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Seam-Adaptive Structure-Preserving Image
Stitching for Drone Images
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Abstract— Drones have been widely used for remote sensing
applications. To perform high-quality drone image stitching, this
article first proposes a local and global structure-preserving
alignment (LGSPA) method that aligns drone images from local
dual feature-based and global pixel-based alignment perspectives,
while maintaining local linear and global collinear image struc-
tures. To enable an optimal image stitching performance, we then
propose a seam-adaptive weighting (SAW) scheme to enhance
the local alignment accuracy under the guidance of a seam
prior. On the ground of LGSPA and SAW, we further develop
a seam-adaptive structure-preserving (SASP) image stitching
framework to generate the final stitched drone images. Both
qualitative and quantitative experimental results demonstrate
that LGSPA and SASP are capable of generating higher quality
alignment and stitching results than several state-of-the-art
methods over multiple challenging aerial scenarios, including low
textures, repetitive textures, large parallax, wide baseline, and
occlusions.

Index Terms— Drone images, image alignment, image stitching,
mesh deformation, multiple challenging scenarios.

I. INTRODUCTION

TAKING advantages of lightweight, flexible mobility, and
easy deployment, drones have advanced the development

of various remote sensing applications, such as ocean monitor-
ing [1], disaster investigation [2], and traffic management [3].
Nevertheless, captured drone images usually suffer from the
limited imaging width. For the sake of covering more regions
of interest, image stitching serves as a fundamental task aiming
to combine multiple drone images into a single larger image.
However, stitching drone images usually encounters kinds of
realistic challenges, such as low textures, repetitive textures,
large parallax, wide baseline, and occlusions.

For drone image stitching, the existing methods have been
proposed based on feature detection, image alignment, and
seamline detection [4], [5], [6], [7], [8]. The stitching results
are typically assessed from two aspects [9]: 1) alignment
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accuracy across the entire overlapping area or along the stitch-
ing seamline and 2) naturalness of warped images. However,
it remains difficult to obtain high-quality stitching results
that simultaneously satisfy the aforementioned two aspects
especially when confronted with multiple challenging aerial
scenarios.

Traditional methods for image alignment are generally
built upon a single homography model [10]. However, their
alignment accuracy requires strict conditions: pure rotational
camera motion or planar scenes. For drone image stitching,
both the conditions are prone to be violated, and hence
misalignment artifacts and distortions appear easily. To tolerate
large parallax and wide baseline, seam-driven methods [11],
[12], [13], [14] have been proposed for local alignment.
Based on the observation that achieving the best-fitting global
alignment does not necessarily ensure optimal image stitching
performance, these methods propose to precisely align only a
local region that allows an optimal seamline to stitch images
seamlessly. Compared with the global alignment methods,
they are more flexible to achieve promising results when
handling large parallax and wide baseline. However, finding a
sensible local alignment (or a local region free from parallax)
in challenging scenarios is not an easy task. Furthermore,
when the overlapping area between two adjacent drone images
is narrow, the estimated local alignment probably introduces
uncomfortable projective distortions.

To enhance image naturalness of stitching results, recent
methods have been proposed following two mainstreams: spa-
tially varying transformation and mesh deformation. Generally,
they partition images into uniform meshes to estimate multiple
continuous local warps to embody an accurate global align-
ment. To mitigate projective distortions, some methods [15],
[16], [17] exploit a hybrid transformation strategy to spatially
combine the homography model with the similarity transfor-
mation. Some other methods [18], [19], [20], [21] introduce
additional feature lines to preserve the linear structures of
image scenes, suppressing certain distortions. These methods
have gained good performance in improving global alignment
accuracy and preserving image naturalness. However, they rely
on features heavily to estimate their warping models. When
feature correspondences are mismatched or exhibit inconsis-
tency between adjacent drone images owing to significant
parallax, severe distortions will arise in the overlapping area.
Moreover, when feature points and lines are insufficient in
drone images, the estimated warping model would be biased,
leading to a degradation of alignment accuracy.
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Motivated by the above issues, we propose a seam-
adaptive structure-preserving (SASP) image stitching method
to improve image alignment quality, seamline quality, and
drone image stitching strategy, comprehensively. The contri-
butions of our work are summarized as follows.

1) We propose a local and global structure-preserving
alignment (LGSPA) model to achieve superior alignment
quality with high precision and good naturalness. Lever-
aging feature points, lines, and color pixels to fit the
alignment model, LGSPA also demonstrates robustness
against low-texture and repetitive-texture drone image
scenes.

2) We propose a seam-adaptive weighting (SAW) scheme
to enhance the precision of local alignment along the
seamline, enabling the seamline quality to be improved
essentially.

3) We further develop an SASP image stitching framework.
In this framework, we use the proposed SAW scheme to
guide the optimization of the LGSPA model to directly
learn an accurate local alignment along a seam prior,
thereby achieving the final optimal drone image stitching
performance. To the best of our knowledge, this is the
first work to consider the use of suture quality to guide
the optimization process of drone image alignment, so as
to achieve high-quality drone image stitching results in
the remote sensing field. It is highly practical and has
high application value.

Benefited from these improvements, our work is able to han-
dle kinds of challenges in real-world applications, including
low textures, repetitive textures, large parallax, wide baseline,
and occlusions.

The rest of this article is organized as follows. Section II
reviews the related literature. Section III introduces the LGSPA
model. Section IV describes the SAW scheme. Section V
elaborates the SASP framework. The experimental results on
multiple challenging drone image samples and one ablation
study are presented in Section VI. Finally, the conclusion is
drawn in Section VII.

II. RELATED WORK

This section briefly reviews the related literature to this
article from the following three aspects.

A. Local Alignment Methods for Better Stitching

Taking seamline stitching quality into account, seam-driven
methods were proposed aiming to find an optimal local align-
ment for seamless stitching. Gao et al. [11] first estimated a
set of candidate local alignments to derive different seamlines
and then selected the best one on the basis of the evaluation
of seamline stitching qualities. Zhang and Liu [12] randomly
estimated a plausible local alignment as their prealignment
and applied the mesh-based warping method to locally adjust
the alignment accuracy and image naturalness. Lin et al. [13]
proposed an iterative seam-guided process to optimize each
local alignment hypothesis, respectively, enabling the seamline
quality to be improved as well. Recently, pixel-based color
image alignment was developed in the quaternion domain [14]

and achieved higher alignment accuracy than feature-based
alignment methods. To achieve the final optimal color image
stitching performance, Li and Zhou [22] further proposed
an automatic color image stitching (ACIS) framework to
simultaneously learn the local alignment and seamline in an
iterative fashion.

B. Global Alignment Methods for Better Naturalness

To encourage the flexibility of traditional parametric
transformations, spatially varying transformations have been
studied. Zaragoza et al. [23] proposed the as-projective-
as-possible (APAP) warp that comprised multiple moving
projective transformations. To get rid of projective distortions,
Chang et al. [15] proposed the shape-preserving half-projective
(SPHP) warp smoothly extrapolating projective transforma-
tions into similarity counterparts beyond the overlapping area.
The quasi-homography (QH) warp was studied to mitigate
the projective distortion of homography by squeezing its scale
linearly [9]. Li et al. [24] formulated the local alignment as
the triangular facet transformation (TFT) decomposed from the
homography model, allowing more flexibility to adaptively fit
an accurate stitching field.

Mesh-based warping methods were proposed to manipulate
the vertices of the constructed mesh grid cells over entire
images. Using matched feature points and lines, Li et al. [19]
proposed a dual-feature warping (DFW) model to improve
the alignment accuracy of mesh warping. Based on DFW and
QH, Liao and Li [20] further proposed the single-perspective
warp (SPW) to simultaneously address the issues of alignment,
naturalness, and distortions. To preserve prominent structures
for images with large parallax, Jia et al. [21] proposed the
line-point consistent strategy for global line-guided mesh
deformation. Recently, Nie et al. [25] proposed the unsuper-
vised deep image stitching (UDIS) method to remove parallax
errors by reconstructing stitching results from feature to pixel
level.

C. Drone Image Stitching Methods

The aforementioned image stitching methods have been
widely applied to the existing drone image stitching tech-
nologies. Wan et al. [5] proposed a mesh-based drone image
warping method that minimized parallax errors between
matched feature points for alignment and used the similarity
transformation as a constraint for naturalness. However, they
failed to accurately align drone images that have rich linear
structures. Guo et al. [26] explored the SPHP warp [15] to
formulate a similarity term for natural mesh deformation.
Similar to the APAP warp [23], Xu et al. [27] partitioned UAV
images into uniform grid cells, facilitating the adaptive esti-
mation of multiple local homographies. Zhang et al. [28] pro-
posed a robust elastic warp (REW) incorporating a weighted
optimization algorithm [29] to combine the homography with
the similarity transformation together for alignment.

Although these drone image stitching methods have gained
satisfactory results, several limitations persist. First, all these
methods belong to single feature-based methods, relying solely
on feature points to estimate alignment models. When feature
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points are mismatched or distributed unevenly, the estimated
alignment models may be biased, resulting in misalignments
or distortions. Moreover, obtaining a sufficient number of
reliable feature points in natural environments is also a
challenging task. Second, these methods use the similarity
transformation to mitigate projective distortions for image
naturalness, potentially overlooking perspective distortions and
failing to preserve salient image structures. Third, they adhere
to the traditional image stitching pipeline to optimize image
alignment and seamline, sequentially and independently.
However, as observed in [11], the best-fitting global alignment
cannot necessarily ensure to generate the best seamline in the
subsequent steps. To address these issues, we propose an SASP
method in this article.

III. LOCAL AND GLOBAL STRUCTURE-
PRESERVING ALIGNMENT

In this section, we propose the LGSPA method. To begin
with, a prealignment based on quaternion rank-1 alignment
(QR1A) is introduced in Section III-A. Then, we formulate the
drone image alignment issue as a mesh deformation problem in
Section III-B and define each term of our objective function
concretely in Section III-C. Finally, the optimal solution is
given in Section III-D.

A. Prealignment With QR1A

To provide the best geometric fitting for global alignment,
in contrast to harnessing sparse feature correspondences,
we work on dense color pixels across the whole overlapping
area to estimate the homography model in pixel level.

Let {İi }
2
i=1 be two drone images described in quaternion rep-

resentation, ◦ indicate image warping operation, and τ denote
the homographic transformation. Then, {İi ◦ τi }

2
i=1 implies

aligned drone images. We use P�(·) to extract the image over-
laps and assume that well-aligned image overlaps are linearly
correlated, since the image contents within the overlapping
area correspond to the same aerial scenes. Consequently, when
we convert each image overlap into a vector to stack into a
matrix, i.e., Ḋ ◦ τ = [vec(P�(İ1 ◦ τ1)), vec(P�(İ2 ◦ τ2))], this
matrix is supposed to have an underlying rank-1 component L̇.
In addition, some unavoidable misalignment artifacts such as
occlusions can be modeled as the sparse component Ṡ. Based
on this observation, the QR1A model is defined as

min
L̇,Ṡ,τ

∥∥Ṡ
∥∥

1

s.t. Ḋ ◦ τ = L̇ + Ṡ, rank
(
L̇

)
= 1. (1)

By minimizing (1), we obtain an estimated homography,
i.e., HQR1A, as our prealignment. For the detailed minimization
process, read our previous work [14].

B. Mesh Deformation Problem Formulation

We begin with partitioning each input drone image into a
uniform grid mesh. Our aim is to estimate the optimal vertex
coordinates of deformed mesh cells, such that input drone
images can be warped for image alignment.

Mathematically, let I and Î be the input drone image
and the corresponding warped drone image, respectively.
The set of mesh vertices in I and Î is denoted as
V = [x1, y1, x2, y2, . . . , xn, yn]

T
∈ R2n and V̂ = [x̂1, ŷ1,

x̂2, ŷ2, . . . , x̂n, ŷn]
T

∈ R2n , where (x, y) and (x̂, ŷ) are the
vertex coordinates in I and Î, respectively; and n is the total
number of vertices. Then, given any sampling point p ∈ I,
it can be represented as

τ(p) =

4∑
i=1

ci Vi (2)

where {Vi }
4
i=1 are four vertices enclosing the grid cell where

p is located, and {ci }
4
i=1 are their corresponding linear com-

bination coefficients that can be calculated using the inverse
bilinear interpolation technique [30]. Under the assumption
that {ci }

4
i=1 are known and invariant, we can further represent

the corresponding warped point p̂ ∈ Î as

τ
(

p̂
)

=

4∑
i=1

ci V̂i (3)

where {V̂ i }
4
i=1 are unknown coordinates of the corresponding

warped grid cell to be estimated. Therefore, the mesh defor-
mation problem can be defined as an optimization function
within the variable set V̂. From the optimized V̂, we obtain
the warped drone image Î using the texture mapping technique.

C. LGSPA Model

To achieve a high-precision alignment while avoiding
unnatural distortions in multiple challenging aerial scenarios,
we define our LGSPA model as the following energy mini-
mization function:

E
(
V̂

)
= λ1 ELA

(
V̂

)
+ λ2 EGA

(
V̂

)
+ λ3 ESP

(
V̂

)
+ EDC

(
V̂

)
(4)

where ELA(V̂) is the local dual feature-based alignment term,
EGA(V̂) denotes the global pixel-based alignment term, and
ESP(V̂) and EDC(V̂) represent the structures’ preserving term
and distortions’ control term, respectively. λ1, λ2, and λ3 are
weighting parameters to balance the efficacy of each term.

1) Local Dual Feature-Based Alignment Term: Facing large
parallax and occlusions, detected and matched feature points
are often distributed nonuniformly, leading to a biased esti-
mation of the alignment model. To alleviate this problem,
additional feature lines are incorporated to compensate for
more robust feature correspondences. Therefore, given M
feature point correspondences {(pi , p′

i )}i=1,2,...,M and N fea-
ture line matchings {(l j , l ′j )} j=1,2,...,N , we define a local dual
feature-based alignment term as follows:

ELA
(
V̂

)
=

M∑
i=1

wwτ
(

p̂i
)

− p′

i

ww2
+

N∑
j=1

wwdis
(
τ
(
l̂s,e

j

)
, l ′j

)ww2
(5)

where l̂s,e
j denotes the start point and the endpoint of the

j th warped line l̂, and dis(·) is an operator to calculate the
distance from the point to the line. Specifically, we represent
the reference line as l ′ = ax + by + c, then dis(·) = (|ax̂ +

bŷ + c|/(a2
+ b2)1/2), where (x̂, ŷ) are the coordinates of the

warped point in the reference coordinate system.
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2) Global Pixel-Based Alignment Term: Aligning drone
images solely with the aforementioned feature-based align-
ment term is insufficient. This is because its constraint is only
applied to a subset of vertices within grid cells containing
feature correspondences. In the regions where no features are
detected or matched, the coordinates of mesh vertices remain
unconstrained, resulting in notable distortions.

To address this issue, the existing methods generally per-
form a single feature-based global alignment before mesh
deformation. However, in low-texture natural environments,
it is difficult to obtain sufficient reliable feature points or
lines to guarantee an accurate estimation for feature-based
alignment. Moreover, the matched feature points and lines
are less accurate than pixels in general. This also limits the
improvements of alignment accuracy in the following mesh
deformation. To solve these problems, we define a global
pixel-based alignment term EGA as

EGA
(
V̂

)
=

n∑
i=1

wwτ
(
v̂i

)
− HQR1A(vi )

ww2
. (6)

The QR1A model fully uses dense color pixels to align
drone images, achieving higher alignment precision. Thus,
we impose the corresponding QR1A constraint on mesh
vertices, aiming to alleviate local instabilities caused by
the absence of feature correspondences. Moreover, taking
advantages of the pixel-based nature, it exhibits robustness
against natural drone images, particularly those characterized
by low-texture and repetitive-texture scenes.

3) Structures Preserving Term: Compared with feature
points, the detected feature lines are more prominent in aerial
scenarios, e.g., urban and roads. They could provide extra
geometric structure information to attract more human atten-
tion. Thus, preserving feature lines between the warped and
unwarped images is beneficial to improving the naturalness
quality of mesh deformation. Apart from line segments, global
geometric structures have been studied recently by merging
multiple collinear line segments together [21]. Consequently,
to preserve both local and global linear structures in drone
images, the structures’ preserving term is defined as

ESP
(
V̂

)
=

P∑
i=1

Ui −1∑
s=1

wwww〈
τ
(

p̂l
i,s+1

)
− τ

(
p̂l

i,s

)
,
−→
n̂l

i

〉wwww2

+

Q∑
j=1

Z j −1∑
t=1

wwww〈
τ
(

p̂g
j,t+1

)
− τ

(
p̂g

j,t

)
,
−→
n̂g

j

〉wwww2

(7)

where P and Q are the numbers of local and global line
segments, respectively. We uniformly sample the i th local line
segment with Ui points {pl

i,s}s=1,2,...,Ui , and the j th global

line segment with Z j points {pg
j,t }t=1,2,...,Z j , respectively.

−→
n̂

represents the normal vector of the corresponding warped line,
and ⟨·⟩ is an operator to calculate the dot product of two
vectors.

4) Distortions Control Term: Similar to the local dual
feature-based alignment term, the above structures’ preserving
term can only impose linear constraints on the mesh vertices
within the image area having feature lines. Moreover, the way

preserving lines can prevent images from undergoing perspec-
tive distortions, but cannot avoid the projective distortions
happening. For example, objects are enlarged nonuniformly in
the nonoverlapping area. Thus, it remains necessary to control
the potential distortions over the entire drone image area,
especially the overlapping regions without linear structures and
the nonoverlapping area.

According to the analyses of homographic transformation
in [20], there exists a unique set of inherent lines that keep
parallel, horizontally and vertically, before and after the pro-
jective transformation. Mathematically, given a homography
prior H = [h1 h2 h3; h4 h5 h6; h7 h8 1], the slope of
vertical parallel lines is k1 = −(h7/h8) before warping and
k2 = ((h4h8−h5h7)/(h1h8−h2h7)) after warping, respectively.
Afterward, the slope of corresponding horizontal parallel
lines can be derived by −(1/k1) and −(1/k2). Consequently,
by preserving the slope of these inherent parallel lines, we are
able to mitigate the perspective distortion of mesh deformation
globally.

On the other hand, it was also observed that the scale of
these parallel lines is transformed nonuniformly [9]. When
facing the large parallax, projective distortion may appear
in the nonoverlapping area. To alleviate such projective dis-
tortion, we further constrain these horizontal and vertical
parallel lines to be scaled in a uniform fashion. In this regard,
the distortions’ control term consists of a perspective-control
subterm Epes and a projective-control subterm Epro

Edc
(
V̂

)
= µ1 Epes

(
V̂

)
+ µ2 Epro

(
V̂

)
(8)

where µ1 and µ2 are their weighting constants. Specifically,
we start by establishing a series of crossing lines, including
vertical parallel lines {lvi }i=1,2,...,K and horizontal parallel lines
{lu

j } j=1,2,...,R for the target image. Next, similar to (7), these
lines are uniformly sampled with Fi points {pv

i,s}s=1,2,...,Fi and
G j points {pu

j,t }t=1,2,...,G j , respectively. To this end, we are able
to effectively control the global perspective by preserving these
crossing-line features, and thus the subterm Epes is defined as

Epes
(
V̂

)
=

D∑
i=1

Fi −1∑
s=1

wwww〈
τ
(

p̂v
i,s+1

)
− τ

(
p̂v

i,s

)
,
−→
n̂v

i

〉wwww2

+

W∑
j=1

G j −1∑
t=1

wwww〈
τ
(

p̂u
j,t+1

)
− τ

(
p̂u

j,t

)
,
−→
n̂u

j

〉wwww2

(9)

where D and W are the numbers of constructed vertical
and horizontal parallel lines, respectively, and

−→
n̂v

i and
−→
n̂u

j are
the normal vectors of these lines after projective warping.
Meanwhile, we also impose the equidistant-scaling constraint
on those sampled points to balance projective distortion.
Accordingly, the subterm Epro is defined as follows:

Epro
(
V̂

)
=

D∑
i=1

Fi −2∑
s=1

wwτ
(

p̂v
i,s

)
+ τ

(
p̂v

i,s+2

)
− 2τ

(
p̂v

i,s+1

)ww2

+

W∑
j=1

G j −2∑
t=1

wwτ
(

p̂u
j,t

)
+ τ

(
p̂u

j,t+2

)
− 2τ

(
p̂v

j,t+1

)ww2
.

(10)

Notably, we here use HQR1A as our homography prior.

Authorized licensed use limited to: Universidade de Macau. Downloaded on December 26,2024 at 02:38:02 UTC from IEEE Xplore.  Restrictions apply. 



LI AND ZHOU: SEAM-ADAPTIVE STRUCTURE-PRESERVING IMAGE STITCHING FOR DRONE IMAGES 5601412

D. Optimization

All the above-defined terms and subterms are integrated
together to constitute (4). Consequently, our objective function
can be reformulated in the following matrix multiplication
form:

E
(
V̂

)
= λ1

wwCpV̂ − P
ww2

+ λ1
wwClV̂ + E

ww2

+ λ2
wwV̂ − Vg

ww2

+ λ3
wwCslV̂

ww2
+ λ3

wwCsgV̂
ww2

+ µ1
wwCpesV̂

ww2

+ µ2
wwCproV̂

ww2
(11)

where Cp ∈ R2M×2n , P ∈ R2M , Cl ∈ R2N×2n ,
E ∈ R2N , Vg ∈ R2n , Csl ∈ R

∑P
i=1(Ui −1)×2n , Csg ∈

R
∑Q

j=1(Z j −1)×2n , Cpes ∈ R[
∑D

i=1(Fi −1)+
∑W

j=1(G j −1)]×2n , and Cpro ∈

R[2
∑D

i=1(Fi −2)+2
∑W

j=1(G j −2)]×2n are derived from (5) to (10),
respectively. Obviously, (11) is a quadratic function, and thus
it can be further expressed as the following form:

E
(
V̂

)
=

wwAV̂ − B
ww2

(12)

where

A =



√
λ1Cp

√
λ1Cl

√
λ2

√
λ3Csl

√
λ3Csg

√
µ1Cpes

√
µ2Cpro


and B =



√
λ1P

−
√

λ1E
√

λ2Vg

0

0

0

0


.

Finally, (12) boils down to a sparse linear matrix equation,
and it can be effectively optimized by the sparse linear solver.

E. Complexity Analysis

The LGSPA model comprises four terms. The computa-
tional complexity of constructing 1) term ELA is O(M + N );
2) term EGA is O(n); 3) term ESP is O(

∑P
i=1(Ui − 1) +∑Q

j=1(Z j − 1)); and 4) term EDC is O(
∑D

i=1(Fi − 1) +∑W
j=1(G j −1)+

∑D
i=1(Fi −2)+

∑W
j=1(G j −2)), respectively.

Afterward, we use the conjugate gradient method to optimize
the LGSPA model, and the cost is O(n2).

IV. SAW SCHEME

In the process of remote sensing image stitching, seamline
detection constitutes a crucial step for achieving satisfactory
stitching results. Taking into account that the seamline inter-
sects only a portion of overlapping area, the seamline quality
is predominantly determined by the alignment accuracy of
its adjacent local regions, i.e., local alignment quality, rather
than the global alignment quality. For example, if a seam-
line cuts through misaligned local regions, stitching artifacts
will appear. Therefore, enhancing the stitching capability of
seamline necessitates optimizing its local alignment quality as
a priority. To this end, we propose the SAW scheme.

We first derive a seamline from the prealignment as the
seam prior. According to the specific location of this seam

prior, we adaptively calculate location-dependent weights for
sparse features in the overlapping area. The rationale behind
this weighting scheme is to accentuate the importance of local
alignment constraints near the seamline, while allowing for
relaxation of constraints farther away from the seamline to
prevent unnecessary distortions. To ensure smooth transitions
in the values of these weights, we define our SAW scheme as
follows:

w =

(
1 +

αd2

δ

)−
δ+1

2

(13)

where d denotes the distance from the feature to the seam
prior, and α and δ are constant parameters.

In experiments, the seam prior can be visualized as a
polyline segment. Thus, the distance from the feature point
to the seam prior equals to the shortest geometric distance
from the point to the polyline segment. More specifically,
we first determine the point p1 in the polyline segment that has
the minimum distance away from the feature point p2. Then,
d = ((x1−x2)

2
+(y1− y2)

2)1/2, where (x1, y1) and (x2, y2) are
the coordinates of p1 and p2 in the image coordinate system.
Similarly, when the feature is a line segment, we compute
the shortest geometric distance from the endpoint of the line
segment to the seam prior. In addition, α mainly adjusts the
values of weight at different distances (i.e., the active range
of local alignment), δ controls the decay speed on the whole,
and w ∈ [0, 1]. In this article, the seam prior is derived from
HQR1A, and we set δ = 1 by default. The value of α will be
discussed in the following ablation studies.

V. SASP IMAGE STITCHING FRAMEWORK

Building upon the proposed LGSPA model and SAW
scheme, we develop the SASP framework for high-quality
drone image stitching.

A. Our Motivation

Due to the mobility of drone devices, adjacent drone
images are often captured under wide-baseline conditions.
Consequently, large parallax and occlusions frequently occur
in aerial scenes with nonplanar surfaces. Current drone image
stitching methods typically follow the conventional pipeline
of optimizing image alignment and seamline sequentially and
independently. However, achieving a perfect global alignment
over the entire overlapping area is rarely feasible under these
challenging conditions.

In addition, it has been demonstrated that the best-fitting
global alignment does not necessarily ensure optimal seamline
quality [11]. For instance, an alternative alignment might
yield a higher quality seamline despite less accurate geometric
fitting. The optimal seamline intersects only a partial region
within the overlapping area, so the final stitching performance
primarily depends on local alignment accuracy along the
seamline rather than global alignment accuracy. Nonetheless,
finding a sensible local alignment or a local region free from
parallax is also difficult in challenging scenarios.

These insights motivate us to investigate the relationship
between image alignment and seamline detection to achieve
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Fig. 1. SASP image stitching framework. Input drone images are initially used to generate a prealignment based on the QR1A model that will serve as the
role of: 1) the global pixel-based alignment constraint; 2) a homography prior; and 3) deriving a seam prior. Afterward, we construct each term of LGSPA,
respectively; and LGSPA is optimized under the guidance of the SAW scheme to obtain a seam-adaptive alignment to generate the final stitching result.

high-quality drone image stitching in the field of remote
sensing.

B. SASP Framework

The developed SASP framework is illustrated in Fig. 1.
Given two adjacent drone images with wide baseline, we start
by optimizing the QR1A model, which fully uses dense color
pixels to achieve a precise estimation of global alignment, i.e.,
HQR1A. In this framework, HQR1A serves the following three
purposes: 1) generating a corresponding seam prior for SAW;
2) providing a robust global alignment constraint on mesh
vertices for LGSPA; and 3) acting as a homography prior to
explore inherent crossing-line features.

Afterward, we proceed to the mesh deformation stage.
Technically, we first use the perception-based seam-cutting
(PBSC) approach [31] to generate a seam prior to calculate
SAW. Then, we construct four respective terms of the LGSPA
model. For the local dual feature-based alignment term, both
SURF feature points [32] and LSD line segments [33] are
detected. The pairwise dual-feature correspondences are estab-
lished using the RANSAC algorithm [34] and the coplanar
line-points invariant matching strategy [35]. Incorporating the
SAW scheme, the local dual feature-based alignment term ELA
is then ameliorated as

ELA
(
V̂

)
=

M∑
i=1

wi
wwτ

(
p̂i

)
− p′

i

ww2
+

N∑
j=1

w j
wwdis

(
τ
(
l̂s,e

j

)
, l ′j

)ww2

(14)

where we use i and j as the number indexes of feature points
and line segments. Accordingly, wi and w j denote the coeffi-
cients of the i th feature point and the j th feature line segment
in their corresponding calculations. We derive the coefficients
wi and w j from our SAW scheme, i.e., (13). It is notable
that when α = 0 in (13), the active range of local alignment
will be spread over the whole overlapping area, and thus (14)
turns out to be (5) equally. For the structures’ preserving
term, we adopt detected LSD line segments as our local linear

structures and apply the line-merging algorithm [21] to obtain
global collinear structures. We maintain a constant slope for
these line segments to preserve both local and global linear
structures in drone images.

Following the construction of four terms, we can derive
the optimal vertex coordinates of warped mesh grids by
optimizing (12). Aligned drone images are thereby obtained
using the texture mapping technique [30]. Finally, we use
PBSC and the Poisson blending method [36] to compose
aligned drone images together.

C. Discussion

In this framework, we align drone images to create con-
tinuous well-aligned local regions (i.e., seam-adaptive local
alignment) for optimal stitching. We estimate the initial seam-
line information from prealignment to serve as a seam prior,
guiding the optimization of LGSPA for the desired local
alignment. Note that this seam prior is not used for stitching
images but as a cue to identify a sensible local alignment
in the overlapping area. After obtaining the desired local
alignment, we conduct seamline detection to generate the
final optimal seamline to stitch images seamlessly. Although
seamline detection is performed twice in our framework, the
total time consumption increases only 1–2 s. Thus, its impact
on overall efficiency and practicality is within an acceptable
range.

Unlike the existing drone image stitching methods that
align images over the entire overlapping area, SASP focuses
on optimizing an accurate local alignment. This approach
provides us greater flexibility in handling challenging drone
images with large parallax, wide baselines, and occlusions.
Compared with the existing image stitching methods that find
an accurate local alignment from various alignment candidates,
SASP directly learns the sensible local alignment for optimal
stitching. Hence, SASP is more effective in achieving optimal
image stitching outcomes and has significant application value.
In addition, this method substantially preserves the naturalness
of drone images.
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VI. EXPERIMENTS

To validate the effectiveness of the proposed LGSPA model
and SASP framework, this section compares them with the
related state-of-the-art image alignment and stitching methods,
qualitatively and quantitatively. Furthermore, an ablation study
is also designed to analyze the efficacy of the proposed SAW
scheme intuitively.

A. Experimental Setup

1) Parameters’ Setting: In (11), the five parameters are
selected from the range of [1, 100] to determine their respec-
tive relative significance. By default, λ3 and µ2 are set to 100,
because we hope to preserve original image structures and
minimize projective distortions to the greatest extent possible.
Then, we balance the tradeoff between image alignment and
concealing perspective distortion. Empirically, to reduce the
computational burden on parameter tuning in our experiments,
we first fix µ1 to 50, i.e., the middle value of the range as
a baseline. To cater to various challenging aerial scenarios,
we then leverage a nested iterative strategy to fine-tune λ1 and
λ2 from [1, 100] to achieve the final optimal drone image
alignment performance.

2) Datasets: We conduct experiments on a set of chal-
lenging drone images that are collected from the HeJiadong
dataset by the Chinese Academy of Sciences, as well as two
public drone image datasets [37], i.e., Airport and Highway.
Concretely, the HeJiadong dataset predominantly consists of
low-texture and repetitive-texture image scenes. The Airport
dataset contains abundant salient structures but with large
parallax and occlusions. The Highway dataset involves the
wide baseline, salient structures, and moving vehicles.

3) Comparison Methods: To assess image alignment
quality, we consider the SPHP warp [15] as the baseline,
the SPW [20], the REW [28], and the TFT [24] as the
cutting-edge competitive methods. For image stitching
performance evaluation, we regard the PBSC approach [31]
as our baseline, the line-point consistence (LPC) stitching
method [21], the UDIS method [25] and the ACIS-QR1A
method [14] as the state-of-the-art competitive methods. The
results of these methods are generated by their source codes.

4) Quantitative Evaluation Criteria: To objectively assess
image alignment and stitching performance for drone
images, we use the classical peak signal-to-noise ratio
(PSNR), structural similarity measure (SSIM) [38], and
zero-normalized cross correlation (ZNCC) score [13] as our
quantitative evaluation metrics.

B. Alignment Performance of LGSPA Model

To verify the alignment ability of LGSPA, we carry out
comparative experiments on the HeJiadong dataset. The align-
ment results are analyzed in terms of two aspects: 1) the
global alignment accuracy over the whole overlapping area and
2) the naturalness of warped drone images. After alignment,
the linear blending technique is uniformly used to compose
overlapped drone images.

TABLE I
QUANTITATIVE IMAGE ALIGNMENT QUALITIES OF DIFFERENT

ALGORITHMS ON THE HeJiadong DATASETS

1) Qualitative Evaluation: Fig. 2 shows performance
comparisons of different alignment algorithms. To present mis-
alignment artifacts clearly, we sampled the local regions with
red and blue rectangles and magnified them aside. Meanwhile,
we display the reference drone image of each set as our ground
truth. From the reference image, we can observe that the
captured aerial scenes are roughly planar; however, it might be
difficult to obtain adequate reliable features from the large-area
plains and forests.

As highlighted in magnified insets, SPHP cannot accurately
align these drone images due to poor feature-matching execu-
tion. SPW introduces additional feature lines for compensation
and hence could align the local linear structures more accu-
rately. However, the low-texture and repetitive-texture areas,
such as the winding river, farmlands, and green woods, are
still misaligned apparently. TFT exhibits a higher alignment
precision by partitioning the landscape into multiple triangular
facets for more adaptive alignment. However, it is overly
flexible, resulting in ghosting artifacts and black holes in
the overlapping area. Besides, extreme distortions appear in
the nonoverlapping area. REW adopts the mTopKRP [39]
algorithm to remove mismatched feature correspondences,
improving alignment accuracy. However, due to a lack of
features, the river framed in the first image set is misaligned,
and the forest shown in the second image set suffers from
slight ghosting artifacts. By comparison, LGSPA not only
aligns the winding river, farmlands, and green woods accu-
rately in the overlapping area but also preserves the naturalness
of the nonoverlapping image contents. Therefore, LGSPA
demonstrates superior performance in aligning drone images
captured in natural environments.

2) Quantitative Evaluation: To quantify the global align-
ment quality, we measure aligned pixels over the entire
overlapping area. Table I records the alignment scores of
different algorithms for the above image sets. The best scores
are highlighted in bold, and the second best scores are
underlined. As reported in Table I, LGSPA outperforms SPHP
and CPW with distinct advantages and consistently obtains
remarkable scores under different metrics. TFT yields some
best scores in the aspect of higher alignment accuracy in
the No. 3 case. However, it is clear from Fig. 2(d) that the
nonoverlapping image areas are distorted seriously, which can-
not be anticipated by those scores computed in the overlapping
area. REW achieves competitive scores in terms of global

Authorized licensed use limited to: Universidade de Macau. Downloaded on December 26,2024 at 02:38:02 UTC from IEEE Xplore.  Restrictions apply. 



5601412 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 2. Qualitative comparisons of different alignment algorithms on the HeJiadong dataset. (a) Reference image. Aligned results of (b) SPHP [15],
(c) SPW [20], (d) TFT [24], (e) REW [28], and (f) LGSPA. For easy observation, several local regions have been sampled and magnified on the right sides.

alignment accuracy. On average, our alignment algorithm
achieves the best and the second best scores under different
metrics.

In this regard, LGSPA succeeds in improving the
naturalness performance of warped drone images without loss
of alignment accuracy in the overlapping area on the whole.
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Fig. 3. Qualitative comparisons of different stitching methods on the Airport and Highway datasets. (a) Input drone images. Stitching results of (b) PBSC [31],
(c) LPC [21], (d) ACIS-QR1A [14], (e) UDIS [25], and (f) SASP. For easy observation, several stitching artifacts have been highlighted in red circles and
rectangles.
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Fig. 4. Ablation study on the proposed SAW scheme. When (a) α = 0, (b) α = 0.03, (c) α = 0.05, (d) α = 0.07, and (e) α = 0.10, (top row) corresponding
alignment results of LGSPA, (middle row) generated seamlines, and (bottom row) stitching results of SASP are illustrated, respectively. For easy observation,
stitching artifacts have been highlighted in red circles and rectangles.

C. Stitching Performance of SASP Framework

To demonstrate the stitching ability of SASP in dealing with
challenging remote sensing scenarios, we conduct comparative
experiments on the Airport and Highway datasets. The stitch-
ing results are analyzed concerning two aspects: 1) the local
alignment accuracy along the seamline and 2) the naturalness
of stitched drone images.

1) Qualitative Evaluation: Fig. 3 presents the final stitched
drone images using different image stitching methods. From
input drone images, we can observe that the captured scenes
consist of salient structures, which is beneficial to obtaining
sufficient feature points and lines. However, the scenes
cannot be viewed as planar due to large parallax, occlusions,
and wide baseline. These challenges also present obstacles
in generation of high-quality stitching results. We use red
circles and rectangles to indicate several notable stitching
artifacts.

As can be seen, PBSC cannot provide an accurate local
alignment for its seamline, producing obvious stitching errors
and artifacts. LPC adopts the line-guided mesh deformation
to improve the global alignment accuracy and preserve the
naturalness of salient structures. However, the local alignment
accuracy along the seamline is not being ameliorated
effectively, and thus stitching artifacts are retained as well.
ACIS-QR1A exploits the seam-driven stitching strategy to

iteratively optimize the local alignment, which significantly
improves the stitching quality of seamlines. However,
it ignores the naturalness issue when warping drone
images, as shown in the magnified region. UDIS adopts an
unsupervised deep learning method to reconstruct image
stitching results in both feature and pixel levels. However, the
reconstructed images suffer from unnatural artifacts, e.g., the
structures of the highway are squeezed seriously. Compared
with them, the stitching results of SASP are free from such
errors and artifacts. Therefore, SASP exhibits the robust
stitching ability to multiple challenging factors, including
large parallax, occlusions, and wide baseline.

2) Quantitative Evaluation: To measure the stitching qual-
ity of stitched drone images numerically, we extract the local
regions (15 × 15 pixels) along the seamline to quantify its
surrounding local alignment accuracy. The stitching scores of
different methods for all the above image sets are detailed
in Table II. For the Airport dataset, all the methods show
comparable scores under different metrics. Nevertheless, the
stitching errors of PBSC, LPC, and ACIS-QR1A are all
notable, as shown in Fig. 2(b)–(d). For the Highway dataset,
SASP is consistently superior to other methods under all the
metrics. Moreover, SASP keeps the best stitching scores on
average performance. Particularly, our average SSIM score is
13% higher than that of LPC, and our average ZNCC score is
16% lower than that of ACIS-QR1A.
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TABLE II
QUANTITATIVE IMAGE STITCHING QUALITIES OF DIFFERENT

METHODS ON PUBLIC AERIAL DATASETS

D. Ablation Study on SAW Scheme

To explore the effects of the proposed SAW scheme on
LGSPA and SASP intuitively, we devise an ablation study on
the Airport dataset to figure out the corresponding alignment
and stitching results with the varying values of α in SAW.

As shown in Fig. 4, we set α = {0, 0.003, 0.05, 0.07, 0.10}

in (13) and illustrate the intermediate results of our image
stitching process, respectively. Stitching artifacts of the final
results are highlighted in red circles. It can be observed that
the best-fitting global alignment is achieved when α = 0,
since LGSPA tries to accurately align the whole overlapping
area. However, due to inconsistent feature correspondences,
the salient structures are distorted severely and the stitch-
ing performance is also not plausible in the SASP result.
When α = 0.03 and 0.05, the global alignment accuracy
decreases, but the local alignment precision is enhanced along
the seamline. Consequently, the final stitched drone images
are free from stitching errors and the distortion problem is
also well-addressed. When α = 0.07, the active range of the
local alignment constraint is not large enough to be precisely
imposed for the seamline, and thus stitching artifacts appear
again.

It can be inferred that the influence of the local alignment
constraint should be controlled in a sensible range along the
seamline. In this article, we set α ∈ [0.03, 0.05] in SAW to
control the active range of local alignment, enabling SASP
to have a much higher tolerance against those challenging
stitching factors such as large parallax, occlusions, and wide
baseline.

VII. CONCLUSION

This article first proposed LGSPA for drone image align-
ment with high precision and good naturalness. Then,
we proposed SAW to improve seamline quality essentially.
Using LGSPA and SAW, we further developed SASP to
generate final drone image stitching results against different
kinds of realistic challenges. With SASP, we optimized the
desired well-aligned local alignment for seamline detection,
thereby generating the final optimal seamline to stitch images
seamlessly. Qualitative and quantitative experiments have been
conducted to verify that LGSPA and SASP are capable

of generating higher quality alignment and stitching results
than several state-of-the-art methods over multiple challenging
aerial scenarios, including low textures, repetitive textures,
large parallax, wide baseline, and occlusions. Our future work
will develop new seamline detection methods to improve the
drone image stitching performance.
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