
Revisiting Synthetic Human Trajectories:
Imitative Generation and Benchmarks Beyond Datasaurus

Bangchao Deng
University of Macau
Macao SAR, China

yc37980@um.edu.mo

Xin Jing
University of Macau
Macao SAR, China

yc27431@um.edu.mo

Tianyue Yang
University of Macau
Macao SAR, China

mc35301@um.edu.mo

Bingqing Qu
BNU-HKBU United International

College, China
bingqingqu@uic.edu.cn

Dingqi Yang∗
University of Macau
Macao SAR, China

dingqiyang@um.edu.mo

Philippe Cudre-Mauroux
University of Fribourg

Switzerland
philippe.cudre-mauroux@unifr.ch

ABSTRACT
Human trajectory data, which plays a crucial role in various ap-
plications such as crowd management and epidemic prevention, is
challenging to obtain due to practical constraints and privacy con-
cerns. In this context, synthetic human trajectory data is generated
to simulate as close as possible to real-world human trajectories,
often under summary statistics and distributional similarities. How-
ever, the complexity of humanmobility patterns is oversimplified by
these similarities (a.k.a. “Datasaurus”), resulting in intrinsic biases
in both generative model design and benchmarks of the gener-
ated trajectories. Against this background, we propose MIRAGE, a
huMan-Imitative tRAjectory GenErativemodel designed as a neural
Temporal Point Process integrating an Exploration and Preferential
Return model. It imitates the human decision-making process in
trajectory generation, rather than fitting any specific statistical dis-
tributions as traditional methods do, thus avoiding the Datasaurus
issue. Moreover, we also propose a comprehensive task-based eval-
uation protocol beyond Datasaurus to systematically benchmark
trajectory generative models on four typical downstream tasks,
integrating multiple techniques and evaluation metrics for each
task, to comprehensively assess the ultimate utility of the gener-
ated trajectories. We conduct a thorough evaluation of MIRAGE on
three real-world user trajectory datasets against a sizeable collec-
tion of baselines. Results show that compared to the best baselines,
MIRAGE-generated trajectory data not only achieves the best sta-
tistical and distributional similarities with 59.0-67.7% improvement,
but also yields the best performance in the task-based evaluation
with 10.9-33.4% improvement. A series of ablation studies also vali-
date the key design choices of MIRAGE. Our code and datasets are
at https://github.com/UM-Data-Intelligence-Lab/MIRAGE.
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1 INTRODUCTION
Human trajectory data is a key ingredient for a wide range of ap-
plications, including urban planning [67], traffic management [34],
epidemic analysis [15], predictive policing [57], and crowd moni-
toring [7]. These applications heavily rely on the quality of human
mobility models learnt from human trajectory data. However, ac-
quiring large-scale real human trajectory data is often challenging
due to practical constraints and privacy concerns. Therefore, syn-
thetic human trajectory data has been widely used as an alternative,
where generative models are learnt to generate artificial trajectories
that closely resemble real-world human trajectories, making human
trajectory data more readily available.

In the current literature, existing works on synthetic human
trajectory generation mostly focus on the resemblance under sum-
mary statistics and distributional similarities [28]. For example,
these works measure the resemblance in different aspects of mo-
bility characteristics such as spatial distribution (e.g. G-Rank) [26],
temporal distribution (e.g. stay duration) [38], OD flows (trips per
OD pair) [63], and user mobility patterns (e.g. I-Rank and DailyLoc)
[54], using divergence/distance metrics such as Kullback-Leibler
divergence (KLD) [3], Jensen-Shannon divergence (JSD) [12, 37],
earth mover’s distance (EMD) [2], Root Mean Squared Error (RMSE)
[38]. These similarities often serve on one hand as part of the
model design such as the model fitting objective [25], while on
the other hand also as the benchmarks for evaluating trajectory
generative models [23, 32, 37, 53]. However, while these similarities
provide insights into the differences between real and generated
data from various perspectives, they indeed oversimplify the com-
plexity of human mobility patterns, resulting in intrinsic biases in
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both generative model design and benchmarks of the generated
trajectories. Specifically, datasets that are similar over a number of
statistical properties may yield very different patterns, known as
“Datasaurus” [5, 33]. In the context of trajectory data, it implies that
statistically/distributionally similar trajectories may imply different
mobility patterns, which thus leads to different performances in
downstream tasks (as evidenced by our experiments in Section
5.3). Therefore, the resemblance under summary statistics and dis-
tributional similarities cannot fully reflect the ultimate utility of
generated trajectories in supporting downstream tasks.

A few recent works started to consider the utility of downstream
tasks, by either incorporating task-specific prior knowledge in the
generative model design, such as constraining the next locations in
a close neighborhood for traffic flow simulation [26], or benchmark-
ing generative models on a heuristically designed downstream task
with one specific technique to solve the task [12, 32, 65]. Never-
theless, these works are either limited by their task-specific design
or lack a comprehensive view of utility benchmarks. In particular,
heuristically designed downstream tasks may lead to unknown
biases in the utility evaluation, as the performance of different
techniques solving the same task often varies (as evidenced by
our experiments in Appendix A) and heuristically choosing one
technique as the benchmark is thus untrustworthy.

Against this background, we study in this paper the problem
of task-agnostic human trajectory generation and its benchmarks
beyond “Datasaurus”. Specifically, the task-agnostic generation
should be independent of specific downstream tasks and imitate
the human decision-making process in trajectory generation. Such
human-imitative design needs to consider the unique character-
istics of human trajectories. First, real-world human trajectories
usually consist of sparse and irregularly observed presence events,
where individuals voluntarily share their presence at semantic-
enriched locations under their own preference, such as check-ins
at Points of Interest (POIs1) on social media [59], which differ from
other periodic and regularly sampled mobility traces with only
GPS coordinates such as taxi trajectories [6]. To handle such hu-
man trajectories, some works simply treat human trajectories as
sequences without considering the temporal information [19, 23],
while some others heuristically transform human trajectories to
sequences of regularly observed events under a pre-defined and
dataset-specific time interval (e.g., every 30 minutes [12] or 1-hour
[3, 38]). However, these approaches are limited either in ignoring
the important temporal information, or in incorporating a strong
assumption of observing human trajectory in regular time intervals
and heuristically interpolating missing and removing redundant
events. Second, human decision-making on mobility choices has
been widely recognized and evidenced to follow an Exploration
and Preferential Return (EPR) model [25, 38, 44]. It presents indi-
viduals with a choice between two competing mechanisms: the
exploration mechanism selecting previously unvisited locations
and the preferential return mechanism to encourage returning to
a previously visited location. Existing works mostly design mech-
anistic EPR-alike models reliant on simple statistic models under
Markovian assumptions [3]. However, despite the advantage of

1Given the context of human trajectories, we do not distinguish the two terms “loca-
tions” and “POIs” throughout this paper.

being interpretable by design, these statistic models have intrinsic
limitations in accurately modeling the complex mobility patterns
observed in real-world human trajectories.

To address the above issues, we propose MIRAGE, a huMan-
Imitative tRAjectory GenErative model, which imitates the holistic
human decision-making process in trajectory generation and does
not explicitly fit any specific statistical distributions (while tra-
ditional EPR model does), thus avoiding the “Datasaurus” issue.
Specifically, a human trajectory consisting of a sequence of sto-
chastic presence events on continuous time is naturally a Temporal
Point Process (TPP). Subsequently, we design MIRAGE as a neural
TPP with intensity-free parameterization, benefiting from both the
flexibility of the neural network encoding the trajectory history and
the efficiency of the TPP in modeling continuous-time stochastic
events [43]. To generate one event of a human trajectory, we first
sample an event time from the neural TPP based on the encoded
trajectory history, and then sample the activity category further
conditioned on the sampled event time. Afterward, we design a
neural EPR model, mimicking the human decision-making pro-
cess to choose either exploring unvisited locations or returning to
previously visited locations, conditioned on the sampled time and
activity category. We also adopt a user variational autoencoder to
imitate individual preferences in the trajectory generation process.

Meanwhile, we also propose a comprehensive task-based evalu-
ation protocol to systematically benchmark trajectory generative
models beyond summary statistics and distributional similarities
(i.e. “Datasaurus”). The key idea is to evaluate whether the gener-
ated trajectories are similar to real trajectories in practically sup-
porting different downstream tasks. To this end, we evaluate the
performance of both real and generated mobility trajectories on
a variety of typical downstream tasks using multiple techniques
and evaluation metrics for each task, so as to average out the bi-
ases of individual techniques and metrics. We measure the paired
performance discrepancy between the real and generated mobility
trajectories using relative errors, such as Mean Absolute Percentage
Error (MAPE) and Mean Squared Percentage Error (MSPE), which
finally serve as benchmarks to assess the ultimate utility of the
generated trajectories.

We summarize our contribution as follows:

• We reveal the limitations of existing human trajectory generative
models in focusing on the summary statistics and distributional
similarities between real and generated trajectories, which lead to
intrinsic biases in both generative model design and benchmarks.

• We propose MIRAGE, a huMan-Imitative tRAjectory GenErative
model designed as an intensity-free neural Temporal Point Pro-
cess integrating a neural Exploration and Preferential Return
model to imitate the human decision-making process in trajec-
tory generation.

• We propose a comprehensive task-based evaluation protocol to
systematically benchmark trajectory generative models on four
typical downstream tasks, integrating multiple techniques and
evaluation metrics for each task, to assess the ultimate utility of
the generated trajectories.

• We conduct a thorough evaluation of MIRAGE on three real-
world human trajectory datasets against a sizeable collection of
state-of-the-art baselines. Results show that compared to the best
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baselines, MIRAGE-generated trajectory data not only achieves
the best statistical and distributional similarities with 59.0-67.7%
improvement but also yields the best performance in the task-
based evaluation with 10.9-33.4% improvement.

2 RELATEDWORK
2.1 Mobility Trajectory Generation
Early works mostly model individual mobility with explicit physical
meanings [16, 45] and generate synthetic trajectories under the dis-
tributions of key characteristics observed in real mobility patterns,
such as trip lengths, start locations, or start times, etc. As a widely
recognized mobility model, the Exploration and Preferential Return
model (EPR) [44] unifies exploration and return mobility patterns
by selecting new locations based on a random walk process for
exploration and revisiting previously visited locations based on
their frequency for preferential return. Subsequent studies further
extend the EPR model by integrating sophisticated spatial or social
information, such as mining the correlation between location ca-
pacity and social network sizes [1], incorporating a nested gravity
model into the EPR model [39], linking mobility to social ties and
studying the dynamics of spatial choices based on social behavior
[48], and integrating the circadian propensity of human mobility
and Markov-based models into the EPR model [25]. In addition,
the EPR model is also shown to be universal in human behavior
modeling in general, such as user activities in recommendation
systems [36] and human behaviors in cyberspace [22]. However,
these models, often reliant on heuristic statistical assumptions, have
limitations in accurately modeling the complex mobility patterns
observed in real-world trajectories.

Recently, deep learning generative models have been widely
adopted for mobility trajectory generation. They can flexibly cap-
ture the complex spatiotemporal patterns encoded in real-world
mobility trajectories without strong prior assumptions. For example,
SeqGAN [62] is the pioneering work of sequence generation based
on Generative Adversarial Networks (GAN); MoveSim [12] later
incorporates information about physical distance, temporal period-
icity, and historical transition matrix of location into a GAN frame-
work; TrajGen [6] employs a CNN-based GAN to map mobility
trajectories to images and to generate synthetic trajectory images,
followed by a Seq2Seq model to output the synthetic trajectory;
DeltaGAN [54] adopts a two-stage generative model to simulate
human mobility trajectories, capturing fine-grained timestamps
and effectively representing temporal irregularities; TS-TrajGen
[26] combines the A* algorithm [17] with a GAN framework to
generate continuous trajectories on urban road networks; SAVE
[23] combines VAE and LSTM for mobility trajectory generation.

In addition, (neural) temporal point processes [8, 42, 64, 69] are
also widely used to model the temporal dynamics of user behaviors.
In the context of trajectory generation, VOLUNTEER [32] incorpo-
rates a two-layer VAE model with a temporal point process to cap-
ture the characteristics of human mobility; ActSTD [65] enhances
the dynamic modeling of individual trajectories by utilizing neural
ordinary equations in the continuous location domain; DSTPP [64]
further models the complex spatiotemporal joint distributions us-
ing diffusion models. In this paper, beyond traditional generative
deep learning models, we further design and integrate a neural

EPR model with neural TPPs to imitate the human decision-making
process in trajectory generation.

2.2 Synthetic Mobility Trajectory Benchmarks
The benchmarks for synthetic mobility trajectories can be classified
into two categories [28]. First, statistical and distributional similari-
ties are the most widely used benchmarks, such as Kullback-Leibler
divergence (KLD) [3], Jensen-Shannon divergence (JSD) [12, 37],
earth mover’s distance (EMD) [2], Root Mean Squared Error (RMSE)
[38], which are used to measure the similarities between real and
generated trajectories in different aspects. For example, typical
mobility statistics include the radius of gyration [12, 26, 65], the
number of distinct locations visited per user per day [12, 54], I-Rank
(frequency of visiting personal top locations) [12, 38], and the num-
ber of daily trips per user [38], trip lengths between consecutive
trajectory points or between the origin and destination [12, 26, 53];
spatial distributions characterize the distribution of locations based
on factors like visits per location (i.e. G-Rank) [12, 26, 37, 50, 53]
or location popularity ranking [11]; temporal distributions charac-
terize the number of trips per hour of the day [38], stay duration
[12, 32, 37] and time intervals between check-ins [65]. However,
while these similarity metrics provide insights into the differences
between real and generated data from various perspectives, they
cannot fully reflect the ultimate utility of generated trajectories in
supporting downstream tasks.

Second, benchmarking on downstream tasks recently emerged
as an evaluation scheme for synthetic mobility trajectories. These
tasks include road map updating [6], next location prediction [26,
32], and spreading simulation [12, 53, 65]. However, these works
often use a heuristically designed downstream taskwith one specific
technique/algorithm to solve the task, which leads to unknown
biases in the utility evaluation. As evidenced in our experiments in
Appendix A, the performance of different techniques solving the
same task varies; heuristically choosing the results of one technique
as the benchmark is thus untrustworthy. Therefore, we propose
a comprehensive task-based evaluation protocol to systematically
benchmark synthetic mobility trajectories.

3 PRELIMINARIES
3.1 Problem Definition
Human Trajectory. A trajectory is defined as a time-ordered
sequence 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, where 𝑥𝑖 = (𝑡𝑖 , 𝑘𝑖 , 𝑙𝑖 ) is a presence
event defined as a tuple consisting of a timestamp 𝑡𝑖 , and a semantic
activity category 𝑘𝑖 , and a location (POI) 𝑙𝑖 .
Trajectory Generation. Given a real-world human trajectory
dataset, the objective is to generate a new trajectory dataset while
preserving the fidelity and utility of the original real-world dataset.

3.2 Neural Temporal Point Processes
3.2.1 Temporal Point Processes. A Temporal Point Process (TPP) is
a stochastic process where its realization is a sequence of discrete
events in time, represented as a sequence T = {𝑡1, ..., 𝑡𝑁 }, which
can be equivalently represented as a sequence of strictly positive
inter-event times 𝜏𝑖+1 = (𝑡𝑖+1 − 𝑡𝑖 ) ∈ R+. The conditional intensity
𝜆∗ (𝑡), which fully specifies the TPP, represents the instantaneous
rate of arrival of new events at time 𝑡 given the history of past
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Figure 1: An overview of ourMIRAGEwith 1) a trajectory his-
tory encoder and 2) a probabilistic event decoder integrating
a time decoder with intensity-free TPP, a category decoder, a
location decoder with neural EPR, and a user VAE.

events H𝑡 = {𝑡 𝑗 ∈ T |𝑡 𝑗 < 𝑡}, where (*) is used as a shorthand
for conditioning on the history. The conditional probability den-
sity function of time 𝜏𝑖+1 until the next event is computed by the
integration of 𝜆∗ (𝑡) as follows:

𝑝∗ (𝜏𝑖+1) = 𝜆∗ (𝑡𝑖 + 𝜏𝑖+1) exp
(
−
∫ 𝜏𝑖+1

0
𝜆∗ (𝑡𝑖 + 𝑠)𝑑𝑠

)
(1)

3.2.2 TPP Parameterization. Traditional TPPs often specify a sim-
ple parametric intensity function capturing relatively simple pat-
terns in event occurrences, such as the Hawkes process [18], which
often leads to poor results because of its limited flexibility in mod-
eling complex data. In this context, neural TPPs are developed to
use neural networks to learn complex dependencies from the his-
tory of TPPs, and then approximate the intensity function by some
parametric forms [43]. However, these intensity-based approaches
cannot achieve flexibility, efficiency, and ease-to-use simultane-
ously [42]. Alternatively, an intensity-free learning model of neural
TPPs is proposed to use a mixture of log-normal distributions to rep-
resent the conditional probability density function 𝑝∗ (𝜏) directly,
and thus bypass the cumbersome intensity function [42]. Due to
its advantage of closed-form sampling and likelihood computation,
the intensity-free approach has been widely adopted in learning
neural TPPs [13, 54]. We also adopt this approach in our work.

4 MIRAGE
To imitate the human decision-making process in trajectory genera-
tion, we design MIRAGE as an intensity-free neural Temporal Point
Process (TPP) integrating a neural Exploration and Preferential
Return (EPR) model. In the following, we first present the overview
of MIRAGE, followed by the details of individual components.

4.1 Overview
Figure 1 shows the overview of MIRAGE consisting of two compo-
nents. To imitate the human decision-making process, a trajectory

history encoder learns from the sequences of events using a re-
current neural network. Afterward, based on the output hidden
states of the trajectory history encoder, a probabilistic event de-
coder generates the probability distributions for the next event time,
activity categories, and locations in a cascading manner, where the
latter distribution depends on the samples drawn from the former
distribution. Notably, the distribution of the next event time is mod-
eled using an intensity-free TPP, while the distribution of the next
location is modeled by a neural EPR model. In addition, we also use
a Variational Autoencoder to model the distribution of individual
preferences on trajectory (User VAE).

4.2 Trajectory History Encoder
Representing a human trajectory as a sequence of events {𝑥1, 𝑥2, ...,
𝑥𝑛}, the trajectory history encoder first encodes individual event
𝑥𝑖 = (𝑡𝑖 , 𝑘𝑖 , 𝑙𝑖 ) to event embedding 𝑒𝑖 , and then adopts a Gated
Recurrent Unit (GRU) to encode the sequence of event embeddings.
Specifically, for each event (𝑡𝑖 , 𝑘𝑖 , 𝑙𝑖 ), we first encode the timestamp
𝑡𝑖 by converting it to the log inter-event time log(𝜏𝑖 ) = log(𝑡𝑖−𝑡𝑖−1).
This lossless conversion is to fit the formulation of the intensity-free
TPP; however, the actual timestamp 𝑡𝑖 is still useful in the decoding
process, and we will discuss this point later. We also encode the
category 𝑘𝑖 and location 𝑙𝑖 using two embedding layers 𝐸𝑘 and 𝐸𝑙 ,
respectively.

𝑒𝑡𝑖 = 𝑙𝑜𝑔(𝜏𝑖 ), 𝑒𝑘𝑖 = 𝐸𝑘𝑘𝑖 , 𝑒𝑙𝑖 = 𝐸𝑙 𝑙𝑖 (2)

The event embedding 𝑒𝑖 is obtained by concatenating 𝑒𝑡
𝑖
, 𝑒𝑘

𝑖
and 𝑒𝑙

𝑖
:

𝑒𝑖 = [𝑒𝑡𝑖 ; 𝑒
𝑘
𝑖 ; 𝑒

𝑙
𝑖 ] (3)

After obtaining a sequence of event embeddings, we then encode it
using a recurrent neural network of GRU:

ℎ𝑖 = 𝑔(ℎ𝑖−1, 𝑒𝑖 ) (4)

where 𝑔 represents the recurrent updating function of GRU. The
output hidden state ℎ𝑖 encodes all the trajectory history until 𝑡𝑖 .

4.3 Probabilistic Event Decoder
Based on the output hidden state ℎ𝑖 , the probabilistic event de-
coder generates the probability distribution for the next inter-
event time 𝑝∗ (𝜏𝑖+1), activity category 𝑝∗ (𝑘𝑖+1 |𝜏𝑖+1), and location
𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1, 𝑘𝑖+1) in a cascading manner, where the latter distribu-
tion depends on the samples drawn from the former distributions.
Note that here (*) denotes the conditioning on the trajectory history,
while the conditional probability emphasizes on conditioning on
drawn samples.

4.3.1 Time decoder with intensity-free TPP. Following the
intensity-free TPP [42], we use a mixture of log-normal distribu-
tions to characterize the conditional probability density function
of inter-event time 𝑝 (𝜏).

𝑝 (𝜏 |𝜔, 𝜇, 𝜎) =
𝑀∑︁

𝑚=1
𝜔𝑚

1
𝜏𝜎𝑚

√
2𝜋

exp
(
− (log𝜏−𝜇𝑚 )2

2𝜎2
𝑚

)
(5)

where𝑀 is the number of components of the mixture, 𝜔𝑚 denotes
the weight of each component, 𝜇𝑚 and 𝜎𝑚 are the logarithmic mean
and standard deviation of each component.
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Moreover, beyond the intensity-free TPP, we have two further
design considerations to better accommodate the human trajecto-
ries. First, the original intensity-free TPP is defined on inter-event
times only (as mentioned in the trajectory history encoder), which
ignores the actual timestamp 𝑡𝑖 that could play a crucial role in
human mobility modeling. For example, human trajectories exhibit
diurnal rhythms, where few events are observed during the night on
weekdays; in other words, if an event is observed at 𝑡𝑖 at midnight,
the next event will probably be in the morning of the next day. This
implies that 𝑝∗ (𝜏𝑖+1) should be skewed to the sleep duration here.
Therefore, we transform the timestamp 𝑡𝑖 into an hour-in-week
timestamp embedding 𝑡𝑒𝑚𝑏

𝑖
where 1 ≤ 𝑖 ≤ 168 (i.e., one of the 168

hours in a week), and 𝑡𝑒𝑚𝑏
𝑖

is used to further condition 𝑝∗ (𝜏𝑖+1).
The hour-in-week granularity is selected to capture both daily and
weekly dynamics as suggested by [59]. Second, human trajecto-
ries are intrinsically generated under individual preferences [32].
For example, user check-ins at POIs on social networks have been
widely used for user preference modeling [61]. Therefore, we also
define an individual preference embedding𝑢𝑒𝑚𝑏 for each trajectory
to condition 𝑝∗ (𝜏𝑖+1).

Then, we concatenate the hidden state of trajectory history ℎ𝑖 ,
the hour-in-week timestamp embedding 𝑡𝑒𝑚𝑏

𝑖
, and the individual

preference embedding 𝑢𝑒𝑚𝑏 as the overall time context for the con-
ditional probability density function of inter-event time 𝑝∗ (𝜏𝑖+1):

𝑐𝜏𝑖 = [ℎ𝑖 ; 𝑡𝑒𝑚𝑏
𝑖 ;𝑢𝑒𝑚𝑏 ] (6)

We then compute the parameters of the distribution 𝑝∗ (𝜏𝑖+1) using
an affine function of 𝑐𝜏

𝑖
:

𝜔𝑖 = softmax(𝑉𝜔𝑐𝑖 + 𝑏𝜔 )
𝜇𝑖 = 𝑉𝜇𝑐𝑖 + 𝑏𝜇
𝜎𝑖 = exp(𝑉𝜎𝑐𝑖 + 𝑏𝜎 )

(7)

where the softmax and exp transformations are used to enforce the
constraints on the distribution parameters (

∑
𝑚 𝜔𝑚 = 1, 𝜔𝑚 ≥ 0,

and 𝜎𝑚 > 0), and {𝑉𝜔 , 𝑏𝜔 ,𝑉𝜇 , 𝑏𝜇 ,𝑉𝜎 , 𝑏𝜎 } are learnable parameters.
Finally, we sample a next inter-event time 𝜏𝑖+1 according to the

log-normal mixture 𝑝∗ (𝜏𝑖+1) = 𝑝 (𝜏𝑖+1 |𝜔𝑖 , 𝜇𝑖 , 𝜎𝑖 ), and also obtain
the corresponding next event time 𝑡𝑖+1 = 𝑡𝑖 + 𝜏𝑖+1.

4.3.2 Category decoder. After obtaining the next inter-event
time 𝜏𝑖+1, we sample an activity category. In this step, we use a
slightly different (category) context vector 𝑐𝑘

𝑖
by replacing the times-

tamp embedding 𝑡𝑒𝑚𝑏
𝑖

in the time context vector 𝑐𝜏
𝑖
with the em-

bedding of the sampled next event time 𝑡𝑒𝑚𝑏
𝑖+1 , as follows:

𝑐𝑘𝑖 = [ℎ𝑖 ; 𝑡𝑒𝑚𝑏
𝑖+1 ;𝑢𝑒𝑚𝑏 ] (8)

This is because the next activity category 𝑘𝑖+1 is highly correlated
with its corresponding event time 𝑡𝑖+1; for example, the activity
category in the noon time should probably be “food” (one of the
nine categories on Foursquare [59]). Then, we compute a categorical
distribution conditioned on the category context vector 𝑐𝑘

𝑖
:

𝑝∗ (𝑘𝑖+1 |𝜏𝑖+1) = softmax(MLP𝜙 (𝑐𝑘𝑖 )) (9)

where MLP𝜙 refers to a multi-layer perception with parameters
𝜙 and softmax transforms its output to a categorical probability
distribution. We finally sample a next event category 𝑘𝑖+1 from
𝑝∗ (𝑘𝑖+1 |𝜏𝑖+1). Note that as the next event time 𝑡𝑖+1 = 𝑡𝑖 + 𝜏𝑡+1 can

be computed in closed-form from the sampled inter-event time 𝜏𝑡+1,
we keep using 𝜏𝑖+1 as the condition of 𝑝∗ (𝑘𝑖+1 |𝜏𝑖+1) for emphasizing
the sampling dependences.

4.3.3 Location decoder with neural EPR. After obtaining the
next event time 𝑡𝑖+1 and category 𝑘𝑖+1, we sample the next location
by designing a neural EPR model. Specifically, our location decoder
follows a two-step design. First, we sample a binary decision on
two competing modes: exploration (visiting a new location that is
not in the trajectory history) or return (visiting a previously visited
location in the trajectory history). Second, based on the sampled
mode, we then sample a location from the corresponding candidate
locations of the mode. We present the detailed design below.
Exploration/Return mode sampling. In this step, we learn to
sample one mode based on an extended context vector 𝑐𝑙

𝑖
, by further

adding the embedding of the sampled next event category 𝑘𝑒𝑚𝑏
𝑖+1 to

the context vector of category encoder 𝑐𝑘
𝑖
:

𝑐𝑙𝑖 = [ℎ𝑖 ; 𝑡𝑒𝑚𝑏
𝑖+1 ;𝑘𝑒𝑚𝑏

𝑖+1 ;𝑢𝑒𝑚𝑏 ] (10)

Subsequently, we feed this context vector to an MLP followed by a
softmax function, to output a distribution over the two modes of
𝑒𝑥𝑝𝑙𝑜𝑟𝑒 and 𝑟𝑒𝑡𝑢𝑟𝑛:

𝑝∗ (𝑧 |𝜏𝑖+1, 𝑘𝑖+1) = softmax(MLP𝜃 (𝑐𝑙𝑖 )) (11)

Finally, we sample one mode 𝑧 according to 𝑝∗ (𝑧 |𝜏𝑖+1, 𝑘𝑖+1). Note
that for the first event in a trajectory sequence, the exploration
mode is selected, because of the empty trajectory history.
Location sampling in the exploration mode. In the exploration
mode 𝑧 = 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 , we compute a categorical distribution over all
previously unvisited locations, which is obtained by feeding the
location context vector 𝑐𝑙

𝑖
to anMLP followed by a softmax function:

𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1,𝑘𝑖+1, 𝑒𝑥𝑝𝑙𝑜𝑟𝑒) = softmax(MLP𝜉 (𝑐𝑙𝑖 )),
where 𝑙 ∉ {𝑥 𝑗 |𝑥 𝑗 ∈ 𝑋, 𝑗 < 𝑖 + 1}

(12)

From this, we can sample a previously unvisited location 𝑙 .
Location sampling in the return mode. In the return mode
𝑧 = 𝑟𝑒𝑡𝑢𝑟𝑛, we consider the temporal periodicity of human behav-
iors, where individuals tend to revisit previously visited locations
under a regular temporal distance, such as returning home daily
(with a temporal distance of 24 hours) [44]. Therefore, the return
mode is designed to imitate such revisiting behaviors. Specifically,
instead of imposing specific constraints or predefined temporal pe-
riodicity as [9, 56], we use temporal distance embeddings to learn
the probability distribution of returning to previously visited loca-
tions. We define the temporal distance under an hour granularity
between the (𝑖 + 1)-th and 𝑗-th events as Δ𝑡

𝑖+1, 𝑗 = |𝑡𝑖+1 − 𝑡 𝑗 | ∈ Z≥0.
Subsequently, for the next event time 𝑡𝑖+1, we obtain its temporal
distances to all previous events as follows:

Δ𝑡 = [Δ𝑡𝑖+1,1,Δ
𝑡
𝑖+1,2, ...,Δ

𝑡
𝑖+1,𝑖 ] (13)

We then define a learnable embedding for each hourly time distance,
which is fed to anMLP followed by softmax to output the categorical
distribution of returning to the locations of the previous events:

𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1,𝑟𝑒𝑡𝑢𝑟𝑛) = softmax(MLP𝜂 ( [Δ𝑒𝑚𝑏
𝑖+1,1,Δ

𝑒𝑚𝑏
𝑖+1,2, ...,Δ

𝑒𝑚𝑏
𝑖+1,𝑖 ])),

where 𝑙 ∈ {𝑥 𝑗 |𝑥 𝑗 ∈ 𝑋, 𝑗 < 𝑖 + 1}
(14)
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Table 1: Dataset statistics
TKY IST NYC

#Sequences 8,890 14,380 17,682
#POIs 7,590 16,809 15,723
#Categories 9 9 9

Note that here 𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1, 𝑟𝑒𝑡𝑢𝑟𝑛) is not conditioned on the sam-
pled next event category 𝑘𝑖+1 because the revisiting behavior de-
pends only on the next event time. We then sample a previously vis-
ited location 𝑙 according to 𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1, 𝑟𝑒𝑡𝑢𝑟𝑛). Our experiments
also reveal that this learnt probability indeed exhibits a clear daily
return pattern over different time distances (see Figure 4).

In summary, our location decoder with neural EPR samples a
next location 𝑙𝑖+1 according to:

𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1, 𝑘𝑖+1) =
𝑝∗ (𝑒𝑥𝑝𝑙𝑜𝑟𝑒 |𝜏𝑖+1, 𝑘𝑖+1) · 𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1, 𝑘𝑖+1, 𝑒𝑥𝑝𝑙𝑜𝑟𝑒)
+ 𝑝∗ (𝑟𝑒𝑡𝑢𝑟𝑛 |𝜏𝑖+1, 𝑘𝑖+1) · 𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1, 𝑟𝑒𝑡𝑢𝑟𝑛)

(15)

4.3.4 User VAE. Additionally, we also train a Variational Autoen-
coder (VAE) to learn to generate novel individual preference embed-
dings on trajectories, to avoid exposing the learnt user preference
embeddings from the real dataset in the generation process. In the
sampling stage, the trained user VAE generates individual prefer-
ence embedding from random noises.

4.4 Model Training and Trajectory Generation
4.4.1 Model Training. The training objective of MIRAGE is to min-
imize the Negative Log Likelihood (NLL) of all sequences of events
in a human trajectory dataset D.

L(D) = −
∑︁
𝑋 ∈D

∑︁
𝑥𝑖 ∈𝑋

(
ln𝑝∗ (𝜏𝑖 ) + ln𝑝∗ (𝑘𝑖 |𝜏𝑖 ) + ln𝑝∗ (𝑙𝑖 |𝜏𝑖 , 𝑘𝑖 )

)
(16)

In the training process, the above conditional probability distribu-
tion is conditioned on the real data without sampling. After training
this objective function, we then train the user VAE on the learnt
individual preference embeddings. The complexity of our model is
discussed in Appendix B.

4.4.2 Trajectory Generation. Our trajectory generation process
is conducted via a series of sampling steps without any real data
as input. Specifically, the user VAE first generates an individual
preference embedding. Afterward, the trajectory is generated iter-
atively based on the encoded trajectory history as follows: 1) the
time decoder samples an inter-event time 𝜏𝑖 according to 𝑝∗ (𝜏𝑖 ); 2)
the category decoder samples an activity category 𝑘𝑖 conditioned
on 𝜏𝑖 according to 𝑝∗ (𝑘𝑖 |𝜏𝑖 ); and 3) the location decoder samples a
location 𝑙𝑖 conditioned on 𝜏𝑖 and 𝑘𝑖 according to 𝑝∗ (𝑙𝑖 |𝜏𝑖 , 𝑘𝑖 ). Note
that the initial hidden state ℎ0 is learnt during training, and the
generation process terminates until a desired time length.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Dataset. We conduct extensive experiments on three user
trajectory datasets collected from a location-based social network
Foursquare [59, 60], in three respective cities Tokyo (TKY), Istanbul
(IST), and New York City (NYC). Table 1 shows the dataset statistics.

5.1.2 Baselines. We consider the following state-of-the-art base-
lines of three categories: statistical models Semi-Markov [29] and
TimeGeo [25]; neural TPP RMTPP [10], ERTPP [52], THP [69],
ActSTD [65] and LogNormMix [42]; deep learning generative
models LSTM [24], SeqGAN [62], MoveSim [12], VOLUNTEER
[32] and DiffTraj [68]. The baseline details are in Appendix C.

5.1.3 Statistical and Distributional SimilarityMetrics. We adopt five
popular metrics [12, 37] to evaluate the resemblance between real
and generated trajectories in different aspects. Distance measures
the distance between successive locations in a trajectory. Radius
of gyration is calculated as the root mean squared distance of all
locations from the central one in a trajectory. Interval is computed
as time intervals between successive events in a trajectory. Dai-
lyLoc computes the unique locations visited by users. Category
computes the overall distribution of the POI categories. We use
the Jensen-Shannon divergence (JSD) [14] as the similarity metric
between the distributions of real and generated trajectories.

5.2 Task-Based Evaluation Protocol
We introduce our proposed task-based evaluation protocol to com-
prehensively benchmark trajectory generative models. Specifically,
the ultimate utility of human trajectory generation is to support
different downstream tasks in practice; subsequently, the bench-
mark objective is to evaluate whether the generated trajectories
are similar to real trajectories when being used to conduct differ-
ent downstream tasks. In the current literature, existing works
all use heuristically designed downstream tasks with one specific
technique to solve a task [6, 12, 26, 32, 65], and thus lack a com-
prehensive view of utility benchmarks. In particular, heuristically
designed downstream tasks may lead to unknown biases in the util-
ity evaluation, as the performance of different techniques solving
the same task often varies (as evidenced by our experiments in Ap-
pendix A), and heuristically regarding the results of one technique
as the benchmark is thus untrustworthy.

Our proposed evaluation protocol implements four typical tasks:
location recommendation, next location prediction, semantic loca-
tion labeling, and epidemic simulation, which model user trajec-
tory data in four aspects, user preferences on locations, sequential
mobility patterns, collective traffic patterns, and spatiotemporal
contact patterns, respectively. For each task, we choose multiple
state-of-the-art techniques to conduct experiments and report the
results on multiple metrics, to average out the biases of individual
techniques and metrics. We then measure the paired performance
discrepancy between the real and generated trajectories usingMean
Absolute Percentage Error (MAPE) and Mean Squared Percentage
Error (MSPE), which serve as final benchmarks to assess the ulti-
mate utility of the generated trajectories. In the following, we first
present our dataset settings, followed by the details of each task.

5.2.1 Dataset Settings. Unlike some previous works [26, 32, 65]
that use the generated trajectories to augment the real trajectories
(combining generated and real data in certain proportions) and
then perform the downstream tasks, we put one step forward to
directly perform the tasks on the generated trajectories only, with-
out exposing any real trajectories. Our dataset setting is more strict
which completely avoids the leakage of real human trajectories. In
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Table 2: Performance on Statistical and Distributional Similarity Metrics
TKY IST NYC

Method Distance Radius Interval DailyLoc Category Distance Radius Interval DailyLoc Category Distance Radius Interval DailyLoc Category
Semi-Markov 0.6931 0.5840 0.1196 0.6931 0.0791 0.6931 0.5545 0.2041 0.6931 0.0295 0.6931 0.5097 0.2072 0.6930 0.0135
Time Geo 0.5307 0.5712 0.0467 0.4441 0.0140 0.5984 0.6339 0.0345 0.3644 0.0124 0.4437 0.5673 0.0387 0.1982 0.0144
RMTPP 0.1988 0.1724 0.4166 0.5778 0.0113 0.1864 0.2008 0.4151 0.5650 0.0322 0.1745 0.2288 0.4422 0.3728 0.0141
ERTPP 0.6807 0.4021 0.1249 0.6636 0.0187 0.6699 0.3601 0.2110 0.6762 0.0236 0.6783 0.4395 0.2127 0.6824 0.0169
THP 0.3604 0.0858 0.2290 0.6183 0.0815 0.3476 0.4975 0.1122 0.2414 0.0340 0.4239 0.5109 0.0738 0.6235 0.0544
ActSTD 0.2470 0.1921 0.0272 0.1931 0.0231 0.1710 0.1225 0.0098 0.1325 0.0231 0.1884 0.1861 0.0152 0.1360 0.0131
LogNormMix 0.3898 0.2585 0.0186 0.2114 0.0056 0.2567 0.1787 0.0299 0.1547 0.0152 0.2172 0.1751 0.0352 0.1120 0.0205
LSTM 0.2745 0.1983 0.0919 0.1581 0.0143 0.3640 0.2516 0.0758 0.1960 0.0671 0.2876 0.2425 0.0476 0.2501 0.0133
SeqGAN 0.3006 0.2616 0.0507 0.2406 0.0326 0.1548 0.1734 0.0584 0.1279 0.0125 0.3023 0.2897 0.1206 0.3102 0.0078
MoveSim 0.3623 0.3018 0.0619 0.2761 0.0136 0.4549 0.3176 0.1537 0.4076 0.0527 0.3454 0.3700 0.0967 0.2293 0.0527
VOLUNTEER 0.5098 0.3208 0.0273 0.2630 0.0184 0.2498 0.2623 0.0415 0.1031 0.0171 0.3167 0.2845 0.0443 0.1456 0.0201
DiffTraj 0.2209 0.2653 0.1388 0.2684 0.0769 0.1974 0.0713 0.2137 0.1513 0.0237 0.1589 0.1039 0.1949 0.2361 0.0074
MIRAGE 0.1295 0.0330 0.0037 0.0229 0.0038 0.0714 0.0375 0.0033 0.0100 0.0045 0.0622 0.0415 0.0050 0.0185 0.0024

Table 3: Performance in the Task-Based Evaluation on MAPE
TKY IST NYC

Method LocRec NexLoc SemLoc EpiSim LocRec NexLoc SemLoc EpiSim LocRec NexLoc SemLoc EpiSim
Semi-Markov 0.8335 0.9919 0.4784 0.6406 0.9165 0.9969 0.5179 0.5652 0.8410 0.9951 0.4472 2.5354
Time Geo 0.7487 1.7867 0.2725 0.8531 3.4468 3.4048 0.3962 0.8838 1.0636 3.0667 0.2691 0.8122
RMTPP 0.8694 0.8616 0.2888 0.9402 0.7237 0.8180 0.4412 0.8599 0.8879 0.9406 0.3786 0.8801
ERTPP 0.4367 0.8181 0.1878 0.5592 0.3605 0.7854 0.3596 0.7666 0.6810 0.9156 0.5158 3.4278
THP 1.4991 2.2344 0.3985 0.3496 0.5154 0.8491 0.4963 0.9836 3.2324 3.7909 0.3496 0.6705
ActSTD 0.5341 0.6174 0.3738 0.2366 0.4632 0.5734 0.4454 0.4095 0.6648 0.5953 0.4158 0.8923
LogNormMix 0.4549 0.7148 0.1822 0.1480 0.4374 0.8592 0.3862 0.1620 0.7031 0.8702 0.4146 0.7216
LSTM 0.4816 0.7230 0.1631 0.1490 0.4025 0.6398 0.4016 0.2745 0.6884 0.5246 0.2889 0.6809
SeqGAN 0.4460 0.4514 0.2909 0.2041 0.8808 0.6971 0.4172 0.2216 1.0619 0.5271 0.5199 2.3157
MoveSim 0.7371 0.3347 0.2791 0.1790 5.0527 0.5815 0.4978 0.5957 1.1737 0.7824 0.3368 2.2911
VOLUNTEER 0.7277 0.5392 0.3050 0.4577 0.4796 0.5417 0.3750 0.2299 0.6695 0.8459 0.4831 1.6571
DiffTraj 0.7649 1.0815 0.4555 0.6752 0.7345 1.1090 0.4840 0.8263 0.6622 1.9322 0.4059 0.7631
MIRAGE 0.3485 0.3173 0.1433 0.1390 0.2947 0.3046 0.2198 0.2170 0.4855 0.2299 0.0961 0.7609

our experiments, for each real trajectory dataset, we generate a
synthetic dataset having the same number of trajectories as the real
dataset using each trajectory generative model. We then perform
downstream tasks on both real and generated datasets separately,
to evaluate whether the two datasets encode the same amount of
information for supporting different downstream tasks.

5.2.2 Location Recommendation Task. (LocRec) suggests new (pre-
viously unvisited) locations for users by modeling user preferences
on locations from trajectory data [61]. Following the default setting
of [66], we transform a trajectory dataset into a set of (user, loca-
tion, visit_count) triplets and then split them into training/valid/test
datasets under a ratio of 8:1:1. To discount the impact of the specific
techniques and metrics, we consider five popular recommenda-
tion algorithms, i.e., BPR [40], DMF [55], LightGCN [20], MultiVAE
[31], and NeuMF [21] (details in Appendix D), and report their
performance on Mean Reciprocal Rank@N (MRR@N), Normalized
Discounted Cumulative Gain@N (NDCG@N), hit@N (where N = 5
and 10). Finally, we compare the paired performance discrepancy
between the real and generated trajectories (i.e., 30 paired results
from five algorithms and six metrics each) using MAPE and MSPE.

5.2.3 Next Location Prediction Task. (NexLoc) forecasts a user’s
next location in the future by learning the sequential mobility pat-
terns from historical user trajectories [35]. Specifically, for one

dataset, we chronologically split each trajectory into training/valid/test
trajectories under a ratio of 8:1:1. We also consider five sequence
prediction algorithms, i.e., FPMC [41], BERT4Rec [46], Caser [47],
SRGNN [51], and SASRec [27] (details in Appendix E), and report
their performance on MRR@N, NDCG@N, hit@N (where N = 5
and 10). Finally, we compare the paired performance discrepancy
between the real and generated trajectories using MAPE and MSPE.

5.2.4 Semantic Location Labeling Task. (SemLoc) assigns a seman-
tic label (i.e., activity category) to a location based on the collective
traffic pattern of the location, extracted from users’ trajectory data
[58]. Specifically, for each location, we extract its weekly temporal
traffic pattern with an hour granularity, resulting in a feature vector
of size 168 where each entry represents the empirical probability
of all users’ visits to this location. For each trajectory dataset, we
then split all POIs into training/valid/test datasets under a ratio of
8:1:1. As a classification problem in nature, we consider five typical
classification algorithms, i.e., Decision Tree, Naive Bayes, K-Nearest
Neighbors, Logistic Regression, and Support Vector Machine, and
report their performance on Accuracy, F1-Micro, and F1-Macro
scores. Finally, we compare the performance discrepancy between
the real and generated trajectories using MAPE and MSPE.

5.2.5 Epidemic Simulation Task. (EpiSim) simulates the epidemic
spreading over a contact network characterizing the spatiotemporal
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Table 4: Ablation Study on Statistical and Distributional Similarity Metrics
TKY IST NYC

Method Distance Radius Interval DailyLoc Category Distance Radius Interval DailyLoc Category Distance Radius Interval DailyLoc Category
MIRAGE-noTPP 0.1673 0.0448 0.1436 0.0465 0.0043 0.1550 0.1449 0.2742 0.0551 0.0080 0.2275 0.0987 0.2453 0.1817 0.0105
MIRAGE-noEPR 0.1468 0.0752 0.0183 0.1276 0.0108 0.0720 0.0429 0.0336 0.0221 0.0063 0.0920 0.0565 0.0374 0.0955 0.0044
MIRAGE-noIMI 0.1368 0.0334 0.0051 0.0238 0.0101 0.0749 0.0356 0.0047 0.0342 0.0084 0.0660 0.0416 0.0081 0.0194 0.0096
MIRAGE-TD 0.1339 0.0429 0.0037 0.0289 0.0048 0.0933 0.0368 0.0036 0.0149 0.0059 0.0692 0.0413 0.0064 0.0206 0.0033
MIRAGE 0.1295 0.0330 0.0037 0.0229 0.0038 0.0714 0.0375 0.0033 0.0100 0.0045 0.0622 0.0415 0.0050 0.0185 0.0024

Table 5: Ablation study in the Task-Based Evaluation on MAPE
TKY IST NYC

Method LocRec NexLoc SemLoc EpiSim LocRec NexLoc SemLoc EpiSim LocRec NexLoc SemLoc EpiSim
MIRAGE-noTPP 0.3688 0.3293 0.1600 0.5806 0.4458 0.4380 0.2323 0.3768 0.6654 0.5663 0.1153 1.4793
MIRAGE-noEPR 0.3725 0.4025 0.1483 0.1409 0.3620 0.5077 0.2427 0.2342 0.6243 0.5243 0.1045 0.9413
MIRAGE-noIMI 0.3479 0.3458 0.1820 0.1457 0.5026 0.3399 0.3283 0.2148 0.5437 0.2807 0.2808 0.8046
MIRAGE-TD 0.3557 0.3732 0.2336 0.1574 0.3526 0.3625 0.3232 0.2490 0.5003 0.2381 0.2517 0.8387
MIRAGE 0.3485 0.3173 0.1433 0.1390 0.2947 0.3046 0.2198 0.2170 0.4855 0.2299 0.0961 0.7609

contact patterns of user trajectories [49]. The contact network is
extracted from a trajectory dataset as a dynamic graph of users,
and a directed edge from a user 𝑝 to a user 𝑞 represents that 𝑝’s
visit precedes 𝑞’s visit to the same location during a day, indicating
a potential chance of epidemic spreading from 𝑝 to 𝑞. Following
the setting of recent works [12, 30, 65], we adopt the Suscepti-
ble–Exposed–Infected–Recovered (SEIR) model. We consider the
simulation of COVID-19 using the parameters suggested by [12, 65]
and influenza using the parameters suggested by [4] (details in Ap-
pendix F). We randomly select 50 individuals as exposed individuals,
simulate the spread of the epidemic, and report the daily counts of
Exposed, Infectious, and Recovered individuals as three metrics. We
report the average results of 10 repeated simulations to discount
the impact of the random selection of initially exposed individuals.
Finally, we compare the performance discrepancy between the real
and generated trajectories using MAPE and MSPE.

5.3 Statistical & Distributional Similarity
Table 2 shows the performance comparison of MIRAGE and base-
lines on the three datasets. We observe that MIRAGE consistently
achieves the best performance with the lowest JSD, yielding 59.0%,
64.4%, and 67.7% improvement (reduction on JSD) over the best-
performing baselines on TKY, IST, and NYC datasets, respectively.
However, even though we selected four similarity metrics covering
three different aspects of spatial (Distance and Radius), temporal
(Interval), and user (DailyLoc) distributions, these metrics cannot
fully reflect the ultimate utility of generated trajectories in support-
ing downstream tasks. For example, the consistent superiority of
MIRAGE over baselines on these similarity metrics is still biased,
because MIRAGE indeed underperforms some baselines in a few
cases in our task-based evaluation, as we discuss below.

5.4 Task-Based Evaluation Performance
Table 3 shows the performance in our proposed task-based evalu-
ation on MAPE (similar results on MSPE, shown in Appendix G).
Each entry in this Table is the MAPE averaging over all metrics of
all algorithms solving a task on a dataset, to average out the biases
of individual techniques and metrics. For example, the MAPE of
MIRAGE in the LocRec task on the TKY dataset is 0.3485, which

is computed from 30 paired (real and generated) results from five
algorithms and six metrics used in the LocRec task.

We observe that MIRAGE achieves the best performance with
the smallest MAPE in most cases. In general, compared to the
best-performing baselines, our MIRAGE achieves 10.9%, 16.7%, and
33.4% improvement on TKY, IST, and NYC datasets, respectively. In
addition, we also see that in the EpiSim task, MIRAGE achieves sec-
ond and even fourth places, on IST and NYC datasets, respectively,
which departs from the the consistent superiority of MIRAGE over
all baselines on the statistical and distributional similarity metrics.

5.5 Ablation Study
We conduct an ablation study on our proposed method MIRAGE,
considering the following four variants.MIRAGE-noTPP is a vari-
ant of MIRAGE without the neural TPP, where we define a regres-
sion task to predict the next inter-event from the time context vector
𝑐𝜏
𝑖
. MIRAGE-noEPR is a variant of MIRAGE without neural EPR,

where we directly sample a location from a categorical distribution
conditioned on the location context vector 𝑐𝑙

𝑖
.MIRAGE-noIMI is a

variant of MIRAGE uses 𝑡𝑒𝑚𝑏
𝑖

and 𝑘𝑒𝑚𝑏
𝑖

(rather than 𝑡𝑒𝑚𝑏
𝑖+1 and 𝑘𝑒𝑚𝑏

𝑖+1 )
for sampling the next category and next POI. MIRAGE-TD is a
variant of MIRAGE that uses temporal distances (rather than times-
tamps) in the exploration mode. Tables 4 and 5 show the results
on similarities and task-based evaluation on MAPE, respectively
(similar results on MSPE in Appendix G).

We observe that MIRAGE consistently outperforms MIRAGE-
noTPP on both similarities and task-based evaluation by 63.8% and
30.0% (on average over tasks and datasets), respectively, showing
the effectiveness of neural TPPs modeling the event stochasticity of
human trajectories. Second, MIRAGE outperforms MIRAGE-noEPR
in most cases, with an improvement of 50.3% and 17.8% on simi-
larities and task-based evaluation, respectively, which verifies the
usefulness of our neural EPR model. Third, MIRAGE outperforms
MIRAGE-noIMI in general, by 24.8% and 18.1% on similarities and
task-based evaluation, respectively, since the next location should
depend on the next category and time, rather than the current ones.
Finally, MIRAGE outperforms MIRAGE-TD in most cases, by 15.2%
and 18.5% on similarities and task-based evaluation, respectively.



Revisiting Synthetic Human Trajectories:
Imitative Generation and Benchmarks Beyond Datasaurus KDD’25, August 03–07, 2025, Toronto, Canada

(a) Real (b) MIRAGE (c) MIRAGE-noEPR

(d) Semi-Markov (e) Time Geo (f) RMTPP

(g) ERTPP (h) THP (i) ActSTD

(j) LogNormMix (k) LSTM (l) SeqGAN

(m) MoveSim (n) VOLUNTEER (o) DiffTraj
Figure 2: Returning Probability over a Week

Because timestamps offer more direct information for location sam-
pling in the exploration mode compared to temporal distances. Our
ablation studies systematically validate our key design choices.

In addition, to further show the utility of the EPR model, we
plot the empirical returning probability of users over time, which is
defined as the probability of a user returning to a location a certain
period (temporal distance) after the user’s first presence at the loca-
tion [16, 56]. Figure 2 shows the plots of both real and generated data
on NYC. We see that the real trajectory exhibits strong periodicity,
which can be well imitated by MIRAGE but not by MIRAGE-noEPR
and baselines. The superiority of MIRAGE is also validated by the
return probability over sequence lengths. Figure 3(a) shows the re-
turn probability of the whole trajectories of real and generated data.
We selected top baselines SeqGAN, VOLUNTEER, and MoveSim
for comparison. Figures 3(b), 3(c), and 3(d) show the detailed return
probability w.r.t. the (percentage) length of trajectories of three
datasets (100% corresponds to the whole trajectory). We see that
our MIRAGE is more similar to the real data in terms of return
trend across different (percentage) lengths. Additionally, Figure 4
shows the learnt return probability 𝑝∗ (𝑙𝑖+1 |𝜏𝑖+1, 𝑟𝑒𝑡𝑢𝑟𝑛) over differ-
ent time distances (hour granularities in a week) from each dataset.
We see a clear daily return pattern, implying that our model can
effectively capture the periodicity encoded in human trajectories.

6 CONCLUSIONS AND FUTUREWORKS
In this paper, by revisiting the existing human trajectory generative
models, we identify their limitations in focusing on the summary

(a) Return Probability Distribution on
Three Datasets

(b) Return Probability Distribution
over Sequence on Tokyo

(c) Return Probability Distribution
over Sequence on Istanbul

(d) Return Probability Distribution
over Sequence on NewYork

Figure 3: Returning Probability over Sequence Length

(a) Tokyo (b) Istanbul (c) NewYork

Figure 4: Return probability over different time distances

statistics and distributional similarities between real and generated
trajectories, which could lead to intrinsic biases in both genera-
tive model design and benchmarks of the generated trajectories.
Against this background, we propose MIRAGE, a huMan-Imitative
tRAjectory GenErative model designed as an intensity-free neural
Temporal Point Process integrating a neural Exploration and Prefer-
ential Return model to imitate the human decision-making process
in trajectory generation. Meanwhile, we also propose a comprehen-
sive task-based evaluation protocol to systematically benchmark
trajectory generative models on four typical downstream tasks,
integrating multiple techniques and evaluation metrics for each
task, to assess the ultimate utility of the generated trajectories. The
evaluation results show that MIRAGE-generated trajectory data
not only achieves the best statistical and distributional similarities
with 59.0-67.7% improvement but also yields the best performance
in the task-based evaluation with 10.9-33.4% improvement.

Our future work will investigate the relationship between task
performance variations and generative model design.
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Table 6: MAPE Performance of individual methods solving
the NexLoc task on the IST dataset

FPMC BERT4Rec Caser SRGNN SASRec
Semi-Markov 0.9968 0.9965 0.9960 0.9983 0.9971
Time Geo 3.5045 3.7099 3.5759 3.3284 2.9051
RMTPP 0.8838 0.7807 0.7849 0.8156 0.8250
ERTPP 0.7783 0.7618 0.7726 0.8007 0.8136
THP 0.9598 0.7937 0.7955 0.8205 0.8758

ActSTD 0.8454 0.4274 0.5147 0.4729 0.6069
LogNormMix 0.8442 0.8523 0.8689 0.8686 0.8621

LSTM 0.6218 0.5986 0.6191 0.6707 0.6887
SeqGAN 0.5952 0.7406 1.7957 0.1857 0.1685
MoveSim 0.5114 0.5820 0.5215 0.7367 0.5557

VOLUNTEER 0.5279 0.4924 0.5147 0.5719 0.6019
DiffTraj 1.3272 1.2091 0.9671 1.0018 1.0399
MIRAGE 0.3111 0.2912 0.2921 0.3195 0.3089
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A BIASES IN DOWNSTREAM TASKS
We show the performance variation of different methods solving
the same downstream task in our task-based evaluation onMAPE in
Table 6. Taking MoveSim and VOLUNTEER as examples, MoveSim
is better than VOLUNTEER when benchmarking using FPMC or
SASRec in this task, while we have the opposite results if bench-
marking using BERT4Rec, Caser, or SRGNN.

B THE COMPLEXITY OF MIRAGE
Let𝑛 denote the sequence length,𝑑 is the GRU hidden state size, and
𝑧 is the latent size of user VAE. Our time decoder with intensity-free
TPP and category decoder are linear layers, taking O(𝑛𝑑) time com-
plexity and O(𝑑) space complexity. Similarly, the location decoder

with two modes with time complexity O(2𝑛𝑑) and space complex-
ity O(2𝑑). The GRU backbone has time and space complexities
of O(𝑛𝑑2) and O(𝑑2), respectively. For the user VAE, we consider
both input and hidden size to be 𝑑 for simplicity, and both time
and space complexities are O(𝑑2) as usually 𝑑2 ≫ 𝑑𝑧. In summary,
MIRAGE has time complexity O(𝑛𝑑2) and space complexity O(𝑑2).

C BASELINES
Semi-Markov [29]model uses exponential distributionwithGamma
priors for time intervals and incorporates a Dirichlet prior to con-
struct the transition matrix for Bayesian inference. TimeGeo [25]
designs a statistical EPR model integrated with temporal informa-
tion including weekly home-based tour number, dwell rate, and
burst rate to further characterize temporal choices on human mobil-
ity. RMTPP [10] uses Recurrent Neural Networks to jointly model
the time and mark (location ID) dependency over history informa-
tion. ERTPP [52] adopts distinct RNNs to independently model
the timing of the next event and its associated mark. THP [69] in-
corporates the self-attention mechanism with the Hawkes Process
to capture long-term dependencies in event sequence data. LSTM
[24] learns the sequence patterns of human trajectory to predict
both the location and time of the next event in a human trajectory.
SeqGAN [62] introduces reinforcement learning into the GAN
model to solve the sequence generation problem.MoveSim [12] is
a GAN-based framework that integrates physical regularities and
prior knowledge of human mobility in trajectory generation. Act-
STD [65] enhances the dynamic modeling of individual trajectories
by utilizing neural ordinary equations. LogNormMix [42] defines
an intensity-free neural TPP modeling the conditional probability
density distribution of trajectory events as a log-normal mixture.
We extend it as marked TPP by sampling the time and location
(i.e., mark) of the next event in a trajectory. VOLUNTEER [32]
incorporates a two-layer VAE model with a temporal point process
to capture the characteristics of human mobility from both group
and individual views. DiffTraj [68] uses a diffusion probabilistic
model for continuous location generation. We choose the nearest
POI to each generated GPS coordinate as the generated POI.

D ALGORITHMS FOR THE RECLOC TASK
BPR [40] is a recommendation approach designed for implicit feed-
back. It operates by minimizing a pairwise ranking loss to learn
user preferences on times effectively. DMF [55] incorporates a ma-
trix factorization model with neural network architecture to the
representations of users and locations. LightGCN [20] leverages
neighborhood aggregation technique to learn user and location rep-
resentations on a user-location interaction graph. MultiVAE [31]
extends Variational Autoencoders (VAEs) to collaborative filtering
for implicit feedback.NeuMF [21] proposes a neural network-based
collaborative filtering technique and modeling user–location inter-
action function with non-linearities.

E ALGORITHMS FOR THE NEXLOC TASK
FPMC [41] uses matrix factorization techniques to estimate the
personalized transition matrix of POIs in user mobility trajecto-
ries. BERT4Rec [46] uses bidirectional self-attention network
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Table 7: Performance in the Task-Based Evaluation on MSPE
TKY IST NYC

Method LocRec NexLoc SemLoc EpiSim LocRec NexLoc SemLoc EpiSim LocRec NexLoc SemLoc EpiSim
Semi-Markov 0.7117 0.9839 0.2929 0.4125 0.8427 0.9939 0.2940 0.3378 0.7455 0.9903 0.2402 7.0165
Time Geo 0.6558 3.4390 0.0800 0.7302 14.1917 12.0970 0.2351 0.7822 1.2609 10.0716 0.1004 0.6650
RMTPP 0.7664 0.7472 0.1040 0.8849 0.5395 0.6712 0.2150 0.7432 0.8020 0.8854 0.1785 0.7773
ERTPP 0.2322 0.6696 0.0405 0.3146 0.1995 0.6179 0.2209 0.5942 0.5054 0.8387 0.5833 13.0105
THP 5.1891 5.6151 0.1768 0.1322 0.3651 0.7251 0.2737 0.9674 35.1497 16.2586 0.1697 0.4959
ActSTD 0.2921 0.4954 0.1528 0.1044 0.3556 0.3508 0.2045 0.2343 0.7544 0.6861 0.1763 0.9249
LogNormMix 0.2440 0.5112 0.0381 0.0299 0.2089 0.7387 0.1781 0.0473 0.5628 0.7577 0.3148 0.5571
LSTM 0.2653 0.5229 0.0355 0.0355 0.1955 0.4116 0.1820 0.1619 0.5268 0.2871 0.1221 0.4960
SeqGAN 0.2204 0.2290 0.0986 0.0453 1.2233 0.8872 0.1936 0.1986 4.8884 0.3213 0.5830 5.9233
MoveSim 1.2413 0.1249 0.0870 0.0353 30.6287 0.3623 0.2802 0.3817 5.2941 0.6145 0.2053 5.7852
VOLUNTEER 1.2227 0.2921 0.0972 0.2110 0.3791 0.2987 0.2433 0.1426 0.4571 0.7171 0.6019 2.9920
DiffTraj 0.5900 1.2704 0.2280 0.7155 0.5444 1.3134 0.2570 1.6888 0.4514 4.0397 0.1984 0.8163
MIRAGE 0.1416 0.1026 0.0222 0.0289 0.1792 0.0941 0.1235 0.0770 0.5062 0.0592 0.0147 0.8948

Table 8: Ablation study in the Task-Based Evaluation on MSPE
TKY IST NYC

Method LocRec NexLoc SemLoc EpiSim LocRec NexLoc SemLoc EpiSim LocRec NexLoc SemLoc EpiSim
MIRAGE-noTPP 0.1583 0.1100 0.0397 0.4335 0.2176 0.2063 0.1631 0.2274 0.5299 0.3324 0.0184 3.8921
MIRAGE-noEPR 0.1517 0.1893 0.0288 0.0339 0.1879 0.2618 0.1869 0.0862 0.7906 0.2815 0.0173 0.9989
MIRAGE-noIMI 0.2250 0.2355 0.0421 0.0364 0.2670 0.1294 0.1252 0.0729 0.6697 0.0810 0.0982 0.9606
MIRAGE-TD 0.2352 0.2295 0.0653 0.0344 0.1903 0.1385 0.1264 0.0997 0.8839 0.0649 0.1032 1.1433
MIRAGE 0.1416 0.1026 0.0222 0.0289 0.1792 0.0941 0.1235 0.0770 0.5062 0.0592 0.0147 0.8948

Table 9: Parameters for COVID-19 simulation (𝑑: day)

Parameters 𝑐 𝑇 𝑇𝑖 𝑇𝑓 𝑅0 𝛽 𝛼 𝛾

Value 0.2 5.8𝑑 5.2𝑑 11𝑑 2.2 𝑅0/𝑇 1/𝑇𝑖 1/𝑇𝑓

models human behavior sequences by employing a Cloze task ap-
proach. Caser [47] employs hierarchical and vertical CNNs to cap-
ture union-level sequential patterns and skip behaviors, enabling
sequence-aware recommendation. SRGNN [51] designs a session-
based recommendation model by utilizing the basic RNNs to predict
the next location based on historical trajectories. SASRec [27] em-
ploys a multi-head attention mechanism to make predictions based
on the historical trajectory of users.

F EPIDEMIC SIMULATION SETTINGS
We simulate the COVID-19 spreading with the SEIR model follow-
ing recent works [12, 30, 65]. In particular, the simulation involves
eight fundamental parameters: the close contact ratio (𝑐), trans-
mission period (𝑇 ), incubation period (𝑇𝑖 ), infection period (𝑇𝑓 ),
reproduction rate (𝑅0), transmission probability (𝛽), infectious rate
(𝛼), and recovery rate (𝛾 ). Table 9 shows the parameter values.

During the simulation, we assume that infected or exposed indi-
viduals contact with 𝑠 susceptible individuals connected by edges
in the contact network each day. The probability of two people
with an edge in the contact network becoming close contact is 𝑐 .
The transmission probability 𝛽 is calculated by dividing the basic
reproduction rate 𝑅0 by the average duration (5.8 days) from onset
to first medical visit and isolation. The infectious rate from the
exposed state 𝛼 is estimated as the reciprocal of the incubation
period, which is the average time exposed but not infectious (5.2
days in [30]). The daily probability of transitioning to the removed
state from infectious 𝛾 , is computed based on the average infection

Table 10: Parameters for influenza simulation

Parameters 𝑐 𝛽 𝛼 𝛾

Value 0.2 0.402 0.526 0.244

period (11 days in [30]). The the infection process are as follows:
𝑑𝑆

𝑑𝑡
= −𝑠𝑐𝛽, 𝑑𝐸

𝑑𝑡
= 𝑠𝑐𝛽 − 𝛼𝐸,

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (17)

where S represents the number of susceptible individuals, E is the
number of exposed individuals, I stands for the number of infectious
individuals, and R denotes the number of removed individuals. We
randomly select 50 individuals as exposed and label their status
accordingly. Using the differential equations 17, we simulate the
spread of the epidemic and record the daily counts of exposed,
infectious, and removed individuals.

Similarly to the COVID-19 simulation, we simulate influenza
spreading using the parameters suggested by [4], where the trans-
mission probability 𝛽 infectious rate 𝛼 and removed rate 𝛾 are
shown in Table 10.

G PERFORMANCE ON MSPE
Table 7 shows performance comparison in the task-based evalu-
ation on MSPE. Similar to the results on MAPE, we observe that
MIRAGE achieves the best performance in most cases. Compared to
the best-performing baselines, our MIRAGE achieves performance
improvement with 17.6 % on average. Table 8 shows the ablation
study results in the task-based evaluation on MSPE. Similar to the
results on MAPE, we also observe that MIRAGE outperforms its
variants MIRAGE-noTPP, MIRAGE-noEPR, MIRAGE-noIMI, and
MIRAGE-TD by 41.8%, 28.7%, 30.0%, and 33.3%, respectively, further
validating our key design choices.
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