_,,...,As,, } by using
Eq. (16) and (19), respectively. We then concatenate them
together to form a new guide vector c. Conditioned on c, we
utilize the diffusion model to approximate the real distribu-
tion of the incremental popularity sequence Y. Specifically,
we characterize the diffusion operation of Y as a Markov
process (Y9, Y1 ..., YX) to model the potential changes of
incremental popularity over the prediction window, with T'
denoting the number of diffusion steps. In the forward pro-
cess, Gaussian noise is added to Y step by step until it is
corrupted into pure Gaussian noise, which is formulated as
follows:

g(YFIYF 1) = N(YF /1= B YR~1, BD). (20)

During the reverse diffusion process, we iteratively recon-
struct the incremental popularity sequence Y for the fi-
nal prediction. Specifically, the denoising process does not
only depend on the representation obtained in the previous
step but also on the significant cue c serving as a condition,
which is formulated as follows:

K

po(Y""|c) == p(Y™) HPS(Ykil‘kac)’ 2D
k=1

In our implementation, we adopt a fully connected layer to
parameterize the denoising process and use Denoising Dif-
fusion Implicit Models (DDIM) (Song, Meng, and Ermon
2020) to generate segmented popularity sequence Y .

Prediction & Optimization

Prediction. After obtaining both the hidden state h;_ at ob-
servation time ¢, and the generated segmented popularity
sequence Y'Y, we concatenate and feed them into an MLP to
make the final cascade popularity prediction:

P = Softplus(MLP([Y°, h,,])) (22)

where the softplus activation function is to ensure the pre-
dicted popularity is positive.

Optimization. The training objective of CasFT can be de-
composed into a regression loss and a generative loss. As

Dataset Twitter APS Weibo
Cascades 86,764 207,685 119,313
Avg. popularity 94 51 240
Number of cascades in two observation settings
Train(1d//3y0.5h) 7,308 18,511 21,463
Val(1d/3y/0.5h) 1,566 3,967 4,599
Test(1d/3y/0.5h) 1,566 3,966 4,599
Train(2d/5y/1h) 10,983 32,102 29,908
Val(2d/5y/1h) 2,353 6,879 6,409
Test(2d/5y/1h) 2,353 6,879 6,408

Table 1: Statistics of the three datasets.

for the regression part, the loss function is defined as:

M

L1= 50> (loga(P+1) — logy(P+1)
k=1

2
)

(23)

where P and P is the ground-truth and the predicted popu-
larity, respectively. For the generative part, we minimize the
following negative log-likelihood:

M

[,2 = — Z logpg(Y,?|ck). (24)
k=1

To sum up, the final loss is defined as:
L=L1+7Los, (25)

where 7 is a hyperparameter used to adjust the trade-off be-
tween two losses.

Experiments

In this section, we first present our benchmark datasets
and then evaluate our model CasFT' against state-of-the-art
baselines in information cascade popularity prediction task
to answer the following questions:

RQ1: Compared to state-of-the-art baselines, can our ap-
proach achieve a more accurate prediction of cascade popu-
larity?

RQ2: What are the benefits of employing neural ODEs
to model the growth rate? How much does it contribute to
performance improvement?

RQ3: Why do we need diffusion models for enhancing
the modeling of future trend dynamics? In contrast, how
does the utilization of simpler models capture this charac-
teristic?

RQ4: What is the impact of the hyperparameters, includ-
ing the number of segmented periods, the choice of ODES-
olver, the hidden dimension, and the diffusion steps?

Datasets and Preprocessing

We conducted experiments on three real-world datasets,
including Twitter, APS (Shen et al. 2014), and Sina
Weibo (Cao et al. 2017). The details of these datasets are
as follows:

"https://github.com/UM- Data- Intelligence-Lab/CasFT



Twitter APS Weibo

Method 1 day 2 days 3 years 5 years 0.5 hours 1 hour
MSLE MAPE | MSLE MAPE | MSLE MAPE | MSLE MAPE | MSLE MAPE | MSLE MAPE
Feature-based | 7.8268 0.7073 | 6.5154 0.6514 | 1.9881 0.3085 | 1.9696 0.3193 | 4.0788 0.4094 | 3.6380 0.4268
SEISMIC 10.687 0.9689 | 8.1851 0.8147 | 2.0583 0.3013 | 2.3013 0.4320 | 5.0300 0.4819 | 4.0594 0.5003
DeepCas 6.3297  0.6566 | 5.7146  0.6671 | 2.1051 0.2869 | 1.9260 0.3458 | 4.6460 0.3258 | 3.5532 0.3532
DeepHawkes | 5.9341 0.5017 | 4.8489 0.5189 | 1.9142 0.2823 | 1.8145 0.3368 | 2.8741 0.3041 | 2.7434 0.3346
CasCN 5.8742  0.4894 | 4.7154 0.4974 | 1.8930 0.2763 | 1.7494 0.3208 | 2.7931 0.2940 | 2.6831 0.3255
VaCas 5.5124 04796 | 42147 04871 | 1.7764 0.2697 | 1.6945 0.3012 | 2.5246 0.2847 | 2.3451 0.2997
CasFlow 47799 0.4150 | 3.6888 0.4222 | 1.4370 0.2401 | 1.3346 0.2624 | 2.3370 0.2665 | 2.2232  0.2949
CTCP 5.3991 0.3757 | 3.6016 0.3773 | 1.7676 0.3054 | 1.3751 0.2908 | 2.5572 0.3056 | 2.2968 0.3010
CasFT 3.8546 0.3674 | 3.4496 0.3605 | 1.2468 0.2282 | 1.1748 0.2561 | 2.1728 0.2448 | 2.0655 0.2695
(Improve) 19.36%1 2.21%1 | 4.22%T 4.45%71 | 13.24%7T 4.96%71 | 11.97%1 2.40%1 | 7.02%71 8.14%1 | 10.07%7T 8.61%7T

Table 2: Performance comparison between baselines and CasFT on three datasets across different observation times measured
by MSLE, MAPE (lower is better).

Twitter APS Weibo

Method 1 day 2 days 3 years 5 years 0.5 hours 1 hour
MSLE MAPE | MSLE MAPE | MSLE MAPE | MSLE MAPE | MSLE MAPE | MSLE MAPE
CasFT-w/o FT 48641 0.3964 | 4.1154 0.4531 | 1.4147 0.2504 | 1.3544 0.2805 | 2.3964 0.2745 | 2.3412 0.2933
CasFT-w/o ODE 43115 0.3902 | 3.7468 0.4174 | 1.3241 0.2473 | 1.2366 0.2778 | 2.3054 0.2601 | 2.2247 0.2794
CasFT-w/o Diffusion | 4.2645 0.3887 | 3.6618 0.4037 | 1.3258 0.2466 | 1.2364 0.2776 | 2.3312 0.2631 | 2.2644 0.2819
CasFT-FM 4.5334  0.3875 | 4.0047 0.4329 | 1.3847 0.2495 | 1.3017 0.2798 | 2.3645 0.2681 | 2.3015 0.2884
CasFT 3.8546 0.3674 | 3.4496 0.3605 | 1.2468 0.2282 | 1.1748 0.2561 | 2.1728 0.2448 | 2.0655 0.2695

Table 3: Performance comparison between CasFT and CasFT-variants on three datasets under two observation times measured

by MSLE, MAPE (lower is better).

» Twitter: We collected tweets posted between March 1
and April 15, 2022, constructing the cascades based on
the hashtag, where original tweets are posted between
March 1 and March 31.

* American Physical Society (APS): This dataset includes
papers published in APS journals between 1893 and
1997, where each paper and its citations form a citation
cascade.

* Sina Weibo: Weibo is the largest Chinese microblogging
platform, where each original microblog post and subse-
quent reposts can form a repost cascade.

Following previous works (Xu et al. 2021; Lu et al. 2023),
we set observation time as 1 day and 2 days for the Twitter
dataset, and 3 years and 5 years for the APS dataset, for
Weibo, the observation times are set to 0.5 hours and 1 hour.
Furthermore, prediction time is set to 15 days for Twitter, 20
years for APS, and 24 hours for Weibo. In addition, we filter
out cascades with fewer than 10 participants during the ob-
servation periods. For all datasets, 70% of the data is used for
training, 15 % for validation, and 15% for testing. Detailed
information about the three datasets is provided in Table 1.

Baselines

We compare CasFT against a sizeable collection of state-of-
the-art baselines: Feature-based methods extract key fea-
tures (cascade size, temporal intervals, etc.) and use an
MLP model for prediction. SEISMIC (Zhao et al. 2015) de-
signs a statistical model based on the theory of self-excited
point processes. DeepCas (Li et al. 2017) represents cas-
cades as random walk paths and uses a bi-directional GRU

with attention for effective modeling and prediction. Deep-
Hawkes (Cao et al. 2017) integrates the Hawkes process
and deep learning, focusing on user impact, self-excitation,
and time decay for cascade modeling. CasCN (Chen et al.
2019) adopts a novel multi-directional/dynamic GNN. Va-
cas (Zhou et al. 2020b) devises a hierarchical graph learn-
ing method and considers the uncertainty. CasFlow (Xu
et al. 2021) mainly considers the effects of local and global
graphs. CTCP (Lu et al. 2023) updates hidden states in real-
time as diffusion events occur.

Evaluation Metrics

Two commonly used metrics, mean squared logarithmic er-
ror (MSLE) and mean absolute percentage error (MAPE),
are employed to evaluate the performance of models:

M
1 R
MSLE = i k§:1(1og2 (P+1) — (logy (P +1))%, (26)

1 M
MAPE:MkZ_l

‘logz (P +2) —log, (P +2)
log, (P + 2) ’

27

where P represents the true popularity, P denotes the pre-
dicted popularity, and M represents the number of cascades.
The operations °+ 1’ and "+ 2’ are used for scaling to avoid
potential zero values in the denominator or logarithmic op-
erations.

Performance Comparison (RQ1)

Table 2 shows the overall performance of the three datasets.
We observe that our method CasFT significantly outper-
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Figure 3: Impact of the diffusion steps.
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Figure 4: Impact of the hidden dimension.

forms all baselines on MSLE and MAPE. For example, com-
pared to the best-performing baselines, our CasFT achieves
a4.2%-19.3% improvement of MSLE, and a 2.2%-8.6% im-
provement of MAPE, on the three datasets with two different
observation times. We see that CasFT demonstrates notable
enhancement, especially on the Twitter dataset. This can be
attributed to the fact that cascades on Twitter often lack intri-
cate multi-level forwarding information, resulting in a rela-
tively simpler structure of the cascade graph compared to the
Weibo and APS datasets while previous research predomi-
nantly concentrates on the evolution of dynamic graphs, un-
derscoring the versatility of our proposed method, CasFT, in
effectively handling various types of cascade graphs.

Ablation Study (RQ2 & RQ3)

To answer RQ2 and RQ3, we have conducted a series of
experiments where we introduced different variants of our
CasFT model. We conduct the ablation study to investigate
the contribution of each component and develop four vari-
ants: 1) CasFT-w/o FT. We remove the future trend model-
ing module and only use the spatiotemporal features S for
prediction; 2) CasFT-w/o ODE. We take the spatiotempo-
ral features S as the condition of the later diffusion models,
without parameterizing the growth rate; 3) CasFT-w/o Dif-
fusion. We remove the diffusion block and directly input the
condition c into an MLP; and 4) CasFT-FM. We just use an
MLP to replace our future trend modules, predict both the
segmented popularity and the incremental popularity during
(to,tp), and also take the predicted segmented popularity se-
quence as a significant cue.

The results and comparison of these variants are shown
in Table 3. The comparison of CasFT over CasFT-w/o FT
validates the necessity of modeling the future trend of cas-
cade with an improvement of up to 20.75%. Through a
comparative analysis of CasFT-w/o FT, CasFT-w/o ODE,
and CasFT-w/o Diffusion, it becomes evident that model-
ing the growth rate and segmented popularity generation
both facilitate prediction accuracy, achieving improvements
of 20.75%, 13.63%, and 10.70% respectively. We also de-
signed a variant CasFT-FM which outperforms CasFT-w/o
FT but is worse than CasFT, showing the usefulness of our
proposed future trend block.
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Figure 5: Impact of the interval number.

Twitter (1 day) | APS (3 years) | Weibo (0.5 hours)
ODE. Solver -ty =N APE [MSLE MAPE|MSLE MAPE
bosh3 4.0933 0.3764|1.2701 0.2292|2.1792 0.2509
adaptive_heun [4.2215 0.3995 [ 1.2702 0.2291|2.1786 0.2578
culer 4.2487 0.3989|1.2837 0.2304|2.2188 0.2598
rkd 42115 0.3720|1.2644 0.2263|2.1780 0.2537
implicit_adams | 4.1503 0.3722 [ 1.2644 0.2263 |2.1780 0.2537
midpoint 4.0760 0.3697 | 1.2622 0.2280|2.1873  0.2457
dopris 3.8546 0.3679 | 1.2468 0.2282|2.1728 0.2448

Table 4: Impact of different types of ODE_Solver on the per-
formance of CasFT across the three datasets.

Hyperparameters (RQ4)

We investigate the influence of hyperparameters including
the hidden dimension of h;, the choice of ODESolvers, the
number of the time interval [/, and the diffusion steps. Firstly,
the diffusion steps serve as a crucial parameter for diffusion
models. To assess the influence of diffusion steps, we train
CasFT using varying steps, ranging from 500 to 1500. The
results are shown in Figure 3 and we find that the number
of diffusion steps has an impact on the Twitter dataset while
the MAPE in APS and Weibo datasets tend to be stable. Ad-
ditionally, among the ODESolver options shown in Table 4,
euler yields the worst performance because the error of eu-
ler’s method usually decreases as the step size decreases,
while dopri5 demonstrates relatively superior predictive ca-
pabilities and is used across all of our experiments.

Moreover, the prognostication of CasFT relies on the dy-
namic hidden state h; and the generated segmented popular-
ity sequence Y, prompting an investigation into the influ-
ence of the dimensionality of /; and the interval number [
of Y on the performance, shown in Figure 4 and Figure 5.
It is observed that both the dimension of the hidden state
and the number of intervals affect the ultimate forecasting
outcomes.

Conclusion

In this work, we propose CasFT, which leverages observed
information Cascades and dynamic cues modeled via neu-
ral ODEs as conditions to guide the generation of Future
popularity-increasing Trends through a diffusion model. The
generated trends are integrated with the spatiotemporal pat-
terns present in the observed information cascades to en-
hance the accuracy of popularity predictions. Experiments
on three real-world information cascade datasets demon-
strate the superior performance of CasFT compared to a
sizeable collection of state-of-the-art baselines. CasFT sig-
nificantly outperforms all the baselines, with 2.2%-19.3%
improvement over the best-performing baseline methods
across various datasets.
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