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Abstract— Secure communication techniques can protect data
confidentiality during transmission through public channels.
Chaotic systems are commonly used in secure communica-
tion due to their random-like behavior, unpredictability, and
ergodicity. However, existing chaos-based secure communication
schemes have some drawbacks concerning the chaotic systems
used and the communication structures, so they cannot achieve
satisfactory performance to resist transmission channel noise.
In light of this, in this paper, we propose a two-dimensional (2D)
cyclic chaotic system (2D-CCS) and design a novel chaos-based
secure communication scheme called noise-reduced orthogonal
frequency division multiplexing based differential chaos shift
keying (NR-OFDM-DCSK). The 2D-CCS is a general framework
that can generate a large number of new 2D chaotic maps
using existing one-dimensional (1D) chaotic maps as seed maps.
Theoretical analysis and experiment results demonstrate its
robust chaotic behaviors. The NR-OFDM-DCSK employs a new
chaotic map generated by 2D-CCS as the chaos generator, and
its structure exhibits a strong ability to resist channel noise,
as demonstrated by formulaic analysis. Our extensive experi-
ments show that our developed 2D chaotic maps are more suitable
for secure communication applications than existing 2D chaotic
maps, and our NR-OFDM-DCSK can achieve a lower bit-error-
rate (BER) than state-of-the-art secure communication schemes.

Index Terms— Chaotic system, chaos-based practicality, secure
communication, chaotic communication.
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I. INTRODUCTION

SECURE communication refers to the exchange of infor-
mation or data between parties in a manner that ensures

confidentiality [1]. The phenomenon of the butterfly effect,
or chaotic behavior, was first observed in natural occur-
rences [2]. Due to the random-like behavior, initial state
sensitivity, and parameter controllability [3], [4], chaotic sys-
tems are commonly employed in diverse applications like
secure communication [5], [6], time series prediction [7],
pseudo-random number generators [8], and image encryp-
tion [9]. When used for secure communications, chaotic
systems provide benefits such as high transmission rate, high
security, and low bit-error-rate (BER). Consequently, it has
become customary to develop secure communication schemes
using chaotic systems.

Since the early 1990s, chaotic system has been utilized
for developing secure communication schemes [10]. Up to
now, numerous chaos-based secure communication schemes
have been developed [11] and can be classified into two
categories based on the way they modulate the transmit-
ted data: coherent chaotic communication and non-coherent
chaotic communication [12]. The non-coherent chaotic com-
munication is considered more practical since it does not
require a chaotic synchronizer [13]. As a typical example
of non-coherent chaotic communication, the differential chaos
shift keying (DCSK) [14] transmits a reference sequence and
an information-bearing sequence during one DCSK symbol
duration. Due to its many unique properties, such as simple cir-
cuit structure and fixed threshold decision component, DCSK
exhibits practical advantages. However, the traditional DCSK
structure requires a delay line, which causes extra complexity
and difficulty in actual circuit implementation. Furthermore,
it cannot achieve a high data transmission rate and satisfactory
noise resistance ability because half of the transmitted data
is used for delivering the reference signal, and the receiver
can not separate the channel noise from the transmitted signal
during demodulation.

Recently, a multitude of modified DCSKs [15], [16],
[17] have been developed to overcome the drawbacks of
the original design. For example, Li et al. [15] devised
an orthogonal frequency division multiplexing based DCSK
(OFDM-DCSK) that is able to transmit multiple informa-
tion bits simultaneously using the efficient exploitation of
frequency bands. Additionally, OFDM-DCSK eliminates the
need for a delay line. On this basis, Liu et al. [16] put
forth a frequency-and-time hybrid-interleaving OFDM-based
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DCSK (FH-OFDM-DCSK), which enhances the security of
OFDM-DCSK by utilizing the frequency diversity brought by
frequency hopping. Chen et al. [17] proposed an OFDM-based
pre-coded chaos shift keying (OFDM-PC-CSK) communica-
tion scheme, which does not need to transmit the reference
signal and thus improves the data transmission efficiency
compared with OFDM-DCSK.

For these chaos-based DCSKs, their performance is deter-
mined not only by their communication structure but also
by the chaotic system they employ. Many novel chaotic
systems [18], [19], [20], [21], [22] with complex dynamics
behaviors have recently been developed using various tech-
niques. However, most of existing chaotic systems perform
poorly in secure communication applications for the following
reasons. Firstly, their chaotic intervals are discontinuous [23].
Since all digital platforms have finite precision, the digitized
parameters of chaotic systems can only be approximated when
implemented on digital platforms. If the chaotic intervals are
discontinuous, a slight perturbation to the parameters may
cause the parameters to be out of the chaotic intervals, leading
the chaotic behavior to degenerate into periodic behavior. Sec-
ondly, the chaotic sequences they produce are non-uniformly
distributed and have a low degree of randomness [24], which
can negatively impact the performance of secure communica-
tion in terms of BER and security since the generated chaotic
sequences are used to modulate transmission data.

Existing communication schemes also have certain limita-
tions in resisting transmission noise and ensuring security.
When signals are transmitted through noisy channels, they
may be blurred by the channel noise. Many previous com-
munication schemes demodulate the channel noise along with
the original signal at the receiver, treating it as part of the
signal, and causing a relatively high BER [25]. Moreover,
these schemes often send information in a relatively straight-
forward way, making it defenseless to being eavesdropped
by malicious third parties. For example, OFDM-DCSK [15]
modulates multiple information bits using the same chaotic
sequence within a given time period, creating obvious patterns
in the transmitted signals across different frequency bands.
Therefore, it is crucial to develop communication schemes
with strong noise resistance ability and high security.

In light of the above, in this paper, we aim to study a new
secure communication scheme to overcome the shortcomings
of existing schemes. At first, we propose the two-dimensional
(2D) cyclic chaotic system (2D-CCS), a general frame-
work for producing new 2D chaotic maps by using existing
one-dimensional (1D) chaotic maps as seed maps. High-
dimensional (HD) chaotic systems are well-suited for secure
communication due to their ability to exhibit hyperchaotic
behaviors and complex dynamical properties [26], [27]. How-
ever, implementing these HD systems requires substantial
computational resources because of their complexity and
numerous variables. Generally, a chaotic system with high
dimensions has a more complex structure and requires more
implementation resources. 1D chaotic maps lack hyperchaotic
behavior and thus offer relatively low security when applied in
secure communication. This is because these trajectories may
be predicted using some artificial intelligence techniques [28],
[29]. Once the trajectory of a chaotic map has been accurately
predicted, the map loses its unpredictability, which can lead to

the failure of the communication scheme. A chaotic system’s
behavior is much more difficult to predict if it has hyperchaotic
behavior [21], [30]. As for 2D chaotic maps, they can possess
hyperchaotic behavior and balance system implementation
costs and security, compromising between 1D and HD chaotic
systems. Theoretical analysis and experimental results prove
its continuous chaotic interval and robust chaotic behavior.
Three new 2D chaotic maps generated by 2D-CSS are taken
as examples to demonstrate the effectiveness of 2D-CCS.
Performance analysis demonstrates that the three new 2D
chaotic maps have continuous chaotic intervals uniformly
distributed outputs, and a high degree of randomness.

Taking one new 2D chaotic map as the chaos gener-
ator, we further design a novel chaos-based secure com-
munication scheme, namely noise-reduced OFDM-DCSK
(NR-OFDM-DCSK). At the transmitter, the information bits
are modulated using a chaotic modulation module, a scram-
bling module, and an IFFT module to get the transmitted
signal. At the receiver, the received signals are demodulated
using an FFT module, a descrambling module, an averaging
filter module, and a chaotic demodulation module to extract the
information bits. Theoretical analysis shows that NR-OFDM-
DCSK has great noise resistance ability. Experimental results
demonstrate that our new chaotic maps can achieve better
performance than existing chaotic maps in secure communica-
tion applications, and our NR-OFDM-DCSK has better noise
resistance ability than state-of-the-art DCSKs when using the
same chaotic map as the chaos generator.

We summarize our contributions as follows.
1) We propose 2D-CCS as a general framework that can

generate a large number of new 2D chaotic maps using
existing 1D chaotic maps as seed maps. Formulaic
analysis proves the hyperchaotic behavior of 2D-CCS
in the sense of the Lyapunov exponent (LE).

2) We generate three new 2D chaotic maps as examples
using 2D-CCS. Experimental results show that the new
2D chaotic maps exhibit favorable chaos properties and
better performance indicators in contrast to existing 2D
chaotic maps.

3) We develop a new secure communication scheme
NR-OFDM-DCSK. Formulaic analysis shows its low
BER over the additive white Gaussian noise (AWGN)
channel.

4) Experimental results show that our new chaotic maps
are more suitable for secure communication applications
than existing 2D chaotic maps, and our NR-OFDM-
DCSK exhibits better noise resistance ability than
state-of-the-art secure communication schemes.

The rest of this paper is organized as follows. Section II
introduces 2D-CCS and theoretically proves its hyperchaotic
behavior. Section III provides three new 2D chaotic maps
generated by 2D-CCS as examples and evaluates their perfor-
mance. Section IV introduces NR-OFDM-DCSK and analyzes
its theoretical BER over the AWGN channel. Section V
evaluates the performance of NR-OFDM-DCSK from various
aspects, and Section VI concludes this paper.

II. 2D-CCS

This section presents the details of 2D-CCS and then proves
its hyperchaotic behaviors in the sense of LE.
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A. Construction of 2D-CCS
2D-CCS is constructed from an existing 1D seed chaotic

map with two linear expressions. The output of each dimension
of 2D-CCS is obtained by first combining the seed map with
a linear expression, and then applying a modulo operation to
the combined result to confine the phase space of the system
within a bounded space. Therefore, the mathematical definition
of 2D-CCS is given as{

x1(i + 1) = p1x1(i) + F(x2(i)) mod M
x2(i + 1) = F(x1(i)) + p2x2(i) mod M,

(1)

where x(i) = [x1(i), x2(i)]T is the state vector of 2D-CCS
at the i-th observation time, p1 and p2 are two control
parameters, F(·) is the 1D seed map chosen by the system
constructor, and M is the modular coefficient. As can be seen
in Eq. (1), the seed map and two linear expressions form a
cyclic shift relationship between the two dimensions.

To achieve robust hyperchaotic behavior, the control param-
eters of 2D-CCS should satisfy a specific condition, which
will be theoretically derived in the following section. As the
condition is particularly relevant to the construction of 2D-
CCS, we present it here as follows:

|pk | > max
x∈[0,M)

(| f (x)|) + 1, (2)

where k ∈ {1, 2} and f (x) is the derivative of the seed F(x).
The above condition requires that the seed F(x) must be
differentiable, and its absolute derivative | f (x)| must have
a maximum value within x ∈ [0, M). To the best of our
knowledge, most existing 1D chaotic maps share this property,
such as the fraction map, logistic map, and sine map.

B. Existence of Hyperchaos
This subsection explains how to derive Eq. (2) from a

mathematical standpoint.
1) Preliminaries: The LE indicator is one of the most

commonly used methods to prove the existence of chaos [31].
It measures the divergence rate of a dynamic system’s two
trajectories that begin with close initial states. A larger LE
indicates a faster divergence of two trajectories, which further
implies a more complex dynamics behavior of a dynamic
system [32]. For a 2D dynamic system, two LEs can be
computed. Therefore, we present the definition of chaos in
the sense of LE in Definition 1 [33].

Definition 1 [33]: A dynamic system has chaotic behavior
in the sense of LE if: 1) its phase space is globally bounded;
2) it has at least one positive LE. Besides, a dynamic system
with globally bounded phase space has hyperchaotic behavior
if it has more than one positive LEs.

Furthermore, two theorems are introduced as background.
Theorem 1 concerns the Geršgorin-type inclusion set of matrix
singular values, while Theorem 2 relates to the singular value
characteristics of matrix products.

Theorem 1 [34]: For a square matrix A = (ai j ) ∈ Cn×n ,
denote the sum of the absolute values of its off-diagonal
elements at row k and column k as rk =

∑n
j=1, j ̸=k |ak j | and

ck =
∑n

i=1,i ̸=k |aik |, respectively. Then all n singular values
of the matrix fall within the interval C(A) :=

⋃n
k=1 Ck , where

Ck =
[
max{0, |akk | − sk}, |akk | + sk

]
, and sk = max{rk, ck}.

Theorem 2 [35]: (The singular values in this theorem are
arranged in descending order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn .)
Any two matrices A, B ∈ Cn×n satisfy that σk(AB) ≥

max{σk(A)σn(B), σk(B)σn(A)} for k ∈ {1, 2, . . . , n}.
2) Proof of Hyperchaos: For a 2D dynamic system, its two

LEs can be calculated as [36]

L Ek = lim
t→∞

1
t

ln
(
λk(Jt )

)
, (3)

where λk(Jt ) is the k-th eigenvalue of Jt =
∏t−1

i=0 Jx(i), k ∈

{1, 2}, and Jx(i) is the Jacobian matrix of the 2D dynamic
system with the observed state x(i). Specifically, the Jacobian
matrix of 2D-CCS with the observed state x(i) is defined as

Jx(i) =

 ∂x1(i+1)
∂x1(i)

|x(i)
∂x1(i+1)
∂x2(i)

|x(i)

∂x2(i+1)
∂x1(i)

|x(i)
∂x2(i+1)
∂x2(i)

|x(i)

=

(
p1 f (x2(i))

f (x1(i)) p2

)
.

(4)

Based on the strong correlation between a matrix’s eigenval-
ues and its singular values, we can convert the computation of
eigenvalues in Eq. (3) into that of singular values. To elucidate
the properties of Jt ’s singular values, we introduce Lemma 1
as follows.

Lemma 1: When Eq. (2) holds, the two singular values of
Jt are both greater than one.

Proof: According to Theorem 1, the two singular values of
Jx(i) will fall within the interval C(Jx(i)) :=

⋃2
k=1 Ck , where

Ck =
[
max{0, |pk | − sk}, |pk | + sk

]
, sk = max{rk, ck}, rk =

| f (x3−k(i))|, and ck = | f (xk(i))|. Since sk is essentially a
value of | f (x)| for x ∈ [0, M), we can derive that

sk ≤ max
x∈[0,M)

(| f (x)|). (5)

When Eq. (2) holds, we can further derive that

|pk | − sk > max
x∈[0,M)

(| f (x)|) + 1 − sk ≥ 1, (6)

and

max{0, |pk | − sk} = |pk | − sk > 1. (7)

On this basis, the lower bound of Ck is greater than 1, meaning
that the two singular values of Jx(i) within C(Jx(i)) are also
greater than one. Therefore, the two singular values of Jx(i)
can be denoted as

σ1(Jx(i)) ≥ σ2(Jx(i)) > 1. (8)

Since Jt is the matrix product of Jx(i) at each observation
time in {0, 1, . . . , t −1}, the two singular values of Jt , denoted
as σ1(Jt ) ≥ σ2(Jt ), satisfy the following equation according
to Theorem 2 and Eq. (8):

σ1(Jt ) ≥ σ2(Jt ) = σ2(Jt−1Jx(t−1))

≥ σ2(Jt−1)σ2(Jx(t−1))

≥ σ2(Jx(0))σ2(Jx(1)) · · · σ2(Jx(t−1))

> 1. (9)

Thus, we have σ1(Jt ) ≥ σ2(Jt ) > 1, which completes the
proof of Lemma 1.

Based on Lemma 1, we introduce Proposition 1 to state that
our 2D-CCS can exhibit hyperchaotic behavior.
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Proposition 1: When Eq. (2) holds, the 2D-CCS described
by Eq. (1) can exhibit hyperchaotic behavior.

Proof: From the knowledge of linear algebra and matrix
analysis, the n eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and n singular
values σ1 ≥ σ2 ≥ · · · ≥ σn of an n order matrix satisfy that

σ1 ≥ |λk | ≥ σn (10)

for k ∈ {1, 2, . . . , n}. According to Lemma 1, the two singular
values of Jt satisfy that σ1(Jt ) ≥ σ2(Jt ) > 1 when Eq. (2)
holds. Based on this, the eigenvalues of Jt satisfy that∣∣λk(Jt )

∣∣ ≥ σ2(Jt ) > 1 (11)

for k ∈ {1, 2}. Therefore, we can deduce from Eq. (3) that the
LEs of 2D-CCS are positive, namely

L Ek ≥ lim
t→∞

1
t

ln
(
σ2(Jt )

)
> 0, (12)

where k ∈ {1, 2}. Based on the discussion above, 2D-CCS has
two positive LEs when Eq. (2) holds, which meets the second
condition of Definition 1.

On the other hand, as the output of each dimension of 2D-
CCS is performed by modulo M , the phase space of 2D-CCS
is globally bounded within [0, M) × [0, M), which fulfills
the first condition of Definition 1. As the two conditions of
Definition 1 are satisfied and 2D-CCS has more than one
positive LE, the 2D-CCS shows hyperchaotic behavior in the
sense of LE. This completes the proof of Proposition 1.

It is worth noting that if Eq. (2) is not satisfied, 2D-CCS may
display periodic or unstable behavior. Therefore, to enable 2D-
CCS to exhibit continuous and widespread chaotic intervals,
we should ensure that the control parameters of 2D-CCS
conform to Eq. (2). In addition, as the two singular values
of Jx(i) lie within the interval C(Jx(i)), which is associated
with p1 and p2 according to Lemma 1, setting the absolute
of p1 and p2 as larger values results in the positive interval
C(Jx(i)) being farther from the origin, thus leading to larger
singular values of Jx(i). From Eq. (9), Jt has larger singular
values as Jx(i)’s singular values increase. From Eqs. (11)
and (12), the larger singular values of Jt enable its larger
eigenvalues and thus result in larger LEs. Therefore, 2D-CCS
can achieve larger LEs and show more complex dynamics
behavior by setting its control parameters p1 and p2 as larger
values. We will experimentally verify this in Section III-C.1.

III. THREE EXAMPLES AND PERFORMANCE EVALUATION

This section constructs three new 2D chaotic maps using
2D-CCS, analyzes their chaos properties, and compares them
to other existing 2D chaotic maps.

A. Three New 2D Chaotic Maps
Based on Eq. (1), we employ the fraction map [37], logistic

map [38], and sine map [39] as seed maps to construct the
2D fraction cyclic chaotic map (2D-FCCM), 2D logistic cyclic
chaotic map (2D-LCCM), and 2D sine cyclic chaotic map (2D-
SCCM), respectively. Notably, the modular coefficient M is set
to 1 for simplicity, but it can be assigned other values without
impacting the chaotic behavior of the chaotic maps gener-
ated by 2D-CCS, as long as their control parameters satisfy
Eq. (2).

1) 2D-FCCM: 2D-FCCM is seeded by the fraction map
with a parameter a ∈ [0, 1] [37]. For simplicity, we have set
a = 1 for the construction of 2D-FCCM. However, a can be
assigned other values, which may result in a different range
of values for the control parameters of 2D-FCCM according
to Eq. (2). Specifically, the definitions of the fraction map and
the constructed 2D-FCCM are

x(i + 1) = F(x(i)) =
1

x(i)2 + 0.1
−ax(i), (13)

and
x1(i + 1) = p1x1(i) +

1
x2(i)2 + 0.1

− x2(i) mod 1

x2(i + 1) =
1

x1(i)2 + 0.1
− x1(i) + p2x2(i) mod 1.

(14)

It is evident that the fraction map F(x(i)) is differentiable,
and its absolute derivative attains a maximum value of
21.5396 when a = 1 and x(i) ∈ [0, 1). Thus, when |pk | >

22.5396 for k ∈ {1, 2}, the condition specified in Eq. (2)
holds, and 2D-FCCM can show hyperchaotic behavior as per
Proposition 1.

2) 2D-LCCM: 2D-LCCM is seeded by the logistic map
with a parameter b ∈ [0, 4] [38]. For simplicity, we have set
b = 4 in constructing 2D-LCCM. Nevertheless, b can take
other values as well. The definitions of logistic map and the
constructed 2D-LCCM are defined as follows:

x(i + 1) = L(x(i)) = bx(i)(1 − x(i)), (15)

and{
x1(i + 1) = p1x1(i) + 4x2(i)(1 − x2(i)) mod 1
x2(i + 1) = 4x1(i)(1 − x1(i)) + p2x2(i) mod 1.

(16)

The logistic map L(x(i)) is differentiable, and its absolute
derivative has a maximum value of 4 when b = 4 and x(i) ∈

[0, 1). As a result, when |pk | > 5 for k ∈ {1, 2}, Eq. (2)
is satisfied and 2D-LCCM can show hyperchaotic behavior
according to Proposition 1.

3) 2D-SCCM: 2D-SCCM is seeded by the sine map with a
parameter c ∈ [0, 1] [39]. For simplicity, we have set c = 1 for
the construction of 2D-SCCM. Here are the definitions of the
sine map and the constructed 2D-SCCM:

x(i + 1) = S(x(i)) = c sin(πx(i)), (17)

and {
x1(i + 1) = p1x1(i) + sin(πx2(i)) mod 1
x2(i + 1) = sin(πx1(i)) + p2x2(i) mod 1.

(18)

The sine map S(x(i)) is differentiable, and its absolute
derivative attains a maximum value of π when c = 1 and
x(i) ∈ [0, 1). Therefore, when |pk | > π + 1 for k ∈ {1, 2},
Eq. (2) holds and 2D-SCCM can show hyperchaotic behavior
according to Proposition 1.

Based on the examples above, we can observe that by
selecting different seed maps and parameter settings, 2D-CCS
can generate numerous new 2D chaotic maps. It is worth
noting that when the parameters p1 = p2 and the initial values
x1(0) = x2(0), the 2D chaotic map can degenerate into a 1D
chaotic map. However, we can easily avoid this situation by
selecting distinct control parameters and initial values.
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TABLE I
THE FIXED POINTS OF 2D-FCCM, 2D-LCCM, AND 2D-SCCM, AND THE ABSOLUTE EIGENVALUES

OF THEIR JACOBIAN MATRICES AT EACH FIXED POINT

B. Chaos Properties Analysis
1) Fixed-Point Stability: A fixed point of a function is the

point that maps to itself by the function. For example, the fixed
points of 2D-FCCM, 2D-LCCM, and 2D-SCCM, denoted as
(x̃1, x̃2), are the solutions of the following equations:

x̃1 = p1 x̃1 +
1

x̃2
2 + 0.1

− x̃2 mod 1

x̃2 =
1

x̃2
1 + 0.1

− x̃1 + p2 x̃2 mod 1,

(19a)

{
x̃1 = p1 x̃1 + 4x̃2(1 − x̃2) mod 1
x̃2 = 4x̃1(1 − x̃1) + p2 x̃2 mod 1,

(19b){
x̃1 = p1 x̃1 + sin(π x̃2) mod 1
x̃2 = sin(π x̃1) + p2 x̃2 mod 1.

(19c)

A fixed point may be stable or unstable, depending on
whether nearby states are attracted to or rejected by the fixed
point. The stability of a fixed point can be represented by the
system’s gradient at that point. For a 2D dynamic system, its
two gradients at a point, denoted as λ1 and λ2, are the two
eigenvalues of its Jacobian matrix at the point. If |λ1| > 1 and
|λ2| > 1, the fixed point is unstable and the system keeps
oscillating. Otherwise, the fixed point is stable and the system
remains steady as it evolves.

For different parameter pairs (p1, p2), Table I lists the fixed
points of the three chaotic maps and the absolute eigenvalues
of their Jacobian matrices at each fixed point. It can be seen
that the chaotic maps have different numbers of fixed points
under different parameters. Besides, all absolute eigenvalues
are greater than 1, meaning that every fixed point is unstable,
and these chaotic maps keep oscillating as they evolve.

2) Ability to Delay Chaos Degradation: Due to limited
digital precision, all chaotic maps implemented on digital
platforms eventually degenerate into periodic behaviors, a phe-
nomenon known as chaos degradation. Chaotic maps that
exhibit later chaos degradation times are more suitable for
practical applications. However, as it is difficult to directly
measure the chaos degradation time of a chaotic map, previous
works have tested this ability by examining the randomness of
the generated chaotic sequence. A chaotic map is considered
to have a high ability to delay chaos degradation if its
generated sequence passes a strict randomness test. A failed
test indicates that the chaotic behavior has degenerated into
periodic behavior within the length of the tested sequence.

TestU01 [40] is considered to be a very stringent standard
for randomness testing and can test longer random sequences
than other standards. It consists of eight test batteries: Rab-
bit, Alphabit, BlockAlphabit, SmallCrush, Crush, BigCrush,

TABLE II
PARAMETER SETTINGS AND INITIAL STATES OF 2D-FCCM, 2D-LCCM,

AND 2D-SCCM IN THE TESTU01 TEST, TRAJECTORY, CD,
AND IE EXPERIMENTS

TABLE III
TESTU01 TEST RESULTS FOR 2D-FCCM, 2D-LCCM, AND 2D-SCCM

pseudoDIEHARD, and FIPS-140-2. The Rabbit, Alphabit, and
BlockAlphabit batteries allow user-specified test data sizes,
while the other batteries utilize default test data sizes. Each
test battery contains a varying number of sub-tests, and each
sub-test yields a p-value. A given random sequence passes a
sub-test if its p-value falls within the range of [0.001, 0.999].

The first-dimensional outputs of 2D-FCCM, 2D-LCCM, and
2D-SCCM are subject to TestU01 testing, whereby the test
sequence is formed by extracting 8 bits from each output. The
parameter pairs and initial states used in the three new chaotic
maps are randomly selected, with their values specified in
Table II. Table III lists the TestU01 test results, demonstrating
that the three new chaotic maps can successfully pass all the
test batteries in the TestU01 standard, and thus these chaotic
maps have a high ability to delay chaos degradation.

C. Performance Comparison

This subsection presents a comparative analysis of our
2D-FCCM, 2D-LCCM, and 2D-SCCM with Bao’s [41],
Huang’s [42], and Kong’s [43] 2D chaotic maps from four
perspectives: LE, trajectory, correlation dimension (CD), and
information entropy (IE). For each chaotic map, a parameter
range is required to calculate the LEs, while a fixed parameter
value is used to calculate other indicators.

To provide a fair comparison, we set the parameters of
our chaotic maps as small as possible that can make them
show hyperchaotic behaviors. As a result, when calculating
the LEs, the parameter ranges of our 2D-FCCM, 2D-LCCM,
and 2D-SCCM are set as p1, p2 ∈ [23, 122], p1, p2 ∈
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Fig. 1. The two LEs of (a) 2D-FCCM with parameters p1, p2 ∈ [23, 122], (b) 2D-LCCM with parameters p1, p2 ∈ [6, 105], (c) 2D-SCCM with parameters
p1, p2 ∈ [5, 104], (d) Bao’s 2D chaotic map with parameters µ ∈ [0, 0.4], k ∈ [1.2, 2], a = −1, b = 1, (e) Huang’s 2D chaotic map with parameters
a, b ∈ [1, 4], (f) Kong’s 2D chaotic map with parameters a ∈ [2.9, 4.4], b ∈ [0.1, 1.6], c = d = 0, and (g) LLE of different 2D chaotic maps with their control
parameters scaled to [1, 100].

TABLE IV
PARAMETER SETTINGS AND INITIAL STATES OF BAO’S, HUANG’S, AND

KONG’S 2D CHAOTIC MAPS IN TRAJECTORY, CD, AND
IE EXPERIMENTS

[6, 105], and p1, p2 ∈ [5, 104], respectively, because they
show hyperchaotic behaviors when their parameters separately
satisfy that |pk | > 22.5396, |pk | > 5, and |pk | > π + 1
(k ∈ {1, 2}), according to the discussions in Section III-A.
When calculating other indicators, their parameters are set
as the randomly selected values shown in Table II to keep
consistent with the previous experiments. The initial states of
our chaotic maps used in all indicators also follow the values
listed in Table II.

For Bao’s [41], Huang’s [42], and Kong’s [43] 2D chaotic
maps, we directly use the representative parameters and initial
states presented in their original papers. Specifically, when
calculating the LEs, the parameter ranges are set as µ ∈

[0, 0.4], k ∈ [1.2, 2], a = −1, b = 1 in Bao’s map [41],
a, b ∈ [1, 4] in Huang’s map [42], and a ∈ [2.9, 4.4],
b ∈ [0.1, 1.6], c = d = 0 in Kong’s map [43], whereas their
specified parameters for calculating other indicators and the
initial states used in all indicators are listed in Table IV.

1) LE: As mentioned in Definition 1, a globally bounded
dynamic system shows chaotic behavior with a positive LE and
hyperchaotic behavior with multiple positive LEs. The larger
the LE, the more complex the manifested chaotic behavior.

Fig. 1(a)-(c) display the two LEs of 2D-FCCM, 2D-LCCM,
and 2D-SCCM, while Fig. 1(d)-(f) display the two LEs of
Bao’s, Huang’s, and Kong’s 2D chaotic maps. As can be seen,
the two LEs of our new chaotic maps are positive over the
entire parameter space, implying that they have continuous
chaotic intervals and hyperchaotic behaviors. Nonetheless, the
competing chaotic maps possess chaotic behaviors and positive
LEs only within a restricted parameter space, meaning that
their chaotic intervals are discontinuous. It can also be seen
that the larger the parameters p1 and p2, the larger the LEs of
our chaotic maps, validating the last paragraph of Section II-B.
Fig. 1(g) plots each chaotic map’s largest LE (LLE) to provide
a more straightforward comparison. We replace their control
parameters with â and b̂ and scale them to within [1, 100] for

Fig. 2. Trajectories of (a) 2D-FCCM, (b) 2D-LCCM, (c) 2D-SCCM,
(d) Bao’s 2D chaotic map, (e) Huang’s 2D chaotic map, and (f) Kong’s 2D
chaotic map.

unification. As can be seen, the LLEs of our chaotic maps are
much larger than those of the comparative chaotic maps.

2) Trajectory: The trajectory of a chaotic map provides
a visual representation of how its outputs occupy the phase
space. A chaotic map with a more uniform trajectory occu-
pies a larger portion of the phase space. Fig. 2 depicts the
trajectories of our 2D chaotic maps, as well as those of
Bao, Huang, and Kong. Each trajectory contains 100,000
iteratively generated points, with the initial state marked by
a red dot. As can be seen, the trajectories of our chaotic maps
are uniformly distributed throughout their entire phase space,
while those of the comparative chaotic maps only occupy a
subset of their respective phase spaces. This suggests that
the outputs of our chaotic maps are more uniform and less
predictable.

3) CD: CD is a kind of fractal dimension that quantifies the
space dimensionality occupied by a time series [44]. It is often
used to verify the chaotic nature of a dynamic system and the
strangeness of the attractor of a chaotic system. A dynamic
system with a positive CD indicates chaotic behavior, and a
larger CD indicates a more irregular attractor of a chaotic
system. We calculate the CDs of chaotic maps with an
embedding dimension of 2 using the method outlined in [45].
Two CDs can be calculated by taking each dimension output
of a 2D chaotic map as the input of CD calculation. Table V
lists the two CDs for our three new chaotic maps, as well as
those of Bao, Huang, and Kong’s 2D chaotic maps. It can be
observed that the two CDs of our chaotic maps are larger than
those of the comparative chaotic maps.
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TABLE V
THE CDS OF 2D-FCCM, 2D-LCCM, AND 2D-SCCM AS WELL AS BAO’S,

HUANG’S, AND KONG’S 2D CHAOTIC MAPS

4) IE: IE is a commonly used measure for analyzing the
randomness of a signal, and it can be used to evaluate the
randomness of the state vectors generated by a chaotic system.
The phase space of an nD chaotic system can be partitioned
into I n sub-phase spaces by equally dividing each dimension
of the phase space into I intervals. If the probabilities of
all state vectors falling into each sub-phase space are the
same, then the IE achieves a theoretical maximum value of
I Emax = n log2(I ). The larger the IE, the more uniformly the
state vector are distributed in the phase space.

The IE can be measured at a more granular level with a
larger I , and Table VI lists the IEs of our three new chaotic
maps and Bao’s, Huang’s, and Kong’s 2D chaotic maps against
different I , with the state vectors of length I 3 generated by
each chaotic map being tested. It can be observed that the
IEs of our chaotic maps are closer to I Emax and larger than
those of the comparative chaotic maps for each I , implying
that the state vectors of our chaotic maps have a more uniform
distribution.

In summary, our three 2D chaotic maps share common
advantages, such as unstable fixed points, the ability to delay
chaos degradation, two positive LEs, uniformly distributed
trajectories, and more. Consequently, they can all be regarded
as exhibiting robust chaotic behaviors. The differences or
potential disadvantages among them are attributed to the
selection of the seed maps. The logistic map has the simplest
complexity, while the fractional map boasts the highest com-
plexity, resulting in different complexity levels for the three
new 2D chaotic maps.

IV. NOISE-REDUCED OFDM-DCSK

This section details the proposed NR-OFDM-DCSK com-
munication scheme and analyzes its theoretical BER over the
AWGN channel.

A. NR-OFDM-DCSK Transmitter

Fig. 3 shows the transmitter structure of the NR-OFDM-
DCSK communication scheme. Assuming N − 1 information
bits are transmitted at a time, the information bits first undergo
binary phase shift keying (BPSK) modulation. Here, a binary
0 is modulated as a BPSK data −1 and a binary 1 is modulated
as a BPSK data 1. The resulting N −1 BPSK data symbols are
then simultaneously encoded using the same chaotic sequence
via chaotic modulation after sequential-to-parallel (S/P) con-
version. This results in N −1 information-bearing signals that
are further processed through the scrambling module and the
IFFT module, along with the reference signal (i.e., the used
chaotic sequence). Finally, the obtained signals are transmitted
after parallel-to-sequential (P/S) conversion. Our NR-OFDM-
DCSK scheme can employ any chaotic systems. In different
tests, the used chaotic systems can be different. When a chaotic

system is employed in NR-OFDM-DCSK, all the used chaotic
sequences are generated by the chaotic system.

1) Chaotic Modulation: Assume that the clock rate of NR-
OFDM-DCSK is 1/Tc, where Tc denotes the chip duration.
The spreading factor β is defined as the number of chaotic
samples used to carry each information bit, and Tb = βTc
represents the bit duration. The system clock triggers the
chaos generator to produce a new chaotic sample every PTc
(P ≥ 2) time, resulting in β/P different chaotic samples being
produced during Tb time. Moreover, each chaotic sample has
P duplicates, which form a chaotic reference sequence of
length β. On this basis, by exploiting the zero-mean nature
of channel noise, the receiver can calculate the average value
of every P samples to reduce the noise variance.

Precisely, during Tb time, the chaos generator produces β/P
distinct chaotic samples, denoted as {ĉ0, ĉ1, . . . , ĉβ/P−1}, with
each sample having P duplicates to form the chaotic reference
sequence {ck} as

ck = ĉ⌊k/P⌋, (20)

where k ∈ {0, 1, . . . , β−1} and ⌊·⌋ is the round down operator.
Let bi be the i-th BPSK data symbol for i ∈ {1, 2, . . . ,

N − 1}, the chaotic modulation process is performed by mul-
tiplying bi with each element of the chaotic reference sequence
{ck}. The resulting modulated symbols can be expressed as

di,k = bi ck, (21)

where i ∈ {1, 2, . . . , N − 1} and k ∈ {0, 1, . . . ,

β − 1}. Hence, each BPSK data symbol bi is encoded as
an information-bearing signal di = [di,0, di,1, . . . , di,β−1].
For simplicity, we denote d0 = {ck} = [c0, c1, . . . , cβ−1]

as the chaotic reference signal, which collaborates with the
N −1 information-bearing signals to form a signal matrix D =

[d0
T , d1

T , . . . , dN−1
T
]
T , where (·)T refers to the transpose

operation. As the signal matrix D may contain consecutively
repeated elements, it undergoes processing by a scrambling
module to provide a lightweight security boost.

2) Scrambling: The scrambling is to disrupt the positions
of the elements in the signal matrix D, and we adopt the
high-speed scrambling strategy introduced in [46] in our
method. In the scrambling procedure, a scrambling pattern
S is constructed to help scramble the signal matrix D. Two
chaotic sequences of length N and β are generated based
on the user’s secret key, and these two chaotic sequences
are sorted to produce two index vectors I1 ∈ N1×N and
I2 ∈ N1×β . The key space is calculated as the product
of the factorial of N and β (N ! × β!). In the scrambling
process, each operation repeatedly employs these two identical
chaotic sequences with fixed lengths N and β, respectively,
which are different from the chaotic reference sequences used
in modulation. The scrambling pattern S ∈ RN×β can be
obtained as [46]

S(i, :) = circshift(I2, I1(i)), (22)

where S(i, :) is the i-th row of S for i ∈ {1, 2, . . . , N }, and
circshift(I2, I1(i)) refers to the result of circularly shifting
I2 by I1(i) positions.

Using the scrambling pattern S, we can scramble the signal
matrix D to obtain D′

∈ NN×β by moving the matrix elements
to their new positions. Explicitly, for x ∈ {1, 2, . . . , N } and
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TABLE VI
THE IES OF 2D-FCCM, 2D-LCCM, AND 2D-SCCM AS WELL AS BAO’S, HUANG’S, AND KONG’S 2D CHAOTIC MAPS AGAINST DIFFERENT I

Fig. 3. The transmitter structure of our NR-OFDM-DCSK.

y ∈ {1, 2, . . . , β}, the element at position (x, S(x, y)) in D is
relocated to position (x ′, y′) in D′, where x ′ and y′ can be
determined as follows [46]:{

x ′
=
(
x − S(1, y) − 1 mod N

)
+ 1

y′
= S(x ′, y).

(23)

The above process is reversible and the element at position
(x, S(x, y)) in D can be retrieved from the element located
at position (x ′, y′) in D′. Once scrambling is completed, the
scrambled signal matrix D′ is transferred to the IFFT module.

3) IFFT: The IFFT operation is applied to each column of
the scrambled signal matrix D′. For k ∈ {0, 1, . . . , β − 1}, the
IFFT operation is performed on the k-th column of D′ as

sn,k =
1

√
N

N−1∑
i=0

d ′

i,ke j 2π in
N , (24)

where n ∈ {0, 1, . . . , N −1}, d ′

i,k denotes the element of D′ at
position (i, k), e is the Euler’s number, and j is the imaginary
unit. The IFFT operation on the k-th column of D′ produces
a vector [s0,k, s1,k, . . . , sN−1,k]

T , which is then converted by
P/S conversion and transmitted to the communication channel.

B. NR-OFDM-DCSK Receiver

When receiving the transmission signal, the receiver is
able to recover the transmitted information bits. The receiver
structure of NR-OFDM-DCSK is illustrated in Fig. 4. As can
be seen, after S/P conversion, the N received signals are
processed by the FFT module and the descrambling module.
Subsequently, each of the N signals is sent to an averaging
filter, which is disciplined by the same parameter P as that
used in the transmitter. The first filtered signal is explicitly
stored in matrix A, while the remaining N − 1 filtered signals
are stored in matrix B. These two matrices are subsequently
utilized in the chaotic demodulation process to recover the
transmitted bits.

1) FFT: The FFT operation is performed on each column
of the received signal matrix R ∈ CN×β . For k ∈ {0, 1, . . . ,

β − 1}, the FFT operation is applied to the k-th column of R
as

z′

i,k =
1

√
N

N−1∑
n=0

rn,ke− j 2πni
N = d ′

i,k + η′

i,k, (25)

where i ∈ {0, 1, . . . , N − 1}, rn,k denotes the element of R
at position (n, k), and η′

i,k refers to the channel noise. The
signal z′

i,k recovered by the FFT operation may be different
from the original signal d ′

i,k when it is blurred by the channel
noise during transmission.

2) Descrambling: Descrambling aims to restore each ele-
ment’s position in the signal matrix, which is the inverse
process of scrambling. The receiver generates an identical
scrambling pattern S with that in the transmitter to assist
descramble. Denote Z′

∈ CN×β as the signal matrix obtained
from the FFT operation. In order to descramble Z′ into the
signal matrix Z ∈ CN×β , the element at position (x, S(x, y))

in Z is retrieved from the element at position (x ′, y′) in
Z′ using Eq. (23), in which x ∈ {1, 2, . . . , N } and y ∈

{1, 2, . . . , β}. Without knowing the exact scrambling pattern
S, an eavesdropper cannot convert Z′ to Z. Subsequently, the
descrambled signal matrix Z is subjected to the averaging
filters for further processing.

3) Averaging Filtering: The averaging filtering operation is
to mitigate the interference of noise on the transmitted signal.
To accomplish this, N averaging filters concurrently process
N rows of the signal matrix Z. Specifically, an average value
is calculated for every P samples in each row, where P is set
the same as that in the transmitter. For i ∈ {0, 1, . . . , N − 1}

and j ∈ {0, 1, . . . ,
β
P −1}, the j-th output of the i-th averaging

filter can be expressed as

gi, j =
1
P

( j+1)P−1∑
k= j P

zi,k =
1
P

( j+1)P−1∑
k= j P

(di,k + ηi,k), (26)
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Fig. 4. The receiver structure of our NR-OFDM-DCSK.

where zi,k = di,k + ηi,k denotes the element of Z at position
(i, k). Since the variance of the noise in gi, j is only 1/P of
the noise’s variance in zi,k , the averaging filtering process can
effectively reduce the noise on the transmitted signal.

The outputs of the first averaging filter and the rest N − 1
filters are represented as matrices A ∈ C1×

β
P and B ∈

C(N−1)×
β
P , respectively. Matrix A contains the chaotic ref-

erence signal, and matrix B contains the information-bearing
signals. Afterwards, these two matrices are fed into the chaotic
demodulation process to recover the information bits.

4) Chaotic Demodulation: The chaotic demodulation pro-
cess is as follows:

[W1, W2, . . . , WN−1] = ℜ
(
A
)
ℜ
(
BT ), (27)

where ℜ(·) takes the real part of the complex signal, and Wi
(i ∈ {1, 2, . . . , N − 1}) is the product of the chaotic reference
signal and the i-th information-bearing signal:

Wi =

β
P −1∑
j=0

ℜ
(
g0, j

)
ℜ
(
gi, j

)
. (28)

Then, the estimated BPSK data can be determined from the
sign of Wi as

b̂i = sign(Wi ). (29)

Finally, the information bits can be recovered from the BPSK
data through BPSK demodulation, where the BPSK data −1 is
demodulated as binary 0, and BPSK data 1 is demodulated to
binary 1.

C. Theoretical BER Analysis
In this subsection, we delve into the theoretical BER of NR-

OFDM-DCSK. Since AWGN is one of the most frequently
occurring noises in the transmission channels, we analyze the
theoretical BER of NR-OFDM-DCSK over the AWGN chan-
nel using the Gaussian approximation method [16]. Explicitly,
the channel noise ηi,k = ξi,k + jζi,k is the complex AWGN
with zero-mean and power spectral density of N0. In other
words, the channel noise satisfies that E{ηi,k} = E{ξi,k} =

E{ζi,k} = 0 and E{|ηi,k |
2
} = 2 E{ξi,k

2
} = 2 E{ζi,k

2
} = N0,

where E{·} refers to the expectation notation.
To derive the theoretical BER for NR-OFDM-DCSK,

we first reformulate the signal gi, j obtained from the last
N − 1 averaging filters based on Eqs. (26), (21), and (20)
as below:

gi, j = bi ĉ j +
1
P

( j+1)P−1∑
k= j P

ηi,k, (30)

where i ∈ {1, 2, . . . , N − 1}, j ∈ {0, 1, . . . ,
β
P − 1}, and gi, j

essentially encompasses both the data sent from the transmitter
and the noise signal acquired during the transmission process.
As the output of the first averaging filter contains the chaotic
reference signal without modulating any BPSK data, the
expression for g0, j can be rewritten as

g0, j = ĉ j +
1
P

( j+1)P−1∑
k= j P

η0,k . (31)

Subsequently, we can rewrite the chaotic demodulated result
Wi (i ∈ {1, 2, . . . , N − 1}) from Eqs. (28), (30), and (31) as

Wi =

β
P −1∑
j=0

ℜ

(
ĉ j +

1
P

( j+1)P−1∑
k= j P

η0,k

)
ℜ

(
bi ĉ j +

1
P

( j+1)P−1∑
k= j P

ηi,k

)

=

β
P −1∑
j=0

(
ĉ j +

1
P

( j+1)P−1∑
k= j P

ξ0,k

)(
bi ĉ j +

1
P

( j+1)P−1∑
k= j P

ξi,k

)

=

β
P −1∑
j=0

bi ĉ2
j︸ ︷︷ ︸

U1

+
1

P2

β
P −1∑
j=0

(( ( j+1)P−1∑
k= j P

ξ0,k

)( ( j+1)P−1∑
k= j P

ξi,k

))
︸ ︷︷ ︸

U2

+
1
P

β
P −1∑
j=0

(
ĉ j

( j+1)P−1∑
k= j P

ξi,k + bi ĉ j

( j+1)P−1∑
k= j P

ξ0,k

)
︸ ︷︷ ︸

U3

, (32)

where part U1 contains the transmitted BPSK data, and parts
U2 and U3 contain the channel noise. Since U1, U2, and U3 are
statistically independent of each other, the expectation and
variance of Wi can be obtained by separately adding up their
expectations and variances as

E
{
Wi |(bi = ±1)

}
=

3∑
l=1

E
{
Ul |(bi = ±1)

}
, (33a)

Var
{
Wi |(bi = ±1)

}
=

3∑
l=1

Var
{
Ul |(bi = ±1)

}
, (33b)

where E{·} and Var{·} refer to the expectation and variance
notations, respectively. As the chaotic samples are independent
of the channel noise, which satisfies that E{ξi,k} = 0 and
E{ξi,k

2
} = N0/2, the expectations and variances of U1, U2,

and U3 can be calculated as

E
{
U1|(bi = +1)

}
= − E

{
U1|(bi = −1)

}
=

β

P
E
{
ĉ2

j
}
,

(34a)
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E
{
U2|(bi = ±1)

}
= E

{
U3|(bi = ±1)

}
= 0, (34b)

Var
{
U1|(bi = ±1)

}
=

β

P
Var

{
ĉ2

j
}
, (34c)

Var
{
U2|(bi = ±1)

}
=

βN 2
0

4P3 , (34d)

Var
{
U3|(bi = ±1)

}
=

βN0

P2 E
{
ĉ2

j
}
. (34e)

Finally, based on the expectation and variance of Wi , we can
derive the theoretical BER of NR-OFDM-DCSK as

B E R

=
1
2

erfc
(√

0/2
)

=
1
2

erfc
[(

2 Var
{
Wi |(bi = ±1)

}
E
{
Wi |(bi = ±1)

}2

)−
1
2
]

=
1
2

erfc
[(2P Var

{
ĉ2

j
}

β E
{
ĉ2

j
}2 +

N 2
0

2Pβ E
{
ĉ2

j
}2 +

2N0

β E
{
ĉ2

j
})−

1
2
]

=
1
2

erfc
[(2P Var

{
ĉ2

j
}

β E
{
ĉ2

j
}2 +

βN 2 N 2
0

2P(N −1)2 E2
b
+

2N N0

(N −1)Eb

)−
1
2
]
,

(35)

where 0 is the signal-to-noise (SNR) expression [16] and it is
shown as

0 =
E
{
Wi |(bi = ±1)

}2

Var
{
Wi |(bi = ±1)

} , (36)

The complementary error function, denoted as erfc(x) =
2

√
π

∫
∞

x e−t2
dt is a monotonically decreasing function, and

Eb = Nβ E{ĉ2
j }/(N − 1) refers to the average bit energy.

From Eq. (35), we can observe that for fixed P , β and N ,
the smaller variance Var{ĉ2

j } and larger expectation E{ĉ2
j } of

the chaotic sequences ĉ2
j contribute to a decrease in BER.

On one hand, our 2D chaotic maps can generate uniformly
distributed trajectories, which can achieve relatively small
variance Var{ĉ2

j }. On the other hand, our 2D chaotic map
can output chaotic sequences with large expectation E{ĉ2

j } by
adjusting the modulus coefficient M of 2D-CCS in Eq. (1).
As a result, our 2D chaotic maps can achieve small BER in
secure communication. A detailed BER analysis in multipath
fading is available in the Supplementary Material.

V. PERFORMANCE EVALUATION OF NR-OFDM-DCSK
This section evaluates and discusses the performance of the

NR-OFDM-DCSK communication scheme from four aspects:
BER, energy efficiency, spectral efficiency, and complexity.
Meanwhile, the proposed NR-OFDM-DCSK is compared with
state-of-the-art communication schemes, including the OFDM-
DCSK scheme [15], the FH-OFDM-DCSK scheme [16], and
the OFDM-PC-CSK scheme [17]. Among them, OFDM-
DCSK is the first scheme to introduce OFDM into DCSK
and it suffers from a relatively high BER. FH-OFDM-DCSK
improves the security of OFDM-DCSK but it does not enhance
the BER performance in the AWGN channel. OFDM-PC-CSK
has a high transmission efficiency with a high implementation
complexity. Compared to these schemes, our NR-OFDM-
DCSK scheme employs an averaging filtering technique that

TABLE VII
THE ENERGY EFFICIENCY, SPECTRAL EFFICIENCY, AND COMPLEXITY OF

NR-OFDM-DCSK, OFDM-DCSK, FH-OFDM-DCSK,
AND OFDM-PC-CSK

Fig. 5. The simulated and theoretical BERs of NR-OFDM-DCSK over the
AWGN channel when β ∈ {256, 512, 1024}, N = 64, and P ∈ {2, 4}.

significantly reduces noise variance, thus enhancing BER
performance effectively. Additionally, by using a scrambling
module to randomize the elements of the transmission matrix,
the security of our NR-OFDM-DCSK scheme is improved.
Importantly, the NR-OFDM-DCSK scheme maintains lower
complexity compared to OFDM-PC-DCSK [17], which will
be evidenced in Table VII.

A. BER Evaluation

1) BER of NR-OFDM-DCSK: We conduct two groups of
experiments to verify the theoretical BER of the proposed NR-
OFDM-DCSK. To generate chaos, we employ our new chaotic
map, 2D-FCCM, defined by Eq. (14), as the chaos generator.
The parameters p1 and p2 of 2D-FCCM are randomly selected
within the range [23, 122], and the first dimension output is
used to carry the information bits. We then simulate the BER
performance of NR-OFDM-DCSK over an AWGN channel,
with the noise intensity quantified by the SNR ratio Eb/N0.

The first group of experiments evaluates the BER perfor-
mance of NR-OFDM-DCSK under different spreading factors
β ∈ {256, 512, 1024}, with a fixed N of 64 and parameter
P ∈ {2, 4}. As depicted in Fig. 5, the results reveal that
the BER is lower when β is smaller, and our scheme can
better suppress the noise to obtain a lower BER when P
is larger. Moreover, it is evident that the theoretical BER
is consistent with the simulated BER, with tiny difference
caused by calculation error. Notably, the BER curves with
identical β/P value overlap, such as the BER curve for
parameters (β, P) = (512, 2) overlapping with the BER curve
for parameters (β, P) = (1024, 4). This observation aligns
with the theoretical BER formula for NR-OFDM-DCSK in
Eq. (35), as reflected by both the β/P and P/β components.

The second group of experiments evaluates the BER per-
formance of NR-OFDM-DCSK across varying numbers of
subcarriers N ∈ {2, 64, 128}, with β fixed at 512 and parame-
ter P ∈ {2, 4}. As illustrated in Fig. 6, the results indicate that
as N increases, our scheme achieves a lower BER. However,
when the ratio N/(N − 1) approaches 1, there is only a slight
change in the BER, as evident from the results for N ∈
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Fig. 6. The simulated and theoretical BERs of NR-OFDM-DCSK over the
AWGN channel when N ∈ {2, 64, 128}, β = 512, and P ∈ {2, 4}.

Fig. 7. The BERs of legitimate receiver and eavesdropper for NR-OFDM-D-
CSK when β = 512 and N = P = 64.

{64, 128}. This phenomenon also aligns with the theoretical
BER formula of NR-OFDM-DCSK in Eq. (35), as indicated
by the N/(N − 1) component. Moreover, the theoretical BER
closely matches the simulated BER. Furthermore, the BER
decreases with the increase of P , confirming the effectiveness
of the averaging filter in reducing noise.

2) BER of Eavesdropper: In the structural design of NR-
OFDM-DCSK, we provide a lightweight security boost for
protecting the signal from transmission eavesdropping using
a scrambling module. Without knowing the exact scrambling
pattern S, an eavesdropper cannot demodulate the transmitted
information bits properly. Fig. 7 depicts the BERs of the
legitimate receiver and eavesdropper for NR-OFDM-DCSK.
As shown, the eavesdropper’s BER remains at about 0.5, indi-
cating that the information bits recovered by the eavesdropper
are random sequences of 0s and 1s, which contain no useful
information about the transmitted bits.

3) BER Comparison: To assess the effectiveness of our
developed chaotic maps and the designed NR-OFDM-DCSK,
we conduct three groups of experiments for BER comparison.

The first group of experiments compares the BER of NR-
OFDM-DCSK when using different chaotic maps as the chaos
generator. In particular, we use our new chaotic maps, namely
2D-FCCM, 2D-LCCM, and 2D-SCCM, along with the chaotic
maps of Bao [41], Huang [42], Kong [43], 1D-Tent map [4]
and 1D-Chebyshev map [4], as individual chaos generator for
NR-OFDM-DCSK. To ensure stable and fair BER compari-
son, we conduct 100 experiments for each chaotic map and
calculate the average BER. The parameters for each chaotic
map in each experiment are chosen equidistantly from the
parameter ranges used in the LE experiment in Section III-C.1.
Additionally, the initial state of each chaotic map is randomly
selected within [0, 1) × [0, 1). Moreover, since the outputs of
different chaotic maps fall within varying ranges, we use the
output of the first dimension of each chaotic map to carry the
information bits after applying modulo one operation.

Fig. 8 illustrates the results of the first group of experiments.
As shown, using our chaotic maps as the chaos generator
results in significantly lower BERs for NR-OFDM-DCSK in
comparison to other chaotic maps. In addition, we compare

Fig. 8. BER comparison of NR-OFDM-DCSK over the AWGN channel
using different chaotic maps as the chaos generator when β = N = 64 and
P = 2.

Fig. 9. BER comparison of NR-OFDM-DCSK over the combined AWGN
and ARN channel using different chaotic maps as the chaos generator when
β = N = 64 and P = 2.

the BER of NR-OFDM-DCSK using different chaotic maps
as generators over the combined AWGN and ARN channel.
As shown in Fig. 9, our chaotic maps also achieve lower BERs
compared to other maps. These observations suggest that our
chaotic maps are more suitable for secure communication
applications, primarily due to their more continuous chaotic
intervals. Furthermore, the BERs remain consistent when using
our chaotic maps as the chaos generator. This is because three
chaotic maps generated by the 2D-CCS exhibit uniformly dis-
tributed trajectories (as depicted in Figs. 2(a)-(c)) and similar
chaotic complexities (as demonstrated in Tables V and VI).
These imply the stability and reliability of our 2D-CCS
framework in generating new chaotic maps well-suited for
secure communication applications.

The second group of experiments involves comparing the
BER performance among various communication schemes
over the AWGN channel using our 2D-FCCM as the chaos
generator, with the experimental results presented in Fig. 10.
It can be observed that the BER of our NR-OFDM-DCSK
outperforms other communication schemes, revealing its
resilience to noise during transmission. In particular, when
Eb/N0 ∈ {0, 1, 2} dB, the BER of OFDM-PC-CSK [17] is
almost the same as that of our NR-OFDM-DCSK. How-
ever, as Eb/N0 increases, our NR-OFDM-DCSK exhibits a
substantially lower BER. Furthermore, we evaluate the BER
performance of various communication schemes using our 2D-
FCCM as the generator over the combined AWGN and ARN
channel. Fig. 11 shows that our NR-OFDM-DCSK scheme
achieves better BER performance than OFDM-DCSK and FH-
OFDM-DCSK, and is similar to OFDM-PC-DCSK. However,
it should be noted that OFDM-PC-DCSK incurs a higher
computational cost, as detailed in Table VII.

The third group of experiments examines the BER
performance of our proposed NR-OFDM-DCSK in other com-
munication channels, including the flat fading channel and the
multipath fading channel. These experiments also include a
comparison among various communication schemes.
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Fig. 10. BER comparison of NR-OFDM-DCSK over the AWGN chan-
nel with state-of-the-art communication schemes when β = 512 and
N = P = 64.

Fig. 11. BER comparison of NR-OFDM-DCSK over the combined
AWGN and ARN channel with state-of-the-art communication schemes when
β = 1024, N = 64 and P = 128.

Fig. 12. BER comparison of NR-OFDM-DCSK over the flat fading
channel with state-of-the-art communication schemes when β = 512 and
N = P = 64.

Fig. 13. BER comparison of NR-OFDM-DCSK over the multipath fading
channel (with three paths) with state-of-the-art communication schemes when
β = 512 and N = P = 64.

Fig. 12 depicts the BER comparison results for NR-
OFDM-DCSK in the flat fading channel along with various
communication schemes. It is evident that the BER of the
proposed NR-OFDM-DCSK is consistently lower than that of
other schemes, showing the advantage of our proposed scheme
in the flat fading channel. Additionally, the results reveal that
the designed averaging filters in the proposed scheme consis-
tently effectively suppress noise in the flat fading channel.

Fig. 13 shows the BER comparison results for NR-OFDM-
DCSK over the multipath fading channel along with various
communication schemes. It can be observed that the BER
of our proposed NR-OFDM-DCSK outperforms that of other
schemes over the flat fading channel. For the multipath fading
channel, our NR-OFDM-DCSK outperforms other schemes
when Eb/N0 < 10 dB. However, when Eb/N0 ≥ 10 dB, the
BER of FH-OFDM-DCSK is the lowest. This can be attributed

to the design of the frequency hopping module in the FH-
OFDM-DCSK scheme, which is primarily designed to utilize
the frequency diversity gain in the multipath fading channel.
Moreover, the BER of OFDM-PC-CSK remains consistently
at 0.5 in both the flat fading channel and multipath fading
channel, indicating its inapplicability in such scenarios.

Combining the results of the second and third groups of
experiments, it can be concluded that the proposed NR-
OFDM-DCSK consistently outperforms other schemes in both
the AWGN channel and the flat fading channel. In the mul-
tipath fading channel, it also exhibits superior performance
compared to some other schemes.

Unlike the NR-DCSK scheme in [47], which modu-
lates one bit at a time, our NR-OFDM-DCSK scheme
enhances transmission efficiency by simultaneously modu-
lating N − 1 information bits simultaneously at one time.
Additionally, our NR-OFDM-DCSK scheme significantly
improves communication security through the adopted scram-
bling strategy and achieves a lower bit error rate by using the
averaging filtering to reduce the noise variance, outperforming
compared to the OFDM-DCSK scheme in [15]. Therefore,
compared to previous schemes, our NR-OFDM-DCSK scheme
has advantages in transmission efficiency, communication
security, and BER.

B. Energy Efficiency, Spectral Efficiency, and Complexity

This subsection analyzes the energy efficiency, spectral effi-
ciency and complexity of our NR-OFDM-DCSK and compares
it with other schemes, and the results are shown in Table VII.

The energy efficiency is characterized by the data-energy-
to-bit-energy-ratio (DBR). For our NR-OFDM-DCSK, N − 1
BPSK data are modulated using the same chaotic reference
sequence. As a result, the energy required for our scheme to
transmit an information bit can be expressed as

Eb = Edata + Ere f /(N − 1), (37)

where Edata and Ere f denote the energy required for transmit-
ting BPSK data and chaotic reference sequence, respectively,
and Edata = Ere f =

∑β−1
k=0 c2

k . Thus, the energy efficiency of
our NR-OFDM-DCSK can be obtained by

DB R = Edata/Eb = (N − 1)/N . (38)

Similarly, the energy efficiency of OFDM-DCSK and FH-
OFDM-DCSK is also (N − 1)/N , whereas OFDM-PC-CSK
has an energy efficiency of 1 as it does not transmit the ref-
erence signals. However, as N increases, the ratio (N − 1)/N
approaches 1, and the energy efficiency of our NR-OFDM-
DCSK can reach an impressive 99.22% when N = 128.

The spectral efficiency refers to the number of information
bits transmitted per OFDM symbol. With N − 1 information
bits being transmitted during the same time period, the spectral
efficiency of our NR-OFDM-DCSK can be expressed as
(N-1)/(β BTo), where B denotes the bandwidth occupied by
an OFDM symbol, and To represents the duration of an OFDM
symbol. Similarly, the spectral efficiency of OFDM-DCSK and
FH-OFDM-DCSK is also (N − 1)/(β BTo), whereas OFDM-
PC-CSK achieves a spectral efficiency of N/(β BTo).

The complexity analysis of our NR-OFDM-DCSK is given
as follows: (1) The complexities of the chaotic modulation and

Authorized licensed use limited to: Universidade de Macau. Downloaded on January 11,2025 at 09:04:41 UTC from IEEE Xplore.  Restrictions apply. 



HUA et al.: TWO-DIMENSIONAL CYCLIC CHAOTIC SYSTEM FOR NR-OFDM-DCSK COMMUNICATION 335

demodulation process are O(Nβ) and O(Nβ/P), respectively;
(2) The complexity of both the scrambling and descrambling
process is O(Nβ); (3) The complexity of both IFFT and FFT
operations is O(Nβ log2 N ); (4) The complexity of averaging
filtering is O(Nβ). Therefore, the overall complexity of our
NR-OFDM-DCSK is O(Nβ log2 N ), which is the same as that
of OFDM-DCSK and FH-OFDM-DCSK. In contrast, OFDM-
PC-CSK has the highest complexity since it contains some
matrix operations.

As a result, our NR-OFDM-DCSK achieves a lower BER
while maintaining the same efficiency and complexity as
OFDM-DCSK and FH-OFDM-DCSK. However, OFDM-PC-
CSK gains a slightly higher efficiency but at the cost of
increased complexity.

VI. CONCLUSION

Existing chaos-based secure communication schemes have
some defects in the used chaotic system and communica-
tion structure. This paper first introduces 2D-CCS, a general
framework to construct new 2D chaotic maps with complex
dynamics behavior by combining an existing 1D seed map
with two linear expressions. It provides users great flexibility
to choose seed maps and linear expressions to generate a large
number of new 2D chaotic maps. We theoretically demonstrate
the hyperchaotic behavior of 2D-CCS in the sense of LE
and experimentally verify the complex dynamics behavior of
three examples generated by 2D-CCS. Then, we design NR-
OFDM-DCSK, a new communication scheme that can better
carry information bits. We analyze the theoretical BER of
NR-OFDM-DCSK over the AWGN channel and verify the
consistency between the simulated BER and the theoretical
BER. Experimental results show that our new chaotic maps
are more suitable for communication applications than pre-
vious 2D chaotic maps, and our designed NR-OFDM-DCSK
performs better than prior communication schemes in resisting
noise. Future work will explore constructing robust chaotic
systems by using distinct 1D chaotic maps or 2D chaotic maps
as seed maps.
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